53
|
Lee K, Goudie MJ, Tebon P, Sun W, Luo Z, Lee J, Zhang S, Fetah K, Kim HJ, Xue Y, Darabi MA, Ahadian S, Sarikhani E, Ryu W, Gu Z, Weiss PS, Dokmeci MR, Ashammakhi N, Khademhosseini A. Non-transdermal microneedles for advanced drug delivery. Adv Drug Deliv Rev 2019; 165-166:41-59. [PMID: 31837356 PMCID: PMC7295684 DOI: 10.1016/j.addr.2019.11.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Microneedles (MNs) have been used to deliver drugs for over two decades. These platforms have been proven to increase transdermal drug delivery efficiency dramatically by penetrating restrictive tissue barriers in a minimally invasive manner. While much of the early development of MNs focused on transdermal drug delivery, this technology can be applied to a variety of other non-transdermal biomedical applications. Several variations, such as multi-layer or hollow MNs, have been developed to cater to the needs of specific applications. The heterogeneity in the design of MNs has demanded similar variety in their fabrication methods; the most common methods include micromolding and drawing lithography. Numerous materials have been explored for MN fabrication which range from biocompatible ceramics and metals to natural and synthetic biodegradable polymers. Recent advances in MN engineering have diversified MNs to include unique shapes, materials, and mechanical properties that can be tailored for organ-specific applications. In this review, we discuss the design and creation of modern MNs that aim to surpass the biological barriers of non-transdermal drug delivery in ocular, vascular, oral, and mucosal tissue.
Collapse
Affiliation(s)
- KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus J Goudie
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyton Tebon
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhimin Luo
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiming Zhang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kirsten Fetah
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yumeng Xue
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mohammad Ali Darabi
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Einollah Sarikhani
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, South Korea
| | - Zhen Gu
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Paul S Weiss
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet R Dokmeci
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nureddin Ashammakhi
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Ali Khademhosseini
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
56
|
Garg P, Venuganti VVK, Roy A, Roy G. Novel drug delivery methods for the treatment of keratitis: moving away from surgical intervention. Expert Opin Drug Deliv 2019; 16:1381-1391. [PMID: 31701781 DOI: 10.1080/17425247.2019.1690451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Introduction: Corneal ulceration is one of the leading causes of blindness especially in low- and mid-income countries (LMICs). Surgical treatment of microbial keratitis is associated with multiple challenges that include non-availability of donor corneal tissues, lack of trained corneal surgeons, and poor compliance to follow up care. As a result, the surgery fails in 70-90% cases. Therefore, improving outcome of medical treatment and thereby avoiding the need for the surgery is an unmet need in the care of corneal ulcer cases.Areas covered: In this review article, the authors have tried to compile information on the novel drug-delivery systems that have potential to enhance success of medical management. We have discussed the following systems: cyclodextrins, gel formulations, colloidal system, nanoformulations, drug-eluting contact lens, microneedle patch, and ocular inserts.Expert opinion: The goals of corneal ulcer treatment are as follows: rapid eradication of causative microorganisms, control of damage from induced inflammation and microbial toxins, and facilitation of repair. The ocular surface anatomy poses several challenges for drug delivery using standard topical therapy. The novel drug-delivery systems mentioned above aim to enhanced tear solubility; superior stability; improved bio-availability; reduced toxicity; besides facilitating targeted drug delivery and convenience of administration.
Collapse
Affiliation(s)
- Prashant Garg
- Tej Kohli Cornea Institute, KAR campus, L. V. Prasad Eye Institute, Hyderabad, India
| | | | - Aravind Roy
- Tej Kohli Cornea Institute, KVC campus, L. V. Prasad Eye Institute, Vijayawada, India
| | - Girdhari Roy
- Department of Pharmacology, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad, India
| |
Collapse
|