51
|
Astragaloside IV inhibits palmitic acid-induced apoptosis through regulation of calcium homeostasis in mice podocytes. Mol Biol Rep 2021; 48:1453-1464. [PMID: 33606151 PMCID: PMC7925475 DOI: 10.1007/s11033-021-06204-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/28/2021] [Indexed: 11/04/2022]
Abstract
Loss of podocytes is a hallmark of diabetic nephropathy, and a growing body of evidence indicates that podocytes are susceptible to palmitic acid (PA). We have previously shown that AS-IV inhibited PA-induced podocyte apoptosis by activating sarcoendoplasmic reticulum Ca2+ ATPase (SERCA), which indicate calcium regulation may involve in the process. Immunofluorescence staining, Western blot and flow cytometry were used to measure the protective efficacy of AS-IV to ameliorate PA-induced ER stress and podocyte apoptosis. Meanwhile, AS-IV inhibited cytochrome c release, decreased mitochondrial membrane potential, accompany with the depletion of endoplasmic reticulum Ca2+ and elevation of cytosolic and mitochondrial Ca2+. Sequestration of cytosolic calcium with BAPTA-AM limited the response of podocyte apoptosis, while during the process the effect of AS-IV was also restrained. In contrast, elevation of cytosolic calcium with calcium ionophore ionomycin was depressed by AS-IV addition. Furthermore, inhibiting TRPC6 expression with SKF96365 or TRPC6 siRNA counteracted the beneficial effect of AS-IV. Our study provides further evidence to conclude the inhibitory effect of AS-IV to podocyte apoptosis is Ca2+-dependent. And the efficacy correlates with inhibiting TRPC6-mediated Ca2+ influx, and then cellular Ca2+ disturbance was coordinated.
Collapse
|
52
|
Morgan AJ, Galione A. Lysosomal agents inhibit store-operated Ca 2+ entry. J Cell Sci 2021; 134:224094. [PMID: 33328326 PMCID: PMC7860125 DOI: 10.1242/jcs.248658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
Pharmacological manipulation of lysosome membrane integrity or ionic movements is a key strategy for probing lysosomal involvement in cellular processes. However, we have found an unexpected inhibition of store-operated Ca2+ entry (SOCE) by these agents. Dipeptides [glycyl-L-phenylalanine 2-naphthylamide (GPN) and L-leucyl-L-leucine methyl ester] that are inducers of lysosomal membrane permeabilization (LMP) uncoupled endoplasmic reticulum Ca2+-store depletion from SOCE by interfering with Stim1 oligomerization and/or Stim1 activation of Orai. Similarly, the K+/H+ ionophore, nigericin, that rapidly elevates lysosomal pH, also inhibited SOCE in a Stim1-dependent manner. In contrast, other strategies for manipulating lysosomes (bafilomycin A1, lysosomal re-positioning) had no effect upon SOCE. Finally, the effects of GPN on SOCE and Stim1 was reversed by a dynamin inhibitor, dynasore. Our data show that lysosomal agents not only release Ca2+ from stores but also uncouple this release from the normal recruitment of Ca2+ influx. Summary: Lysosomal agents uncouple ER Ca2+-release from store-operated Ca2+ entry, predominantly by inhibiting Stim1 oligomerization and its activation of Orai.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
53
|
Cremer T, Neefjes J, Berlin I. The journey of Ca 2+ through the cell - pulsing through the network of ER membrane contact sites. J Cell Sci 2020; 133:133/24/jcs249136. [PMID: 33376155 DOI: 10.1242/jcs.249136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcium is the third most abundant metal on earth, and the fundaments of its homeostasis date back to pre-eukaryotic life forms. In higher organisms, Ca2+ serves as a cofactor for a wide array of (enzymatic) interactions in diverse cellular contexts and constitutes the most important signaling entity in excitable cells. To enable responsive behavior, cytosolic Ca2+ concentrations are kept low through sequestration into organellar stores, particularly the endoplasmic reticulum (ER), but also mitochondria and lysosomes. Specific triggers are then used to instigate a local release of Ca2+ on demand. Here, communication between organelles comes into play, which is accomplished through intimate yet dynamic contacts, termed membrane contact sites (MCSs). The field of MCS biology in relation to cellular Ca2+ homeostasis has exploded in recent years. Taking advantage of this new wealth of knowledge, in this Review, we invite the reader on a journey of Ca2+ flux through the ER and its associated MCSs. New mechanistic insights and technological advances inform the narrative on Ca2+ acquisition and mobilization at these sites of communication between organelles, and guide the discussion of their consequences for cellular physiology.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
54
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
