51
|
Bar-Or A, Wiendl H, Montalban X, Alvarez E, Davydovskaya M, Delgado SR, Evdoshenko EP, Giedraitiene N, Gross-Paju K, Haldre S, Herrman CE, Izquierdo G, Karelis G, Leutmezer F, Mares M, Meca-Lallana JE, Mickeviciene D, Nicholas J, Robertson DS, Sazonov DV, Sharlin K, Sundaram B, Totolyan N, Vachova M, Valis M, Bagger M, Häring DA, Ludwig I, Willi R, Zalesak M, Su W, Merschhemke M, Fox EJ. Rapid and sustained B-cell depletion with subcutaneous ofatumumab in relapsing multiple sclerosis: APLIOS, a randomized phase-2 study. Mult Scler 2021; 28:910-924. [PMID: 34605319 PMCID: PMC9024029 DOI: 10.1177/13524585211044479] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Ofatumumab, the first fully human anti-CD20 monoclonal antibody, is approved in several countries for relapsing multiple sclerosis (RMS). Objective: To demonstrate the bioequivalence of ofatumumab administered by an autoinjector versus a pre-filled syringe (PFS) and to explore the effect of ofatumumab on B-cell depletion. Methods: APLIOS (NCT03560739) is a 12-week, open-label, parallel-group, phase-2 study in patients with RMS receiving subcutaneous ofatumumab 20 mg every 4 weeks (q4w) (from Week 4, after initial doses on Days 1, 7, and 14). Patients were randomized 10:10:1:1 to autoinjector or PFS in the abdomen, or autoinjector or PFS in the thigh, respectively. Bioequivalence was determined by area under the curve (AUCτ) and maximum plasma concentration (Cmax) for Weeks 8–12. B-cell depletion and safety/tolerability were assessed. Results: A total of 256 patients contributed to the bioequivalence analyses (autoinjector-abdomen, n = 128; PFS-abdomen, n = 128). Abdominal ofatumumab pharmacokinetic exposure was bioequivalent for autoinjector and PFS (geometric mean AUCτ, 487.7 vs 474.1 h × µg/mL (ratio 1.03); Cmax, 1.409 vs 1.409 µg/mL (ratio 1.00)). B-cell counts (median cells/µL) depleted rapidly in all groups from 214.0 (baseline) to 2.0 (Day 14). Ofatumumab was well tolerated. Conclusion: Ofatumumab 20 mg q4w self-administered subcutaneously via autoinjector is bioequivalent to PFS administration and provides rapid B-cell depletion.
Collapse
Affiliation(s)
- Amit Bar-Or
- A Bar-Or Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street - 3 Gates Building, Philadelphia, PA 19104, USA.,Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Xavier Montalban
- Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Enrique Alvarez
- Department of Neurology, Rocky Mountain MS Center, University of Colorado, Aurora, CO, USA
| | - Maria Davydovskaya
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Silvia R Delgado
- MS Center and Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Evgeniy P Evdoshenko
- St Petersburg Center for Multiple Sclerosis and Other Autoimmune Diseases, St Petersburg, Russian Federation
| | - Natasa Giedraitiene
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Katrin Gross-Paju
- West-Tallinn Central Hospital, Tallinn, Estonia/Institute of Health Care Technology, TalTech, Tallinn, Estonia
| | - Sulev Haldre
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia/Neurology Clinic, Tartu University Hospital, Tartu, Estonia
| | | | | | - Guntis Karelis
- Neurology and Neurosurgery Department, Riga East University Hospital and Riga Stradins University, Riga, Latvia
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Miroslav Mares
- Department of Neurology, Pardubice Regional Hospital, Pardubice, Czech Republic
| | - Jose E Meca-Lallana
- Multiple Sclerosis CSUR, Department of Neurology, Virgen de la Arrixaca Clinical University Hospital-IMIB-Arrixaca, Murcia, Spain/Clinical Neuroimmunology and Multiple Sclerosis Cathedra, Universidad Católica San Antonio (UCAM), Murcia, Spain
| | | | | | - Derrick S Robertson
- Multiple Sclerosis Division, Department of Neurology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Denis V Sazonov
- Department of Clinical Trials FSBIH SDMC of FMBA of Russia, Novosibirsk, Russian Federation
| | | | | | - Natalia Totolyan
- Department of Neurology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Marta Vachova
- Department of Neurology, Teplice Hospital, Teplice, Czech Republic
| | - Martin Valis
- Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University in Prague and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | | | | | | | | | | | - Wendy Su
- Novartis Pharmaceutical Corporation, East Hanover, NJ, USA
| | | | - Edward J Fox
- Central Texas Neurology Consultants PA, Round Rock, TX, USA
| |
Collapse
|
52
|
Li J, Li M, Wu D, Zhou J, Leung SO, Zhang F. SM03, an anti-human CD22 monoclonal antibody, for active rheumatoid arthritis: a phase II randomized, double-blind, placebo-controlled study. Rheumatology (Oxford) 2021; 61:1841-1848. [PMID: 34508557 DOI: 10.1093/rheumatology/keab699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE SM03, a novel chimeric monoclonal antibody specific to B cell-restricted antigen CD22, has been developed to treat rheumatoid arthritis (RA) and other B cell-related diseases. This 24-week Phase II randomized, double-blind, multi-dose, placebo-controlled study aimed to evaluate the efficacy and safety of SM03 in moderately-to-severely active RA patients in China. METHODS One hundred fifty-six patients on background methotrexate were randomized in a 1:1:1 ratio to receive a cumulative dose of 3600 mg (high dose, 600 mg * 6 infusions at weeks 0, 2, 4, 12, 14, and 16) or 2400 mg SM03 (low dose, 600 mg * 4 infusions at weeks 0, 2, 12, and 14), or the placebo. The primary outcome was the 24-week American College of Rheumatology 20% improvement criteria (ACR20) response rate. Safety was also assessed. RESULTS The 24-week ACR20 response rate was significantly higher with high (65.3%, p= 0.002) and low-dose SM03 (56.9%, p= 0.024) than placebo (34.0%), but comparable between the high and low dose group. The rate of adverse events was not statistically different among the high dose group (35.3%), the low dose group (51.9%) and the placebo group (34.6%). Thirteen (12.6%) patients receiving SM03 reported treatment-emergent infections, including 3.9% patients in the high-dose group. No patients reported severe treatment-emergent infections or malignancies. CONCLUSIONS In active RA Chinese patients receiving background methotrexate, SM03 at a cumulative dose of both 2400 mg and 3600 mg is efficacious and well-tolerated throughout the 24 weeks of treatment. Moreover, SM03 has demonstrated a good safety profile. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, https://clinicaltrials.gov, NCT04192617.
Collapse
Affiliation(s)
- Jing Li
- Department of Rheumatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengtao Li
- Department of Rheumatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Wu
- Department of Rheumatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Fengchun Zhang
- Department of Rheumatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
53
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
54
|
Rabascall CX, Lou BX, Navetta-Modrov B, Hahn SS. Effective use of monoclonal antibodies for treatment of persistent COVID-19 infection in a patient on rituximab. BMJ Case Rep 2021; 14:e243469. [PMID: 34344651 PMCID: PMC8336168 DOI: 10.1136/bcr-2021-243469] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
As we are over a year into the COVID-19 pandemic, we have made many forward strides in therapeutics. These treatments, such as monoclonal antibodies, have help mitigate the detrimental and often fatal consequences of COVID-19. The current indication for the use of monoclonal antibodies is mild to moderate COVID-19 infection within 10 days of symptom onset in those who are at high risk of progression to severe disease. However, their role in patients with prolonged symptoms is not clear. We present a unique case of monoclonal antibodies use after 54 days of symptom onset in an immunosuppressed patient with persistent COVID-19 infection despite standard treatment. This case illustrates the potential use of monoclonal antibodies outside of the current recommended therapeutic window in immunosuppressed patients, who may have difficulty with viral clearance.
Collapse
Affiliation(s)
- Carlos X Rabascall
- Pulmonary, Critical Care and Sleep Medicine, Northwell Health, New Hyde Park, New York, USA
| | - Becky X Lou
- Pulmonary, Critical Care and Sleep Medicine, Northwell Health, New Hyde Park, New York, USA
| | - Brianne Navetta-Modrov
- Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| | - Stella S Hahn
- Pulmonary, Critical Care and Sleep Medicine, Northwell Health, New Hyde Park, New York, USA
| |
Collapse
|
55
|
Bishnoi A, De D, Handa S, Mahajan R. Biologics in autoimmune bullous diseases: Current scenario. Indian J Dermatol Venereol Leprol 2021; 87:611-620. [PMID: 34245525 DOI: 10.25259/ijdvl_886_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Autoimmune bullous diseases can be intraepidermal (pemphigus group of disorders) or subepidermal (pemphigoid group of disorders). The treatment of these disorders chiefly comprises corticosteroids and immunosuppressant adjuvants like azathioprine and mycophenolate mofetil. Autoantibodies are the main mediators of these diseases. Rituximab, a chimeric anti-CD20 monoclonal antibody targeting B-cells, has emerged as an excellent treatment option for refractory pemphigus vulgaris in the last decade. Since then, many new biologics have been proposed/explored for managing autoimmune bullous diseases. These hold potential for greater efficacy and lesser adverse effects than conventional immunosuppressants. In this review, we discuss the role of various biologics in the treatment of autoimmune bullous diseases, followed by a brief discussion on the drawbacks to their use and new developments in this area.
