51
|
Abstract
Protein tyrosine kinases (PTKs) play a crucial role in many cell regulatory processes. It is therefore not surprising to see that functional perturbation of PTKs results in many diseases. Despite the diverse primary structure organization of various PTKs, the catalytic or kinase domains of various PTKs as well as that of Ser/Thr kinases are generally conserved. The high resolution crystal structure of a few PTKs has been solved in the last few years. In contrast to the well-defined linear peptide substrate motifs recognized by specific Ser/Thr kinases, the identification of specific substrate motifs for PTK has been slow. It is not until recently that through the use of combinatorial peptide library methods that specific recognition motifs for specific PTKs have begun to emerge. Efficient and specific peptide substrates for some PTKs with Km at the mid microM range have been identified. Based on these peptide substrates, relatively potent (IC50 at the low microM range) and highly selective pseudosubstrate-based peptide inhibitors have been developed. There has been enormous effort in the development of PTK inhibitors for diseases such as cancer, psoriasis, and osteoporosis. Several new high-throughput PTK assay technologies have recently been described. Small molecules against specific PTK have been developed. Most of them are competitive inhibitors at the ATP binding site. Some of these inhibitors have already been in clinical trial.
Collapse
Affiliation(s)
- F A al-Obeidi
- Selectide Corporation, A Subsidiary of Hoechst Marion Roussel, Inc., Tucson, AZ 85737, USA
| | | | | |
Collapse
|
52
|
Elalamy I, Said FA, Singer M, Couetil JP, Hatmi M. Inhibition by extracellular cAMP of phorbol 12-myristate 13-acetate-induced prostaglandin H synthase-2 expression in human pulmonary microvascular endothelial cells. Involvement of an ecto-protein kinase A activity. J Biol Chem 2000; 275:13662-7. [PMID: 10788484 DOI: 10.1074/jbc.275.18.13662] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Exposure of human pulmonary microvascular endothelial cells (HPMECs) to phorbol 12-myristate 13-acetate (PMA) leads to the increase of prostaglandin H synthase (PGHS)-2 protein levels. Under same conditions and according to its constitutive nature, no significant variation of PGHS-1 protein was noted. The elevation of the intracellular cAMP rate is known to enhance PGHS-2 levels through a protein kinase A pathway in various cells. To determine whether the extracellular cAMP also regulates the inducible expression of PGHS, cultured HPMECs were exposed to cAMP alone or in combination with PMA. The PMA-induced PGHS-2 protein was attenuated by the extracellular cAMP. In addition, PGHS-2 activity evaluated through 6-keto-PGF1alpha generation, which was enhanced by PMA was inhibited by extracellular cAMP. Furthermore, in HPMEC medium, PMA-induced PGHS-2 expression was accompanied by the generation of a transferable activity (TA) able to abolish platelet aggregation. This resulting TA was dependent from PGHS-2 pathway, because NS-398, a selective inhibitor of PGHS-2, suppressed its production. The inhibitory TA released by treated HPMECs was also prevented by extracellular cAMP. The specific protein kinase A (PKA) inhibitor blocked the extracellular cAMP effect on both PMA-induced 6-keto-PGF1alpha synthesis and inhibitory TA generation, suggesting the involvement of PKA signaling at the outer surface of HPMECs. Accordingly, we established, in phosphorylation experiments, the presence of an endothelial ecto-protein kinase activity, able to phosphorylate the synthetic substrate kemptide in a cAMP-dependent mode. Reverse transcription-polymerase chain reaction analysis showed that PMA-induced PGHS-2 mRNA was markedly reduced by extracellular cAMP. Together, these findings provide the first experimental evidence that extracellular cAMP is able to reduce HPMEC PGHS-2 expression in terms of mRNA, protein, and enzyme activity through an ecto-PKA pathway. In addition, they outline the potential role of endothelial PGHS-2 in the limitation of platelet activation during inflammatory processes.
Collapse
Affiliation(s)
- I Elalamy
- Unité de Pharmacologie Cellulaire, Unité Associée Institut Pasteur-INSERM U 485, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
53
|
Meggio F, Ruzzene M, Sarno S, Pagano MA, Pinna LA. pCMB treatment reveals the essential role of cysteinyl residues in conferring functional competence to the regulatory subunit of protein kinase CK2. Biochem Biophys Res Commun 2000; 267:427-32. [PMID: 10623636 DOI: 10.1006/bbrc.1999.1924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess the functional role of the four conserved cysteinyl residues in the regulatory beta-subunit of protein kinase CK2, the effect of pCMB and other reagents of sulfhydryl groups has been investigated. The pCMB-treated beta-subunit has lost its ability to form either homodimers or regular alpha(2)beta(2) heterotetramers with the catalytic subunit. It also fails to increase catalytic activity toward peptide substrates and to mediate the stimulatory effect of polylysine. The pCMB-treated beta-subunit, however, is still able to prevent calmodulin phosphorylation and to physically interact with the alpha-subunit to form inactive complexes whose sedimentation coefficient is lower than that of CK2 holoenzyme. These inactive complexes upon treatment with reducing agents like DTT are converted into a fully active heterotetrameric holoenzyme.
Collapse
Affiliation(s)
- F Meggio
- Centro di Studio delle Biomembrane del C.N.R., Università di Padova, Viale G. Colombo 3, Padua, 35121, Italy.
| | | | | | | | | |
Collapse
|
54
|
Sayas CL, Moreno-Flores MT, Avila J, Wandosell F. The neurite retraction induced by lysophosphatidic acid increases Alzheimer's disease-like Tau phosphorylation. J Biol Chem 1999; 274:37046-52. [PMID: 10601262 DOI: 10.1074/jbc.274.52.37046] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bioactive phospholipid lysophosphatidic acid (LPA) causes growth cone collapse and neurite retraction in neuronal cells. These changes are brought about by the action of a cell surface receptor coupled to specific G proteins that control morphology and motility through the action of a group of small GTPases, the Rho family of proteins. Many studies have focused on actin reorganization modulated by Rho-GTPases, but almost no information has been obtained concerning microtubular network reorganization after LPA-induced neurite retraction. In the present study, we demonstrate an increase in site-specific Alzheimer's disease-like Tau phosphorylation during LPA-induced neurite retraction in differentiated SY-SH5Y human neuroblastoma cells. The phosphorylation state of Tau was inferred from its immunoreactivity with antibodies that recognize phosphorylation-sensitive epitopes. The effects of specific kinase inhibitors indicate that this phosphorylation is mediated by glycogen synthase kinase-3 (GSK-3). In support of this idea, we observed an increase of GSK-3 activity upon growth cone collapse. Our results are consistent with the hypothesis that activation of GSK-3 occurs in the Rho pathway and may represent an important link between microtubules and microfilaments dynamics during neuritogenesis and in pathological situations such as Alzheimer's disease.
Collapse
Affiliation(s)
- C L Sayas
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco-Madrid 28049, Spain
| | | | | | | |
Collapse
|
55
|
Ruzzene M, Brunati AM, Sarno S, Donella-Deana A, Pinna LA. Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2. FEBS Lett 1999; 461:32-6. [PMID: 10561491 DOI: 10.1016/s0014-5793(99)01409-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The catalytic (alpha) subunit of protein kinase CK2 and the hematopoietic specific protein 1 (HS1) display opposite effects on Ha-ras induced fibroblast transformation, by enhancing and counteracting it, respectively. Here we show the occurrence of physical association between HS1 and CK2alpha as judged from both far Western blot and plasmon resonance (BIAcore) analysis. Association of HS1 with CK2alpha is drastically reduced by the deletion of the HS1 C-terminal region (403-486) containing an SH3 domain. HS1, but not its deletion mutant HS1 Delta324-393, lacking a sequence similar to an acidic stretch of the regulatory beta-subunit of CK2, inhibits calmodulin phosphorylation by CK2alpha. These data indicate that HS1 physically interacts with CK2alpha and down-regulates its activity by a mechanism similar to the beta-subunit.
Collapse
Affiliation(s)
- M Ruzzene
- Dipartimento di Chimica Biologica and Centro per lo Studio delle Biomembrane del CNR, University of Padova, Viale G. Colombo, 335121, Padova, Italy
| | | | | | | | | |
Collapse
|
56
|
Marin O, Meggio F, Sarno S, Cesaro L, Pagano MA, Pinna LA. Tyrosine versus serine/threonine phosphorylation by protein kinase casein kinase-2. A study with peptide substrates derived from immunophilin Fpr3. J Biol Chem 1999; 274:29260-5. [PMID: 10506183 DOI: 10.1074/jbc.274.41.29260] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase casein kinase-2 (CK2) is a spontaneously active, ubiquitous, and pleiotropic enzyme that phosphorylates seryl/threonyl residues specified by multiple negatively charged side chains, the one at position n + 3 being of crucial importance (minimum consensus S/T-x-x-E/D/S(P)/T(P). Recently CK2 has been reported to catalyze phosphorylation of the yeast nucleolar immunophilin Fpr3 at a tyrosyl residue (Tyr(184)) fulfilling the consensus sequence of Ser/Thr substrates (Wilson, L.K., Dhillon, N., Thorner, J., and Martin, G.S. (1997) J. Biol. Chem. 272, 12961-12967). Here we show that, by contrast to other tyrosyl peptides fulfilling the consensus sequence for CK2, a peptide reproducing the sequence around Fpr3 Tyr(184) (DEDADIY(184)DEEDYDL) is phosphorylated by CK2, albeit with much higher K(m) (384 versus 4. 3 microM) and lower V(max) (8.4 versus 1,132 nmol.min(-1).mg(-1)) than its derivative with Tyr(184) replaced by serine. The replacement of Asp at position n + 1 with alanine and, to a lesser extent, of Ile at n - 1 with Asp are especially detrimental to tyrosine phosphorylation as compared with serine phosphorylation, which is actually stimulated by the Ile to Asp modification. In contrast the replacement of Glu at n + 3 with alanine almost suppresses serine phosphorylation but not tyrosine phosphorylation. It can be concluded that CK2 is capable to phosphorylate, under special circumstances, tyrosyl residues, which are specified by structural features partially different from those that optimize Ser/Thr phosphorylation.
Collapse
Affiliation(s)
- O Marin
- Dipartimento di Chimica Biologica and Centro di Studio delle Biomembrane del C.N.R., Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
57
|
Takahashi E, Abe J, Gallis B, Aebersold R, Spring DJ, Krebs EG, Berk BC. p90(RSK) is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. J Biol Chem 1999; 274:20206-14. [PMID: 10400637 DOI: 10.1074/jbc.274.29.20206] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na+/H+ exchanger isoform-1 (NHE-1) is the key member of a family of exchangers that regulates intracellular pH and cell volume. Activation of NHE-1 by growth factors is rapid, correlates with increased NHE-1 phosphorylation and cell alkalinization, and plays a role in cell cycle progression. By two-dimensional tryptic peptide mapping of immunoprecipitated NHE-1, we identify serine 703 as the major serum-stimulated amino acid. Mutation of serine 703 to alanine had no effect on acid-stimulated Na+/H+ exchange but completely prevented the growth factor-mediated increase in NHE-1 affinity for H+. In addition, we show that p90 ribosomal S6 kinase (p90(RSK)) is a key NHE-1 kinase since p90(RSK) phosphorylates NHE-1 serine 703 stoichiometrically in vitro, and transfection with kinase-inactive p90(RSK) inhibits serum-induced phosphorylation of NHE-1 serine 703 in transfected 293 cells. These findings establish p90(RSK) as a serum-stimulated NHE-1 kinase and a mediator of increased Na+/H+ exchange in vivo.