55
|
IP3R Channels in Male Reproduction. Int J Mol Sci 2020; 21:ijms21239179. [PMID: 33276427 PMCID: PMC7730405 DOI: 10.3390/ijms21239179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
As a second messenger in cellular signal transduction, calcium signaling extensively participates in various physiological activities, including spermatogenesis and the regulation of sperm function. Abnormal calcium signaling is highly correlated with male infertility. Calcium signaling is mainly regulated by both extracellular calcium influx and the release of calcium stores. Inositol 1,4,5-trisphosphate receptor (IP3R) is a widely expressed channel for calcium stores. After being activated by inositol 1,4,5-trisphosphate (IP3) and calcium signaling at a lower concentration, IP3R can regulate the release of Ca2+ from stores into cytoplasm, and eventually trigger downstream events. The closure of the IP3R channel caused by a rise in intracellular calcium signals and the activation of the calcium pump jointly restores the calcium store to a normal level. In this review, we aim to discuss structural features of IP3R channels and the underlying mechanism of IP3R channel-mediated calcium signaling and further focus on the research progress of IP3R expression and function in the male reproductive system. Finally, we propose key directions and strategies for research of IP3R in spermatogenesis and the regulation of sperm function to provide more understanding of the function and mechanism of IP3R channel actions in male reproduction.
Collapse
|
56
|
Jeon YM, Kwon Y, Jo M, Lee S, Kim S, Kim HJ. The Role of Glial Mitochondria in α-Synuclein Toxicity. Front Cell Dev Biol 2020; 8:548283. [PMID: 33262983 PMCID: PMC7686475 DOI: 10.3389/fcell.2020.548283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
The abnormal accumulation of alpha-synuclein (α-syn) aggregates in neurons and glial cells is widely known to be associated with many neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple system atrophy (MSA). Mitochondrial dysfunction in neurons and glia is known as a key feature of α-syn toxicity. Studies aimed at understanding α-syn-induced toxicity and its role in neurodegenerative diseases have primarily focused on neurons. However, a growing body of evidence demonstrates that glial cells such as microglia and astrocytes have been implicated in the initial pathogenesis and the progression of α-Synucleinopathy. Glial cells are important for supporting neuronal survival, synaptic functions, and local immunity. Furthermore, recent studies highlight the role of mitochondrial metabolism in the normal function of glial cells. In this work, we review the complex relationship between glial mitochondria and α-syn-mediated neurodegeneration, which may provide novel insights into the roles of glial cells in α-syn-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
57
|
Atakpa-Adaji P, Thillaiappan NB, Taylor CW. IP3 receptors and their intimate liaisons. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
58
|
|
59
|
Marchi S, Giorgi C, Galluzzi L, Pinton P. Ca 2+ Fluxes and Cancer. Mol Cell 2020; 78:1055-1069. [PMID: 32559424 DOI: 10.1016/j.molcel.2020.04.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Ca2+ ions are key second messengers in both excitable and non-excitable cells. Owing to the rather pleiotropic nature of Ca2+ transporters and other Ca2+-binding proteins, however, Ca2+ signaling has attracted limited attention as a potential target of anticancer therapy. Here, we discuss cancer-associated alterations of Ca2+ fluxes at specific organelles as we identify novel candidates for the development of drugs that selectively target Ca2+ signaling in malignant cells.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| | - Paolo Pinton
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
60
|
Calcium signaling and epigenetics: A key point to understand carcinogenesis. Cell Calcium 2020; 91:102285. [PMID: 32942140 DOI: 10.1016/j.ceca.2020.102285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling controls a wide range of cellular processes, including the hallmarks of cancer. The Ca2+ signaling system encompasses several types of proteins, such as receptors, channels, pumps, exchangers, buffers, and sensors, of which several are mutated or with altered expression in cancer cells. Since epigenetic mechanisms are disrupted in all stages of carcinogenesis, and reversibly regulate gene expression, they have been studied by different research groups to understand their role in Ca2+ signaling remodeling in cancer cells and the carcinogenic process. In this review, we link Ca2+ signaling, cancer, and epigenetics fields to generate a comprehensive landscape of this complex group of diseases.