Collapse
Affiliation(s)
- Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dipankar De
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeev Handa
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Mahajan
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
56
|
Bardazzi F, Loi C, Chessa Marco A, Di Altobrando A, Filippi F, Lacava R, Viviani F, Balestri R, Leuzzi M, Sacchelli L. Therapeutic approaches and targets for treatment of autoimmune bullous diseases. Dermatol Ther 2021; 34:e15032. [PMID: 34145701 DOI: 10.1111/dth.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Autoimmune bullous diseases are a heterogeneous group of diseases characterized by the development of cutaneous and mucosal vesicles, blisters, and finally erosions. The common pathogenetic mechanism is the presence of autoantibodies targeting structural proteins of the skin and mucous membranes (demosomes and hemidesmosomes): in the case of pemphigus, the antigens are intraepidermal, whereas in the case of pemphigoid, dermatitis herpetiformis, and epidermolysis bullosa acquisita they are subepidermal. Mucosal involvement typically affects the oral and ocular mucosa, but in some cases, the upper airways or the upper digestive tract are affected. The burden on patients' lives could be severe due to the impairment of normal feeding or breathing. In other cases, they may represent paraneoplastic syndromes. Since autoimmune bullous diseases may result in significant morbidity and mortality, depending on the grade of cutaneous and mucosal involvement, a prompt therapeutic approach is mandatory and, in recalcitrant cases, may be challenging. The first line therapy consists of corticosteroids, both topical and systemic. Once remission or control of the acute phase is obtained, adjuvant therapies need to be introduced in order to spare the corticosteroid load and minimize side effects such as iatrogenic diabetes or osteoporosis. Herein, we describe all current therapeutic approaches to autoimmune bullous diseases, also including emerging therapies.
Collapse
Affiliation(s)
- Federico Bardazzi
- Department of Specialized, Clinical and Experimental medicine, Division of Dermatology, University of Bologna, Italy
| | - Camilla Loi
- Department of Specialized, Clinical and Experimental medicine, Division of Dermatology, University of Bologna, Italy
| | - Adriano Chessa Marco
- Department of Specialized, Clinical and Experimental medicine, Division of Dermatology, University of Bologna, Italy
| | - Ambra Di Altobrando
- Department of Specialized, Clinical and Experimental medicine, Division of Dermatology, University of Bologna, Italy
| | - Federica Filippi
- Department of Specialized, Clinical and Experimental medicine, Division of Dermatology, University of Bologna, Italy
| | - Rossella Lacava
- Department of Specialized, Clinical and Experimental medicine, Division of Dermatology, University of Bologna, Italy
| | - Filippo Viviani
- Department of Specialized, Clinical and Experimental medicine, Division of Dermatology, University of Bologna, Italy
| | - Riccardo Balestri
- Division of Dermatology, Rare Disease Outpatient Service, Santa Chiara Hospital, Trento, Italy
| | - Miriam Leuzzi
- Department of Specialized, Clinical and Experimental medicine, Division of Dermatology, University of Bologna, Italy
| | - Lidia Sacchelli
- Department of Specialized, Clinical and Experimental medicine, Division of Dermatology, University of Bologna, Italy
| |
Collapse
|
57
|
Abstract
Despite progress in the treatment of systemic lupus erythematosus (SLE), remission rates and health-related quality of life remain disappointingly low. The paucity of successful SLE clinical trials reminds us that we still have a long way to go. Nevertheless, there are clear signs of hope. We highlight results from recent studies of novel therapeutic strategies based on emerging insights into our understanding of SLE disease mechanisms. We also highlight several studies that inform optimal use of existing treatments to improve efficacy and/or limit toxicity. These developments suggest we may yet unlock the key toward more satisfactory treatment outcomes in SLE.
Collapse
Affiliation(s)
- Yashaar Chaichian
- Division of Immunology and Rheumatology, Stanford University, 1000 Welch Road, Suite 203, Palo Alto, CA 94304, USA.
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, 8750 Wilshire Boulevard Suite 350, Beverly Hills, CA 90211
| |
Collapse
|
58
|
Panikar SS, Banu N, Haramati J, Del Toro-Arreola S, Riera Leal A, Salas P. Nanobodies as efficient drug-carriers: Progress and trends in chemotherapy. J Control Release 2021; 334:389-412. [PMID: 33964364 DOI: 10.1016/j.jconrel.2021.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/24/2023]
Abstract
Nanobodies (Nb) have a promising future as a part of next generation chemodrug delivery systems. Nb, or VHH, are small (15 kDa) monomeric antibody fragments consisting of the antigen binding region of heavy chain antibodies. Heavy chain antibodies are naturally produced by camelids, however the structure of their VHH regions can be readily reproduced in industrial expression systems, such as bacteria or yeast. Due to their small size, high solubility, remarkable stability, manipulatable characteristics, excellent in vivo tissue penetration, conjugation advantages, and ease of production, Nb have many advantages when compared against their antibody precursors. In this review, we discuss the generation and selection of Nbs via phage display libraries for easy screening, and the conjugation techniques involved in creating target-specific nanocarriers. Furthermore, we provide a comprehensive overview of recent developments and perspectives in the field of Nb drug conjugates (NDCs) and Nb-based drug vehicles (NDv) with respect to antitumor therapeutics.
Collapse
Affiliation(s)
- Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico.
| | - Nehla Banu
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Annie Riera Leal
- UC Davis Institute for Regenerative Cures, Department of Dermatology, University of California, Davis, 2921 Stockton Blvd, Rm 1630, Sacramento, CA 95817, USA
| | - Pedro Salas
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico
| |
Collapse
|
59
|
B cells as target for immunotherapy in rheumatic diseases - current status. Immunol Lett 2021; 236:12-19. [PMID: 34077805 DOI: 10.1016/j.imlet.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 01/16/2023]
Abstract
This mini-review is a short overview of different therapeutical strategies targeting B cells in systemic autoimmune rheumatic diseases, mainly: rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjogren Syndrome (pSS). Many strategies and their rationale are discussed in this review: B cells' depletion (anti-CD20, anti-CD22), long-lived plasma cells depletion (anti-CD19, anti-CD27, anti-CD38 and anti-CD138), changing activation of B cells (anti-BAFF) and inhibiting proteasomes in plasma cells (bortezomib). The past successful therapies and less successful are shown, and the possible reasons for failures are discussed.
Collapse
|
60
|
Patil S, Gs V, Sarode GS, Sarode SC, Khurayzi TA, Mohamed Beshir SE, Gadbail AR, Gondivkar S. Exploring the role of immunotherapeutic drugs in autoimmune diseases: A comprehensive review. J Oral Biol Craniofac Res 2021; 11:291-296. [PMID: 33948430 PMCID: PMC8080637 DOI: 10.1016/j.jobcr.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
Autoimmune diseases are group of disorders where an immune response is mounted against the self. The prevalence and burden of this well established and recognised entity is on the rise. Irrespective of being a systemic or organ specific autoimmune disorder, the common underlying mechanism of action, is the imbalance in immune system resulting in loss of tolerance to self-antigens. The oral cavity is no alien to these disorders or to their influences. Pemphigus group of lesions, systemic lupus erythematosus, psoriasis and even Sjogren's syndrome are some of the established autoimmune disorders with prominent oral manifestations. Though these diseases are well documented and enumerated, however addressing them is where the dilemma lies. Science, research and discoveries are a crucial part of medical discipline which help in looking beyond the horizon. With the introduction of selective targeted immunotherapies for autoimmune diseases as a treatment modality either in solitary or in combination with the conventional immunosuppressive treatments, are emerging as a promising elixir for patients enduring them. However, being unique, exploration of these biologics from its inception, to its mechanism of action, recognition of its application and evaluation of its safety norms are equally vital. Therefore, this review aims to provide a comprehensive particular on the novel biologics, the immunotherapies in autoimmune disorders targeting the different cells, their receptors or cytokines of the immune system.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Vidya Gs
- Sree NRJV Specialists Dental Clinic, Bangalore, Karnataka, India
| | - Gargi S. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaramnagar, Pimpri, Pune, 411018, Maharashtra, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaramnagar, Pimpri, Pune, 411018, Maharashtra, India
| | - Turki Abdu Khurayzi
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Saiid Elshafey Mohamed Beshir
- Maxillofacial Surgery and Diagnostic Sciences Department, Oral and Maxillofacial Surgery Division, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Amol R. Gadbail
- Department of Dentistry, Indira Gandhi Government Medical College & Hospital, Nagpur, Maharashtra State, India
| | - Shailesh Gondivkar
- Department of Oral Medicine & Radiology, Government Dental College & Hospital, Nagpur, Maharashtra, India
| |
Collapse
|
61
|
Oakes RS, Tostanoski LH, Kapnick SM, Froimchuk E, Black SK, Zeng X, Jewell CM. Exploiting Rational Assembly to Map Distinct Roles of Regulatory Cues during Autoimmune Therapy. ACS NANO 2021; 15:4305-4320. [PMID: 33645967 PMCID: PMC8116774 DOI: 10.1021/acsnano.0c07440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autoimmune diseases like multiple sclerosis (MS), type 1 diabetes, and lupus occur when the immune system attacks host tissue. Immunotherapies that promote selective tolerance without suppressing normal immune function are of tremendous interest. Here, nanotechnology was used for rational assembly of peptides and modulatory immune cues into immune complexes. Complexes containing self-peptides and regulatory nucleic acids reverse established paralysis in a preclinical MS model. Importantly, mice responding to immunotherapy maintain healthy, antigen-specific B and T cell responses during a foreign antigen challenge. A therapeutic library isolating specific components reveals that regulatory nucleic acids suppress inflammatory genes in innate immune cells, while disease-matched peptide sequences control specificity of tolerance. Distinct gene expression profiles in cells and animals are associated with the immune signals administered in particulate and soluble forms, highlighting the impact of biophysical presentation of signals. This work provides insight into the rational manipulation of immune signaling to drive tolerance.
