51
|
Jarmasz JS, Basalah DA, Chudley AE, Del Bigio MR. Human Brain Abnormalities Associated With Prenatal Alcohol Exposure and Fetal Alcohol Spectrum Disorder. J Neuropathol Exp Neurol 2017; 76:813-833. [PMID: 28859338 PMCID: PMC5901082 DOI: 10.1093/jnen/nlx064] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a common neurodevelopmental problem, but neuropathologic descriptions are rare and focused on the extreme abnormalities. We conducted a retrospective survey (1980–2016) of autopsies on 174 individuals with prenatal alcohol exposure or an FASD diagnosis. Epidemiologic details and neuropathologic findings were categorized into 5 age groups. Alcohol exposure was difficult to quantify. When documented, almost all mothers smoked tobacco, many abused other substances, and prenatal care was poor or nonexistent. Placental abnormalities were common (68%) in fetal cases. We identified micrencephaly (brain weight <5th percentile) in 31, neural tube defects in 5, isolated hydrocephalus in 6, corpus callosum defects in 6 (including some with complex anomalies), probable prenatal ischemic lesions in 5 (excluding complications of prematurity), minor subarachnoid heterotopias in 4, holoprosencephaly in 1, lissencephaly in 1, and cardiac anomalies in 26 cases. The brain abnormalities associated with prenatal alcohol exposure are varied; cause–effect relationships cannot be determined. FASD is likely not a monotoxic disorder. The animal experimental literature, which emphasizes controlled exposure to ethanol alone, is therefore inadequate. Prevention must be the main societal goal, however, a clear understanding of the neuropathology is necessary for provision of care to individuals already affected.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology, University of Manitoba, Winnipeg, Manitoba; and Department of Paediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; and Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | - Duaa A Basalah
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology, University of Manitoba, Winnipeg, Manitoba; and Department of Paediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; and Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | - Albert E Chudley
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology, University of Manitoba, Winnipeg, Manitoba; and Department of Paediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; and Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology, University of Manitoba, Winnipeg, Manitoba; and Department of Paediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; and Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
52
|
Prefrontal cortical responses in children with prenatal alcohol-related neurodevelopmental impairment: A functional near-infrared spectroscopy study. Clin Neurophysiol 2017; 128:2099-2109. [PMID: 28914230 DOI: 10.1016/j.clinph.2017.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 07/06/2017] [Accepted: 08/13/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Disruption in the neural activation of the prefrontal cortex (PFC) in modulating arousal was explored in children with heavy prenatal alcohol exposure (PAE), who have known neurobehavioral impairment. METHODS During a task that elicits frustration, functional near-infrared spectroscopy (fNIRS) was used to measure PFC activation, specifically levels of oxygenated (HBO) and deoxygenated (HBR) hemoglobin, in children with PAE (n=18) relative to typically developing Controls (n=12) and a Clinical Contrast group with other neurodevelopmental or behavioral problems (n=14). RESULTS Children with PAE had less activation during conditions with positive emotional arousal, as indicated by lower levels of HBO in the medial areas of the PFC and higher levels of HBR in all areas of the PFC sampled relative to both other groups. Children in the Control group demonstrated greater differentiation of PFC activity than did children with PAE. Children in the Clinical Contrast group demonstrated the greatest differences in PFC activity between valences of task conditions. CONCLUSIONS Specific patterns of PFC activation differentiated children with PAE from typically developing children and children with other clinical problems. SIGNIFICANCE FNIRS assessments of PFC activity provide new insights regarding the mechanisms of commonly seen neurobehavioral dysfunction in children with PAE.