Collapse
|
61
|
Davis LC, Morgan AJ, Galione A. NAADP-regulated two-pore channels drive phagocytosis through endo-lysosomal Ca 2+ nanodomains, calcineurin and dynamin. EMBO J 2020; 39:e104058. [PMID: 32510172 PMCID: PMC7360967 DOI: 10.15252/embj.2019104058] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophages clear pathogens by phagocytosis and lysosomes that fuse with phagosomes are traditionally regarded as to a source of membranes and luminal degradative enzymes. Here, we reveal that endo-lysosomes act as platforms for a new phagocytic signalling pathway in which FcγR activation recruits the second messenger NAADP and thereby promotes the opening of Ca2+ -permeable two-pore channels (TPCs). Remarkably, phagocytosis is driven by these local endo-lysosomal Ca2+ nanodomains rather than global cytoplasmic or ER Ca2+ signals. Motile endolysosomes contact nascent phagosomes to promote phagocytosis, whereas endo-lysosome immobilization prevents it. We show that TPC-released Ca2+ rapidly activates calcineurin, which in turn dephosphorylates and activates the GTPase dynamin-2. Finally, we find that different endo-lysosomal Ca2+ channels play diverse roles, with TPCs providing a universal phagocytic signal for a wide range of particles and TRPML1 being only required for phagocytosis of large targets.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
62
|
Lock JT, Parker I. IP 3 mediated global Ca 2+ signals arise through two temporally and spatially distinct modes of Ca 2+ release. eLife 2020; 9:e55008. [PMID: 32396066 PMCID: PMC7253181 DOI: 10.7554/elife.55008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The 'building-block' model of inositol trisphosphate (IP3)-mediated Ca2+ liberation posits that cell-wide cytosolic Ca2+ signals arise through coordinated activation of localized Ca2+ puffs generated by stationary clusters of IP3 receptors (IP3Rs). Here, we revise this hypothesis, applying fluctuation analysis to resolve Ca2+ signals otherwise obscured during large Ca2+ elevations. We find the rising phase of global Ca2+ signals is punctuated by a flurry of puffs, which terminate before the peak by a mechanism involving partial ER Ca2+ depletion. The continuing rise in Ca2+, and persistence of global signals even when puffs are absent, reveal a second mode of spatiotemporally diffuse Ca2+ signaling. Puffs make only small, transient contributions to global Ca2+ signals, which are sustained by diffuse release of Ca2+ through a functionally distinct process. These two modes of IP3-mediated Ca2+ liberation have important implications for downstream signaling, imparting spatial and kinetic specificity to Ca2+-dependent effector functions and Ca2+ transport.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology & Behavior, UC IrvineIrvineUnited States
| | - Ian Parker
- Department of Neurobiology & Behavior, UC IrvineIrvineUnited States
- Department of Physiology & Biophysics, UC IrvineIrvineUnited States
| |
Collapse
|
63
|
Idevall-Hagren O, Tengholm A. Metabolic regulation of calcium signaling in beta cells. Semin Cell Dev Biol 2020; 103:20-30. [PMID: 32085965 DOI: 10.1016/j.semcdb.2020.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) regulates a vast number of cellular functions, including insulin secretion from beta cells. The major physiological insulin secretagogue, glucose, triggers [Ca2+]cyt oscillations in beta cells. Synchronization of the oscillations among the beta cells within an islet underlies the generation of pulsatile insulin secretion. This review describes the mechanisms generating [Ca2+]cyt oscillations, the interactions between [Ca2+]cyt and cell metabolism, as well as the contribution of various organelles to the shaping of [Ca2+]cyt signals and insulin secretion. It also discusses how Ca2+ signals are coordinated and spread throughout the islets and data indicating that altered Ca2+ signaling is associated with beta cell dysfunction and development of type 2 diabetes.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
64
|
Molecular Mechanisms of Calcium Signaling During Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:103-128. [PMID: 32399828 DOI: 10.1007/978-3-030-40406-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger involved in the regulation of numerous cellular functions including vesicular trafficking, cytoskeletal rearrangements and gene transcription. Both global as well as localized Ca2+ signals occur during phagocytosis, although their functional impact on the phagocytic process has been debated. After nearly 40 years of research, a consensus may now be reached that although not strictly required, Ca2+ signals render phagocytic ingestion and phagosome maturation more efficient, and their manipulation make an attractive avenue for therapeutic interventions. In the last decade many efforts have been made to identify the channels and regulators involved in generating and shaping phagocytic Ca2+ signals. While molecules involved in store-operated calcium entry (SOCE) of the STIM and ORAI family have taken center stage, members of the canonical, melastatin, mucolipin and vanilloid transient receptor potential (TRP), as well as purinergic P2X receptor families are now recognized to play significant roles. In this chapter, we review the recent literature on research that has linked specific Ca2+-permeable channels and regulators to phagocytic function. We highlight the fact that lipid mediators are emerging as important regulators of channel gating and that phagosomal ionic homeostasis and Ca2+ release also play essential parts. We predict that improved methodologies for measuring these factors will be critical for future advances in dissecting the intricate biology of this fascinating immune process.