Collapse
Affiliation(s)
- E Takahashi
- Departments of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Hook SS, Kemp BE, Means AR. Peptide specificity determinants at P-7 and P-6 enhance the catalytic efficiency of Ca2+/calmodulin-dependent protein kinase I in the absence of activation loop phosphorylation. J Biol Chem 1999; 274:20215-22. [PMID: 10400638 DOI: 10.1074/jbc.274.29.20215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of Ca2+/calmodulin-dependent protein kinase I (CaM KI) at Thr-177 by recombinant rat Ca2+/calmodulin-dependent kinase kinase B (CaM KKB) modulates the kinetics of synapsin-(4-13) peptide phosphorylation by reducing the Km 44-fold and decreasing the KCaM 4-fold. There is also a slight decrease in Km for ATP and increase in enzyme Vmax. A synthetic peptide substrate from the yeast transcription factor, ADR1-(222-234)G233 is a 15-fold better substrate for the Thr-177 dephospho-form of CaM KI than synapsin-(4-13). The Thr-177 dephospho-enzyme has a Km and Vmax for ADR1-(222-234)G233 similar to the values with synapsin-(4-13) using the Thr-177 phosphorylated enzyme. Likewise, with ADR1-(222-234)G233 as substrate, phosphorylation of Thr-177 or substitution of T177A had very little effect on the kinetic values. Using chimeric peptides between synapsin-(4-13) and ADR1-(222-234)G233 we found that N-terminal basic residues at P-7 and P-6 positions were sufficient to allow efficient phosphorylation by the Thr-177 dephospho-form of CaM KI. Phosphorylation of Thr-177 expands the substrate specificity of CaM KI and is not merely an "on-off" switch for kinase activity.
Collapse
Affiliation(s)
- S S Hook
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
59
|
Marin O, Meggio F, Pinna LA. Structural features underlying the unusual mode of calmodulin phosphorylation by protein kinase CK2: A study with synthetic calmodulin fragments. Biochem Biophys Res Commun 1999; 256:442-6. [PMID: 10079204 DOI: 10.1006/bbrc.1999.0348] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To shed light on the paradoxical behaviour of calmodulin, whose phosphorylation is inhibited by the regulatory beta-subunit of protein kinase CK2, a series of peptides encompassing the phosphoacceptor sites of calmodulin have been synthesized and assayed as substrates of CK2 alpha-subunit either alone or combined with the beta-subunit. The shortest peptide whose phosphorylation is reduced instead of being enhanced by the beta-subunit encompasses the sequence 68-106, including the central helix and the Ca2+-binding loop-III. In contrast, the phosphorylation of a peptide encompassing loop II and the central helix (54-92) is stimulated, like that of several shorter peptides, by the beta-subunit. Our data localize to the C-terminal domain of calmodulin the structural elements that are responsible for inverted susceptibility to beta-subunit regulation.
Collapse
Affiliation(s)
- O Marin
- Dipartimento di Chimica Biologica and Centro di Studio delle Biomembrane del C.N.R., Università di Padova, viale G. Colombo 3, Padova, 35121, Italy
| | | | | |
Collapse
|
60
|
Pulgar V, Marin O, Meggio F, Allende CC, Allende JE, Pinna LA. Optimal sequences for non-phosphate-directed phosphorylation by protein kinase CK1 (casein kinase-1)--a re-evaluation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:520-6. [PMID: 10095790 DOI: 10.1046/j.1432-1327.1999.00195.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A variety of synthetic peptides derived from either the inhibitor-2 (I-2) phosphoacceptor sites or the optimal sequences selected in an oriented peptide library have been compared for their susceptibility to phosphorylation by protein kinase CK1 (also termed casein kinase-1). The I-2-derived peptides are by far preferred over the library peptides by both rat liver CK1 (and by the alpha/beta, gamma and delta/epsilon isoforms immunoprecipitated from it) and recombinant Xenopus laevis CK1 alpha. The superiority of the I-2-derived peptides over the library ones is reflected by Vmax values one to two orders of magnitude higher while the Km values are comparable. Individual substitutions of any of the aspartic acids with alanine in the I-2-derived peptide RRKHAAIGDDDDAYSITA is detrimental, producing both a fall in Vmax and an increase in Km which are more pronounced at position n -3, but also quite significant at positions n -4, n -5 and, to a lesser extent, n -6. The unfavourable effect of these substitutions is more evident with rat liver CK1 than with recombinant Xenopus laevis CK1 alpha. The chimeric peptide IGDDDDAY-S-IIIFFA, resulting from the combination of the N-terminal acidic sequence of the I-2 (Ser86) site and the C-terminal hydrophobic cluster selected in the library peptides (MAEFDTG-S-IIIFFAKKK and MAYYDAA-S-IIIFFAKKK) is phosphorylated as efficiently as the I-2-derived peptide in terms of both Km and Vmax. These combined data strongly support the conclusion that, at variance with the optimal sequences selected in the library, optimal non-phosphate-directed phosphorylation of peptide substrates by CK1 critically relies on the presence of a cluster of acidic residues (preferably aspartic acid) upstream from position n -2, while the highly hydrophobic region downstream from serine selected in the library appears to be dispensable. The reason for these discrepancies remains unclear. The possibility that the library data are biased by the invariant elements forming its scaffold (MA-x-x-x-x-x-SI-x-x-x-x-AKKK) would be consistent with the observation that the library-selected peptides, despite their low Km values, fail to compete against the phosphorylation of protein and peptide substrates by CK1, suggesting that they bind to elements partially distinct from those responsible for substrate recognition.
Collapse
Affiliation(s)
- V Pulgar
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | | | | | | | | | | |
Collapse
|
61
|
Swanson KD, Taylor LK, Haung L, Burlingame AL, Landreth GE. Transcription factor phosphorylation by pp90(rsk2). Identification of Fos kinase and NGFI-B kinase I as pp90(rsk2). J Biol Chem 1999; 274:3385-95. [PMID: 9920881 DOI: 10.1074/jbc.274.6.3385] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vitro phosphorylation of transcription factors by growth factor-activated protein kinases has resulted in the discovery of a number of activities whose identities and relationships to one another are unclear. Fos kinase is a growth factor-stimulated serine/threonine protein kinase that phosphorylates c-Fos at serine 362 within the carboxyl-terminal regulatory domain. Fos kinase activation is dependent on p21(ras) and mitogen-activated protein kinase/ERK kinase kinase (MEK) activity and is independent of phosphatidylinositol 3-kinase activity. We have purified Fos kinase by affinity chromatography using the Sepharose-linked protein kinase inhibitor, bisindolylmaleimide (BIM). Fos kinase has an apparent molecular mass of 88 kDa, and mass spectrophotometric analysis of the isolated protein showed that it produced tryptic fragments identical to those predicted for pp90(rsk2). Fos kinase isolated from nerve growth factor-stimulated PC12 cells is indistinguishable from NGFI-B kinase I, based on their chromatographic behavior, substrate specificities, and relative sensitivity to BIM. Furthermore, we have distinguished Fos kinase from calcium/cAMP response element-binding protein (CREB) kinase. Therefore, Fos kinase and NGFI-B kinase I and pp90(rsk2) represent the same protein kinase species. Moreover, we report that pp90(rsk2) exists within nerve growth factor-stimulated PC12 cells as two chromatographically and immunologically distinct species. Finally, we demonstrate that CREB kinase is distinct from pp90(rsk2).
Collapse
Affiliation(s)
- K D Swanson
- Alzheimer's Research Laboratory, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
62
|
Sarno S, Marin O, Ghisellini P, Meggio F, Pinna LA. Biochemical evidence that the N-terminal segments of the alpha subunit and the beta subunit play interchangeable roles in the activation of protein kinase CK2. FEBS Lett 1998; 441:29-33. [PMID: 9877159 DOI: 10.1016/s0014-5793(98)01516-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The concept that the amino-terminal segment plays a role in conferring high basal activity to protein kinase CK2 alpha subunit has been validated by generating two mutants (Y26F and delta2-6) which are defective both in catalytic activity and in thermal stability. The additional finding that the activity of the two mutants is fully restored upon association with the regulatory beta subunit, in conjunction with the observation that synthetic peptides reproducing the N-terminal segment (1-30) and the activation loop (175-201) of CK2alpha counteract the functional effects of the C-terminal domain of the beta subunit, is consistent with a mechanism of activation of CK2 where the N-terminal domain of alpha and the C-terminal domain of beta play interchangeable roles.
Collapse
Affiliation(s)
- S Sarno
- Dipartimento di Chimica Biologica and Centro per lo Studio delle Biomembrane del CNR, Università di Padova, Padua, Italy
| | | | | | | | | |
Collapse
|
63
|
Orlandini M, Semplici F, Ferruzzi R, Meggio F, Pinna LA, Oliviero S. Protein kinase CK2alpha' is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation. J Biol Chem 1998; 273:21291-7. [PMID: 9694889 DOI: 10.1074/jbc.273.33.21291] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase CK2 is an ubiquitous and pleiotropic Ser/Thr protein kinase composed of two catalytic (alpha and/or alpha') and two noncatalytic (beta) subunits forming a heterotetrameric holoenzyme involved in cell growth and differentiation. Here we report the identification, cloning, and oncogenic activity of the murine CK2alpha' subunit. Serum treatment of quiescent mouse fibroblasts induces CK2alpha' mRNA expression, which peaks at 4 h. The kinetics of CK2alpha' expression correlate with increased kinase activity toward a specific CK2 holoenzyme peptide substrate. The ectopic expression of CK2alpha' (or CK2alpha) cooperates with Ha-ras in foci formation of rat primary embryo fibroblasts. Moreover, we observed that BALB/c 3T3 fibroblasts transformed with Ha-ras and CK2alpha' show a faster growth rate than cells transformed with Ha-ras alone. In these cells the higher growth rate correlates with an increase in calmodulin phosphorylation, a protein substrate specifically affected by isolated CK2 catalytic subunits but not by CK2 holoenzyme, suggesting that unbalanced expression of a CK2 catalytic subunit synergizes with Ha-ras in cell transformation.
