51
|
Abstract
Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.
Collapse
|
52
|
Detorakis GI, Chaillet A, Palfi S, Senova S. Closed-loop stimulation of a delayed neural fields model of parkinsonian STN-GPe network: a theoretical and computational study. Front Neurosci 2015; 9:237. [PMID: 26217171 PMCID: PMC4498106 DOI: 10.3389/fnins.2015.00237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/22/2015] [Indexed: 11/13/2022] Open
Abstract
Several disorders are related to pathological brain oscillations. In the case of Parkinson's disease, sustained low-frequency oscillations (especially in the β-band, 13-30 Hz) correlate with motor symptoms. It is still under debate whether these oscillations are the cause of parkinsonian motor symptoms. The development of techniques enabling selective disruption of these β-oscillations could contribute to the understanding of the underlying mechanisms, and could be exploited for treatments. A particularly appealing technique is Deep Brain Stimulation (DBS). With clinical electrical DBS, electrical currents are delivered at high frequency to a region made of potentially heterogeneous neurons (the subthalamic nucleus (STN) in the case of Parkinson's disease). Even more appealing is DBS with optogenetics, which is until now a preclinical method using both gene transfer and deep brain light delivery and enabling neuromodulation at the scale of one given neural network. In this work, we rely on delayed neural fields models of STN and the external Globus Pallidus (GPe) to develop, theoretically validate and test in silico a closed-loop stimulation strategy to disrupt these sustained oscillations with optogenetics. First, we rely on tools from control theory to provide theoretical conditions under which sustained oscillations can be attenuated by a closed-loop stimulation proportional to the measured activity of STN. Second, based on this theoretical framework, we show numerically that the proposed closed-loop stimulation efficiently attenuates sustained oscillations, even in the case when the photosensitization effectively affects only 50% of STN neurons. We also show through simulations that oscillations disruption can be achieved when the same light source is used for the whole STN population. We finally test the robustness of the proposed strategy to possible acquisition and processing delays, as well as parameters uncertainty.
Collapse
Affiliation(s)
- Georgios Is. Detorakis
- Laboratoire des Signaux et Systèmes, CentraleSupelecGif-sur-Yvette, France
- Faculté des Sciences, Université Paris SudOrsay, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes, CentraleSupelecGif-sur-Yvette, France
- Faculté des Sciences, Université Paris SudOrsay, France
| | - Stéphane Palfi
- AP-HP, Hospital H. Mondor, Service de neurochirurgieCréteil, France
- Institut National de la Santé et de la Recherche Médicale, U955, Equipe 14Créteil, France
- Faculty of Medicine, Université Paris EstCréteil, France
| | - Suhan Senova
- AP-HP, Hospital H. Mondor, Service de neurochirurgieCréteil, France
- Institut National de la Santé et de la Recherche Médicale, U955, Equipe 14Créteil, France
- Faculty of Medicine, Université Paris EstCréteil, France
| |
Collapse
|
53
|
Lavian H, Korngreen A. Inhibitory short-term plasticity modulates neuronal activity in the rat entopeduncular nucleus in vitro. Eur J Neurosci 2015; 43:870-84. [PMID: 26013247 DOI: 10.1111/ejn.12965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022]
Abstract
The entopeduncular nucleus (EP) is one of the basal ganglia output nuclei integrating synaptic information from several pathways within the basal ganglia. The firing of EP neurons is modulated by two streams of inhibitory synaptic transmission, the direct pathway from the striatum and the indirect pathway from the globus pallidus. These two inhibitory pathways continuously modulate the firing of EP neurons. However, the link between these synaptic inputs to neuronal firing in the EP is unclear. To investigate this input-output transformation we performed whole-cell and perforated-patch recordings from single neurons in the entopeduncular nucleus in rat brain slices during repetitive stimulation of the striatum and the globus pallidus at frequencies within the in vivo activity range of these neurons. These recordings, supplemented by compartmental modelling, showed that GABAergic synapses from the striatum, converging on EP dendrites, display short-term facilitation and that somatic or proximal GABAergic synapses from the globus pallidus show short-term depression. Activation of striatal synapses during low presynaptic activity decreased postsynaptic firing rate by continuously increasing the inter-spike interval. Conversely, activation of pallidal synapses significantly affected postsynaptic firing during high presynaptic activity. Our data thus suggest that low-frequency striatal output may be encoded as progressive phase shifts in downstream nuclei of the basal ganglia while high-frequency pallidal output may continuously modulate EP firing.
