51
|
Qi Y, Volmer DA. Structural analysis of small to medium-sized molecules by mass spectrometry after electron-ion fragmentation (ExD) reactions. Analyst 2016; 141:794-806. [PMID: 26725919 DOI: 10.1039/c5an02171e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron capture dissociation (ECD) is a tandem mass spectrometry (MS/MS) method that utilizes the interaction of ions and electrons. Its unique ability to preserve labile bonds distinguishes it from conventional threshold-based MS/MS methods, the most important of which is collision-induced dissociation (CID). During the last decade, ECD has opened up several new venues in protein analyses, for example top-down sequencing, identification of post-translational modifications, and characterization of protein-protein interactions. In recent years, a number of related dissociation techniques, so-called ExD techniques, particularly electron transfer dissociation (ETD), electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD), have emerged and have extended the application range of ion-electron dissociations further. Importantly, ExD techniques have been applied beyond protein analyses, which is the focus of the current paper. This short introduction describes the application of ExD to small and medium-sized molecules and reviews important applications to natural products, biomedical compounds, synthetic molecules, crude oils, and environmental toxins.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | | |
Collapse
|
52
|
Przybylski C, Benito JM, Bonnet V, Mellet CO, García Fernández JM. Deciphering of polycationic carbohydrate based non-viral gene delivery agents by ESI-LTQ-Orbitrap using CID/HCD pairwise tandem mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c6ra14508f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the study herein, we demonstrated that ESI-(MS)MS combining CID and HCD is a useful tool for the structural deciphering of five representative members of a polycationic cyclodextrin library used as non viral agents for gene delivery.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d’Evry-Val-d’Essonne
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement
- CNRS UMR 8587
- F-91025 Evry
- France
| | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- E-41092 Sevilla
- Spain
| | - Véronique Bonnet
- Université de Picardie Jules Verne
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources
- CNRS UMR 7378
- 80039 Amiens
- France
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla
- Spain
| | | |
Collapse
|
53
|
Obena RP, Tseng MC, Primadona I, Hsiao J, Li IC, Capangpangan RY, Lu HF, Li WS, Chao I, Lin CC, Chen YJ. UV-activated multilayer nanomatrix provides one-step tunable carbohydrate structural characterization in MALDI-MS. Chem Sci 2015; 6:4790-4800. [PMID: 28717486 PMCID: PMC5502396 DOI: 10.1039/c5sc00546a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/27/2015] [Indexed: 11/21/2022] Open
Abstract
The structure-specific fragmentation of gas-phase ions in tandem mass spectrometry among other techniques provides an efficient analytical method for confirming unknown analytes or for elucidating chemical structures. Using concentration-dependent UV-absorbing matrix-functionalized magnetic nanoparticles and matrix-assisted laser desorption-ionization mass spectrometry (MALDI MS), we developed a single-step pseudo-MS/MS approach for tunable ionization and fragmentation to facilitate structure determination. Without chemical derivatization, we have demonstrated that this approach successfully distinguished isomeric sets of di-, tri- and tetrasaccharides. Low concentration of nanomatrix provided an enhanced signal for accurate mass determination of the intact molecular ions of analytes present in the sample. In contrast, high concentration of nanomatrix induced extensive and unique fragmentation, including high-energy facile bond breakage (A- and X-type cross-ring cleavages), which facilitated the linkage and sequence characterization of oligosaccharides without conventional tandem mass spectrometric instrumentation. The practicality of this approach for complex sample analysis was evaluated by an oligosaccharide mixture, wherein molecular ions are unambiguously observed and signature product ions are distinguishable enough for molecular identification and isomer differentiation by this simple tunable approach. By probing the roles of the multilayer nanomatrix components: matrix (energy absorption), silane-coating (energy pooling and dissipation) and core Fe3O4 (fragmentation), a plausible energy transfer mechanism was proposed based on a computational study and photoelectron experiments. The differentiation of tri- and tetra-oligosaccharide shown in this study not only demonstrated the first step toward glycan characterization by nanoparticle-assisted MALDI-MS, but also shed some insight on the nanoparticle-mediated energy transfer dynamics behind our approach.