Collapse
|
53
|
Pascual M, Montesinos J, Montagud-Romero S, Forteza J, Rodríguez-Arias M, Miñarro J, Guerri C. TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of fetal alcohol spectrum disorders. J Neuroinflammation 2017; 14:145. [PMID: 28738878 PMCID: PMC5525270 DOI: 10.1186/s12974-017-0918-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/12/2017] [Indexed: 01/15/2023] Open
Abstract
Background Inflammation during brain development participates in the pathogenesis of early brain injury and cognitive dysfunctions. Prenatal ethanol exposure affects the developing brain and causes neural impairment, cognitive and behavioral effects, collectively known as fetal alcohol spectrum disorders (FASD). Our previous studies demonstrate that ethanol activates the innate immune response and TLR4 receptor and causes neuroinflammation, brain damage, and cognitive defects in the developmental brain stage of adolescents. We hypothesize that by activating the TLR4 response, maternal alcohol consumption during pregnancy triggers the release of cytokines and chemokines in both the maternal sera and brains of fetuses/offspring, which impairs brain ontogeny and causes cognitive dysfunction. Methods WT and TLR4-KO female mice treated with or without 10% ethanol in the drinking water during gestation and lactation were used. Cytokine/chemokine levels were determined by ELISA in the amniotic fluid, maternal serum, and cerebral cortex, as well as in the offspring cerebral cortex. Microglial and neuronal markers (evaluated by western blotting), myelin proteins (immunohistochemical and western blotting) and synaptic parameters (western blotting and electron microscopy) were assessed in the cortices of the WT and TLR4-KO pups on PND 0, 20, and 66. Behavioral tests (elevated plus maze and passive avoidance) were performed in the WT and TLR4-KO mice on PND 66 exposed or not to ethanol. Results We show that alcohol intake during gestation and lactation increases the levels of several cytokines/chemokines (IL-1β, IL-17, MIP-1α, and fractalkine) in the maternal sera, amniotic fluid, and brains of fetuses and offspring. The upregulation of cytokines/chemokines is associated with an increase in activated microglia markers (CD11b and MHC-II), and with a reduction in some synaptic (synaptotagmin, synapsin IIa) and myelin (MBP, PLP) proteins in the brains of offspring on days 0, 20, and 66 (long-term effects). These changes are associated with long-term behavioral impairments, in the 66-day-old alcohol-exposed pups. TLR4-deficient mice are protected against ethanol-induced cytokine/chemokine production in alcohol-treated dams and offspring, along with synaptic and myelin alterations, and the log-term behavioral dysfunction induced by ethanol in offspring. Conclusions These results suggest that the immune system activation, through the TLR4 response, might play an important role in the neurodevelopmental defects in FASD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0918-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
| | - Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jerónimo Forteza
- Instituto Valenciano de Patología, Unidad Mixta de Patología Molecular, Principe Felipe Research Center, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain. .,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
54
|
Schambra UB, Lewis CN, Harrison TA. Deficits in spatial learning and memory in adult mice following acute, low or moderate levels of prenatal ethanol exposure during gastrulation or neurulation. Neurotoxicol Teratol 2017; 62:42-54. [DOI: 10.1016/j.ntt.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/26/2017] [Accepted: 05/01/2017] [Indexed: 11/17/2022]
|
55
|
Hendrickson TJ, Mueller BA, Sowell ER, Mattson SN, Coles CD, Kable JA, Jones KL, Boys CJ, Lim KO, Riley EP, Wozniak JR. Cortical gyrification is abnormal in children with prenatal alcohol exposure. Neuroimage Clin 2017; 15:391-400. [PMID: 28580296 PMCID: PMC5447653 DOI: 10.1016/j.nicl.2017.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/18/2017] [Accepted: 05/21/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Prenatal alcohol exposure (PAE) adversely affects early brain development. Previous studies have shown a wide range of structural and functional abnormalities in children and adolescents with PAE. The current study adds to the existing literature specifically on cortical development by examining cortical gyrification in a large sample of children with PAE compared to controls. Relationships between cortical development and intellectual functioning are also examined. EXPERIMENTAL DESIGN Included were 92 children with PAE and 83 controls ages 9-16 from four sites in the Collaborative Initiative on FASD (CIFASD). All PAE participants had documented heavy PAE. All underwent a formal evaluation of physical anomalies and dysmorphic facial features. MRI data were collected using modified matched protocols on three platforms (Siemens, GE, and Philips). Cortical gyrification was examined using a semi-automated procedure. PRINCIPAL OBSERVATIONS Whole brain group comparisons using Monte Carlo z-simulation for multiple comparisons showed significantly lower cortical gyrification across a large proportion of the cerebral cortex amongst PAE compared to controls. Whole brain comparisons and ROI based analyses showed strong positive correlations between cortical gyrification and IQ (i.e. less developed cortex was associated with lower IQ). CONCLUSIONS Abnormalities in cortical development were seen across the brain in children with PAE compared to controls. Cortical gyrification and IQ were strongly correlated, suggesting that examining mechanisms by which alcohol disrupts cortical formation may yield clinically relevant insights and potential directions for early intervention.