Collapse
Affiliation(s)
- M Orlandini
- Dipartimento di Biologia Molecolare, Università di Siena IRIS, via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
64
|
Lee SR, Kwon KS, Kim SR, Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 1998; 273:15366-72. [PMID: 9624118 DOI: 10.1074/jbc.273.25.15366] [Citation(s) in RCA: 740] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of various cells with growth factors results in a transient increase in the intracellular concentration of H2O2 that is required for growth factor-induced protein tyrosine phosphorylation. The effect of H2O2 produced in response to epidermal growth factor (EGF) on the activity of protein-tyrosine phosphatase 1B (PTP1B) was investigated in A431 human epidermoid carcinoma cells. H2O2 inactivated recombinant PTP1B in vitro by oxidizing its catalytic site cysteine, most likely to sulfenic acid. The oxidized enzyme was reactivated more effectively by thioredoxin than by glutaredoxin or glutathione at their physiological concentrations. Oxidation by H2O2 prevented modification of the catalytic cysteine of PTP1B by iodoacetic acid, suggesting that it should be possible to monitor the oxidation state of PTP1B in cells by measuring the incorporation of radioactivity into the enzyme after lysis of the cells in the presence of radiolabeled iodoacetic acid. The amount of such radioactivity associated with PTP1B immunoprecipitated from A431 cells that had been stimulated with EGF for 10 min was 27% less than that associated with PTP1B from unstimulated cells. The amount of iodoacetic acid-derived radioactivity associated with PTP1B reached a minimum 10 min after stimulation of cells with EGF and returned to base line values by 40 min, suggesting that the oxidation of PTP1B is reversible in cells. These results indicate that the activation of a receptor tyrosine kinase by binding of the corresponding growth factor may not be sufficient to increase the steady state level of protein tyrosine phosphorylation in cells and that concurrent inhibition of protein-tyrosine phosphatases by H2O2 might also be required.
Collapse
Affiliation(s)
- S R Lee
- Laboratory of Cell Signaling, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
65
|
Kahn ES, Kinumi T, Tobin SL, Matsumoto H. Phosrestide-1, a peptide derived from the Drosophila photoreceptor protein phosrestin I, is a potent substrate for Ca2+/calmodulin-dependent protein kinase II from rat brain. Comp Biochem Physiol B Biochem Mol Biol 1998; 119:739-46. [PMID: 9787765 DOI: 10.1016/s0305-0491(98)00050-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMK II) plays a crucial role in mediation of cellular responses to rising cytosolic Ca2+ levels. We find that the novel peptide substrate PGTIEKKRSNAMKKMKSIEQHR serves as a highly potent substrate for CaMK II enzymes purified from both Drosophila and rat. The peptide is derived from a photoreceptor-specific protein, phosrestin I, of the Drosophila compound eye and is designated as phosrestide-1. Using saturating substrate concentrations, the enzymes from both species transfer the gamma-phosphoryl group of ATP to phosrestide-1 at a level three to ten times greater than to the commercially available mammalian-derived CaMK II substrates, autocamtide-3 and syntide-2. This indicates a conservation of substrate preferences for CaMK II derived from distantly related species, a dipteran fly and a mammal. Although phosrestide-1 contains two potential serine residues for CaMK II phosphorylation, we find that only the C-terminal serine is phosphorylated by rat CaMK II. However, removal of the upstream sequence containing the N-terminal serine substantially reduced the potency of phosrestide-1 as a CaMK II substrate to a level comparable to that of syntide-2 or autocamtide-3. We also find that a peptide representing the N-terminal segment of phosrestide-1 does not inhibit either CaMK II. Therefore, the enhanced potency of phosrestide-1 as a CaMK II substrate is likely to be due to a preferred conformation of the peptide induced by the N-terminal segment rather than to a specific binding of the enzymes to the N-terminus of the peptide. To the best of our knowledge, phosrestide-1 is the first CaMK II substrate which is designed based on an invertebrate sequence. The high phosphorylation level of phosrestide-1 by CaMK II of mammalian origin may reflect highly conserved CaMK II signaling cascades between vertebrates and invertebrates.
Collapse
Affiliation(s)
- E S Kahn
- Department of Biochemistry and Molecular Biology, University of Oklahoma, Oklahoma City 73190, USA
| | | | | | | |
Collapse
|
66
|
Sarno S, Vaglio P, Marin O, Meggio F, Issinger OG, Pinna LA. Basic residues in the 74-83 and 191-198 segments of protein kinase CK2 catalytic subunit are implicated in negative but not in positive regulation by the beta-subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:290-5. [PMID: 9346280 DOI: 10.1111/j.1432-1033.1997.00290.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein kinase CK2 is a ubiquitous pleiotropic serine/threonine protein kinase whose holoenzyme is comprised of two catalytic (alpha and/or alpha') and two non-catalytic, beta-subunits. The beta-subunit possesses antagonist functions that can be physically dissected by generating synthetic fragments encompassing its N-terminal and C-terminal domains. Here we show that by mutating basic residues in the 74-77 and in the 191-198 regions of the alpha-subunit, the negative regulation by the beta-subunit and by its N-terminal synthetic fragment CK2beta-(1-77), which is observable using calmodulin as a substrate for phosphorylation, is drastically reduced. In contrast, the positive regulation by a C-terminal, CK2beta-(155-215)-peptide is unaffected or even increased. Moreover, the basal activity of alpha mutants K74-77A, K79R80K83A, and R191R195K198A toward specific peptide substrates is stimulated by the beta-subunit many fold more than that of alpha wild type, while extrastimulation by beta mutant D55L56E57A, observable with alpha wild type, is abolished with these mutants. These data support the conclusion that down regulation by the acidic residues clustered in the N-terminal moiety of beta is mediated by basic residues in the 74-83 and in the 191-198 sequences of the alpha-subunit. These are also implicated in substrate recognition consistent with the concept that the N-terminal acidic region of the beta subunit operates as a pseudosubstrate. In contrast, another CK2alpha mutant, V66A, is more sensitive to inhibition by either beta-subunit or its N-terminal, CK2beta-(1-77)-peptide, while its stimulation by the C-terminal peptide, CK2beta-(155-215), is comparable to that of alpha wild type. These observations suggest an indirect role of Val66 in conferring to the alpha-subunit a conformation less sensitive to down regulation by beta-subunit.
Collapse
Affiliation(s)
- S Sarno
- Dipartimento di Chimica Biologica, Universita' di Padova and Centro per lo Studio delle Biomembrane del Consiglio Nazionale delle Ricerche, Italy
| | | | | | | | | | | |
Collapse
|
67
|
Benítez MJ, Mier G, Briones F, Moreno FJ, Jiménez JS. A surface-plasmon-resonance analysis of polylysine interactions with a peptide substrate of protein kinase CK2 and with the enzyme. Biochem J 1997; 324 ( Pt 3):987-94. [PMID: 9210426 PMCID: PMC1218518 DOI: 10.1042/bj3240987] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanism of protein kinase CK2 (CK2) activity stimulation by polylysine has been studied by surface plasmon resonance (SPR). The kinetics of the polylysine interaction with a peptide substrate of the enzyme, and with the enzyme itself, have been investigated. A peptide containing a threonine (T) residue surrounded by a cluster of negatively charged acidic [arginine (R) and glutamic acid (E)] residues, RRREEETEEE, and specifically phosphorylated by CK2, was selected. Polylysine interacts with both the enzyme and the peptide substrate. The rate constant, the stoichiometry of the polylysine-peptide substrate interaction and the kinetic parameters of the stimulated enzyme were used to calculate the polylysine-dependent stimulation of CK2. The results are in agreement with experimentally determined polylysine-dependent stimulation. The polylysine-enzyme interaction is too slow to account for enzyme stimulation. The behaviour of polylysine is not reproduced by the polyamine spermine. The results are consistent with a substrate-mediated mechanism of CK2 stimulation by polylysine, and they suggest that the CK2 stimulation by polyamines occurs by a different mechanism.
Collapse
Affiliation(s)
- M J Benítez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
68
|
Cann AD, Wolf I, Kohanski RA. A tyrosine kinase assay using reverse-phase high-performance liquid chromatography. Anal Biochem 1997; 247:327-32. [PMID: 9177695 DOI: 10.1006/abio.1997.2077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reverse-phase HPLC can be used as a very precise and accurate routine assay for peptide phosphorylation by protein kinases that has advantages over other methods. In particular, peptides with native amino acid sequences can be used without the need for radioisotopes. However, reaction conditions that are employed can often present difficulties in recovery and quantitation of phospho- and apo-peptides. Two general problems were encountered; First, variation in the retention times of peptides and an increasing width of the injection front which can interfere with quantitation both resulted from repeated sample injections. These were caused mostly by the presence of carrier bovine serum albumin used to reduce loss of peptides during the reaction and by high concentrations of ATP used to study the kinetics of enzyme catalyzed reactions. These problems were solved by regular washing of the reverse-phase column, thus allowing a broad range of peptide and ATP concentrations to be used. Second, the stability of peptides used in the assay was affected by dithiothreitol in combination with manganese. The former is a common reagent of kinase purifications and the latter is often the metal cofactor used in kinase reactions. Minimizing the concentration of dithiothreitol or using magnesium resolved these difficulties. Consideration of these factors is therefore important when using reverse-phase HPLC to monitor peptide phosphorylation in protein tyrosine kinase assays.
Collapse
Affiliation(s)
- A D Cann
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
69
|
Ruzzene M, Brunati AM, Donella-Deana A, Marin O, Pinna LA. Specific stimulation of c-Fgr kinase by tyrosine-phosphorylated (poly)peptides--possible implication in the sequential mode of protein phosphorylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:701-7. [PMID: 9183008 DOI: 10.1111/j.1432-1033.1997.t01-1-00701.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hematopoietic lineage cell-specific HS1 protein is converted into a substrate for c-Fgr by previous Syk-mediated phosphorylation, at site(s) that bind to the SH2 domain of c-Fgr [Ruzzene, M., Brunati, A. M., Marin, O., Donella-Deana, A. & Pinna, L. A. (1996) Biochemistry 35, 5327-5332]. Here we show that a phosphopeptide derived from one such site, HS1-(320-329)-phosphopeptide (PEGDYpEEVLE), enhances up to tenfold, in a dose-dependent manner, the catalytic activity of c-Fgr either assayed with peptide substrates or evaluated as intermolecular autophosphorylation of c-Fgr itself. The dephosphorylated HS1-(320-329)-peptide is totally ineffective, while the stimulatory efficacy of other phosphopeptides derived from the polyoma virus middle T antigen-(393-402) sequence, c-Src, and c-Fgr autophosphorylation sites, and the C-terminal c-Src site (Tyr527) is variable and correlates reasonably well with the predicted affinity for the c-Fgr SH2 domain. Stimulation of c-Fgr catalytic activity is also promoted by the full-length HS1 protein, previously tyrosine phosphorylated by Syk, and is accounted for by an increased Vmax while the Km values are unchanged. If the normal activator of c-Fgr kinase, Mg2+, is replaced by Mn2+, stimulation by HS1-(320-329)-phosphopeptide is still observable with peptide substrates, while autophosphorylation is, in contrast, inhibited by the phosphopeptide. These findings, in conjunction with the ability of previously autophosphorylated c-Fgr to be stimulated by HS1-(320-329)-phosphopeptide, support the view that stimulation of c-Fgr by phosphopeptide is not or is not entirely a consequence of increased autophosphorylation. Interestingly, neither Syk and C-terminal Src kinase nor three other members of the Src family (Lyn, Lck, and Fyn) are susceptible to stimulation by phosphopeptide, as observed with c-Fgr. These data support the notion that c-Fgr undergoes a unique mechanism of activation promoted by tyrosine-phosphorylated polypeptide that binds to its SH2 domain. This suggests that such a mode of regulation is peculiar of protein-tyrosine kinases committed to the secondary phosphorylation of sequentially phosphorylated proteins.