Collapse
Affiliation(s)
- Rofeamor P Obena
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
- Institute of Chemistry , University of the Philippines-Diliman , Quezon City , Philippines
| | - Mei-Chun Tseng
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Indah Primadona
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Molecular Science and Technology Program , Taiwan International Graduate Program , Institute of Chemistry , Academia Sinica , Taiwan
| | - Jun Hsiao
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - I-Che Li
- Department of Chemistry , National Taiwan University , Taipei , Taiwan
| | - Rey Y Capangpangan
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Molecular Science and Technology Program , Taiwan International Graduate Program , Institute of Chemistry , Academia Sinica , Taiwan
| | - Hsiu-Fong Lu
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Wan-Sheung Li
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Ito Chao
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | - Yu-Ju Chen
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Department of Chemistry , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
54
|
Bertran-Vicente J, Schümann M, Hackenberger CPR, Krause E. Gas-Phase Rearrangement in Lysine Phosphorylated Peptides During Electron-Transfer Dissociation Tandem Mass Spectrometry. Anal Chem 2015; 87:6990-4. [PMID: 26110354 DOI: 10.1021/acs.analchem.5b01389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tandem mass spectrometry (MS/MS) strategies coupled with collision-induced dissociation (CID) or radical-driven fragmentation techniques such as electron-capture dissociation (ECD) or electron-transfer dissociation (ETD) have been successfully used for comprehensive phosphoproteome analysis. However, the unambiguous characterization of the phosphorylation site remains a significant challenge due to phosphate-related neutral losses and gas-phase rearrangements, which have been observed during CID. In particular, for the analysis of labile N-phosphorylated peptides, ECD and ETD are emerging as a complementary method. In contrast to CID, the phosphorylation site of histidine, arginine, and lysine phosphorylated peptides can be characterized by ETD. Here, we present a study on the application of ETD for analysis of phospholysine (pLys) peptides. We show that, depending on the charge state of the precursor ion as well as the presence of basic amino acid side chains, phosphate transfer reactions during the ETD process can be observed leading to ambiguous fragment ion spectra. Basically, pLys is stable under ETD conditions allowing an unambiguous assignment of the site of phosphorylation, but some factors/parameters have to be considered to avoid gas-phase rearrangement which would lead to false positive results in phosphoproteomic studies.
Collapse
Affiliation(s)
- Jordi Bertran-Vicente
- †Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany.,§Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Michael Schümann
- †Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
| | - Christian P R Hackenberger
- †Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany.,‡Department Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Eberhard Krause
- †Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
| |
Collapse
|
55
|
Huang Y, Dodds ED. Discrimination of Isomeric Carbohydrates as the Electron Transfer Products of Group II Cation Adducts by Ion Mobility Spectrometry and Tandem Mass Spectrometry. Anal Chem 2015; 87:5664-8. [PMID: 25955237 DOI: 10.1021/acs.analchem.5b00759] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rapid and unambiguous distinction of isomeric carbohydrate structures persists as a tremendous analytical challenge. This paper reports the first exploitation of carbohydrate/metal ion interactions in concert with gas-phase ion chemistry to improve discrimination of oligosaccharide isomers by both ion mobility spectrometry and tandem mass spectrometry. This is demonstrated for two isomeric pentasaccharides and two isomeric hexasaccharides, each studied in an underivatized form as their calcium ion adducts, barium ion adducts, and gas-phase electron transfer products thereof. With appropriate selection of the charge carrier, transfer of a single electron to the carbohydrate metal ion adducts resulted in isomer-distinguishing shifts in their ion/neutral collision cross sections and the appearance of unique features in their vibrational activation/dissociation spectra. These findings suggest novel and elegant gas-phase strategies for rapid differentiation of isomeric oligosaccharides.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
56
|