Collapse
|
65
|
Morgan AJ, Yuan Y, Patel S, Galione A. Does lysosomal rupture evoke Ca 2+ release? A question of pores and stores. Cell Calcium 2019; 86:102139. [PMID: 31881482 DOI: 10.1016/j.ceca.2019.102139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/04/2023]
Abstract
Lysosomotropic agents have been used to permeabilize lysosomes and thereby implicate these organelles in diverse cellular processes. Since lysosomes are Ca2+ stores, this rupturing action, particularly that induced by GPN, has also been used to rapidly release Ca2+ from lysosomes. However, a recent study has questioned the mechanism of action of GPN and concluded that, acutely, it does not permeabilize lysosomes but releases Ca2+ directly from the ER instead. We therefore appraise these provocative findings in the context of the existing literature. We suggest that further work is required to unequivocally rule out lysosomes as contributors to GPN-evoked Ca2+ signals.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
66
|
Alharbi AF, Parrington J. Endolysosomal Ca 2+ Signaling in Cancer: The Role of TPC2, From Tumorigenesis to Metastasis. Front Cell Dev Biol 2019; 7:302. [PMID: 31867325 PMCID: PMC6904370 DOI: 10.3389/fcell.2019.00302] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
Ca2+ homeostasis is dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy, progression, and metastasis. Emerging evidence has suggested that endolysosomal cation channels sustain several cancer hallmarks involving proliferation, metastasis, and angiogenesis. Here, we investigate the role of TPC1-2, TRPML1-3, and P2×4 in cancer, with a particular focus on the role of TPC2 in cancer development, melanoma, and other cancer types as well as its endogenous and exogenous modulators. It has become evident that TPC2 plays a role in cancer; however, the precise mechanisms underlying its exact role remain elusive. TPC2 is a potential candidate for cancer biomarkers and a druggable target for future cancer therapy.
Collapse
Affiliation(s)
- Abeer F. Alharbi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
67
|
Lee T, Huang L, Dong H, Tohru Y, Liu B, Yang R. Impairment of mitochondrial unfolded protein response contribute to resistance declination of H
2
O
2
‐induced injury in senescent MRC‐5 cell model. Kaohsiung J Med Sci 2019; 36:89-97. [DOI: 10.1002/kjm2.12146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Affiliation(s)
- Tzu‐Ying Lee
- Department of PediatricsKaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung Taiwan ROC
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical University Kaohsiung Taiwan ROC
| | - Li‐Ju Huang
- Teaching and Research CenterKaohsiung Municipal Ta‐Tung Hospital Kaohsiung Taiwan ROC
| | - Huei‐Ping Dong
- Department of Physical TherapyFooyin University Kaohsiung Taiwan ROC
| | - Yoshioka Tohru
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical University Kaohsiung Taiwan ROC
| | - Bo‐Hong Liu
- Department of PediatricsKaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung Taiwan ROC
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical University Kaohsiung Taiwan ROC
| | - Rei‐Cheng Yang
- Department of PediatricsKaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung Taiwan ROC
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical University Kaohsiung Taiwan ROC
| |
Collapse
|
68
|
Astaburuaga R, Quintanar Haro OD, Stauber T, Relógio A. A Mathematical Model of Lysosomal Ion Homeostasis Points to Differential Effects of Cl - Transport in Ca 2+ Dynamics. Cells 2019; 8:E1263. [PMID: 31623161 PMCID: PMC6848924 DOI: 10.3390/cells8101263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The establishment and maintenance of ion gradients between the interior of lysosomes and the cytosol are crucial for numerous cellular and organismal functions. Numerous ion transport proteins ensure the required variation in luminal concentrations of the different ions along the endocytic pathway to fit the needs of the organelles. Failures in keeping proper ion homeostasis have pathological consequences. Accordingly, several human diseases are caused by the dysfunction of ion transporters. These include osteopetrosis, caused by the dysfunction of Cl-/H+ exchange by the lysosomal transporter ClC-7. To better understand how chloride transport affects lysosomal ion homeostasis and how its disruption impinges on lysosomal function, we developed a mathematical model of lysosomal ion homeostasis including Ca2+ dynamics. The model recapitulates known biophysical properties of ClC-7 and enables the investigation of its differential activation kinetics on lysosomal ion homeostasis. We show that normal functioning of ClC-7 supports the acidification process, is associated with increased luminal concentrations of sodium, potassium, and chloride, and leads to a higher Ca2+ uptake and release. Our model highlights the role of ClC-7 in lysosomal acidification and shows the existence of differential Ca2+ dynamics upon perturbations of Cl-/H+ exchange and its activation kinetics, with possible pathological consequences.