Collapse
Affiliation(s)
- M Ruzzene
- Dipartimento di Chimica Biologica and Centro per lo Studio delle Biomembrane del Consiglio Nazionale delle Ricerche, Padova, Italy
| | | | | | | | | |
Collapse
|
70
|
Lasa M, Marin O, Pinna LA. Rat liver Golgi apparatus contains a protein kinase similar to the casein kinase of lactating mammary gland. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:719-25. [PMID: 9057837 DOI: 10.1111/j.1432-1033.1997.00719.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
By using a beta-casein-derived specific peptide substrate for mammary gland Golgi-enriched-fraction casein kinase, phosphorylating activity has been detected in the Golgi apparatus of rat liver, spleen and to a lesser extent, kidney and brain, while the other post-nuclear cytoplasmic fractions are totally devoid of such a casein kinase activity. In contrast ubiquitous protein kinases CK1 and CK2 (casein kinases 1 and 2), tested with their specific peptide substrates, display different subcellular distribution and are almost undetectable in the Golgi fraction. The absence of CK2 in the Golgi fraction has been also confirmed using specific antibodies. The relatedness between the liver Golgi apparatus casein kinase (G-CK) and the bona fide mammary gland Golgi-enriched-fraction casein kinase (GEF-CK) is supported by a variety of observations, notably: (a) identical peptide substrate specificity, consistent with an S-X-E-X consensus sequence; (b) preference for Mn2+, and, to a lesser extent, Co2+, over Mg2+, as activating cation; (c) superimposable elution profiles from DEAE-Sepharose, heparin-Sepharose, and Superdex 200, this latter consistent with a molecular mass around 500 kDa; (d) insensitivity to staurosporine and heparin (a potent inhibitor of CK2) and inability to use GTP as phosphate donor (by contrast to CK2). These data provide the evidence for the existence of a third class of ubiquitous casein kinases here termed G-CK, distinct from CK1 and CK2, specifically located to the Golgi apparatus and related to the bona fide casein kinase(s) responsible for the phosphorylation of casein secreted from lactating mammary gland. The possible involvement of G-CK in the phosphorylation of secretory pathways proteins at S-X-E motifs is discussed.
Collapse
Affiliation(s)
- M Lasa
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | |
Collapse
|
71
|
Vegh M, Varro A. Phosphorylation of gastrin-related peptides: physiological casein kinase like enzyme in Golgi membranes from bovine adrenal chromaffin cells and GH3 cells. REGULATORY PEPTIDES 1997; 68:37-43. [PMID: 9094753 DOI: 10.1016/s0167-0115(96)00140-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prohormones such as the gastrin precursor can be phosphorylated at Ser residues, on passage along the secretory pathway. The phosphorylation site occurs in a sequence (-Ser-Ala-Glu-) that suggests these peptides are substrates for physiological casein kinase, but the presence of this enzyme in endocrine cells is unknown. We have examined the specificity of Golgi membrane kinases from lactating rat mammary gland, bovine adrenal medulla and the GH3 cell line, for phosphorylation of progastrin fragments and analogues. The kinetics of phosphorylation of peptides with the native sequence, -Arg-Arg-Ser-Ala-Glu- were similar to those of tryptic cleavage fragments (Ser-Ala-Glu-) in both mammary and endocrine cell preparations. The product of in vitro phosphorylation was chromatographically indistinguishable from native peptide. Peptides with the sequence Ser-Ala-Ala (i.e., substitution of Glu to Ala) were not phosphorylated. We conclude that a physiological casein kinase like enzyme can act on both the gastrin precursor and its COOH-terminal cleavage product, and occurs in the Golgi complex of both mammary gland and peptide-producing endocrine cells.
Collapse
Affiliation(s)
- M Vegh
- Physiological Laboratory, University of Liverpool, UK
| | | |
Collapse
|
72
|
Hatmi M, Gavaret JM, Elalamy I, Vargaftig BB, Jacquemin C. Evidence for cAMP-dependent platelet ectoprotein kinase activity that phosphorylates platelet glycoprotein IV (CD36). J Biol Chem 1996; 271:24776-80. [PMID: 8798748 DOI: 10.1074/jbc.271.40.24776] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The dephosphorylating enzyme alkaline phosphatase, by removing phosphate groups from the external platelet membrane proteins, modulates platelet activation (Hatmi, M., Haye, B., Gavaret, J. M., Vargaftig, B. B., and Jacquemin, C. (1991) Br. J. Pharmacol. 104, 554-558). This observation, together with findings reported by others (Ehrlich, Y. H., Davis, T. B., Bock, E., Kornecki, E., and Lenox, R. H. (1986) Nature 320, 67-70; Dusenbery, K. E., Mendiola, J. R., and Skubitz, K. M. (1988) Biochem. Biophys. Res. Commun. 153, 7-13), indicate the existence of ectoprotein kinase activity on the blood platelet surface. In this study, we demonstrate that washed human platelets phosphorylate the synthetic heptapeptide kemptide in a cAMP-dependent mode. The intensity of the phosphorylation was concentration-dependent for kemptide. In addition, incubation of platelets with [gamma-32P]ATP resulted in a rapid incorporation of [32P] phosphate into proteins at the outer membrane surface that was sensitive to alkaline phosphatase treatment. When cAMP was added to the medium, major phosphorylation of an 88-kDa ectoprotein occurred. Its isoelectric point determined by isoelectric focusing SDS-polyacrylamide gel electrophoresis was around pH 6.2. Phosphorylations of this 88-kDa polypeptide and of the exogenous kemptide substrate were both prevented by the specific protein kinase A inhibitor peptide. When platelets were preincubated with [32P]inorganic phosphate to label intracellular proteins, the protein phosphorylation pattern was different from that obtained with [gamma-32P]ATP, indicating that the latter occurred at the outer surface of the cells. Prostacyclin, which induces the increase of intracellular cAMP levels and, consequently, its liberation into the extracellular medium, increased phosphorylation of both kemptide and platelet 88-kDa polypeptide. The major protein of 88-kDa, which was phosphorylated in the presence of cAMP and external [gamma-32P]ATP, was identified by immunoprecipitation to GPIV (CD36), one of thrombospondin and collagen binding sites on platelets. The phosphorylation of CD36 also occurred in platelet-rich plasma, suggesting a physiological role for this ectoenzyme. In the present study, we clearly demonstrate the presence of an ectoprotein kinase A activity at the surface of intact human platelets, and we revealed its principal endogenous substrate as being CD36.
Collapse
Affiliation(s)
- M Hatmi
- Unité de Pharmacologie Cellulaire, Unité Associée Institut Pasteur-INSERM U 285, 25 rue du Dr. Roux 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
73
|
Boutin JA. Tyrosine protein kinase assays. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 684:179-99. [PMID: 8906473 DOI: 10.1016/0378-4347(95)00563-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein kinases form a large family of enzymes that play a major role in a number of live processes. The study of their action is important for the understanding of the transformation mechanisms and of the normal and pathological growth events. The quality of an enzyme assay is often the key point of an enzymatic study. It must be flexible and compatible with various experimental conditions, such as those for the purification process, the screening of inhibitors and the substrate specificity studies. As will be shown in the present review, two categories of substrates, peptidic and proteic, should be distinguished. The use of peptide substrates facilitates the determination of the recognition requirements of the enzyme and of the kinetic effects of even minute variations in their sequence. These linear peptide structures are assumed to mimic a complex interaction between the enzyme and a protein substrate in which distant amino acids in the sequence are vicinal in the folded substrate. Less amenable to a systematic study, but probably more adequate to investigate the natural substrate of a given kinase, are the proteic substrates. Obviously the tools to measure protein kinase activities are not the same in these two cases. The main difficulty in assaying protein kinases is the use of labelled gamma-ATP, mostly at large excess concentration, since the final product of the reaction has to be separated from the non-reacted labelled ATP. In the case of peptide substrates, the difficulty is to separate them from ATP basing on differences of molecular mass. Despite the efforts of many investigators to rely upon differences in solubility, in charges or in "affinity", this separation, which is crucial for the assay, is still an unsolved experimental problem. Chromatographic, as well as electrophoretic assays appeared relatively late in this domain, and more work in assessing new methodologies might bring new breakthroughs in the next few years. Specific, simple and reliable kinase assays are still a major challenge. Their improvement will help to conduct specificity studies, to elucidate complex growth mechanisms in which they are involved and to discover more selective potent inhibitors.
Collapse
Affiliation(s)
- J A Boutin
- Instiut de Recherches Servier, Suresnes, France
| |
Collapse
|
74
|
Ruzza P, Donella-Deana A, Calderan A, Filippi B, Cesaro L, Pinna LA, Borin G. An exploration of the effects of constraints on the phosphorylation of synthetic protein tyrosine kinase peptide substrates. J Pept Sci 1996; 2:325-38. [PMID: 9230460 DOI: 10.1002/psc.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We synthesized by classical solution methods three conformational constrained analogues of EDNEYTA, a heptapeptide sequence that represents the common major autophosphorylation site of the protein tyrosine kinases (PTKs) of the Src family. The correlation between the different structural properties induced by the modifications of the native sequence and the propensity of the peptides to act as PTK substrates was examined. The kinetic data obtained indicate that the introduction of the tyrosine-analogue constraints Tic(OH) and MeTyr, which block the ring flexibility, completely prevents the phosphorylation catalysed by the kinases Lyn and Fgr. On the other hand PTKIIB/p38syk can phosphorylate the two derivatives albeit with an efficiency lower than that found with the native sequence. A third derivative contained side chain to side chain cyclization. This analogue, in which the freedom of the phenolic moiety is not altered, can be phosphorylated by all the PTKs tested with kinetic constants comparable to the parent peptide.
Collapse
Affiliation(s)
- P Ruzza
- CNR, Biopolymers Research Centre, Department of Organic Chemistry, University of Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
75
|
Girod A, Kinzel V, Bossemeyer D. In vivo activation of recombinant cAPK catalytic subunit active site mutants by coexpression of the wild-type enzyme, evidence for intermolecular cotranslational phosphorylation. FEBS Lett 1996; 391:121-5. [PMID: 8706898 DOI: 10.1016/0014-5793(96)00717-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The catalytic subunit of cAMP dependent protein kinase (cAPK) carries two stable autophosphorylated residues. One of them, Thr197, resides in the so-called protein kinase activation segment, and needs to be phosphorylated for full activity and protein kinase inhibitor binding of the enzyme. While wild-type recombinant mammalian C-subunit, expressed in E. coli, can fully autoactivate itself by phosphorylation at Thr197, many active site mutants lack this autophosphorylation activity, so that the primary effects of the mutations become obscured. Two active site mutants of bovine C-subunit, defective in protein kinase inhibitor peptide binding, were activated by wild-type enzyme in vivo, but could not be activated in vitro, demonstrating intermolecular and presumably cotranslational autophosphorylation. The results may delineate strategies for the expression and mutagenesis of other protein kinases with requirements for activation segment phosphorylation.