Collapse
Affiliation(s)
- Robert S. Oakes
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10 N Greene St, Baltimore, MD, 21201, USA
| | - Lisa H. Tostanoski
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Senta M. Kapnick
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Eugene Froimchuk
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Sheneil K. Black
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Xiangbin Zeng
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10 N Greene St, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, 5102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
62
|
Talamini L, Matsuura E, De Cola L, Muller S. Immunologically Inert Nanostructures as Selective Therapeutic Tools in Inflammatory Diseases. Cells 2021; 10:cells10030707. [PMID: 33806746 PMCID: PMC8004653 DOI: 10.3390/cells10030707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
The current therapies based on immunosuppressant or new biologic drugs often show some limitations in term of efficacy and applicability, mainly because of their inadequate targeting and of unwanted adverse reactions they generate. To overcome these inherent problems, in the last decades, innovative nanocarriers have been developed to encapsulate active molecules and offer novel promising strategies to efficiently modulate the immune system. This review provides an overview of how it is possible, exploiting the favorable features of nanocarriers, especially with regard to their immunogenicity, to improve the bioavailability of novel drugs that selectively target immune cells in the context of autoimmune disorders and inflammatory diseases. A focus is made on nanoparticles that selectively target neutrophils in inflammatory pathologies.
Collapse
Affiliation(s)
- Laura Talamini
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
| | - Eiji Matsuura
- Neutron Therapy Research Center, Collaborative Research Center, Department of Cell Chemistry, Okayama University, Okayama 700-8558, Japan
| | - Luisa De Cola
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Pharmaceutical Sciences (DISFARM), University of Milano, 20122 Milan, Italy
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|
63
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
64
|
Mohammadi P, Zangeneh M, Mohammadi-Motlagh HR, Khademi F. The Antimicrobial Peptide, Nisin, Synergistically Enhances the Cytotoxic and Apoptotic Effects of Rituximab Treatment on Human Burkitt's Lymphoma Cell Lines. Rep Biochem Mol Biol 2021; 9:250-256. [PMID: 33649717 DOI: 10.29252/rbmb.9.3.250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Non-Hodgkin's lymphomas comprise the most common hematological cancers worldwide and consist of a heterogenous group of malignancies affecting the lymphoid system. Treatment of non-Hodgkin's lymphoma has been significantly enhanced with the addition of Rituximab to the standard chemotherapy regimen. However, even with the advancement of treatment patients continue to relapse and develop resistance to Rituximab, rendering subsequent treatments unsuccessful. The use of novel drugs with unique antitumor mechanisms has gained considerable attention. In this study, we explored the in vitro anti-cancer effects of the combined therapy of Rituximab and Nisin on human Burkitt's lymphoma cells. Methods The human Burkitt's lymphoma cells lines, Raji and Daudi, were treated with Nisin, Rituximab, or a combination of the two agents at various concentrations. Cytotoxicity following treatment was determined using cell viability assay. The degree of apoptosis was verified via flow cytometric analysis using FITC annexin V/PI staining. Results Our findings show that the combined treatment of Rituximab and Nisin results in a more significant reduction in the survival of Raji and Daudi Burkitt's lymphoma cells, compared to Nisin or Rituximab treatment alone. Additionally, our results indicate that Nisin can induce a significant degree of apoptosis in the Burkitt's lymphoma cells compared to the negative controls. However, the addition of Nisin to the Rituximab treatment synergistically enhances the apoptotic antitumor effect. Conclusion This study demonstrates the synergistic antitumor effect of Nisin treatment in vitro to enhance tumor cell apoptosis and the potential value of Nisin as an adjunct therapy in the treatment of lymphoma.
Collapse
Affiliation(s)
- Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mina Zangeneh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
65
|
Therapeutic Application of Exosomes in Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22031144. [PMID: 33498928 PMCID: PMC7865921 DOI: 10.3390/ijms22031144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Immunomodulation is on the cusp of being an important therapy for treating many diseases, due to the significant role of the immune system in defending the human body. Although the immune system is an essential defense system, overactivity can result in diverse sicknesses such as inflammation and autoimmune disease. Exosomes are emerging as a state-of-the-art therapeutic strategy for treating an overactive immune system. Thus, in this review, we will thoroughly review therapeutic applications of exosomes in various inflammatory and autoimmune diseases. Finally, issues for an outlook to the future of exosomal therapy will be introduced.
Collapse
|
66
|
Clinical Perspectives on the Molecular and Pharmacological Attributes of Anti-CD20 Therapies for Multiple Sclerosis. CNS Drugs 2021; 35:985-997. [PMID: 34370283 PMCID: PMC8351586 DOI: 10.1007/s40263-021-00843-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 11/26/2022]
Abstract
Anti-CD20 therapies have demonstrated considerable efficacy in the treatment of relapsing multiple sclerosis, constituting a high-efficacy treatment approach for reducing relapse risk and mitigating disability progression. These therapies have been shown to strongly deplete circulating B cells and small subsets of CD3+ CD4 and CD8 T cells that express low levels of CD20. While the clinical profiles of the various anti-CD20 monoclonal antibodies used in treating multiple sclerosis are well-described in the literature, greater understanding of the implications of their distinct molecular and pharmacological attributes is needed. In this review, we focus on four anti-CD20 monoclonal antibodies-rituximab, ocrelizumab, ofatumumab, and ublituximab-that are currently used, approved, or in late-stage clinical development for the treatment of multiple sclerosis. We provide clinical perspectives on the potential implications of differences in molecular structures, target epitopes, dosing regimens, mechanisms and impact on B-cell depletion and reconstitution, immunogenicity, administration-related reactions, and infection risks.
Collapse
|
67
|
Giudice V, Vecchione C, Selleri C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life (Basel) 2020; 10:life10120344. [PMID: 33322351 PMCID: PMC7763613 DOI: 10.3390/life10120344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-related cardiac dysfunction, also known as cardiotoxicity, is a group of drug-related adverse events negatively affecting myocardial structure and functions in patients who received chemotherapy for cancer treatment. Clinical manifestations can vary from life-threatening arrythmias to chronic conditions, such as heart failure or hypertension, which dramatically reduce quality of life of cancer survivors. Standard chemotherapy exerts its toxic effect mainly by inducing oxidative stress and genomic instability, while new targeted therapies work by interfering with signaling pathways important not only in cancer cells but also in myocytes. For example, Bruton’s tyrosine kinase (BTK) inhibitors interfere with class I phosphoinositide 3-kinase isoforms involved in cardiac hypertrophy, contractility, and regulation of various channel forming proteins; thus, off-target effects of BTK inhibitors are associated with increased frequency of arrhythmias, such as atrial fibrillation, compared to standard chemotherapy. In this review, we summarize current knowledge of cardiotoxic effects of targeted therapies used in hematology.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672-493
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- IRCCS Neuromed (Mediterranean Neurological Institute), 86077 Pozzilli, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
68
|
Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases-Implications for Therapeutic Approaches. Cells 2020; 9:cells9122627. [PMID: 33297481 PMCID: PMC7762338 DOI: 10.3390/cells9122627] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes are crucial mediators of systemic immune responses and are known to be substantial in the pathogenesis of autoimmune diseases with cutaneous manifestations. Amongst them are lupus erythematosus, dermatomyositis, systemic sclerosis and psoriasis, and particularly those driven by autoantibodies such as pemphigus and pemphigoid. However, the concept of autoreactive skin-associated B cells, which may reside in the skin and locally contribute to chronic inflammation, is gradually evolving. These cells are believed to differ from B cells of primary and secondary lymphoid organs and may provide additional features besides autoantibody production, including cytokine expression and crosstalk to autoreactive T cells in an antigen-presenting manner. In chronically inflamed skin, B cells may appear in tertiary lymphoid structures. Those abnormal lymph node-like structures comprise a network of immune and stromal cells possibly enriched by vascular structures and thus constitute an ideal niche for local autoimmune responses. In this review, we describe current considerations of different B cell subsets and their assumed role in skin autoimmunity. Moreover, we discuss traditional and B cell-associated approaches for the treatment of autoimmune skin diseases, including drugs targeting B cells (e.g., CD19- and CD20-antibodies), plasma cells (e.g., proteasome inhibitors, CXCR4 antagonists), activated pathways (such as BTK- and PI3K-inhibitors) and associated activator molecules (BLyS, APRIL).