Collapse
Affiliation(s)
- Rosario Astaburuaga
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
- Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungzentrum (MKFZ), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
| | - Orlando Daniel Quintanar Haro
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany.
| | - Tobias Stauber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany.
- Department of Human Medicine, Medical School Hamburg, 20457 Hamburg, Germany.
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
- Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungzentrum (MKFZ), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
| |
Collapse
|
69
|
Leandrou E, Emmanouilidou E, Vekrellis K. Voltage-Gated Calcium Channels and α-Synuclein: Implications in Parkinson's Disease. Front Mol Neurosci 2019; 12:237. [PMID: 31649506 PMCID: PMC6794345 DOI: 10.3389/fnmol.2019.00237] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (α-syn) is biochemically and genetically linked to Parkinson's disease (PD) and other synucleinopathies. It is now widely accepted that α-syn can be released in the extracellular space, even though the mechanism of its release is still unclear. In addition, pathology-related aggregated species of α-syn have been shown to propagate between neurons in synaptically connected areas of the brain thereby assisting the spreading of pathology in healthy neighboring neuronal cells. In neurons, calcium channels are key signaling elements that modulate the release of bioactive molecules (hormones, proteins, and neurotransmitters) through calcium sensing. Such calcium sensing activity is determined by the distinct biophysical and pharmacological properties and the ability of calcium channels to interact with other modulatory proteins. Although the function of extracellular α-syn is currently unknown, previous work suggested the presence of a calcium-dependent mechanism for α-syn secretion both in vitro, in neuronal cells in culture, and also in vivo, in the context of a trans-neuronal network in brain. Mechanisms regulating extracellular α-syn levels may be of particular importance as they could represent novel therapeutic targets. We discuss here how calcium channel activity may contribute to α-syn aggregation and secretion as a pathway to disease progression in synucleinopathies.
Collapse
Affiliation(s)
- Emmanouela Leandrou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evangelia Emmanouilidou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
70
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
71
|
Iwayama T, Okada T, Ueda T, Tomita K, Matsumoto S, Takedachi M, Wakisaka S, Noda T, Ogura T, Okano T, Fratzl P, Ogura T, Murakami S. Osteoblastic lysosome plays a central role in mineralization. SCIENCE ADVANCES 2019; 5:eaax0672. [PMID: 31281900 PMCID: PMC6609213 DOI: 10.1126/sciadv.aax0672] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/28/2019] [Indexed: 05/03/2023]
Abstract
Mineralization is the most fundamental process in vertebrates. It is predominantly mediated by osteoblasts, which secrete mineral precursors, most likely through matrix vesicles (MVs). These vesicular structures are calcium and phosphate rich and contain organic material such as acidic proteins. However, it remains largely unknown how intracellular MVs are transported and secreted. Here, we use scanning electron-assisted dielectric microscopy and super-resolution microscopy for assessing live osteoblasts in mineralizing conditions at a nanolevel resolution. We found that the calcium-containing vesicles were multivesicular bodies containing MVs. They were transported via lysosome and secreted by exocytosis. Thus, we present proof that the lysosome transports amorphous calcium phosphate within mineralizing osteoblasts.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsugumi Ueda
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Kiwako Tomita
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Shuji Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Development, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, and Graduate School of Frontier BioSciences, Osaka University, Osaka 565-0871, Japan
| | | | | | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Corresponding author. (To. Ogura); (S. Mu.)