Collapse
Affiliation(s)
- A Girod
- Department of Pathochemistry, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
76
|
Wong EV, Schaefer AW, Landreth G, Lemmon V. Involvement of p90rsk in neurite outgrowth mediated by the cell adhesion molecule L1. J Biol Chem 1996; 271:18217-23. [PMID: 8663493 DOI: 10.1074/jbc.271.30.18217] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
L1 is a neural cell adhesion molecule that has been shown to help guide nascent axons to their targets. This guidance is based on specific interactions of L1 with its binding partners and is likely to involve signaling cascades that alter cytoskeletal elements in response to these binding events. We have examined the phosphorylation of L1 and the role it may have in L1-directed neurite outgrowth. Cytosolic extracts from nerve growth factor-stimulated PC12 cells were fractionated by anion-exchange chromatography, and an activity was found that phosphorylated the cytoplasmic domain of L1. This activity was then assayed using a battery of L1-derived synthetic peptides. Based on these peptide assays and sequencing of radiolabeled L1 proteolytic fragments, the phosphorylation site was determined to be Ser1152. Western blot analysis demonstrated that the L1 kinase activity from PC12 cells that phosphorylated this site was co-eluted with the S6 kinase, p90(rsk). Moreover, S6 kinase activity and p90(rsk) immunoreactivity co-immunoprecipitate with L1 from brain, and metabolic labeling studies have demonstrated that Ser1152 is phosphorylated in vivo in the developing rat brain. The phosphorylation site is located in a region of high conservation between mammalian L1 sequences as well as L1-related molecules in vertebrates from fish to birds. We performed studies to investigate the functional significance of this phosphorylation. Neurons were loaded with peptides that encompass the phosphorylation site, as well as the flanking regions, and their effects on neurite outgrowth were observed. The peptides, which include Ser1152, inhibit neurite outgrowth on L1 but not on a control substrate, laminin. A nonphosphorylatable peptide carrying a Ser to Ala mutation did not affect neurite outgrowth on either substrate. These data demonstrate that the membrane-proximal 15 amino acids of the cytoplasmic domain of L1 are important for neurite outgrowth on L1, and the interactions it mediates may be regulated by phosphorylation of Ser1152.
Collapse
Affiliation(s)
- E V Wong
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975, USA
| | | | | | | |
Collapse
|
77
|
Sarno S, Vaglio P, Meggio F, Issinger OG, Pinna LA. Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. J Biol Chem 1996; 271:10595-601. [PMID: 8631861 DOI: 10.1074/jbc.271.18.10595] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Five mutants of protein kinase CK2 alpha subunit in which altogether 14 basic residues were singly to quadruply replaced by alanines (K74A,K75A,K76A,K77A; K79A, R80A,K83A; R191A,R195A,K198A; R228A; and R278A, K279A,R280A) have been purified to near homogeneity either as such or after addition of the recombinant beta subunit. By this latter procedure five mutated tetrameric holoenzymes were obtained as judged from their subunit composition, sedimentation coefficient on sucrose gradient ultracentrifugation, and increased activity toward a specific peptide substrate as compared with the isolated alpha subunits. The kinetic constants and the phosphorylation efficiencies (V(max)/Km) of all the mutants with the parent peptide RRRADDSDDDDD and a series of derivatives, in which individual aspartic acids were replaced by alanines, have been determined. Three mutants, namely K74A,K75A,K76A,K77A; K79A, R80A,K83A; and R191A,R195A, K198A, display dramatically lower phosphorylation efficiency and 8-50-fold higher Km values with the parent peptide, symptomatic of reduced attitude to bind the peptide substrate as compared with CK2 wild type. Such differences either disappear or are attentuated if the mutants R191A,R195A, K198A; K79A,R80A,K83A; and K74A,K75A, K76A,K77A are assayed with the peptides RRRADDSADDDD, RRRADDSDDADD, and RRRADDSDDDAA, respectively. In contrast, the phosphorylation efficiencies of the other substituted peptides decrease more markedly with these mutants than with CK2 wild type. These data show that one or more of the basic residues clustered in the 191-198, 79-83, and 74-77 sequences are implicated in the recognition of the acidic determinants at positions +1, +3, and +4/+5, respectively, and that if these residues are mutated, the relevance of the other acidic residues surrounding serine is increased. In contrast the other two mutants, namely R228A and R278A,K279A, R280A, display with all the peptides V(max) values higher than CK2 wild type, counterbalanced however by somewhat higher Km values. It can be concluded from these data that all five mutations performed are compatible with the reconstitution of tetrameric holoenzyme, but all of them influence the enzymatic efficiency of CK2 to different extents. Although the basic residues mutated in the 74-77, 79-83, and 191-198 sequences are clearly implicated in substrate recognition by interacting with acidic determinants at variable positions downstream from serine, the other basic residues seem to play a more elusive and/or indirect role in catalysis.
Collapse
Affiliation(s)
- S Sarno
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
78
|
Ho M, Wilson BA, Katampe I. Adenine-arginine mimetics as bisubstrate analog inhibitors of cAMP-dependent protein kinase. Bioorg Med Chem Lett 1996. [DOI: 10.1016/0960-894x(96)00140-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
79
|
Lasa-Benito M, Marin O, Meggio F, Pinna LA. Golgi apparatus mammary gland casein kinase: monitoring by a specific peptide substrate and definition of specificity determinants. FEBS Lett 1996; 382:149-52. [PMID: 8612738 DOI: 10.1016/0014-5793(96)00136-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The casein kinase from the Golgi apparatus of lactating mammary gland (GEF-CK) is distinct from ubiquitous 'casein kinases' termed protein kinases CK1 and CK2 and appears to define a family of secretory pathways protein kinases that phosphorylate seryl residues followed by an acidic residue at position +2. In this report we show that a new synthetic peptide substrate derived from beta-casein (beta[28-40]) is suitable for the fast, efficient and selective monitoring of GEF-CK, being unaffected by CK1 and CK2, and we define the consensus sequence of this protein kinase as being Ser-Xaa-Glu/SerP, distinct from that of CK2 (Ser/Thr-X-X-Glu/Asp/SerP/TyrP). In particular, the failure to recognize Asp as crucial specificity determinant prevents the phosphorylation of the specific CK2 peptide substrate RRRADDSDDDDD by GEF-CK. Thus, peptide substrates are now available for the fast and specific monitoring of all the three classes of 'casein kinases', CK1, CK2 and GEF-CK.
Collapse
Affiliation(s)
- M Lasa-Benito
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | | | |
Collapse
|
80
|
Kwak BR, Hermans MM, De Jonge HR, Lohmann SM, Jongsma HJ, Chanson M. Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell 1995; 6:1707-19. [PMID: 8590800 PMCID: PMC301327 DOI: 10.1091/mbc.6.12.1707] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Studies on physiological modulation of intercellular communication mediated by protein kinases are often complicated by the fact that cells express multiple gap junction proteins (connexins; Cx). Changes in cell coupling can be masked by simultaneous opposite regulation of the gap junction channel types expressed. We have examined the effects of activators and inhibitors of protein kinase A (PKA), PKC, and PKG on permeability and single channel conductance of gap junction channels composed of Cx45, Cx43, or Cx26 subunits. To allow direct comparison between these Cx, SKHep1 cells, which endogenously express Cx45, were stably transfected with cDNAs coding for Cx43 or Cx26. Under control conditions, the distinct types of gap junction channels could be distinguished on the basis of their permeability and single channel properties. Under various phosphorylating conditions, these channels behaved differently. Whereas agonists/antagonist of PKA did not affect permeability and conductance of all gap junction channels, variable changes were observed under PKC stimulation. Cx45 channels exhibited an additional conductance state, the detection of the smaller conductance states of Cx43 channels was favored, and Cx26 channels were less often observed. In contrast to the other kinases, agonists/antagonist of PKG affected permeability and conductance of Cx43 gap junction channels only. Taken together, these results show that distinct types of gap junction channels are differentially regulated by similar phosphorylating conditions. This differential regulation may be of physiological importance during modulation of cell-to-cell communication of more complex cell systems.
Collapse
Affiliation(s)
- B R Kwak
- Department of Medical Physiology and Sports Medicine, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
81
|
Meggio F, Donella Deana A, Ruzzene M, Brunati AM, Cesaro L, Guerra B, Meyer T, Mett H, Fabbro D, Furet P. Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:317-22. [PMID: 8529658 DOI: 10.1111/j.1432-1033.1995.317_c.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A systematic analysis reveals that out of 20 protein kinases examined, specific for either Ser/Thr or Tyr, the majority are extremely sensitive to staurosporine, with IC50 values in the low nanomolar range. A few of them however, notably protein kinases CK1 and CK2, mitogen-activated protein (MAP) kinase and protein-tyrosine kinase CSK, are relatively refractory to staurosporine inhibition, exhibiting IC50 values in the micromolar range. With all protein kinases tested, namely PKA, CK1, CK2, MAP kinase (ERK-1), c-Fgr, Lyn, CSK and TPK-IIB/p38Syk, staurosporine inhibition was competitive with respect to ATP, regardless of its inhibitory power. In contrast, either uncompetitive or noncompetitive kinetics of inhibition with respect to the phosphoacceptor substrate were exhibited by Ser/Thr and Tyr-specific protein kinases, respectively, consistent with a different mechanism of catalysis by these two sub-families of kinases. Computer modeling based on PKA crystal structure in conjunction with sequence analysis suggest that the low sensitivity to staurosporine of CK2 may be accounted for by the bulky nature of three residues, Val66, Phe113 and Ile174 which are homologous to PKA Ala70, Met120 and Thr183, respectively. In contrast these PKA residues are either conserved or replaced by smaller ones in protein kinases highly sensitive to staurosporine inhibition. On the other hand, His160 which is homologous to PKA Glu170, appears to be responsible for the unique behaviour of CK2 with respect to a staurosporine derivative (CGP44171A) bearing a negatively charged benzoyl substituent: while CGP44171A is 10- 100-fold less effective than staurosporine against PKA and most of the other protein kinases tested, it is actually more effective than staurosporine for CK2 inhibition, but it looses part of its efficacy if it is tested on a CK2 mutant (H160D) in which His160 has been replaced by Asp. It can be concluded from these data that the catalytic sites of protein kinases are divergent enough as to allow a competitive inhibitor like staurosporine to be fairly selective, a feature that can be enhanced by suitable modifications designed based on the structure of the catalytic site of the kinase.