Collapse
Affiliation(s)
| | | | - Elizabeth R Sowell
- Children's Hospital of Los Angeles, University of Southern California, United States
| | | | | | | | | | | | - Kelvin O Lim
- University of Minnesota, Twin Cities, United States
| | | | | |
Collapse
|
56
|
Newville J, Valenzuela CF, Li L, Jantzie LL, Cunningham LA. Acute oligodendrocyte loss with persistent white matter injury in a third trimester equivalent mouse model of fetal alcohol spectrum disorder. Glia 2017; 65:1317-1332. [PMID: 28518477 DOI: 10.1002/glia.23164] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 04/03/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022]
Abstract
Alcohol exposure during central nervous system (CNS) development can lead to fetal alcohol spectrum disorder (FASD). Human imaging studies have revealed significant white matter (WM) abnormalities linked to cognitive impairment in children with FASD; however, the underlying mechanisms remain unknown. Here, we evaluated both the acute and long-term impacts of alcohol exposure on oligodendrocyte number and WM integrity in a third trimester-equivalent mouse model of FASD, in which mouse pups were exposed to alcohol during the first 2 weeks of postnatal development. Our results demonstrate a 58% decrease in the number of mature oligodendrocytes (OLs) and a 75% decrease in the number of proliferating oligodendrocyte progenitor cells (OPCs) within the corpus callosum of alcohol-exposed mice at postnatal day 16 (P16). Interestingly, neither mature OLs nor OPCs derived from the postnatal subventricular zone (SVZ) were numerically affected by alcohol exposure, indicating heterogeneity in susceptibility based on OL ontogenetic origin. Although mature OL and proliferating OPC numbers recovered by postnatal day 50 (P50), abnormalities in myelin protein expression and microstructure within the corpus callosum of alcohol-exposed subjects persisted, as assessed by western immunoblotting of myelin basic protein (MBP; decreased expression) and MRI diffusion tensor imaging (DTI; decreased fractional anisotropy). These results indicate that third trimester-equivalent alcohol exposure leads to an acute, albeit recoverable, decrease in OL lineage cell numbers, accompanied by enduring WM injury. Additionally, our finding of heterogeneity in alcohol susceptibility based on the developmental origin of OLs may have therapeutic implications in FASD and other disorders of WM development.
Collapse
Affiliation(s)
- Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - Lu Li
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lauren L Jantzie
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
57
|
Glass L, Moore EM, Akshoomoff N, Jones KL, Riley EP, Mattson SN. Academic Difficulties in Children with Prenatal Alcohol Exposure: Presence, Profile, and Neural Correlates. Alcohol Clin Exp Res 2017; 41:1024-1034. [PMID: 28340498 DOI: 10.1111/acer.13366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/22/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Academic achievement was evaluated in children with heavy prenatal alcohol exposure to determine potential strengths and weaknesses, evaluate the utility of different definitions for identifying low academic performance, and explore the neural correlates that may underlie academic performance. METHODS Children (8 to 16 years) were assessed using the WIAT-II. Patterns of performance were examined in 2 subject groups: children with heavy prenatal alcohol exposure (n = 67) and controls (n = 61). A repeated-measures MANCOVA examining group differences on academic domain (reading, spelling, math) scores was conducted. Post hoc comparisons examined within-group profiles. Numbers and percentage of children with low achievement were calculated using several criteria. In a subsample (n = 42), neural correlates were analyzed using FreeSurfer v5.3 to examine relations between cortical structure (thickness and surface area) and performance. RESULTS The alcohol-exposed group performed worse than controls on all domains and had a unique academic profile, supported by a significant group × academic domain interaction (p < 0.001). For the alcohol-exposed group, math reasoning was significantly lower than numerical operations, which was significantly lower than spelling and word reading. Over half of the alcohol-exposed group (58.2%) demonstrated low achievement on 1 or more academic domains. The number and percentage of children meeting criteria for low achievement varied based on the domain and definition used. The imaging analysis identified several surface area clusters that were differentially related to math (L superior parietal and R lateral/middle occipital) and spelling (bilateral inferior and medial temporal) performance by group, with no relations for the other academic domains. Generally, scores improved as surface area decreased in controls, whereas no relation or a positive relation was observed in the alcohol-exposed group. CONCLUSIONS Alcohol-exposed children demonstrated deficits in academic performance across domains and definitions, with a relative weakness in math functioning. Atypical brain development may contribute to these impairments in academic achievement. Understanding academic difficulties can assist in advocating effectively for alcohol-exposed children.