Liu X, Wesdemiotis C. Electron transfer dissociation of doubly charged ions with different cationizing agents. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:713-723. [PMID: 26579927 DOI: 10.1255/ejms.1393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electron transfer dissociation (ETD) studies have been performed on a peptide and a synthetic polysaccharide doubly charged by different cationization agents. The ETD of protonated-sodiated bombesin gave rise to contiguous series of abundant c- and z-type ions that identified the complete sequence. ETD of the doubly protonated peptide produced a different fragment distribution, which also allowed for complete sequence coverage, but the relative intensities of some sequence ions were very small. Collisionally activated dissociation (CAD) of either precursor rendered limited sequence information. ETD of the sodiated-ammoniated pentamer of a starch-derived linear polysaccharide caused extensive fragmentation through cross-ring cleavages that revealed the possible position of a hydroxyethyl substituent on the saccharide ring. In contrast, ETD of the di-sodiated pentasaccharide did not produce a structure-revealing fragmentation pattern. On the other hand, CAD resulted in efficient glycosidic bond cleavages, either directly (from the sodiated-ammoniated precursor) or via multi-stage fragmentation (from the di-sodiated precursor), which indicated that hydroxyethylation occurs randomly at any saccharide repeat unit along the chain. Overall, the use of different cationizing agents complements the information available by using identical charge sites and opens or enhances ETD pathways that unveil valuable sequence or positional information.
Collapse
Affiliation(s)
- Xiumin Liu
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA. Current address: Covance Inc., 3301 Kinsman Blvd., Madison, WI 53704, USA.
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
57
|
Gaye MM, Kurulugama R, Clemmer DE. Investigating carbohydrate isomers by IMS-CID-IMS-MS: precursor and fragment ion cross-sections. Analyst 2015; 140:6922-32. [DOI: 10.1039/c5an00840a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fragmentation of melezitose by IMS-CID-IMS-MS.
Collapse
Affiliation(s)
- M. M. Gaye
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | - R. Kurulugama
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | - D. E. Clemmer
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| |
Collapse
|
58
|
Katari M, Payen de la Garanderie E, Nicol E, Steinmetz V, van der Rest G, Carmichael D, Frison G. Combining gas phase electron capture and IRMPD action spectroscopy to probe the electronic structure of a metastable reduced organometallic complex containing a non-innocent ligand. Phys Chem Chem Phys 2015; 17:25689-92. [DOI: 10.1039/c5cp01501d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gas-phase reduction of a Zn(ii) complex followed by IR spectroscopy shows that the incoming electron is localized on the metal rather than on the ligand.
Collapse
Affiliation(s)
- Madanakrishna Katari
- Laboratoire de Chimie Moléculaire
- Ecole polytechnique and CNRS
- 91128 Palaiseau Cedex
- France
| | | | - Edith Nicol
- Laboratoire de Chimie Moléculaire
- Ecole polytechnique and CNRS
- 91128 Palaiseau Cedex
- France
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique
- Université Paris Sud
- CNRS
- 91405 Orsay
- France
| | | | - Duncan Carmichael
- Laboratoire de Chimie Moléculaire
- Ecole polytechnique and CNRS
- 91128 Palaiseau Cedex
- France
| | - Gilles Frison
- Laboratoire de Chimie Moléculaire
- Ecole polytechnique and CNRS
- 91128 Palaiseau Cedex
- France
| |
Collapse
|
59
|
Liang Q, Macher T, Xu Y, Bao Y, Cassady CJ. MALDI MS In-Source Decay of Glycans Using a Glutathione-Capped Iron Oxide Nanoparticle Matrix. Anal Chem 2014; 86:8496-503. [DOI: 10.1021/ac502422a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiaoli Liang
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Thomas Macher
- Department
of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yaolin Xu
- Department
of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yuping Bao
- Department
of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Carolyn J. Cassady
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
60
|
Huang Y, Pu Y, Yu X, Costello CE, Lin C. Mechanistic study on electron capture dissociation of the oligosaccharide-Mg²⁺ complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1451-60. [PMID: 24845360 PMCID: PMC4108535 DOI: 10.1007/s13361-014-0921-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 05/04/2023]
Abstract