Collapse
Affiliation(s)
- F Meggio
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Jiménez JS, Benítez MJ, Lechuga CG, Collado M, González-Nicólas J, Moreno FJ. Casein kinase 2 inactivation by Mg2+, Mn2+ and Co2+ ions. Mol Cell Biochem 1995; 152:1-6. [PMID: 8609906 DOI: 10.1007/bf01076457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mg2+ as well as Mn2+, and Co2+, which may substitute Mg2+ in the mental ion requirement of casein kinase 2 (Gatica et al., FEBS Lett: 315:173-173, 1993), have been repeatedly reported to display an optimal concentration at which activity of casein kinase 2 is maximal. As far as we know this intriguing property has always been observed with casein as substrate. This phosphoprotein is not the natural substrate of the enzyme, and it is well known that it binds divalent metal ions, which provoke the aggregation and precipitation of the protein. Since an optimal concentration of metal ion might have a regulatory role, we have examined if it is a consequence of the particular properties of casein, or it is an inherent property of the enzyme, extensive to other substrates. We have used the type II regulatory subunit of protein kinase A which is a physiological substrate of the enzyme, and the peptide RRREEETEEE as a specific substrate. No optimal concentration of Mg2+ is observed when these two substrates are used. The results explain, however, why that optimum is observed with casein. Although low concentration of Mn2+, and Co2+ render about 25% of the maximal activity found with Mg2+, they inactivate the enzyme almost fully at concentrations at which Mg2+ yield the maximal activity.
Collapse
Affiliation(s)
- J S Jiménez
- Departamento de Química Física Aplicada, (UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
83
|
Graves PR, Roach PJ. Role of COOH-terminal phosphorylation in the regulation of casein kinase I delta. J Biol Chem 1995; 270:21689-94. [PMID: 7665585 DOI: 10.1074/jbc.270.37.21689] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Casein kinase I delta is a member of the casein kinase I (CKI) family, a group of second messenger independent protein kinases. We present evidence that the COOH-terminal domain of CKI delta has regulatory properties. CKI delta expressed in Escherichia coli was activated by heparin, as found previously, and by treatment with the catalytic subunit of type-1 protein phosphatase (CS1). Concomitant with activation by CS1, there was a reduction in the apparent molecular weight of CKI delta from 55,000 to 49,000 as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Truncation of CKI delta by removal of the COOH-terminal 110 amino acids eliminated the ability of CS1 to activate or to increase electrophoretic mobility. Casein kinase I alpha, a 37-kDa isoform that lacks an extended COOH-terminal domain, was not activated by CS1 or the presence of heparin. However, a chimeric enzyme consisting of CKI alpha fused to the COOH-terminal domain of CKI delta was activated by both heparin and CS1. Analysis of the effects of CS1 on a series of CKI delta COOH-terminal truncation mutants identified an inhibitory region between His317 and Pro342, which contained six potential phosphorylation sites. From analysis of the specific activites of these truncation mutants, removal of the same region resulted in enzyme with a specific activity nearly 10-fold greater than wild-type. Thus, CKI delta activity can be regulated by phosphorylation of its COOH terminus, which may serve to create an autoinhibitory domain. This mechanism of regulation could have important consequences in vivo.
Collapse
Affiliation(s)
- P R Graves
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | |
Collapse
|
84
|
Benner GE, Dennis PB, Masaracchia RA. Activation of an S6/H4 kinase (PAK 65) from human placenta by intramolecular and intermolecular autophosphorylation. J Biol Chem 1995; 270:21121-8. [PMID: 7673144 DOI: 10.1074/jbc.270.36.21121] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The S6/H4 kinase purified from human placenta catalyzes phosphorylation of the S6 ribosomal protein, histone H4, and myelin basic protein. In vitro activation of the p60 S6/H4 kinase requires removal of an autoinhibitory domain by mild trypsin digestion and autophosphorylation of the catalytic domain (p40 S6/H4 kinase). The two autophosphorylation/autoactivation sites contain the sequences SSMVGTPY (site 1) and SVIDPVPAPVGDSHVDGAAK (site 2). These sequences identify S6H4 kinase as the rac-activated PAK65 (Martin, G. A., Bollag, G., McCormick, F. and Abo, A. (1995) EMBO J. 14, 1971-1978). Site 1 phosphorylation is most rapid, but activation does not occur until site 2 is autophosphorylated. The site 1 phosphorylation occurs by an intramolecular mechanism whereas site 2 autophosphorylation occurs by an intermolecular mechanism. A model is proposed in which phosphorylation of sites 1 and 2 occurs sequentially. The model proposes that trypsin treatment of the inactive holoenzyme removes an inhibitory rac-binding domain which blocks MgATP access to the catalytic site. The pseudosubstrate domain at site 1 is autophosphorylated and subsequent bimolecular autophosphorylation at site 2 fully opens the catalytic site. Phosphorylation by a regulatory protein kinase may occur at site 2 in vivo.
Collapse
Affiliation(s)
- G E Benner
- Department of Biological Sciences, University of North Texas, Denton 76203-5018, USA
| | | | | |
Collapse
|
85
|
Ohguro H, Palczewski K. Separation of phospho- and non-phosphopeptides using reverse phase column chromatography. FEBS Lett 1995; 368:452-4. [PMID: 7635197 DOI: 10.1016/0014-5793(95)00710-q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peptides containing phosphoserine, phosphothreonine or phosphotyrosine and their parent non-phosphorylated forms were chromatographed using standard C18 reverse phase chromatography in the presence of a water/acetonitrile gradient supplemented with different counter ions. We obtained the best separation of phosphorylated from non-phosphorylated peptides in the presence of heptafluorobutyric acid, with differences in retention times as large as approximately 20 min. The chromatographic method was reliable in separation of the same peptides phosphorylated at different positions, acidic or basic phospho-Ser/Thr-peptides or phospho-Tyr-containing peptides. The described separation conditions are useful in studying the kinetics of phosphorylation/dephosphorylation and in analysis of phosphorylation sites in vivo.
Collapse
Affiliation(s)
- H Ohguro
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
86
|
Meggio F, Boldyreff B, Marin O, Issinger OG, Pinna LA. Phosphorylation and activation of protein kinase CK2 by p34cdc2 are independent events. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:1025-31. [PMID: 7601132 DOI: 10.1111/j.1432-1033.1995.tb20651.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recombinant isolated beta-subunit of protein kinase CK2 is readily phosphorylated by p34cdc2/cyclin B kinase at Ser209 with favourable kinetic constants (Km = 1.7 microM, Vmax = 20 nmol.min-1.mg-1). Two synthetic peptides reproducing the 170-215 and the 206-215 C-terminal fragments of the beta-subunit are also phosphorylated though with tenfold higher Km values (19.5 and 28.0 microM, respectively). In contrast, both the beta-subunit associated with the alpha-subunit to give the heterotetrameric holoenzyme and the native CK2 are not appreciably phosphorylated by p34cdc2. These data suggest that the Ser209 beta-subunit phosphorylation observed in intact cells occurs prior to beta-subunit incorporation into the holoenzyme. The isolated CK2 alpha-subunit is not phosphorylated to any appreciable extent by p34cdc2 kinase. Its catalytic activity is nevertheless increased up to fivefold upon incubation with p34cdc2/cyclin B kinase complex. Such a stimulation of activity is comparable to that induced by the beta-subunit and it is paralleled by a 40% decrease of p34cdc2/cyclin B catalytic activity. Similar to beta-subunit, p34cdc2/cyclin B also protects the alpha-subunit against thermal inactivation. CK2 holoenzyme is also stimulated by p34cdc2/cyclin B, albeit less dramatically than the isolated alpha-subunit. Such an effect is also evident with CK2 holoenzyme reconstituted with a mutated beta-subunit lacking the p34cdc2 phosphorylation site and it is not accompanied by any appreciable phosphorylation of either the beta or the alpha-subunit. These data indicate that in vitro CK2 alpha-subunit interacts with and is activated by p34cdc2/cyclin B kinase by a mechanism that does not imply the phosphorylation of CK2.
Collapse
Affiliation(s)
- F Meggio
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
87
|
Ruzza P, Calderan A, Filippi B, Biondi B, Deana AD, Cesaro L, Pinna LA, Borin G. Linear and cyclic synthetic peptides related to the main autophosphorylation site of the Src tyrosine kinases as substrates and inhibitors of Lyn. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1995; 45:529-39. [PMID: 7558583 DOI: 10.1111/j.1399-3011.1995.tb01316.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tyrosine protein kinases (TPKs) of the src family contain two major phosphoacceptor sites which are homologous to the Tyr 416 and Tyr 527 of pp60c-src. The former represents the main autophosphorylation sites of these enzymes, and its phosphorylation correlates with increased kinase activity. It has previously been demonstrated that the Src-like tyrosine kinase expressed by the oncogene lyn displays a high affinity toward the heptapeptide H-Glu-Asp-Asn-Glu-Tyr-Thr-Ala-OH, which reproduces the main autophosphorylation site of the Src family enzymes [Donella-Deana, A., Marin, O., Brunati, A.M. & Pinna, L.A. (1992) Eur. J. Biochem. 204, 1159-1163]. Our study was addressed to the synthesis of some derivatives of this sequence in order to obtain both peptide substrates suitable for the detection of the Src-like tyrosine kinase activity and active site-directed inhibitors specific for this class of enzymes. For this purpose we synthesized by classical solution methods the heptapeptide and its dimeric form. Moreover, in order to improve the proteolytic resistance of these peptides we also synthesized their cyclic derivatives and their N-terminal acetylated and C-terminal amidated analogs. The correlation between the different structural properties induced by the modifications of the native sequence and the propensity of the peptides to act as Lyn substrates was examined. The kinetic data obtained indicate that the extent of the peptide phosphorylation varies considerably depending on the flexibility and length of the analogs. While the cyclization and the C-terminal amidation of the heptapeptide are detrimental for the Lyn activity, dimeric derivatives display very favourable kinetic constants. In particular the cyclic dimer is an especially suitable substrate for the tyrosine kinase and a powerful inhibitor of both the phosphorylation activity of Lyn and the enzyme autophosphorylation.
Collapse
Affiliation(s)
- P Ruzza
- CNR, Department of Organic Chemistry, University of Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Selbie LA, Darby K, Schmitz-Peiffer C, Browne CL, Herzog H, Shine J, Biden TJ. Synergistic interaction of Y1-neuropeptide Y and alpha 1b-adrenergic receptors in the regulation of phospholipase C, protein kinase C, and arachidonic acid production. J Biol Chem 1995; 270:11789-96. [PMID: 7744827 DOI: 10.1074/jbc.270.20.11789] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neuropeptide Y (NPY) and norepinephrine, found colocalized in sympathetic neurons innervating blood vessels, exert synergistic responses on vasoconstriction. To examine the signaling mechanisms involved, free of complications associated with mixed receptor populations, we have established a stable Chinese hamster ovary cell line expressing both Y1-NPY and alpha 1b-adrenergic receptors. Occupation of either receptor species, with 100 nM peptide YY (PYY) or 10 microM phenylephrine (PE), respectively, resulted in a rapid increase in the cytoplasmic free calcium concentration ([Ca2+]i) as assessed with Fura-2/AM. The rise due to PYY, but not that due to PE, was abolished by pretreatment with pertussis toxin. Both responses were largely maintained in the absence of extracellular Ca2+, but abolished by prior depletion of intracellular Ca2+ pools with either thapsigargin or 2,5-di-(t-butyl)-1,4-benzohydroquinone. Using cells prelabeled with myo-[3H]inositol, PE promoted a rapid (5 s) rise in inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) as analyzed by anion-exchange high pressure liquid chromatography, whereas the response to PYY (first significant at > 15 s post-stimulation) was too slow to play a causative role in Ca2+ mobilization. Combination of PE and PYY resulted in increases in [Ca2+]i which were at best additive, whereas they promoted a clearly synergistic rise in Ins(1,4,5)P3 at both 15 and 60 s. Co-stimulation also resulted in a synergistic activation of both protein kinase C (PKC) and [3H]arachidonic acid release. In either instance PYY alone was without effect. The potentiation of arachidonic acid release was abolished by depletion of cellular PKC following chronic treatment with phorbol esters. It is suggested that the ability of PYY to mobilize Ca2+ in an Ins(1,4,5)P3-independent fashion minimizes the functional importance of the capacity to potentiate PE-stimulated Ins(1,4,5)P3 generation. Instead the major consequences of the synergistic activation of phospholipase C are mediated via PKC, the other route of the signaling pathway.