Collapse
Affiliation(s)
- Leila Glass
- Department of Psychology , Center for Behavioral Teratology, San Diego State University, San Diego, California
| | - Eileen M Moore
- Department of Psychology , Center for Behavioral Teratology, San Diego State University, San Diego, California
| | - Natacha Akshoomoff
- Department of Psychiatry , Center for Human Development, University of California, San Diego, California
| | - Kenneth Lyons Jones
- Department of Pediatrics , School of Medicine, University of California, San Diego, San Diego, California
| | - Edward P Riley
- Department of Psychology , Center for Behavioral Teratology, San Diego State University, San Diego, California
| | - Sarah N Mattson
- Department of Psychology , Center for Behavioral Teratology, San Diego State University, San Diego, California
| |
Collapse
|
58
|
Sharma VK, Hill SY. Differentiating the Effects of Familial Risk for Alcohol Dependence and Prenatal Exposure to Alcohol on Offspring Brain Morphology. Alcohol Clin Exp Res 2017; 41:312-322. [PMID: 28084631 DOI: 10.1111/acer.13289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/10/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Offspring with a family history of alcohol dependence (AD) have been shown to have altered structural and functional integrity of corticolimbic brain structures. Similarly, prenatal exposure to alcohol is associated with a variety of structural and functional brain changes. The goal of this study was to differentiate the brain gray matter volumetric differences associated with familial risk and prenatal exposure to alcohol among offspring while controlling for lifetime personal exposures to alcohol and drugs. METHODS A total of 52 high-risk (HR) offspring from maternal multiplex families with a high proportion of AD were studied along with 55 low-risk (LR) offspring. Voxel-based morphometric analysis was performed using statistical parametric mapping (SPM8) software using 3T structural images from these offspring to identify gray matter volume differences associated with familial risk and prenatal exposure. RESULTS Significant familial risk group differences were seen with HR males showing reduced volume of the left inferior temporal, left fusiform, and left and right insula regions relative to LR males, controlling for prenatal exposure to alcohol drugs and cigarettes. HR females showed a reduction in the right fusiform but also showed a reduction in volume in portions of the cerebellum (left crus I and left lobe 8). Prenatal alcohol exposure effects, assessed within the familial HR group, was associated with reduced right middle cingulum and left middle temporal volume. Even low exposure resulting from mothers drinking in amounts less than the median of those who drank (53 drinks or less over the course of the pregnancy) showed a reduction in volume in the right anterior cingulum and in the left cerebellum (lobes 4 and 5). CONCLUSIONS Familial risk for AD and prenatal exposure to alcohol and other drugs show independent effects on brain morphology.