Collapse
|
69
|
Lane LC, Cheetham TD, Perros P, Pearce SHS. New Therapeutic Horizons for Graves' Hyperthyroidism. Endocr Rev 2020; 41:5897403. [PMID: 32845332 PMCID: PMC7567404 DOI: 10.1210/endrev/bnaa022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
Graves' hyperthyroidism is characterized by the presence of autoantibodies that stimulate the thyroid-stimulating hormone receptor (TSHR), resulting in uncontrolled secretion of excessive thyroid hormone. Conventional treatments, including antithyroid medication, radioiodine, or surgery have remained largely unchanged for the past 70 years and either lack efficacy for many patients, or result in lifelong thyroid hormone replacement therapy, in the case of the latter 2 options. The demand for new therapeutic options, combined with greater insight into basic immunobiology, has led to the emergence of novel approaches to treat Graves' hyperthyroidism. The current therapies under investigation include biologics, small molecules, and peptide immunomodulation. There is a growing focus on TSHR-specific treatment modalities, which carry the advantage of eliciting a specific, targeted approach, with the aim of avoiding disruption of the functioning immune system. These therapies present a new opportunity to supersede the inadequate treatments currently available for some Graves' patients, offering hope of successful restoration of euthyroidism without the need for ongoing therapy. Several of these therapeutic options have the potential to translate into clinical practice in the near future. This review provides a comprehensive summary of the recent advances and various stages of development of the novel therapeutic approaches to treat Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Laura C Lane
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Endocrine unit, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK.,Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-upon-Tyne, UK
| | - Tim D Cheetham
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-upon-Tyne, UK
| | - Petros Perros
- Endocrine unit, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Simon H S Pearce
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Endocrine unit, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| |
Collapse
|
70
|
Abstract
Pemphigus vulgaris (PV) is a severe chronic autoimmune blistering disease that affects the skin and mucous membranes. It is characterized by suprabasal acantholysis due to disruption of desmosomal connections between keratinocytes. Autoantibodies against desmosomal cadherins, desmoglein 3 and 1, have been shown to induce disease. Certain human leukocyte antigen (HLA) types and non-HLA foci confer genetic susceptibility. Until the discovery of corticosteroids in the 1950s, PV was 75% fatal. Since then, multiple PV treatments, such as systemic corticosteroids and adjunctive therapy with immunosuppressive medications (mycophenolate mofetil, azathioprine, cyclophosphamide, cyclosporine, methotrexate, gold, and others) have been introduced; however, none have led to long-term remissions and many have undesired adverse effects. Our growing understanding of the pathophysiologic mechanisms in PV is leading to development of new targeted therapies, such as intravenous immunoglobulin, anti-CD20 monoclonal antibodies, inhibitors of Bruton tyrosine kinase and neonatal Fc receptors, and adoptive cellular transfer, that may result in lasting control of this life-threatening disease.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Autoantibodies/immunology
- Autoantibodies/metabolism
- Combined Modality Therapy/methods
- Drug Therapy, Combination/methods
- Genetic Predisposition to Disease
- HLA Antigens/genetics
- HLA Antigens/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunoglobulins, Intravenous/pharmacology
- Immunoglobulins, Intravenous/therapeutic use
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Immunotherapy, Adoptive/methods
- Molecular Targeted Therapy/methods
- Pemphigus/genetics
- Pemphigus/immunology
- Pemphigus/therapy
- Plasmapheresis
- Receptors, Fc/antagonists & inhibitors
- Receptors, Fc/metabolism
- Remission Induction/methods
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Emily M Altman
- Department of Dermatology, University of New Mexico, 1021 Medical Arts Avenue NE, Albuquerque, NM, 87102, USA.
| |
Collapse
|
71
|
Baker D, Roberts CAK, Pryce G, Kang AS, Marta M, Reyes S, Schmierer K, Giovannoni G, Amor S. COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clin Exp Immunol 2020; 202:149-161. [PMID: 32671831 PMCID: PMC7405500 DOI: 10.1111/cei.13495] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Although most autoimmune diseases are considered to be CD4 T cell- or antibody-mediated, many respond to CD20-depleting antibodies that have limited influence on CD4 and plasma cells. This includes rituximab, oblinutuzumab and ofatumumab that are used in cancer, rheumatoid arthritis and off-label in a large number of other autoimmunities and ocrelizumab in multiple sclerosis. Recently, the COVID-19 pandemic created concerns about immunosuppression in autoimmunity, leading to cessation or a delay in immunotherapy treatments. However, based on the known and emerging biology of autoimmunity and COVID-19, it was hypothesised that while B cell depletion should not necessarily expose people to severe SARS-CoV-2-related issues, it may inhibit protective immunity following infection and vaccination. As such, drug-induced B cell subset inhibition, that controls at least some autoimmunities, would not influence innate and CD8 T cell responses, which are central to SARS-CoV-2 elimination, nor the hypercoagulation and innate inflammation causing severe morbidity. This is supported clinically, as the majority of SARS-CoV-2-infected, CD20-depleted people with autoimmunity have recovered. However, protective neutralizing antibody and vaccination responses are predicted to be blunted until naive B cells repopulate, based on B cell repopulation kinetics and vaccination responses, from published rituximab and unpublished ocrelizumab (NCT00676715, NCT02545868) trial data, shown here. This suggests that it may be possible to undertake dose interruption to maintain inflammatory disease control, while allowing effective vaccination against SARS-CoV-29, if and when an effective vaccine is available.