Collapse
Affiliation(s)
- L A Selbie
- Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
89
|
Tiganis T, House CM, Teh T, Kemp BE. Insert regions in domain X of the casein kinase II catalytic subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:703-9. [PMID: 7758466 DOI: 10.1111/j.1432-1033.1995.tb20517.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Casein kinase II, cyclin-dependent kinases, and glycogen synthase kinase-3 are members of the protein kinase subfamily with a prominent insert in domain X of their catalytic subunit sequence. The function of the insert sequence in casein kinase II was investigated utilising synthetic peptides corresponding to the insert, cross-linking experiments, and the generation of casein kinase II insert region mutants. The mutation of basic residues (R276-->A, R278-->A, R281-->A, K277-->A) within the major insert sequence (PRFHDILQRHSRKRWERFVHSDNQHL, positions 265-290) did not affect alpha/beta subunit association, enzyme tetramerisation, thermal stability, and peptide (RRRDDDSDDD-NH2) phosphorylation. Similarly, replacement of residues 276-290 within the major insert with the corresponding residues from the cell-cycle kinase cyclin-dependent kinase 2 (CDK2) (FPKWKPGSLASHVKN) had no significant effect. The mutation of charged residues (H232-->A, H234-->A, D235-->A) within a nearby minor insert sequence (HGHDNY, positions 232-237), or replacement of residues 234-237 with the corresponding residues from CDK2 (DSEI) also did not affect alpha/beta subunit association and tetramerisation, but reduced enzyme thermal stability to more closely resemble the stability of the isolated alpha-subunit. In addition, mutations within the minor insert caused approximately a threefold increase in the apparent Km for peptide substrate. The results indicate that the major and minor inserts are not essential for alpha/beta subunit association, but the minor insert region influences substrate binding and thermal stability.
Collapse
Affiliation(s)
- T Tiganis
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | |
Collapse
|
90
|
Saunier B, Tournier C, Jacquemin C, Pierre M. Stimulation of mitogen-activated protein kinase by thyrotropin in primary cultured human thyroid follicles. J Biol Chem 1995; 270:3693-7. [PMID: 7876108 DOI: 10.1074/jbc.270.8.3693] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the thyroid, thyrotropin (TSH) stimulates both growth and function, and stimulates the production of cAMP which reproduces most of the effects of TSH. Here, we report evidence that TSH stimulates the mitogen-activated protein (MAP) kinase cascade through a cAMP-independent pathway, in human thyroid. TSH stimulated MAP kinase activity (4-9-fold the basal level) measured in the cytosolic fractions of primary cultured thyroid follicles. Maximal activity was reached after 20 min and remained sustained for 1-3 h, TSH being as potent as EGF; EC50 was 1.5 nM TSH. Only a single isoform of MAP kinase (p42) was detected in the follicles. p42 was phosphorylated on tyrosine residues and showed a reduced electrophoretic mobility in follicles stimulated by TSH. All these effects on MAP kinase were decreased by preincubation of the follicles with human anti-TSH receptor antibodies. The stimulation of MAP kinase by TSH was neither blocked by pertussis toxin nor reproduced by forskolin, cholera toxin, or 8-bromo-cAMP. In conclusion, in human thyroid cells, in contrast with previous observations on dog thyroid cells, TSH stimulates strongly MAP kinase through a pertussis toxin-insensitive and cAMP-independent pathway.
Collapse
Affiliation(s)
- B Saunier
- Unité 96, INSERM, Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
91
|
Tournier C, Gavaret JM, Jacquemin C, Pierre M, Saunier B. Stimulation of mitogen-activated protein kinase by thyrotropin in astrocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:16-22. [PMID: 7882998 DOI: 10.1111/j.1432-1033.1995.tb20222.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have recently reported the expression of the thyrotropin (TSH) receptor and the stimulation by TSH of type-II iodothyronine 5'-deiodinase in astrocytes. In these cells, TSH stimulated arachidonate release, but neither cAMP production, nor phosphatidylinositolbisphosphate hydrolysis, as described in the human thyroid gland. Here we report, in contrast to a recent observation made in dog thyroid cells, that TSH stimulates mitogen-activated protein kinase (MAP kinase) in astrocytes. Indeed, TSH increases the tyrosine phosphorylation of the two isoforms of MAP kinase expressed in these cells, in correlation with both a slower electrophoretic migration of the tyrosine phosphorylated species and an enhanced enzymic activity measured on a specific substrate peptide. This stimulation of MAP kinase by TSH was specifically inhibited by incubation of astrocytes in the presence of human blocking anti-(TSH receptor) IgG, and by immunoprecipitation of TSH with monoclonal anti-TSH IgG. In astrocytes, TSH was neither mitogenic by itself, nor modified significantly the basic-fibroblast-growth-factor-induced mitogenesis. The stimulation of MAP kinase by TSH was not affected by treatment with pertussis toxin, suggesting guanine-nucleotide-binding-regulatory protein i/o was not implicated in this TSH effect. Our model will allow the study of the stimulation of MAP kinase by TSH without interference either from cAMP or from phosphoinositide signalling pathways.
Collapse
|
92
|
Mitchell RD, Glass DB, Wong CW, Angelos KL, Walsh DA. Heat-stable inhibitor protein derived peptide substrate analogs: phosphorylation by cAMP-dependent and cGMP-dependent protein kinases. Biochemistry 1995; 34:528-34. [PMID: 7819246 DOI: 10.1021/bi00002a018] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The phosphorylation of substrate peptides derived from PKI, the heat-stable inhibitor protein of the cAMP-dependent protein kinase (PKA), has been studied with both PKA and the cGMP-dependent protein kinase (PKG) using a variety of substitution and deletion analogs. On the basis of Km, kcat and kcat/Km values, (Ser21)PKI alpha(14-22) amide (numbering based upon native PKI alpha) is the most effective peptide substrate yet discovered for either kinase, although other peptides, while phosphorylated considerably less efficiently by PKG, are more specific. Although the inhibitory peptide corresponding to this sequence (i.e., with an Ala at position 21) is a much more potent inhibitor of PKA than of PKG (approximately 250-fold), PKG actually exhibits a 60% higher kcat than does PKA with the (Ser21)PKI alpha(14-22) amide substrate peptide, with only a 20-fold higher Km value. The two key PKI residues within this peptide which were found to be essential for substrate activity with both kinases were Arg18 (P-3) and Ile22 (P+1). The Arg19 (P-2) residue, which contributes significantly to both PKI-based peptide inhibitors and substrates of PKA, was only a more minor contributor to PKG substrate efficacy. Of particular note, the Phe10 (P-11) residue, which contributes very substantially to high affinity binding of both PKI and longer PKI peptide inhibitors, neither positively nor negatively affects the kinetics of either PKA or PKG with PKI-based substrates.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R D Mitchell
- Department of Biological Chemistry, School of Medicine, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
93
|
Kapas S, Purbrick A, Hinson JP. Role of tyrosine kinase and protein kinase C in the steroidogenic actions of angiotensin II, alpha-melanocyte-stimulating hormone and corticotropin in the rat adrenal cortex. Biochem J 1995; 305 ( Pt 2):433-8. [PMID: 7832756 PMCID: PMC1136380 DOI: 10.1042/bj3050433] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The role of protein kinases in the steroidogenic actions of alpha-melanocyte-stimulating hormone (alpha-MSH), angiotensin II (AngII) and corticotropin (ACTH) in the rat adrenal zona glomerulosa was examined. Ro31-8220, a potent selective inhibitor of protein kinase C (PKC), inhibited both AngII- and alpha-MSH-stimulated aldosterone secretion but had no effect on aldosterone secretion in response to ACTH. The effect of Ro31-8220 on PKC activity was measured in subcellular fractions. Basal PKC activity was higher in cytosol than in membrane or nuclear fractions. Incubation of the zona glomerulosa with either alpha-MSH or AngII resulted in significant increases in PKC activity in the nuclear and cytosolic fractions and decreases in the membrane fraction. These effects were all inhibited by Ro31-8220. ACTH caused a significant increase in nuclear PKC activity only, and this was inhibited by Ro31-8220 without any significant effect on the steroidogenic response to ACTH, suggesting that PKC translocation in response to ACTH may be involved in another aspect of adrenal cellular function. Tyrosine phosphorylation has not previously been considered to be an important component of the response of adrenocortical cells to peptide hormones. Both AngII and alpha-MSH were found to activate tyrosine kinase, but ACTH had no effect, observations that have not been previously reported. Tyrphostin 23, a specific antagonist of tyrosine kinases, inhibited aldosterone secretion in response to AngII and alpha-MSH, but not ACTH. These data confirm the importance of PKC in the adrenocortical response to AngII and alpha-MSH, and, furthermore, indicate that tyrosine kinase may play a critical role in the steroidogenic actions of AngII and alpha-MSH in the rat adrenal zona glomerulosa.
Collapse
Affiliation(s)
- S Kapas
- Department of Biochemistry, Faculty of Medical Sciences, Queen Mary and Westfield College, London, U.K
| | | | | |
Collapse
|
94
|
Kordiyak GJ, Jakes S, Ingebritsen TS, Benbow RM. Casein kinase II stimulates Xenopus laevis DNA topoisomerase I by physical association. Biochemistry 1994; 33:13484-91. [PMID: 7947757 DOI: 10.1021/bi00249a037] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A Xenopus laevis casein kinase II-like activity copurified with X. laevis DNA topoisomerase I activity during chromatography on DEAE-cellulose, phosphocellulose, and hydroxylapatite, but the two activities were resolved by chromatography on DNA-agarose [Kaiserman, H. B., Ingebritsen, T. S., & Benbow, R. M. (1988) Biochemistry 27, 3216-3222]. Phosphorylation of the catalytic polypeptides of dephosphorylated X. laevis DNA topoisomerase I by the endogenous X. laevis casein kinase II-like activity apparently resulted in a severalfold increase in catalytic activity. In this study, we show that incubation of purified X. laevis DNA topoisomerase I with electrophoretically homogeneous bovine brain casein kinase II and ATP strongly stimulated catalytic activity. Surprisingly, purified bovine casein kinase II stimulated X. laevis DNA topoisomerase I activity by more than an order of magnitude in the absence of ATP, although ATP resulted in additional stimulation. Other basic proteins, such as histone H1 and HMG proteins, also stimulated X. laevis DNA topoisomerase I catalytic activity 2-3-fold in the absence of ATP. Modulation of catalytic activity by direct physical association (protein-protein interactions) must, therefore, be considered in addition to phosphorylation in assessing the physiological role of casein kinase II and other basic proteins during regulation of X. laevis DNA topoisomerase I activity in vivo.