Collapse
Affiliation(s)
- Vinod K Sharma
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shirley Y Hill
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
59
|
Idrus NM, Breit KR, Thomas JD. Dietary choline levels modify the effects of prenatal alcohol exposure in rats. Neurotoxicol Teratol 2017; 59:43-52. [PMID: 27888055 PMCID: PMC5770193 DOI: 10.1016/j.ntt.2016.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/21/2023]
Abstract
Prenatal alcohol exposure can cause a range of physical and behavioral alterations; however, the outcome among children exposed to alcohol during pregnancy varies widely. Some of this variation may be due to nutritional factors. Indeed, higher rates of fetal alcohol spectrum disorders (FASD) are observed in countries where malnutrition is prevalent. Epidemiological studies have shown that many pregnant women throughout the world may not be consuming adequate levels of choline, an essential nutrient critical for brain development, and a methyl donor. In this study, we examined the influence of dietary choline deficiency on the severity of fetal alcohol effects. Pregnant Sprague-Dawley rats were randomly assigned to receive diets containing 40, 70, or 100% recommended choline levels. A group from each diet condition was exposed to ethanol (6.0g/kg/day) from gestational day 5 to 20 via intubation. Pair-fed and ad lib lab chow control groups were also included. Physical and behavioral development was measured in the offspring. Prenatal alcohol exposure delayed motor development, and 40% choline altered performance on the cliff avoidance task, independent of one another. However, the combination of low choline and prenatal alcohol produced the most severe impairments in development. Subjects exposed to ethanol and fed the 40% choline diet exhibited delayed eye openings, significantly fewer successes in hindlimb coordination, and were significantly overactive compared to all other groups. These data suggest that suboptimal intake of a single nutrient can exacerbate some of ethanol's teratogenic effects, a finding with important implications for the prevention of FASD.
Collapse
Affiliation(s)
- Nirelia M Idrus
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Kristen R Breit
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Jennifer D Thomas
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA.
| |
Collapse
|
60
|
Correlation between morphological MRI findings and specific diagnostic categories in fetal alcohol spectrum disorders. Eur J Med Genet 2016; 60:65-71. [PMID: 27620364 DOI: 10.1016/j.ejmg.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) include physical and neurodevelopmental abnormalities related to prenatal alcohol exposure. Some neuroimaging findings have been clearly related to FASD, including corpus callosum and cerebellar anomalies. However, detailed studies correlating with specific FASD categories, that is, the fetal alcohol syndrome (FAS), partial FAS (pFAS) and alcohol related neurodevelopmental disorders (ARND), are lacking. We prospectively performed clinical assessment and brain MR imaging to 72 patients with suspected FASD, and diagnosis was confirmed in 62. The most frequent findings were hypoplasia of the corpus callosum and/or of the cerebellar vermis. Additional findings were vascular anomalies, gliosis, prominent perivascular spaces, occipito-cervical junction and cervical vertebral anomalies, pituitary hypoplasia, arachnoid cysts, and cavum septum pellucidum.
Collapse
|
61
|
du Plooy CP, Malcolm-Smith S, Adnams CM, Stein DJ, Donald KA. The Effects of Prenatal Alcohol Exposure on Episodic Memory Functioning: A Systematic Review: Table 1. Arch Clin Neuropsychol 2016; 31:710-726. [DOI: 10.1093/arclin/acw067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 01/04/2023] Open
|
62
|
Birch SM, Lenox MW, Kornegay JN, Paniagua B, Styner MA, Goodlett CR, Cudd TA, Washburn SE. Maternal choline supplementation in a sheep model of first trimester binge alcohol fails to protect against brain volume reductions in peripubertal lambs. Alcohol 2016; 55:1-8. [PMID: 27788773 DOI: 10.1016/j.alcohol.2016.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) is a leading potentially preventable birth defect. Poor nutrition may contribute to adverse developmental outcomes of prenatal alcohol exposure, and supplementation of essential micronutrients such as choline has shown benefit in rodent models. The sheep model of first-trimester binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Primary outcome measures including volumetrics of the whole brain, cerebellum, and pituitary derived from magnetic resonance imaging (MRI) in 6-month-old lambs, testing the hypothesis that alcohol-exposed lambs would have brain volume reductions that would be ameliorated by maternal choline supplementation. Pregnant sheep were randomly assigned to one of five groups - heavy binge alcohol (HBA; 2.5 g/kg/treatment ethanol), heavy binge alcohol plus choline supplementation (HBC; 2.5 g/kg/treatment ethanol and 10 mg/kg/day choline), saline control (SC), saline control plus choline supplementation (SCC; 10 mg/kg/day choline), and normal control (NC). Ewes were given intravenous alcohol (HBA, HBC; mean peak BACs of ∼280 mg/dL) or saline (SC, SCC) on three consecutive days per week from gestation day (GD) 4-41; choline was administered on GD 4-148. MRI scans of lamb brains were performed postnatally on day 182. Lambs from both alcohol groups (with or without choline) showed significant reductions in total brain volume; cerebellar and pituitary volumes were not significantly affected. This is the first report of MRI-derived volumetric brain reductions in a sheep model of FASD following binge-like alcohol exposure during the first trimester. These results also indicate that maternal choline supplementation comparable to doses in human studies fails to prevent brain volume reductions typically induced by first-trimester binge alcohol exposure. Future analyses will assess behavioral outcomes along with regional brain and neurohistological measures.