Electron capture dissociation (ECD) has shown great potential in structural characterization of glycans. However, our current understanding of the glycan ECD process is inadequate for accurate interpretation of the complex glycan ECD spectra. Here, we present the first comprehensive theoretical investigation on the ECD fragmentation behavior of metal-adducted glycans, using the cellobiose-Mg²⁺ complex as the model system. Molecular dynamics simulation was carried out to determine the typical glycan-Mg²⁺ binding patterns and the lowest-energy conformer identified was used as the initial geometry for density functional theory-based theoretical modeling. It was found that the electron is preferentially captured by Mg²⁺ and the resultant Mg⁺• can abstract a hydroxyl group from the glycan moiety to form a carbon radical. Subsequent radical migration and α-cleavage(s) result in the formation of a variety of product ions. The proposed hydroxyl abstraction mechanism correlates well with the major features in the ECD spectrum of the Mg²⁺-adducted cellohexaose. The mechanism presented here also predicts the presence of secondary, radical-induced fragmentation pathways. These secondary fragment ions could be misinterpreted, leading to erroneous structural determination. The present study highlights an urgent need for continuing investigation of the glycan ECD mechanism, which is imperative for successful development of bioinformatics tools that can take advantage of the rich structural information provided by ECD of metal-adducted glycans.
Collapse
Affiliation(s)
- Yiqun Huang
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Yi Pu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Xiang Yu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Catherine E. Costello
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Cheng Lin
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
61
|
Liu H, Zhang N, Wan D, Cui M, Liu Z, Liu S. Mass spectrometry-based analysis of glycoproteins and its clinical applications in cancer biomarker discovery. Clin Proteomics 2014; 11:14. [PMID: 24722010 PMCID: PMC3984494 DOI: 10.1186/1559-0275-11-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/19/2014] [Indexed: 02/08/2023] Open
Abstract
Glycosylation is one of the most important posttranslational modifications of proteins and plays essential roles in various biological processes. Aberration in the glycan moieties of glycoproteins is associated with many diseases. It is especially critical to develop the rapid and sensitive methods for analysis of aberrant glycoproteins associated with diseases. Mass spectrometry (MS) has become a powerful tool for glycoprotein analysis. Especially, tandem mass spectrometry can provide highly informative fragments for structural identification of glycoproteins. This review provides an overview of the development of MS technologies and their applications in identification of abnormal glycoproteins and glycans in human serum to screen cancer biomarkers in recent years.
Collapse
Affiliation(s)
| | | | | | - Meng Cui
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P, R, China.
| | | | | |
Collapse
|
62
|
Hoffmann W, Hofmann J, Pagel K. Energy-resolved ion mobility-mass spectrometry--a concept to improve the separation of isomeric carbohydrates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:471-479. [PMID: 24385395 DOI: 10.1007/s13361-013-0780-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
Recent works using ion mobility-mass spectrometry (IM-MS) have highlighted the power of this instrumental configuration to tackle one of the greatest challenges in glycomics and glycoproteomics: the existence of isobaric isomers. For a successful separation of species with identical mass but different structure via IM-MS, it is crucial to have sufficient IM resolution. In commercially available IM-MS instruments, however, this resolution is limited by the design of the instrument and usually cannot be increased at-will without extensive modifications. Here, we present a systematic approach to improve the resolving capability of IM-MS instruments using so-called energy-resolved ion mobility-mass spectrometry. The technique utilizes the fact that individual components in an isobaric mixture fragment at considerably different energies when activated in the gas phase via collision-induced dissociation (CID). As a result, certain components can be suppressed selectively at increased CID activation energy. Using a mixture of four isobaric carbohydrates, we show that each of the individual sugars can be resolved and unambiguously identified even when their drift times differ by as little as 3%. However, the presented results also indicate that a certain difference in the gas-phase stability of the individual components is crucial for a successful separation via energy-resolved IM-MS.