Collapse
Affiliation(s)
- G J Kordiyak
- Department of Zoology and Genetics, Iowa State University, Ames 50011-3223
| | | | | | | |
Collapse
|
95
|
Abstract
CLK is a dual-specificity protein kinase capable of phosphorylating serine, threonine, and tyrosine residues. We have investigated the action of CLK by establishing stable PC12 cell lines capable of inducibly expressing CLK. Expression of CLK in stably transfected PC12 cells mimicked a number of nerve growth factor (NGF)-dependent events, including the morphological differentiation of these cells and the elaboration of neurites. Moreover, CLK expression enhanced the rate of NGF-mediated neurite outgrowth of these cells, indicating that CLK expression and NGF treatment activate similar signal transduction pathways. CLK expression, unlike NGF, was not able to promote PC12 cell survival in serum-free media, demonstrating that CLK only partially recapitulated the actions of NGF on these cells and that the biochemical pathways necessary for morphological differentiation can be stimulated without also stimulating those necessary for survival. Induction of CLK expression also resulted in the selective activation of protein kinases that are components of growth factor-stimulated signal transduction cascades, including ERK1, ERK2, pp90RSK, and S6PKII. Induction of CLK expression, however, did not stimulate pp70S6K or Fos kinase, two NGF-sensitive protein kinases. These data indicate that CLK action mediates the morphological differentiation of these cells through its capacity to independently stimulate signal transduction pathways normally employed by NGF.
Collapse
|
96
|
Myers MP, Murphy MB, Landreth G. The dual-specificity CLK kinase induces neuronal differentiation of PC12 cells. Mol Cell Biol 1994; 14:6954-61. [PMID: 7935412 PMCID: PMC359226 DOI: 10.1128/mcb.14.10.6954-6961.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CLK is a dual-specificity protein kinase capable of phosphorylating serine, threonine, and tyrosine residues. We have investigated the action of CLK by establishing stable PC12 cell lines capable of inducibly expressing CLK. Expression of CLK in stably transfected PC12 cells mimicked a number of nerve growth factor (NGF)-dependent events, including the morphological differentiation of these cells and the elaboration of neurites. Moreover, CLK expression enhanced the rate of NGF-mediated neurite outgrowth of these cells, indicating that CLK expression and NGF treatment activate similar signal transduction pathways. CLK expression, unlike NGF, was not able to promote PC12 cell survival in serum-free media, demonstrating that CLK only partially recapitulated the actions of NGF on these cells and that the biochemical pathways necessary for morphological differentiation can be stimulated without also stimulating those necessary for survival. Induction of CLK expression also resulted in the selective activation of protein kinases that are components of growth factor-stimulated signal transduction cascades, including ERK1, ERK2, pp90RSK, and S6PKII. Induction of CLK expression, however, did not stimulate pp70S6K or Fos kinase, two NGF-sensitive protein kinases. These data indicate that CLK action mediates the morphological differentiation of these cells through its capacity to independently stimulate signal transduction pathways normally employed by NGF.
Collapse
Affiliation(s)
- M P Myers
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | | |
Collapse
|
97
|
Boutin JA. Tyrosine protein kinase inhibition and cancer. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:1203-26. [PMID: 7851627 DOI: 10.1016/0020-711x(94)90091-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The various aspects of the research on tyrosine protein kinase inhibition and its connections with cancer are presented. The emphasis was made on the theoretical low toxic side effects of specific tyrosine protein kinase inhibitors. Particularly, the strategy of finding peptidic substrate-derived inhibitors or modulators is discussed, with an almost complete compendium of the tyrosine protein kinase peptidic substrates published so far. A series of data has been gathered that may serve as a basis for the discovery of selective and specific tyrosine protein kinase inhibitors by screening on molecular and cellular models. The potential of SH2 domain-interfering agents are also presented as a promising route to new anticancer compounds.
Collapse
Affiliation(s)
- J A Boutin
- Institut de Recherches SERVIER, Département de Chimie des Peptides, Suresnes, France
| |
Collapse
|
98
|
Marin O, Meggio F, Sarno S, Andretta M, Pinna LA. Phosphorylation of synthetic fragments of inhibitor-2 of protein phosphatase-1 by casein kinase-1 and -2. Evidence that phosphorylated residues are not strictly required for efficient targeting by casein kinase-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:647-53. [PMID: 8055935 DOI: 10.1111/j.1432-1033.1994.tb19037.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The major phosphorylation site for both casein kinase-2 (CK2) and casein kinase-1 (CK1) in protein phosphatase-1 (PP-1) inhibitor-2 (I-2) is Ser86. Minor phosphorylation sites affected by either CK2 or CK1 are Ser120/Ser121 and Ser174, respectively. A synthetic peptide of 25 amino acids encompassing residues 67-93 of I-2 is phosphorylated by either CK2 or CK1 at its seryl residue corresponding to Ser86 with higher Vmax and Km values similar to those of the intact protein (9 vs 7.2 microM and 14.2 vs 5.3 microM with CK2 and CK1, respectively). No detectable phosphorylation of this peptide which also includes the glycogen synthase kinase-3 (GSK-3) site (Thr72), could be observed with either GSK-3 or p34cdc2 kinase whether or not its seryl residue equivalent to Ser86 had been previously phosphorylated by CK2. Shorter derivatives of I-2(67-93), encompassing residues 72-93 and 78-93, are also readily phosphorylated by both CK1 and CK2, with phosphorylation efficiencies similar to those of the parent peptide. A synthetic heptadecapeptide reproducing the phosphoacceptor site around Ser120/Ser121 is phosphorylated by CK2, but not to any detectable extent by CK1, with a Km value fivefold higher than that of the corresponding pentadecapeptide including Ser86 (78-93). A synthetic pentadecapeptide (166-180) reproducing the phosphoacceptor site around Ser174 is phosphorylated by CK1 less efficiently than the pentadecapeptide including its main phosphorylation site (78-93) (Km 280 microM vs 33 microM). This peptide is readily phosphorylated by CK2 as well, although it lacks the canonical consensus sequence for CK2 and its Ser174 is almost unaffected by CK2 in intact I-2. These data provide the clear-cut demonstration that the consensus sequence with N-terminal prephosphorylated residue(s), SerP/ThrP-Xaa-Xaa-Ser/Thr, [Flotow, H., Graves, P. R., Wang, A., Fiol, C. J., Roeske, R. W. & Roach, P. J. (1990) J. Biol. Chem. 265, 14264-14269; Meggio, F., Perich, J. W., Reynolds, E. C. & Pinna, L. A. (1991) FEBS Lett. 283, 303-306] is not always required to achieve efficient and high-affinity phosphorylation by CK1. They also show that the specificity determinants for I-2 phosphorylation by either CK2 or CK1, but not by GSK3, are entirely grounded on local structural features of the phosphoacceptor site, being only marginally affected by the overall structure of I-2.
Collapse
Affiliation(s)
- O Marin
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
99
|
Smith JE, Sheng ZF, Kallen RG. Effects of tyrosine-->phenylalanine mutations on auto- and trans-phosphorylation reactions catalyzed by the insulin receptor beta-subunit cytoplasmic domain. DNA Cell Biol 1994; 13:593-604. [PMID: 8024702 DOI: 10.1089/dna.1994.13.593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Activation of the insulin receptor kinase is closely associated with autophosphorylation of several tyrosine residues in the cytoplasmic domain of the receptor's two beta-subunits. To determine the contribution of these tyrosine phosphorylations to autoactivation of the receptor kinase, we have blocked phosphorylation at specific tyrosine by replacing these tyrosine residues, individually and in combination, with phenylalanine in a soluble 45-kD analog of the cytoplasmic insulin receptor kinase domain (CIRK). Kinetic studies of auto- and transphosphorylation with this panel of mutated CIRKs indicate that: (i) None of the tyrosines (953, 960, 1,146, 1,150, 1,151, 1,316, or 1,322) are necessary for catalysis: all single Y-->F mutants retain the ability to autoactivate comparable to the parent CIRK. (ii) Two of the tyrosine autophosphorylation sites, either tyrosine 1,150 or 1,151, contribute most (70-80%) of the autoactivation, because replacement of these two tyrosines by phenylalanine was the minimal change that abolishes autoactivation. (iii) A mutant CIRK having all seven reported tyrosine phosphorylation sites replaced by phenylalanine retained basal kinase activity but was incapable of autoactivation. These findings imply that autoactivation can occur without phosphorylation having occurred at any single site (953, 960, 1,146, 1,150, 1,151, 1,316, or 1,322), and autophosphorylation need not follow an ordered, sequential pathway beginning, for example, at tyrosine 1,146 as proposed for the intact insulin receptor.
Collapse
Affiliation(s)
- J E Smith
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6059
| | | | | |
Collapse
|
100
|
Ursini F, Maiorino M, Morazzoni P, Roveri A, Pifferi G. A novel antioxidant flavonoid (IdB 1031) affecting molecular mechanisms of cellular activation. Free Radic Biol Med 1994; 16:547-53. [PMID: 8026797 DOI: 10.1016/0891-5849(94)90054-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In searching for new drug candidates which could help bridge the gaps between free radical oxidations, pathophysiological responses, and pharmacological treatment, a series of flavonoids was screened. The most interesting compound emerging from this screening, the flavone 3'-hydroxyfarrerol (IdB 1031), is presented in this article. This compound is a good inhibitor of microsomal lipid peroxidation induced by either iron-adenosine 5'-diphosphate (ADP) or carbon tetrachloride. The elevated rate constant for the interaction with peroxyl radicals, analysed by the kinetics of inhibition of crocin bleaching in the presence of a diazo initiator, gives an account for the observed antioxidant capacity. When tested on human neutrophils activated by fMLP, IdB 1031 inhibits (ID50:20 microM) respiratory burst. This effect, which is possibly linked to the observed inhibition of protein-kinase C (ID50:50 microM), seems rather specific since IdB 1031 does not inhibit tyr-kinases and casein-kinase-2, while Quercetin and other flavonoids inhibit unspecifically all these enzymes. These effects, as a whole, depict this compound as a drug candidate for diseases in which peroxidative damage is associated with the induction of inflammatory responses and specifically with activation of a respiratory burst of leucocytes.
Collapse
Affiliation(s)
- F Ursini
- Department of Chemical Science and Technology, University of Udine, Italy
| | | | | | | | | |
Collapse
|