Collapse
|
63
|
Lucas BR, Latimer J, Fitzpatrick JP, Doney R, Watkins RE, Tsang TW, Jirikowic T, Carmichael Olson H, Oscar J, Carter M, Elliott EJ. Soft neurological signs and prenatal alcohol exposure: a population-based study in remote Australia. Dev Med Child Neurol 2016; 58:861-7. [PMID: 26991727 DOI: 10.1111/dmcn.13071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 11/29/2022]
Abstract
AIM To identify soft neurological signs (SNS) in a population-based study of children living in remote Aboriginal communities in the Fitzroy Valley, Western Australia, born between 2002 and 2003 and explore the relationship between SNS, prenatal alcohol exposure (PAE), and fetal alcohol spectrum disorders (FASD). METHOD The presence of SNS was assessed using the Quick Neurological Screening Test, 2nd edition (QNST-2), which has a total maximum score of 140. Higher scores indicated more SNS. 'Severe discrepancy' was defined as scores less than or equal to the fifth centile while 'moderate discrepancy' represented scores from the sixth to the 24th centile. Children were assigned FASD diagnoses using modified Canadian FASD diagnostic guidelines. RESULTS A total of 108 of 134 (80.6%) eligible children (mean age 8y 9mo, SD=6mo, 53% male) were assessed. The median QNST-2 Total Score for all participants was within the normal category (19.0, range 4-66). However, the median QNST-2 Total Score was higher in children with than without (1) PAE (r=0.2, p=0.045) and (2) FASD (r=0.3, p=0.004). Half (8/16) of children scoring 'moderate discrepancy' and all (2/2) children scoring 'severe discrepancy' had at least three domains of central nervous system impairment. INTERPRETATION SNS were more common in children with PAE or FASD, consistent with the known neurotoxic effect of PAE. The QNST-2 is a useful screen for subtle neurological dysfunction indicating the need for more comprehensive assessment in children with PAE or FASD.
Collapse
Affiliation(s)
- Barbara R Lucas
- Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Jane Latimer
- The George Institute for Global Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - James P Fitzpatrick
- Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Robyn Doney
- School of Public Health, Curtin University, Perth, WA, Australia
| | - Rochelle E Watkins
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Tracey W Tsang
- Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Tracy Jirikowic
- Division of Occupational Therapy, Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Heather Carmichael Olson
- Seattle Children's Research Institute and University of Washington School of Medicine, Seattle, WA, USA
| | - June Oscar
- Marninwarntikura Women's Resource Centre, Fitzroy Crossing, WA, Australia
| | - Maureen Carter
- Nindilingarri Cultural Health Services, Fitzroy Crossing, WA, Australia
| | - Elizabeth J Elliott
- Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
64
|
Takeuchi H, Kawashima R. Neural Mechanisms and Children’s Intellectual Development. Neuroscientist 2016; 22:618-631. [DOI: 10.1177/1073858415610294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human psychometric intelligence can predict a number of important social and academic outcomes. Substantial parts of the variances of human intelligence and the brain volume supporting those abilities are explained by environmental factors, and during childhood, human brains have higher plasticity and also 60% of variance of intelligence that is explained by environmental factors. Here, we review the representative environmental factors known to affect human intellectual development during each developmental stage. We describe what is (and what is not) being investigated to determine how these factors affect human brain development through analyses of volumetrical and cortical structures. In conclusion, environmental factors that affect children’s intellectual development lead to three patterns of brain structural change. The first is global change in the brain structure, observed more often in the earlier phase of development. The second is structural changes concentrated in the medial prefrontal and adjacent areas and medial temporal areas, which are likely to be induced by stress in many cases. The third is sporadic region-specific change, likely to be primarily caused by use-dependent plasticity of the areas that is often observed in the later phase of development. These changes may underlie the alterations in children’s intellectual development that is induced by environmental factors.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