Collapse
Affiliation(s)
- Waldemar Hoffmann
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | | | | |
Collapse
|
63
|
Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal Chem 2014; 86:196-212. [PMID: 24313268 PMCID: PMC3924431 DOI: 10.1021/ac403969n] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - L. Renee Ruhaak
- Department of Chemistry, University of California at Davis, Davis, CA 95616
| | | | | |
Collapse
|
64
|
Deciphering the structure of isomeric oligosaccharides in a complex mixture by tandem mass spectrometry: Photon activation with vacuum ultra-violet brings unique information and enables definitive structure assignment. Anal Chim Acta 2014; 807:84-95. [DOI: 10.1016/j.aca.2013.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 11/23/2022]
|
65
|
Yu X, Jiang Y, Chen Y, Huang Y, Costello CE, Lin C. Detailed glycan structural characterization by electronic excitation dissociation. Anal Chem 2013; 85:10017-21. [PMID: 24080071 DOI: 10.1021/ac402886q] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structural complexity and diversity of glycans parallel their multilateral functions in living systems. To better understand the vital roles glycans play in biological processes, it is imperative to develop analytical tools that can provide detailed glycan structural information. This was conventionally achieved by multistage tandem mass spectrometry (MS(n)) analysis using collision-induced dissociation (CID) as the fragmentation method. However, the MS(n) approach lacks the sensitivity and throughput needed to analyze complex glycan mixtures from biological sources, often available in limited quantities. We define herein the critical parameters for a recently developed fragmentation technique, electronic excitation dissociation (EED), which can yield rich structurally informative fragment ions during liquid chromatographic (LC)-MS/MS analysis of glycans. We further demonstrate that permethylation, reducing end labeling and judicious selection of the metal charge carrier, can greatly facilitate spectral interpretation. With its high sensitivity, throughput, and compatibility with online chromatographic separation techniques, EED appears to hold great promise for large-scale glycomics studies.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Biochemistry, Boston University , 670 Albany St. Suite 504, Boston, Massachusetts 02118, United States
| | | | | | | | | | | |
Collapse
|
66
|
Gao J, Thomas DA, Sohn CH, Beauchamp JL. Biomimetic Reagents for the Selective Free Radical and Acid–Base Chemistry of Glycans: Application to Glycan Structure Determination by Mass Spectrometry. J Am Chem Soc 2013; 135:10684-92. [DOI: 10.1021/ja402810t] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jinshan Gao
- Arthur Amos Noyes Laboratory of
Chemical Physics, California Institute of Technology, Pasadena, California
91125, United States
| | - Daniel A. Thomas
- Arthur Amos Noyes Laboratory of
Chemical Physics, California Institute of Technology, Pasadena, California
91125, United States
| | - Chang Ho Sohn
- Arthur Amos Noyes Laboratory of
Chemical Physics, California Institute of Technology, Pasadena, California
91125, United States
| | - J. L. Beauchamp
- Arthur Amos Noyes Laboratory of
Chemical Physics, California Institute of Technology, Pasadena, California
91125, United States
| |
Collapse
|
67
|
Abstract
Powerful new strategies based on mass spectrometry are revolutionizing the structural analysis and profiling of glycans and glycoconjugates. We survey here the major biosynthetic pathways that underlie the biological diversity in glycobiology, with emphasis on glycoproteins, and the approaches that can be used to address the resulting heterogeneity. Included among these are derivatizations, on- and off-line chromatography, electrospray and matrix-assisted laser desorption/ionization, and a variety of dissociation methods, the recently introduced electron-based techniques being of particular interest.