Collapse
Affiliation(s)
- D. Baker
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - C. A. K. Roberts
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - G. Pryce
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - A. S. Kang
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Oral Immunobiology and Regenerative MedicineInstitute of Dentistry, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - M. Marta
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Clinical Board: Medicine (Neuroscience)The Royal London HospitalBarts Health NHS TrustLondonUK
| | - S. Reyes
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Clinical Board: Medicine (Neuroscience)The Royal London HospitalBarts Health NHS TrustLondonUK
| | - K. Schmierer
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Clinical Board: Medicine (Neuroscience)The Royal London HospitalBarts Health NHS TrustLondonUK
| | - G. Giovannoni
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Clinical Board: Medicine (Neuroscience)The Royal London HospitalBarts Health NHS TrustLondonUK
| | - S. Amor
- Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Pathology DepartmentAmsterdam UMCVUmc siteAmsterdamThe Netherlands
| |
Collapse
|
72
|
Saidu NEB, Bonini C, Dickinson A, Grce M, Inngjerdingen M, Koehl U, Toubert A, Zeiser R, Galimberti S. New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions. Front Immunol 2020; 11:578314. [PMID: 33162993 PMCID: PMC7583636 DOI: 10.3389/fimmu.2020.578314] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation that affects various organs leading to a reduced quality of life. The condition often requires enduring immunosuppressive therapy, which can also lead to the development of severe side effects. Several approaches including small molecule inhibitors, antibodies, cytokines, and cellular therapies are now being developed for the treatment of cGvHD, and some of these therapies have been or are currently tested in clinical trials. In this review, we discuss these emerging therapies with particular emphasis on tyrosine kinase inhibitors (TKIs). TKIs are a class of compounds that inhibits tyrosine kinases, thereby preventing the dissemination of growth signals and activation of key cellular proteins that are involved in cell growth and division. Because they have been shown to inhibit key kinases in both B cells and T cells that are involved in the pathophysiology of cGvHD, TKIs present new promising therapeutic approaches. Ibrutinib, a Bruton tyrosine kinase (Btk) inhibitor, has recently been approved by the Food and Drug Administration (FDA) in the United States for the treatment of adult patients with cGvHD after failure of first-line of systemic therapy. Also, Janus Associated Kinases (JAK1 and JAK2) inhibitors, such as itacitinib (JAK1) and ruxolitinib (JAK1 and 2), are promising in the treatment of cGvHD. Herein, we present the current status and future directions of the use of these new drugs with particular spotlight on their targeting of specific intracellular signal transduction cascades important for cGvHD, in order to shed some light on their possible mode of actions.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Anne Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ulrike Koehl
- Faculty of Medicine, Institute of Clinical Immunology, University Leipzig and Fraunhofer IZI, Leipzig, Germany
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
- Laboratoire d'Immunologie et d`Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris, France
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
73
|
Yang B, Zhao M, Wu H, Lu Q. A Comprehensive Review of Biological Agents for Lupus: Beyond Single Target. Front Immunol 2020; 11:539797. [PMID: 33123125 PMCID: PMC7573553 DOI: 10.3389/fimmu.2020.539797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple immune cells. Due to its complex pathogenesis, the effectiveness of traditional treatment methods is limited. Many patients have developed resistance to conventional treatment or are not sensitive to steroid and immunosuppressant therapy, and so emerging therapeutic antibodies have become an alternative and have been shown to work well in many patients with moderate and severe SLE. This review summarizes the biological agents that are in the preclinical and clinical trial study of SLE. In addition to the various monoclonal antibodies that have been studied for a long time, such as belimumab and rituximab, we focused on another treatment for SLE, bispecific antibodies (BsAbs) such as tibulizumab, which simultaneously targets multiple pathogenic cytokines or pathways. Although the application of BsAbs in cancer has been intensively studied, their application in autoimmune diseases is still in the infant stage. This unique combined mechanism of action may provide a novel therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Bingyi Yang
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
74
|
He JW, Zhou XJ, Lv JC, Zhang H. Perspectives on how mucosal immune responses, infections and gut microbiome shape IgA nephropathy and future therapies. Am J Cancer Res 2020; 10:11462-11478. [PMID: 33052226 PMCID: PMC7545987 DOI: 10.7150/thno.49778] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023] Open
Abstract
Infections have been considered to play a critical role in the pathogenesis of IgA nephropathy (IgAN) because synpharyngitic hematuria is a common feature in IgAN. However, how infections participate in this process is still debated. More recent studies have also revealed that the alteration of the gut microbiome exerts a profound effect on host immune responses, contributing to the etiology or progression of autoimmunity. Considering IgA as the first line of defense against bacterial and viral antigens, this review evaluates the relationships among intestinal infections, gut microbiome, and IgA for a better understanding of the pathogenesis of IgAN. Moreover, as a prototype of IgA immunity, we provide detailed clarification of IgAN pathogenesis to shed light on other diseases in which IgA plays a role. Finally, we discuss potential therapies focusing on microbes and mucosal immune responses in IgAN.
Collapse
|
75
|
Orrù V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, Sole G, Lai S, Dei M, Mulas A, Virdis F, Piras MG, Lobina M, Marongiu M, Pitzalis M, Deidda F, Loizedda A, Onano S, Zoledziewska M, Sawcer S, Devoto M, Gorospe M, Abecasis GR, Floris M, Pala M, Schlessinger D, Fiorillo E, Cucca F. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet 2020; 52:1036-1045. [PMID: 32929287 DOI: 10.1038/s41588-020-0684-4] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/27/2020] [Indexed: 01/28/2023]
Abstract
We report on the influence of ~22 million variants on 731 immune cell traits in a cohort of 3,757 Sardinians. We detected 122 significant (P < 1.28 × 10-11) independent association signals for 459 cell traits at 70 loci (53 of them novel) identifying several molecules and mechanisms involved in cell regulation. Furthermore, 53 signals at 36 loci overlapped with previously reported disease-associated signals, predominantly for autoimmune disorders, highlighting intermediate phenotypes in pathogenesis. Collectively, our findings illustrate complex genetic regulation of immune cells with highly selective effects on autoimmune disease risk at the cell-subtype level. These results identify drug-targetable pathways informing the design of more specific treatments for autoimmune diseases.
Collapse
Affiliation(s)
- Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Michele Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Valentina Serra
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Stefania Olla
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Gabriella Sole
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Sandra Lai
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Mariano Dei
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Francesca Virdis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maria Grazia Piras
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Monia Lobina
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Mara Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maristella Pitzalis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Francesca Deidda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Annalisa Loizedda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Stefano Onano
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marcella Devoto
- Division of Genetics, The Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.,Dipartimento di Medicina Traslazionale e di Precisione, Sapienza Università di Roma, Rome, Italy
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gonçalo R Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Matteo Floris
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Mauro Pala
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy. .,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy.
| |
Collapse
|
76
|
|
77
|
Oftedal BE, Wolff ASB. New era of therapy for endocrine autoimmune disorders. Scand J Immunol 2020; 92:e12961. [PMID: 32853446 DOI: 10.1111/sji.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
The new era of immune and reconstitution therapy of autoimmune disorders is ongoing. However, endocrine autoimmune diseases comprise a group of elaborating pathologies where the development of new treatment strategies remains slow. Substitution of the missing hormones is still standard practice, taking care of the devastating symptoms but not the cause of disease. As our knowledge of the genetic contribution to the aetiology of endocrine disorders increases and early diagnostic tools are available, it is now possible to identify persons at risk before they acquire full-blown disease. This review summarizes current knowledge and treatment of endocrine autoimmune disorders, focusing on type 1 diabetes, Addison's disease, autoimmune thyroid diseases and primary ovarian insufficiency. We explore which new therapies might be used in the different stages of the disease, focus on legalized therapy and elaborate on the ongoing clinical studies for these diseases and the research front, before hypothesizing on the way ahead.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
78
|
Caldito NG, Shirani A, Salter A, Stuve O. Adverse event profile differences between rituximab and ocrelizumab: Findings from the FDA Adverse Event Reporting Database. Mult Scler 2020; 27:1066-1076. [PMID: 32820687 DOI: 10.1177/1352458520949986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Rituximab and ocrelizumab are anti-CD20 monoclonal antibodies that have shown a marked reduction in multiple sclerosis (MS) inflammatory activity. However, their real-world safety profile has not been adequately compared. OBJECTIVE To investigate the adverse event (AE) profile of rituximab and ocrelizumab reported to the Food and Drug Administration Adverse Event Reporting System (FAERS) database. METHODS The FAERS database was filtered by indication (MS) and drug (rituximab or ocrelizumab). Disproportionality analyses including but not limited to reporting odds ratio (ROR) were conducted to identify drug-AE associations. A signal was detected if the lower limit of the 95% confidence interval of ROR (ROR025) exceeded 1. RESULTS There were 623 and 7948 reports for rituximab and ocrelizumab, respectively. The most frequent AEs with rituximab and ocrelizumab were infusion-related reaction (4.82%) and urinary tract infection (10.52%), respectively. The strongest drug-AE association for rituximab and ocrelizumab were ear pruritus (ROR025: 47.53) and oral herpes (ROR025: 38.99), respectively. Ocrelizumab was associated with an almost two times higher frequency of infections than rituximab (21.93% vs 11.05%, respectively). CONCLUSION This study revealed differences in reporting AEs between rituximab and ocrelizumab. Infections were reported more frequently with ocrelizumab. Although speculative, a potentially different or more extensive B-cell depletion by ocrelizumab might explain these findings. Additional pharmacovigilance studies need to be performed to better characterize differences in the AE profile in B-cell-depleting therapies.
Collapse
Affiliation(s)
- Natalia Gonzalez Caldito
- Department of Neurology & Neurotherapeutics, Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Afsaneh Shirani
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amber Salter
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Olaf Stuve
- Department of Neurology & Neurotherapeutics, Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA/Neurology Section, VA North Texas Health Care System, Dallas, TX, USA
| |
Collapse
|
79
|
Kumar A, Planchais C, Fronzes R, Mouquet H, Reyes N. Binding mechanisms of therapeutic antibodies to human CD20. Science 2020; 369:793-799. [DOI: 10.1126/science.abb8008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022]
Abstract
Monoclonal antibodies (mAbs) targeting human antigen CD20 (cluster of
differentiation 20) constitute important immunotherapies for the treatment
of B cell malignancies and autoimmune diseases. Type I and II therapeutic
mAbs differ in B cell binding properties and cytotoxic effects, reflecting
differential interaction mechanisms with CD20. Here we present 3.7- to
4.7-angstrom cryo–electron microscopy structures of full-length CD20 in
complexes with prototypical type I rituximab and ofatumumab and type II
obinutuzumab. The structures and binding thermodynamics demonstrate that
upon binding to CD20, type II mAbs form terminal complexes that preclude
recruitment of additional mAbs and complement components, whereas type I
complexes act as molecular seeds to increase mAb local concentration for
efficient complement activation. Among type I mAbs, ofatumumab complexes
display optimal geometry for complement recruitment. The uncovered
mechanisms should aid rational design of next-generation immunotherapies
targeting CD20.