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
- Corresponding author. (To. Ogura); (S. Mu.)
| |
Collapse
|
72
|
Cheng HH, Liang WZ, Kuo CC, Hao LJ, Chou CT, Jan CR. The exploration of effect of terfenadine on Ca 2+ signaling in renal tubular cells. J Recept Signal Transduct Res 2019; 39:73-79. [PMID: 31184240 DOI: 10.1080/10799893.2019.1620777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Terfenadine, an antihistamine used for the treatment of allergic conditions, affected Ca2+-related physiological responses in various models. However, the effect of terfenadine on cytosolic free Ca2+ levels ([Ca2+]i) and its related physiology in renal tubular cells is unknown. This study examined whether terfenadine altered Ca2+ signaling and caused cytotoxicity in Madin-Darby canine kidney (MDCK) renal tubular cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Cell viability was measured by the fluorescent reagent 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] water soluble tetrazolium-1 (WST-1) assay. Terfenadine at concentrations of 100-1000 μM induced [Ca2+]i rises concentration dependently. The response was reduced by approximately 35% by removing extracellular Ca2+. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) partly inhibited terfenadine-evoked [Ca2+]i rises. Conversely, treatment with terfenadine abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited 95% of terfenadine-induced Ca2+ release. Terfenadine-induced Ca2+ entry was supported by Mn2+-caused quenching of fura-2 fluorescence. Terfenadine-induced Ca2+ entry was partly inhibited by an activator of protein kinase C (PKC), phorbol 12-myristate 13 acetate (PMA) and by three modulators of store-operated Ca2+ channels (nifedipine, econazole, and SKF96365). Terfenadine at 200-300 μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in MDCK cells, terfenadine induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Furthermore, terfenadine caused cell death that was not triggered by preceding [Ca2+]i rises.
Collapse
Affiliation(s)
- He-Hsiung Cheng
- a Department of Medicine , Chang Bing Show Chwan Memorial Hospital , Changhua , Taiwan
| | - Wei-Zhe Liang
- b Department of Medical Education and Research , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan.,c Department of Pharmacy , Tajen University , Pingtung , Taiwan
| | - Chun-Chi Kuo
- d Department of Nursing , Tzu Hui Institute of Technology , Pingtung , Taiwan
| | - Lyh-Jyh Hao
- e Department of Metabolism , Kaohsiung Veterans General Hospital Tainan Branch , Tainan , Taiwan
| | - Chiang-Ting Chou
- f Department of Nursing, Division of Basic Medical Sciences , Chang Gung University of Science and Technology , Chia-Yi , Taiwan
| | - Chung-Ren Jan
- b Department of Medical Education and Research , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan
| |
Collapse
|
73
|
Faris P, Pellavio G, Ferulli F, Di Nezza F, Shekha M, Lim D, Maestri M, Guerra G, Ambrosone L, Pedrazzoli P, Laforenza U, Montagna D, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Induces Intracellular Ca 2+ Release through the Two-Pore Channel TPC1 in Metastatic Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11040542. [PMID: 30991693 PMCID: PMC6521149 DOI: 10.3390/cancers11040542] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) gates two-pore channels 1 and 2 (TPC1 and TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced EL Ca2+ signals may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release mechanism (CICR). Herein, we aimed at assessing for the first time the role of EL Ca2+ signaling in primary cultures of human metastatic colorectal carcinoma (mCRC) by exploiting Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide (GPN), and nigericin, which dissipates the ΔpH which drives Ca2+ refilling of acidic organelles, caused massive Ca2+ release in the presence of a functional inositol-1,4,5-trisphosphate (InsP3)-sensitive ER Ca2+ store. Liposomal delivery of NAADP induced a transient Ca2+ release that was reduced by GPN and NED-19, a selective TPC antagonist. Pharmacological and genetic manipulations revealed that the Ca2+ response to NAADP was triggered by TPC1, the most expressed TPC isoform in mCRC cells, and required ER-embedded InsP3 receptors. Finally, NED-19 and genetic silencing of TPC1 reduced fetal calf serum-induced Ca2+ signals, proliferation, and extracellular signal-regulated kinase and Akt phoshorylation in mCRC cells. These data demonstrate that NAADP-gated TPC1 could be regarded as a novel target for alternative therapies to treat mCRC.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
- Research Centre, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region of Iraq, Iraq.
| | - Giorgia Pellavio
- Human Physiology Unit, via Forlanini 6, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Mudhir Shekha
- Research Centre, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region of Iraq, Iraq.