Collapse
Affiliation(s)
- Liang Han
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
68
|
Hung W, Wang S, Chen C, Chen C, Fang J, Yang W. Tagging
N
‐Linked Glycan with 2,3‐Naphthalenediamine for Mass Spectrometric Analysis. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Ting Hung
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Shwu‐Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chein‐Hung Chen
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Chung‐Hsuan Chen
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Jim‐Min Fang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Wen‐Bin Yang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| |
Collapse
|
69
|
Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013; 113:2668-732. [PMID: 23531120 PMCID: PMC3992972 DOI: 10.1021/cr3003714] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Benjamin F. Mann
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
70
|
Manri N, Satake H, Kaneko A, Hirabayashi A, Baba T, Sakamoto T. Glycopeptide Identification Using Liquid-Chromatography-Compatible Hot Electron Capture Dissociation in a Radio-Frequency-Quadrupole Ion Trap. Anal Chem 2013; 85:2056-63. [DOI: 10.1021/ac301834t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Naomi Manri
- Central Research
Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601,
Japan
| | - Hiroyuki Satake
- Central Research
Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601,
Japan
| | - Akihito Kaneko
- Central Research
Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601,
Japan
| | - Atsumu Hirabayashi
- Central Research
Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601,
Japan
| | - Takashi Baba
- Central Research
Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601,
Japan
| | - Takeshi Sakamoto
- Central Research
Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601,
Japan
| |
Collapse
|
71
|
Przybylski C, Bonnet V. Discrimination of cyclic and linear oligosaccharides by tandem mass spectrometry using collision-induced dissociation (CID), pulsed-Q-dissociation (PQD) and the higher-energy C-trap dissociation modes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:75-87. [PMID: 23239319 DOI: 10.1002/rcm.6422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/02/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE Carbohydrates have essential functions in living organisms and cells, but, due to the presence of numerous linkage combinations, substituent sites and possible conformations, they are the class of biomolecules which exhibits the huge structural diversity found in nature. Thereby, due to such diversity and poor ionization, their structural deciphering by mass spectrometry is still a very challenging task. METHODS Here, we studied a series of linear and cyclic neutral oligosaccharides using electrospray with collision-induced dissociation (CID), pulsed-Q-dissociation (PQD) and the higher-energy C-trap dissociation (HCD) feature of a linear ion trap Orbitrap hybrid mass spectrometer (LTQ-Orbitrap). The collision energy necessary to obtain 50% fragmentation (CE(50) values) in CID, PQD and HCD was used to correlate both size and structures. RESULTS The default settings for activation time and/or activation Q are the most appropriate, except for HCD, where 100 ms instead of 30 ms gave more intense fragment ions. PQD exhibits a 2-8-fold lower sensitivity than CID. HCD provides signals closer or slightly superior by 1.5-fold than PQD, and offers a more balanced ion distribution through the spectrum. Furthermore, HCD offers the possibility to make fine adjustments of the energy via the eV scale to further increase the yield of low-mass fragments. CONCLUSIONS The complementarity of CID, PQD and HCD was clearly demonstrated by obtaining structural information on hexa-, hepta- and octasaccharides. Together, these results clearly indicate the usefulness of the CID/HCD pair for further structural deciphering, and analysis of more complex structures such as multi-antennary carbohydrates or glycoconjuguates alone or in mixture.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d'Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR 8587, F-91025, Evry, France.
| | | |
Collapse
|
72
|
Abstract
Milk is an important fluid in glycobiology because it contains a number of short carbohydrate chains either free or as glycoconjugates. These compounds as a class are the most abundant component and benefit the infant by developing and maintaining the infant's gut flora. New and emerging methods for oligosaccharide analysis have been developed to study milk. These methods allow for the rapid profiling of oligosaccharide mixtures with quantitation. With these tools, the role of oligosaccharide in milk is being understood. They further point to how oligosaccharide analysis can be performed, which until now has been very difficult and have lagged significantly those of other biopolymers.
Collapse
Affiliation(s)
- L Renee Ruhaak
- Department of Chemistry, University of California Davis, CA, USA
| | | |
Collapse
|
73
|
Kornacki JR, Adamson JT, Håkansson K. Electron detachment dissociation of underivatized chloride-adducted oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2031-2042. [PMID: 22911097 DOI: 10.1007/s13361-012-0459-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/22/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto-N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.