Collapse
Affiliation(s)
- Anand Kumar
- Membrane Protein Mechanisms Unit, Institut Pasteur, 75015 Paris, France
- Membrane Protein Mechanisms Group, European Institute of Chemistry and Biology, University of Bordeaux, 33607 Pessac, France
- CNRS UMR 5234 Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1222, Paris, France
| | - Rémi Fronzes
- CNRS UMR 5234 Fundamental Microbiology and Pathogenicity, Bordeaux, France
- Structure and Function of Bacterial Nanomachines Group, European Institute of Chemistry and Biology, University of Bordeaux, 33607 Pessac, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1222, Paris, France
| | - Nicolas Reyes
- Membrane Protein Mechanisms Unit, Institut Pasteur, 75015 Paris, France
- Membrane Protein Mechanisms Group, European Institute of Chemistry and Biology, University of Bordeaux, 33607 Pessac, France
- CNRS UMR 5234 Fundamental Microbiology and Pathogenicity, Bordeaux, France
| |
Collapse
|
80
|
Moore E, Putterman C. Are lupus animal models useful for understanding and developing new therapies for human SLE? J Autoimmun 2020; 112:102490. [PMID: 32535128 PMCID: PMC7384952 DOI: 10.1016/j.jaut.2020.102490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus is a systemic autoimmune disease driven by a complex combination of genetic, environmental, and other immunoregulatory factors. The development of targeted therapies is complicated by heterogeneous clinical manifestations, varying organ involvement, and toxicity. Despite advances in understanding the mechanisms contributing to SLE, only one biologic drug, belimumab, is FDA-approved. The identification and development of potential therapies have largely been driven by studies in lupus animal models. Therefore, direct comparison of both the therapeutic and immunological findings in human and murine SLE studies is critical and can reveal important insights into indeed how useful and relevant are murine studies in SLE drug development. Studies involving belimumab, mycophenolate mofetil, abatacept, rituximab, and anti-interferon strategies generally demonstrated analogous findings in the attenuation of SLE manifestations and modulation of select immune cell populations in human and murine SLE. While further basic and translational studies are needed to identify SLE patient subsets likely to respond to particular therapeutic modalities and in dissecting complex mechanisms, we believe that despite some inherent weaknesses SLE mouse models will continue to be integral in developing targeted SLE therapies.
Collapse
Affiliation(s)
- Erica Moore
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA; Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel; Research Institute, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
81
|
Rituximab and immune thrombocytopenia in adults: The state of knowledge 20 years later. Rev Med Interne 2020; 42:32-37. [PMID: 32680716 DOI: 10.1016/j.revmed.2020.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/23/2020] [Indexed: 01/19/2023]
Abstract
Rituximab has been used for immune thrombocytopenia (ITP) for almost 20 years and is now considered a valid off-label second-line treatment. About 60% to 70% of patients with ITP show initial response to rituximab, but in half of these patients, the disease will eventually relapse. Therefore, in 30% of patients with persistent or chronic ITP, one course of rituximab at 375 mg/m2/week for 4 weeks or 2 fixed 1000-mg rituximab infusions allows for a sustained response rate at 5 years. Unfortunately, to date, no robust predictor of long-term sustained response has been found to assist the physician in deciding to treat with rituximab on an individual basis, and the choice of rituximab or another second-line treatment must be individualized and shared with the patient. Retreatment with rituximab has been found efficient, with a similar or higher magnitude and duration of response in most patients. Rituximab is usually well tolerated, with mainly mild and easily manageable infusion-related adverse events. Severe infections are uncommon, including in the long-term, and occur in patients with at least another contributing factor in more than two thirds. Several issues remain to be resolved. Indeed, head-to-head comparisons with other and new treatments in ITP and robust predictors of long-term response are urgently needed to better determine the position of rituximab in the therapeutic armamentarium for adult ITP. Additionally, the place of combination therapies, maintenance therapy with rituximab and rituximab in newly-diagnosed ITP deserve additional studies.
Collapse
|
82
|
Rijvers L, Melief MJ, van Langelaar J, van der Vuurst de Vries RM, Wierenga-Wolf AF, Koetzier SC, Priatel JJ, Jorritsma T, van Ham SM, Hintzen RQ, van Luijn MM. The Role of Autoimmunity-Related Gene CLEC16A in the B Cell Receptor-Mediated HLA Class II Pathway. THE JOURNAL OF IMMUNOLOGY 2020; 205:945-956. [PMID: 32641384 DOI: 10.4049/jimmunol.1901409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin CLEC16A is located next to CIITA, the master transcription factor of HLA class II (HLA-II), at a susceptibility locus for several autoimmune diseases, including multiple sclerosis (MS). We previously found that CLEC16A promotes the biogenesis of HLA-II peptide-loading compartments (MIICs) in myeloid cells. Given the emerging role of B cells as APCs in these diseases, in this study, we addressed whether and how CLEC16A is involved in the BCR-dependent HLA-II pathway. CLEC16A was coexpressed with surface class II-associated invariant chain peptides (CLIP) in human EBV-positive and not EBV-negative B cell lines. Stable knockdown of CLEC16A in EBV-positive Raji B cells resulted in an upregulation of surface HLA-DR and CD74 (invariant chain), whereas CLIP was slightly but significantly reduced. In addition, IgM-mediated Salmonella uptake was decreased, and MIICs were less clustered in CLEC16A-silenced Raji cells, implying that CLEC16A controls both HLA-DR/CD74 and BCR/Ag processing in MIICs. In primary B cells, CLEC16A was only induced under CLIP-stimulating conditions in vitro and was predominantly expressed in CLIPhigh naive populations. Finally, CLIP-loaded HLA-DR molecules were abnormally enriched, and coregulation with CLEC16A was abolished in blood B cells of patients who rapidly develop MS. These findings demonstrate that CLEC16A participates in the BCR-dependent HLA-II pathway in human B cells and that this regulation is impaired during MS disease onset. The abundance of CLIP already on naive B cells of MS patients may point to a chronically induced stage and a new mechanism underlying B cell-mediated autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Liza Rijvers
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Marie-José Melief
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Jamie van Langelaar
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Roos M van der Vuurst de Vries
- MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Steven C Koetzier
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - John J Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Rogier Q Hintzen
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, Erasmus MC, 3015 CN Rotterdam, the Netherlands; .,MS Center ErasMS, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
83
|
Menon D, Barnett C, Bril V. Novel Treatments in Myasthenia Gravis. Front Neurol 2020; 11:538. [PMID: 32714266 PMCID: PMC7344308 DOI: 10.3389/fneur.2020.00538] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Myasthenia gravis (MG) is the prototypical autoimmune disorder caused by specific autoantibodies at the neuromuscular junction. Broad-based immunotherapies, such as corticosteroids, azathioprine, mycophenolate, tacrolimus, and cyclosporine, have been effective in controlling symptoms of myasthenia. While being effective in a majority of MG patients many of these immunosuppressive agents are associated with long-term side effects, often intolerable for patients, and take several months to be effective. With advances in translational research and drug development capabilities, more directed therapeutic agents that can alter the future of MG treatment have been developed. This review focuses on the aberrant immunological processes in MG, the novel agents that target them along with the clinical evidence for efficacy and safety. These agents include terminal complement C5 inhibitors, Fc receptor inhibitors, B cell depleting agents (anti CD 19 and 20 and B cell activating factor [BAFF)]inhibitors), proteosome inhibitors, T cells and cytokine based therapies (chimeric antigen receptor T [CART-T] cell therapy), autologous stem cell transplantation, and subcutaneous immunoglobulin (SCIG). Most of these new agents have advantages over conventional immunosuppressive treatment (IST) for MG therapy in terms of faster onset of action, favourable side effect profile and the potential for a sustained and long-term remission.
Collapse
Affiliation(s)
| | | | - Vera Bril
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
84
|
Gatti A, Buccisano F, Scupoli MT, Brando B. The ISCCA flow protocol for the monitoring of anti-CD20 therapies in autoimmune disorders. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:194-205. [PMID: 32598578 DOI: 10.1002/cyto.b.21930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Anti-CD20 monoclonals (MoAbs) are used in a variety of autoimmune disorders. The aim is to eliminate memory B cells sustaining the tissue damage and the production of pathogenic autoantibodies, while preserving naïve cells. The disappearance of memory B cells and the repopulation by naïve cells correlate with good clinical response, while the reappearance of memory B cells and plasmablasts correlates with relapse or resistance to therapy. Anti-CD20 induce extremely low B cell levels, requiring high-resolution techniques. The immune monitoring protocol developed by ISCCA is described and validated, to provide a standardized method for the clinical decision-making process during anti-CD20 therapies in autoimmune diseases. METHODS A 10-marker, 8-color staining panel (CD20-V450, CD45-V500c, CD4-FITC + sIgM-FITC, CD38-PE, CD3-PerCP Cy5.5, CD19-PE-Cy7, CD27-APC, CD8-APC H7 + sIgG-APC-H7) is used to identify B cells, plasma cells/blasts, naïve and memory B cells, sIgM+ and sIgG-switched memory B cells, T and NK cells, with high-sensitivity analysis (>106 CD45+ cells). RESULTS After an anti-CD20 dose, the B cell level is about zero in most patients. If B cells remain virtually absent (<0.1/μl), subsetting is not reliable nor meaningful. If B cells raise >0.3-0.5/μl, subsetting is possible and informative, acquiring >1.0-1.5 × 106 CD45+ events. Further testings can follow the quality of B cell repopulation. If B cells become detectable (>1/μl), the prevalence of memory B cells indicates non-responsiveness or a possible relapse. CONCLUSIONS The ISCCA Protocol is proposed for a standardized prospective monitoring of patients with autoimmune disorders, to assist the safe and rational usage of anti-CD20 therapies.