65
|
Kable JA, O'Connor MJ, Olson HC, Paley B, Mattson SN, Anderson SM, Riley EP. Neurobehavioral Disorder Associated with Prenatal Alcohol Exposure (ND-PAE): Proposed DSM-5 Diagnosis. Child Psychiatry Hum Dev 2016. [PMID: 26202432 DOI: 10.1007/s10578-015-0566-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past 40 years, a significant body of animal and human research has documented the teratogenic effects of prenatal alcohol exposure (PAE). Neurobehavioral Disorder associated with PAE is proposed as a new clarifying term, intended to encompass the neurodevelopmental and mental health symptoms associated with PAE. Defining this disorder is a necessary step to adequately characterize these symptoms and allow clinical assessment not possible using existing physically-based diagnostic schemes. Without appropriate diagnostic guidelines, affected individuals are frequently misdiagnosed and treated inappropriately (often to their considerable detriment) by mental health, educational, and criminal justice systems. Three core areas of deficits identified from the available research, including neurocognitive, self-regulation, and adaptive functioning impairments, are discussed and information regarding associated features and disorders, prevalence, course, familial patterns, differential diagnosis, and treatment of the proposed disorder are also provided.
Collapse
Affiliation(s)
- Julie A Kable
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| | - Mary J O'Connor
- Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Heather Carmichael Olson
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Blair Paley
- Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sarah N Mattson
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| | - Sally M Anderson
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MA, USA
| | - Edward P Riley
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| |
Collapse
|
66
|
Donald KA, Fouche JP, Roos A, Koen N, Howells FM, Riley EP, Woods RP, Zar HJ, Narr KL, Stein DJ. Alcohol exposure in utero is associated with decreased gray matter volume in neonates. Metab Brain Dis 2016; 31:81-91. [PMID: 26616173 PMCID: PMC6556617 DOI: 10.1007/s11011-015-9771-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
Neuroimaging studies have indicated that prenatal alcohol exposure is associated with alterations in the structure of specific brain regions. However, the temporal specificity of such changes and their behavioral consequences are less known. Here we explore the brain structure of infants with in utero exposure to alcohol shortly after birth. T2 structural MRI images were acquired from 28 alcohol-exposed infants and 45 demographically matched healthy controls at 2-4 weeks of age on a 3T Siemens Allegra system as part of large birth cohort study, the Drakenstein Child Health Study (DCHS). Neonatal neurobehavior was assessed at this visit; early developmental outcome assessed on the Bayley Scales of Infant Development III at 6 months of age. Volumes of gray matter regions were estimated based on the segmentations of the University of North Carolina neonatal atlas. Significantly decreased total gray matter volume was demonstrated for the alcohol-exposed cohort compared to healthy control infants (p < 0.001). Subcortical gray matter regions that were significantly different between groups after correcting for overall gray matter volume included left hippocampus, bilateral amygdala and left thalamus (p < 0.01). These findings persisted even when correcting for infant age, gender, ethnicity and maternal smoking status. Both early neurobehavioral and developmental adverse outcomes at 6 months across multiple domains were significantly associated with regional volumes primarily in the temporal and frontal lobes in infants with prenatal alcohol exposure. Alcohol exposure during the prenatal period has potentially enduring neurobiological consequences for exposed children. These findings suggest the effects of prenatal alcohol exposure on brain growth is present very early in the first year of life, a period during which the most rapid growth and maturation occurs.
Collapse
Affiliation(s)
- Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Klipfontein Road/Private Bag, Rondebosch, 7700/7701, Cape Town, South Africa.