Collapse
Affiliation(s)
- James R Kornacki
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
74
|
Yu X, Huang Y, Lin C, Costello CE. Energy-dependent electron activated dissociation of metal-adducted permethylated oligosaccharides. Anal Chem 2012; 84:7487-94. [PMID: 22881449 DOI: 10.1021/ac301589z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of varying the electron energy and cationizing agents on electron activated dissociation (ExD) of metal-adducted oligosaccharides were explored, using permethylated maltoheptaose as the model system. Across the examined range of electron energy, the metal-adducted oligosaccharide exhibited several fragmentation processes, including electron capture dissociation (ECD) at low energies, hot-ECD at intermediate energies, and electronic excitation dissociation (EED) at high energies. The dissociation threshold depended on the metal charge carrier(s), whereas the types and sequence spans of product ions were influenced by the metal-oligosaccharide binding pattern. Theoretical modeling contributed insight into the metal-dependent behavior of carbohydrates during low-energy ECD. When ExD was applied to a permethylated high mannose N-linked glycan, EED provided more structural information than either collision-induced dissociation (CID) or low-energy ECD, thus demonstrating its potential for oligosaccharide linkage analysis.
Collapse
Affiliation(s)
- Xiang Yu
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118-2646, United States
| | | | | | | |
Collapse
|
75
|
Abstract
Oligosaccharides in human milk strongly influence the composition of the gut microflora of neonates. Because it is now clear that the microflora play important roles in the development of the infant immune system, human milk oligosaccharides (HMO) are studied frequently. Milk samples contain complex mixtures of HMO, usually comprising several isomeric structures that can be either linear or branched. Traditionally, HMO profiling was performed using HPLC with fluorescence or UV detection. By using porous graphitic carbon liquid chromatography MS, it is now possible to separate and identify most of the isomers, facilitating linkage-specific analysis. Matrix-assisted laser desorption ionization time-of-flight analysis allows fast profiling, but does not allow isomer separation. Novel MS fragmentation techniques have facilitated structural characterization of HMO that are present at lower concentrations. These techniques now facilitate more accurate studies of HMO consumption as well as Lewis blood group determinations.
Collapse
|
76
|
Leymarie N, Zaia J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem 2012; 84:3040-8. [PMID: 22360375 PMCID: PMC3319649 DOI: 10.1021/ac3000573] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most proteins are glycosylated. Mass spectrometry methods are used for mapping glycoprotein glycosylation and detailed glycan structural determination. This technology enables precise characterization of recombinant glycoproteins in the pharmaceutical industry and academic biomedicine.
Collapse
Affiliation(s)
- Nancy Leymarie
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
77
|
Wang Q, Shi X, Leymarie N, Madico G, Sharon J, Costello CE, Zaia J. A typical preparation of Francisella tularensis O-antigen yields a mixture of three types of saccharides. Biochemistry 2011; 50:10941-50. [PMID: 22091710 DOI: 10.1021/bi201450v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tularemia is a severe infectious disease in humans caused by the Gram-negative bacterium Francisella tularensis (Ft). Because of its low infectious dose, high mortality rate, and the threat of its large-scale dissemination in weaponized form, development of vaccines and immunotherapeutics against Ft is essential. Ft lipopolysaccharide (LPS), which contains the linear graded-length saccharide component O-antigen (OAg) attached to a core oligosaccharide, has been reported as a protective antigen. Purification of LPS saccharides of defined length and composition is necessary to reveal the epitopes targeted by protective antibodies. In this study, we purified saccharides from LPS preparations from both the Ft subspecies holarctica live vaccine strain (LVS) and the virulent Ft subspecies tularensis SchuS4 strain using liquid chromatography. We then characterized the fractions using high-resolution mass spectrometry and tandem mass spectrometry. Three types of saccharides were observed in both the LVS and SchuS4 preparations: two consisting of OAg tetrasaccharide repeats attached to one of two core oligosaccharide variants and one consisting of tetrasaccharide repeats only (coreless). The coreless OAg oligosaccharides were shown to contain Qui4NFm (4,6-dideoxy-4-formamido-D-glucose) at the nonreducing end and QuiNAc (2-acetamido-2,6-dideoxy-O-D-glucose) at the reducing end. Purified homogeneous preparations of saccharides of each type will allow mapping of protective epitopes in Ft LPS.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | | | | | | | | | | | | |
Collapse
|
78
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 554] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|