- Department of Pathological Analysis, College of Science, Knowledge University, 074016 Erbil, Kurdistan-Region of Iraq, Iraq.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Marcello Maestri
- Unit of General Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Paolo Pedrazzoli
- Medical Oncology, oundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Umberto Laforenza
- Human Physiology Unit, via Forlanini 6, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
74
|
Li P, Gu M, Xu H. Lysosomal Ion Channels as Decoders of Cellular Signals. Trends Biochem Sci 2019; 44:110-124. [PMID: 30424907 PMCID: PMC6340733 DOI: 10.1016/j.tibs.2018.10.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
Abstract
Lysosomes, the degradation center of the cell, are filled with acidic hydrolases. Lysosomes generate nutrient-sensitive signals to regulate the import of H+, hydrolases, and endocytic and autophagic cargos, as well as the export of their degradation products (catabolites). In response to environmental and cellular signals, lysosomes change their positioning, number, morphology, size, composition, and activity within minutes to hours to meet the changing cellular needs. Ion channels in the lysosome are essential transducers that mediate signal-initiated Ca2+/Fe2+/Zn2+ release and H+/Na+/K+-dependent changes of membrane potential across the perimeter membrane. Dysregulation of lysosomal ion flux impairs lysosome movement, membrane trafficking, nutrient sensing, membrane repair, organelle membrane contact, and lysosome biogenesis and adaptation. Hence, activation and inhibition of lysosomal channels by synthetic modulators may tune lysosome function to maintain cellular health and promote cellular clearance in lysosome storage disorders.
Collapse
Affiliation(s)
- Ping Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; These authors contributed equally to this work
| | - Mingxue Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; These authors contributed equally to this work
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
75
|
Endolysosomal Ca 2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind! Cancers (Basel) 2018; 11:cancers11010027. [PMID: 30591696 PMCID: PMC6356888 DOI: 10.3390/cancers11010027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The acidic vesicles of the endolysosomal (EL) system are emerging as an intracellular Ca2+ store implicated in the regulation of multiple cellular functions. The EL Ca2+ store releases Ca2+ through a variety of Ca2+-permeable channels, including Transient Receptor Potential (TRP) Mucolipin 1-3 (TRPML1-3) and two-pore channels 1-2 (TPC1-2), whereas EL Ca2+ refilling is sustained by the proton gradient across the EL membrane and/or by the endoplasmic reticulum (ER). EL Ca2+ signals may be either spatially restricted to control vesicle trafficking, autophagy and membrane repair or may be amplified into a global Ca2+ signal through the Ca2+-dependent recruitment of ER-embedded channels. Emerging evidence suggested that nicotinic acid adenine dinucleotide phosphate (NAADP)-gated TPCs sustain multiple cancer hallmarks, such as migration, invasiveness and angiogenesis. Herein, we first survey the EL Ca2+ refilling and release mechanisms and then focus on the oncogenic role of EL Ca2+ signaling. While the evidence in favor of TRPML1 involvement in neoplastic transformation is yet to be clearly provided, TPCs are emerging as an alternative target for anticancer therapies.