- University of Cape Town, South Africa, Cape Town, South Africa.
| | - J P Fouche
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- MRC Unit on Anxiety & Stress Disorders, University of Cape Town, Cape Town, South Africa
- Stellenbosch University, Cape Town, South Africa
| | - Nastassja Koen
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Fleur M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Edward P Riley
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Roger P Woods
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Heather J Zar
- University of Cape Town, South Africa, Cape Town, South Africa
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- University of Cape Town, South Africa, Cape Town, South Africa
- Department of Paediatrics and Child Health and MRC Unit on Child & Adolescent Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health and MRC Unit on Anxiety & Stress Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
67
|
Petrenko CLM. Positive Behavioral Interventions and Family Support for Fetal Alcohol Spectrum Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2015; 2:199-209. [PMID: 26380802 PMCID: PMC4569135 DOI: 10.1007/s40474-015-0052-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the scientific community has recognized the effects of prenatal alcohol exposure on development for over 40 years, the empirical study of positive behavioral interventions and family support programs for people with fetal alcohol spectrum disorders (FASD) has only just emerged over the last 10 to 15 years. In this time, dedicated researchers have developed innovative programs that have generally produced large effects and have been acceptable to children with FASD and their families. This body of work demonstrates that children with FASD can benefit from interventions that are appropriately tailored to their neurodevelopmental disabilities. Despite this progress, much work lies ahead to meet the significant needs of people with FASD. This review evaluates available sources of information, including theoretical and Lived Experience models, empirical evidence on existing programs, and best practice guidelines, to guide future research priorities and clinical practice. Three priorities for future intervention research are offered.
Collapse
|
68
|
The neuronal nitric oxide synthase (nNOS) gene and neuroprotection against alcohol toxicity. Cell Mol Neurobiol 2015; 35:449-61. [PMID: 25672665 DOI: 10.1007/s10571-015-0155-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
Abstract
When a mother abuses alcohol during pregnancy, the offspring can suffer a myriad of abnormalities, collectively known as fetal alcohol spectrum disorder (FASD). Foremost among these abnormalities is central nervous system dysfunction, which commonly manifests itself as mental retardation, clumsiness, hyperactivity, and poor attention span. These behavior problems are due, in large part, to alcohol-induced neuronal losses in the developing fetal brain. However, not all fetuses are equally affected by maternal alcohol consumption during pregnancy. While some fetuses are severely affected and develop hallmarks of FASD later in life, others exhibit no evident neuropathology or behavioral abnormalities. This variation is likely due, at least in part, to differences in fetal genetics. This review focuses on one particular gene, neuronal nitric oxide synthase, whose mutation worsens alcohol-induced neuronal death, both in vitro and in vivo. In addition, ectopic expression of the neuronal nitric oxide synthase gene protects neurons against alcohol toxicity. The gene encodes an enzyme that produces nitric oxide (NO), which facilitates the protective effects of neuronal growth factors and which underlies the ability of neurons to resist alcohol toxicity as they mature. Nitric oxide exerts its protective effects against alcohol via a specific signaling pathway, the NO-cGMP-PKG pathway. Pharmacologic manipulation of this pathway could be of therapeutic use in preventing or ameliorating FASD.
Collapse
|
69
|
Murawski NJ. Advances in Diagnosis and Treatment of Fetal Alcohol Spectrum Disorders: From Animal Models to Human Studies. Alcohol Res 2015; 37:97-108. [PMID: 26259091 PMCID: PMC4476607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Prenatal alcohol exposure can cause a number of physical, behavioral, cognitive, and neural impairments, collectively known as fetal alcohol spectrum disorders (FASD). This article examines basic research that has been or could be translated into practical applications for the diagnosis or treatment of FASD. Diagnosing FASD continues to be a challenge, but advances are being made at both basic science and clinical levels. These include identification of biomarkers, recognition of subtle facial characteristics of exposure, and examination of the relation between face, brain, and behavior. Basic research also is pointing toward potential new interventions for FASD involving pharmacotherapies, nutritional therapies, and exercise interventions. Although researchers have assessed the majority of these treatments in animal models of FASD, a limited number of recent clinical studies exist. An assessment of this literature suggests that targeted interventions can improve some impairments resulting from developmental alcohol exposure. However, combining interventions may prove more efficacious. Ultimately, advances in basic and clinical sciences may translate to clinical care, improving both diagnosis and treatment.
Collapse
|