Collapse
Affiliation(s)
- Arianna Gatti
- Hematology Laboratory and Transfusion Center, Western Milan Area Hospital Consortium, Legnano, Milan, Italy
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, Hematology, Tor Vergata University of Rome, Rome, Italy
| | - Maria T Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Bruno Brando
- Hematology Laboratory and Transfusion Center, Western Milan Area Hospital Consortium, Legnano, Milan, Italy
| |
Collapse
|
85
|
Assessment of Confirmed Clinical Hypersensitivity to Rituximab in Patients Affected with B-Cell Neoplasia. Adv Hematol 2020; 2020:4231561. [PMID: 32577119 PMCID: PMC7305539 DOI: 10.1155/2020/4231561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 01/17/2023] Open
Abstract
Rituximab hypersensitivity reactions are rare but are one of the main causes of rituximab elimination from antilymphoma immunochemotherapy treatments. While the clinical picture may be indistinguishable from other infusion-related reactions, hypersensitivity reactions (HSR) do not disappear and instead become more intense with subsequent administrations. Objective. To describe the use of the 12-step protocol for desensitization to intravenous rituximab in clinical practice and the complementary study of a possible IgE-mediated HSR in the context of B-cell lymphoma treatment. Methods. A 12-step rituximab desensitization protocol was performed prospectively within clinical practice in 10 patients with a history of severe infusion reactions or in patients who had a repeated reaction at subsequent doses despite taking more intense preventive measures. Skin prick tests were performed at the time of reaction and at a later time to eliminate false negatives due to possible drug interference. Results. Overall, with the desensitization protocol, 70% of patients were able to complete the scheduled immunochemotherapy. Two patients had to discontinue the therapy due to clinical persistence and the third due to lymphoma progression. Intradermal tests with 0.1% rituximab were positive in only 20% of cases, demonstrating a mechanism of hypersensitivity. Conclusions. The 12-step desensitization protocol is very effective and assumable within healthcare practice. There is a need to determine the mechanism underlying the infusion reaction in a large proportion of cases due to the risk of future drug exposure.
Collapse
|
86
|
McCarthy CE, White JM, Viola NT, Gibson HM. In vivo Imaging Technologies to Monitor the Immune System. Front Immunol 2020; 11:1067. [PMID: 32582173 PMCID: PMC7280489 DOI: 10.3389/fimmu.2020.01067] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The past two decades have brought impressive advancements in immune modulation, particularly with the advent of both cancer immunotherapy and biologic therapeutics for inflammatory conditions. However, the dynamic nature of the immune response often complicates the assessment of therapeutic outcomes. Innovative imaging technologies are designed to bridge this gap and allow non-invasive visualization of immune cell presence and/or function in real time. A variety of anatomical and molecular imaging modalities have been applied for this purpose, with each option providing specific advantages and drawbacks. Anatomical methods including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound provide sharp tissue resolution, which can be further enhanced with contrast agents, including super paramagnetic ions (for MRI) or nanobubbles (for ultrasound). Conjugation of the contrast material to an antibody allows for specific targeting of a cell population or protein of interest. Protein platforms including antibodies, cytokines, and receptor ligands are also popular choices as molecular imaging agents for positron emission tomography (PET), single-photon emission computerized tomography (SPECT), scintigraphy, and optical imaging. These tracers are tagged with either a radioisotope or fluorescent molecule for detection of the target. During the design process for immune-monitoring imaging tracers, it is important to consider any potential downstream physiologic impact. Antibodies may deplete the target cell population, trigger or inhibit receptor signaling, or neutralize the normal function(s) of soluble proteins. Alternatively, the use of cytokines or other ligands as tracers may stimulate their respective signaling pathways, even in low concentrations. As in vivo immune imaging is still in its infancy, this review aims to describe the modalities and immunologic targets that have thus far been explored, with the goal of promoting and guiding the future development and application of novel imaging technologies.
Collapse
Affiliation(s)
- Claire E McCarthy
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Jordan M White
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Heather M Gibson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
87
|
Abstract
Biologic therapies including monoclonal antibodies, tyrosine kinase inhibitors, and other agents represent a notable expansion in the pharmacotherapy armamentarium in treatment of a variety of diseases. Many of these therapies possess direct or indirect immunosuppressive and immunomodulatory effects, which have been associated with bacterial, viral, and fungal opportunistic infections. Careful screening of baseline risk factors before initiation, targeted preventive measures, and vigilant monitoring while on active biologic therapy mitigate these risks as use of biologics becomes more commonplace. This review compiles reported evidence of fungal infections associated with these agents with a focus on the tumor necrosis factor-α inhibitor class.
Collapse
Affiliation(s)
- Matthew R Davis
- Department of Pharmacy, University of California, Los Angeles Ronald Reagan Medical Center, 757 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - George R Thompson
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Health, 4150 V Street, Sacramento, CA 95817, USA; Department of Medical Microbiology and Immunology, University of California Davis Health, 4150 V Street, Sacramento, CA 95817, USA
| | - Thomas F Patterson
- Division of Infectious Diseases, Department of Medicine, University of Texas Health Science Center at San Antonio, South Texas Veterans Health Care System, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
88
|
Autoimmune bullous skin diseases, pemphigus and pemphigoid. J Allergy Clin Immunol 2020; 145:1031-1047. [DOI: 10.1016/j.jaci.2020.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
89
|
Hammers CM, Stanley JR. Recent Advances in Understanding Pemphigus and Bullous Pemphigoid. J Invest Dermatol 2020; 140:733-741. [DOI: 10.1016/j.jid.2019.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
|
90
|
Carballido JM, Regairaz C, Rauld C, Raad L, Picard D, Kammüller M. The Emerging Jamboree of Transformative Therapies for Autoimmune Diseases. Front Immunol 2020; 11:472. [PMID: 32296421 PMCID: PMC7137386 DOI: 10.3389/fimmu.2020.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Standard treatments for autoimmune and autoinflammatory disorders rely mainly on immunosuppression. These are predominantly symptomatic remedies that do not affect the root cause of the disease and are associated with multiple side effects. Immunotherapies are being developed during the last decades as more specific and safer alternatives to small molecules with broad immunosuppressive activity, but they still do not distinguish between disease-causing and protective cell targets and thus, they still have considerable risks of increasing susceptibility to infections and/or malignancy. Antigen-specific approaches inducing immune tolerance represent an emerging trend carrying the potential to be curative without inducing broad immunosuppression. These therapies are based on antigenic epitopes derived from the same proteins that are targeted by the autoreactive T and B cells, and which are administered to patients together with precise instructions to induce regulatory responses capable to restore homeostasis. They are not personalized medicines, and they do not need to be. They are precision therapies exquisitely targeting the disease-causing cells that drive pathology in defined patient populations. Immune tolerance approaches are truly transformative options for people suffering from autoimmune diseases.
Collapse
Affiliation(s)
- José M. Carballido
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Camille Regairaz
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Celine Rauld
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Layla Raad
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Picard
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
91
|
Murphy G, Isenberg DA. New therapies for systemic lupus erythematosus - past imperfect, future tense. Nat Rev Rheumatol 2020; 15:403-412. [PMID: 31165780 DOI: 10.1038/s41584-019-0235-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The failure of many new, mostly biologic, drugs to meet their primary end points in double-blind clinical trials in patients with systemic lupus erythematosus (SLE) has caused a profound sense of disappointment among both physicians and patients. Arguably, the success of B cell depletion with rituximab in open-label clinical trials, the approval of belimumab (which blocks B cell-activating factor (BAFF)) for use in patients with lupus nephritis in the USA and in difficult-to-treat patients with SLE in the UK and the recognition that clinical trial design can be improved have given some cause for hope. However, changes to therapies in current use and the development of new approaches are urgently needed. The results of the latest studies investigating the use of several new approaches to treating SLE are discussed in this Review, including: fully humanized anti-CD20 and anti-CD19 monoclonal antibodies; inhibition of tyrosine-protein kinase BTK; CD40 ligand blockade; interfering with the presentation of antigen to autoreactive T cells using a peptide approach; a receptor decoy approach using an analogue of Fcγ receptor IIB; dual blockade of IL-12 and IL-23; and inhibition of Janus kinases.