Collapse
|
76
|
Narayanaswamy N, Chakraborty K, Saminathan A, Zeichner E, Leung K, Devany J, Krishnan Y. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat Methods 2018; 16:95-102. [PMID: 30532082 DOI: 10.1038/s41592-018-0232-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
It is extremely challenging to quantitate lumenal Ca2+ in acidic Ca2+ stores of the cell because all Ca2+ indicators are pH sensitive, and Ca2+ transport is coupled to pH in acidic organelles. We have developed a fluorescent DNA-based reporter, CalipHluor, that is targetable to specific organelles. By ratiometrically reporting lumenal pH and Ca2+ simultaneously, CalipHluor functions as a pH-correctable Ca2+ reporter. By targeting CalipHluor to the endolysosomal pathway, we mapped lumenal Ca2+ changes during endosomal maturation and found a surge in lumenal Ca2+ specifically in lysosomes. Using lysosomal proteomics and genetic analysis, we found that catp-6, a Caenorhabditis elegans homolog of ATP13A2, was responsible for lysosomal Ca2+ accumulation-an example of a lysosome-specific Ca2+ importer in animals. By enabling the facile quantification of compartmentalized Ca2+, CalipHluor can expand the understanding of subcellular Ca2+ importers.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Kasturi Chakraborty
- Department of Chemistry, The University of Chicago, Chicago, IL, USA. .,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| | - Anand Saminathan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | | | - KaHo Leung
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA. .,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
77
|
Deshayes C, Moreau E, Pitti-Caballero J, Froger JA, Apaire-Marchais V, Lapied B. Synergistic agent and intracellular calcium, a successful partnership in the optimization of insecticide efficacy. CURRENT OPINION IN INSECT SCIENCE 2018; 30:52-58. [PMID: 30553485 DOI: 10.1016/j.cois.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Integrated Pest Management and Integrated Vector Management worldwide are developed in agriculture and public health to counteract and limit the exponential increasing development of insect resistance to insecticides. However, facing the predominance of some resistant populations, new strategies are urgently needed to target resistant insects. An innovative approach lies in the optimization of commonly used insecticides when combined with chemical or biological synergistic agents. By an increase of intracellular calcium concentration followed by activation of calcium-dependant signalling pathways, the synergistic agents are able to indirectly increase target sites sensitivity to insecticide by inducing conformational change. The synergistic agents are of great interest in optimizing the efficacy of insecticides and in overcoming resistance mechanisms.
Collapse
Affiliation(s)
- Caroline Deshayes
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs (SiFCIR), UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France
| | - Eléonore Moreau
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs (SiFCIR), UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France
| | - Javier Pitti-Caballero
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs (SiFCIR), UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France
| | - Josy-Anne Froger
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs (SiFCIR), UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France
| | - Véronique Apaire-Marchais
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs (SiFCIR), UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France
| | - Bruno Lapied
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs (SiFCIR), UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France.
| |
Collapse
|
78
|
Zhang X, Hu M, Yang Y, Xu H. Organellar TRP channels. Nat Struct Mol Biol 2018; 25:1009-1018. [PMID: 30374082 DOI: 10.1038/s41594-018-0148-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Mammalian transient receptor potential (TRP) channels mediate Ca2+ flux and voltage changes across membranes in response to environmental and cellular signals. At the plasma membrane, sensory TRPs act as neuronal detectors of physical and chemical environmental signals, and receptor-operated (metabotropic) TRPs decode extracellular neuroendocrine cues to control body homeostasis. In intracellular membranes, such as those in lysosomes, organellar TRPs respond to compartment-derived signals to control membrane trafficking, signal transduction, and organelle function. Complementing mouse and human genetics and high-resolution structural approaches, physiological studies employing natural agonists and synthetic inhibitors have become critical in resolving the in vivo functions of metabotropic, sensory, and organellar TRPs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yexin Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
79
|
Cabukusta B, Neefjes J. Mechanisms of lysosomal positioning and movement. Traffic 2018; 19:761-769. [PMID: 29900632 PMCID: PMC6175085 DOI: 10.1111/tra.12587] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Lysosomes are highly dynamic organelles that can move rapidly throughout the cell. They distribute in a rather immobile pool located around the microtubule‐organizing center in a “cloud,” and a highly dynamic pool in the cell periphery. Their spatiotemporal characteristics allow them to carry out multiple biological functions, such as cargo degradation, antigen presentation and plasma membrane repair. Therefore, it is not surprising that lysosomal dysfunction underlies various diseases, including cancer, neurodegenerative and autoimmune diseases. In most of these biological events, the involvement of lysosomes is dependent on their ability to move throughout the cytoplasm, to find and fuse to the correct compartments to receive and deliver substrates for further handling. These dynamics are orchestrated by motor proteins moving along cytoskeletal components. The complexity of the mechanisms responsible for controlling lysosomal transport has recently been appreciated and has yielded novel insights into interorganellar communication, as well as lipid‐protein interplay. In this review, we discuss the current understanding of the mechanisms of lysosomal transport and the molecular machineries that control this mobility.
Collapse
Affiliation(s)
- Birol Cabukusta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|