Collapse
Affiliation(s)
- Grainne Murphy
- Department of Rheumatology, Cork University Hospital, Cork, Ireland
| | - David A Isenberg
- Centre for Rheumatology/Division of Medicine, University College London, London, UK.
| |
Collapse
|
92
|
Abstract
Antibody-secreting plasma cells are the central pillars of humoral immunity. They are generated in a fundamental cellular restructuring process from naive B cells upon contact with antigen. This outstanding process is guided and controlled by a complex transcriptional network accompanied by a fascinating morphological metamorphosis, governed by the combined action of Blimp-1, Xbp-1 and IRF-4. The survival of plasma cells requires the intimate interaction with a specific microenvironment, consisting of stromal cells and cells of hematopoietic origin. Cell-cell contacts, cytokines and availability of metabolites such as glucose and amino acids modulate the survival abilities of plasma cells in their niches. Moreover, plasma cells have been shown to regulate immune responses by releasing cytokines. Furthermore, plasma cells are central players in autoimmune diseases and malignant transformation of plasma cells can result in the generation of multiple myeloma. Hence, the development of sophisticated strategies to deplete autoreactive plasma cells and myeloma cells represents a challenge for current and future research.
Collapse
Affiliation(s)
- Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
93
|
Rubin SJS, Bloom MS, Robinson WH. B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol 2020; 15:303-315. [PMID: 30967621 DOI: 10.1038/s41584-019-0211-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen-presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co-engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Samuel J S Rubin
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michelle S Bloom
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - William H Robinson
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA. .,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
94
|
Xu W, Tian K, Li X, Zhang S. IL-9 blockade attenuates inflammation in a murine model of methicillin-resistant Staphylococcus aureus pneumonia. Acta Biochim Biophys Sin (Shanghai) 2020; 52:133-140. [PMID: 31942919 DOI: 10.1093/abbs/gmz149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/19/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important etiology of pneumonia. Interleukin (IL)-9 is a T helper 9 (Th9) cytokine and participates in the pathogenesis of infectious diseases. Here, we investigated the role of IL-9 by using an MRSA pneumonia animal model. The BALB/c mice underwent nasal inhalation with an ST239 MRSA strain to establish the mouse model of MRSA pneumonia, and a subset of mice were intravenously injected with IL-9 neutralizing antibody or immunoglobulin (Ig) G. At 3 and 8 days postinfection, the peripheral blood, bronchioalveolar lavage fluid (BALF), and lung tissues were collected. The frequencies of Th9 cells and the levels of cytokines in peripheral blood, BALF, and lung tissues were determined by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. The colony counts of MRSA in BALF and lung tissue were detected. The lung pathological changes were examined using hematoxylin and eosin staining. Data from flow cytometry, qRT-PCR, and ELISA showed that MRSA-infected mice exhibited higher frequency of Th9 cells and higher IL-9 mRNA and protein levels in the peripheral blood, BALF, and lung tissues of mice. In contrast, the neutralization of IL-9 abrogated MRSA inoculation-induced Th9 cell generation and IL-9 production in BALF and lung tissues. Furthermore, bacterial counting and histological examination showed that the numbers of bacteria in BALF and lungs and the lung pathological scores induced by MRSA inoculation were attenuated by the neutralization of IL-9. Moreover, cell counting and ELISA results demonstrated that IL-9 neutralization diminished the MRSA inoculation-induced count of neutrophils and macrophages and levels of pro-inflammatory cytokines in BALF. Collectively, IL-9 neutralization attenuated inflammation of MRSA pneumonia by regulating Th9/IL-9 expression.
Collapse
Affiliation(s)
- Weihua Xu
- Emergency Department, Anhui Children's Hospital, Hefei 230051, China
| | - Keyin Tian
- Emergency Department, Anhui Children's Hospital, Hefei 230051, China
| | - Xiaoshuang Li
- Emergency Department, Anhui Children's Hospital, Hefei 230051, China
| | - Shihai Zhang
- Clinical Laboratory, Anhui Children's Hospital, Hefei 230051, China
| |
Collapse
|
95
|
Abstract
Rituximab (MabThera®, Rituxan®), a chimeric murine/human anti-CD20 monoclonal antibody administered by intravenous infusion, is indicated for the treatment of moderate to severe pemphigus vulgaris (PV), in combination with a tapering course of corticosteroids. Approval in the EU and USA was based on data for the subset of patients with newly-diagnosed, previously untreated PV participating in the randomized, controlled RITUX 3 study; rituximab plus short-course prednisone resulted in a > 3-fold higher rate of complete remission off prednisone therapy and a > 2-fold decrease in the rate of moderate/severe relapse compared with standard-dose prednisone in this patient subpopulation. In addition, rituximab plus short-term prednisone was steroid-sparing and resulted in fewer patients experiencing grade 3 or 4 corticosteroid-related adverse events compared with standard-dose prednisone. The adverse event profile of rituximab in patients with PV was consistent with that observed for the drug in other approved autoimmune disorders; no new safety concerns were identified. Notwithstanding there is some uncertainty over the optimum dosing schedule to achieve and maintain disease control, rituximab is a highly effective and generally well tolerated, steroid-sparing treatment for moderate to severe PV.
Collapse
Affiliation(s)
- James E Frampton
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
96
|
Nasonov EL, Beketova TV, Ananyeva LP, Vasilyev VI, Solovyev SK, Avdeeva AS. PROSPECTS FOR ANTI-B-CELL THERAPY IN IMMUNO-INFLAMMATORY RHEUMATIC DISEASES. RHEUMATOLOGY SCIENCE AND PRACTICE 2019. [DOI: 10.14412/1995-4484-2019-3-40] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- E L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | | | | | | | | | | |
Collapse
|
97
|
Yang M, Wu H, Zhao M, Chang C, Lu Q. The pathogenesis of bullous skin diseases. J Transl Autoimmun 2019; 2:100014. [PMID: 32743502 PMCID: PMC7388362 DOI: 10.1016/j.jtauto.2019.100014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Bullous skin diseases are a group of dermatoses characterized by blisters and bullae in the skin and mucous membranes. The etiology and pathogenesis of bullous skin diseases are not completely clear. The most common are pemphigus and bullous pemphigoid (BP). Autoantibodies play critical roles in their pathogenesis. Abnormalities in the adhesion between keratinocytes in patients with pemphigus leads to acantholysis and formation of intra-epidermal blisters. Anti-desmoglein autoantibodies are present both in the circulation and skin lesions of patients with pemphigus. The deficient adhesion of keratinocytes to the basement membrane in BP patients gives rise to subepidermal blisters. Autoantibodies against the components of hemidesmosome can be detected in BP patients. Many novel therapeutics based on knowledge of the pathogenesis have emerged in recent years.
Collapse
Affiliation(s)
- Miao Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children’s Hospital, Hollywood, FL, 33021, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| |
Collapse
|
98
|
Broadway KM, Scharf BE. Salmonella Typhimurium as an Anticancer Therapy: Recent Advances and Perspectives. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
99
|
Kridin K, Kowalski EH, Kneiber D, Laufer-Britva R, Amber KT. From bench to bedside: evolving therapeutic targets in autoimmune blistering disease. J Eur Acad Dermatol Venereol 2019; 33:2239-2252. [PMID: 31314932 DOI: 10.1111/jdv.15816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune blistering diseases comprise a group of heterogenous conditions characterized by the loss of tolerance and subsequent development of autoantibodies targeting epidermal and subepidermal adhesion proteins. Blisters and erosions form on the skin and mucous membranes leading to significant morbidity and mortality. Traditional therapies rely on systemic immunosuppression. Advancements in our understanding of the pathophysiology of pemphigus and pemphigoid have led to the development of molecules which target specific pathways involved in induction and perpetuation of disease. In this review, we outline the novel therapeutic strategies including B-cell depletion, T-regulatory cell repletion, cell signalling inhibitors and small molecular inhibitors, inhibitory monoclonal antibodies, as well as complement inhibition. We additionally review their current level of clinical evidence. We lastly review therapeutics targets gleaned from the experimental epidermolysis bullosa acquisita mouse model. These emerging treatments offer an exciting progression from basic science discoveries that have the potential to transform the treatment paradigm in autoimmune blistering diseases.
Collapse
Affiliation(s)
- K Kridin
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - E H Kowalski
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - D Kneiber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - R Laufer-Britva
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - K T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
100
|
Bilgic A, Murrell DF. What is novel in the clinical management of pemphigus. Expert Rev Clin Pharmacol 2019; 12:973-980. [DOI: 10.1080/17512433.2019.1670059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- A. Bilgic
- Antalya Training and Research Hospital, Dermatology Clinic, University of Health Sciences, Antalya, Turkey
| | - D. F. Murrell
- St George Hospital, Department of Dermatology, University of New South Wales, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|