Collapse
Affiliation(s)
- Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
54
|
Chen L, Xu R, Sun FJ, Xue Y, Hao XM, Liu HX, Wang H, Chen XY, Liu ZR, Deng WS, Han XH, Xie JX, Yung WH. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo. Mol Cell Neurosci 2015; 68:46-55. [PMID: 25858108 DOI: 10.1016/j.mcn.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 01/27/2023] Open
Abstract
The globus pallidus plays a significant role in motor control under both health and pathological states. Recent studies have revealed that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels occupy a critical position in globus pallidus pacemaking activity. Morphological studies have shown the expression of HCN channels in the globus pallidus. To investigate the in vivo effects of HCN channels in the globus pallidus, extracellular recordings and behavioral tests were performed in the present study. In normal rats, micro-pressure ejection of 0.05mM ZD7288, the selective HCN channel blocker, decreased the frequency of spontaneous firing in 21 out of the 40 pallidal neurons. The average decrease was 50.4±5.4%. Interestingly, in another 18 out of the 40 pallidal neurons, ZD7288 increased the firing rate by 137.1±27.6%. Similar bidirectional modulation on the firing rate was observed by a higher concentration of ZD7288 (0.5mM) as well as another HCN channel blocker, CsCl. Furthermore, activation of HCN channels by 8-Br-cAMP increased the firing rate by 63.0±9.3% in 15 out of the 25 pallidal neurons and decreased the firing rate by 46.9±9.4% in another 8 out of the 25 pallidal neurons. Further experiments revealed that modulation of glutamatergic but not GABAergic transmission may be involved in ZD7288-induced increase in firing rate. Consistent with electrophysiological results, further studies revealed that modulation of HCN channels also had bidirectional effects on behavior. Taken together, the present studies suggest that HCN channels may modulate the activity of pallidal neurons by different pathways in vivo.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China.
| | - Rong Xu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Feng-Jiao Sun
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Yan Xue
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Meng Hao
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hong-Xia Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hua Wang
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xin-Yi Chen
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zi-Ran Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wen-Shuai Deng
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Hua Han
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Jun-Xia Xie
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
55
|
Karain B, Xu D, Bellone JA, Hartman RE, Shi WX. Rat globus pallidus neurons: functional classification and effects of dopamine depletion. Synapse 2015; 69:41-51. [PMID: 25196543 PMCID: PMC4428331 DOI: 10.1002/syn.21783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/23/2014] [Indexed: 12/23/2022]
Abstract
The rat globus pallidus (GP) is homologous to the primate GP externus. Studies with injectable anesthetics suggest that GP neurons can be classified into Type-I and Type-II cells based on extracellularly recorded spike shape, or positively coupled (PC), negatively coupled (NC), and uncoupled (UC) cells based on functional connectivity with the cortex. In this study, we examined the electrophysiology of rat GP neurons using the inhalational anesthetic isoflurane which offers more constant and easily regulated levels of anesthesia than injectable anesthetics. In 130 GP neurons recorded using small-tip glass electrodes (<1 μm), all but one fired Type-II spikes (positive/negative waveform). Type-I cells were unlikely to be inhibited by isoflurane since all GP neurons also fired Type-II spikes under ketamine-induced anesthesia. When recorded with large-tip electrodes (∼2 μm), however, over 70% of GP neurons exhibited Type-I spikes (negative/positive waveform). These results suggest that the spike shape, recorded extracellularly, varies depending on the electrode used and is not reliable in distinguishing Type-I and Type-II neurons. Using dual-site recording, 40% of GP neurons were identified as PC cells, 17.5% NC cells, and 42.5% UC cells. The three subtypes also differed significantly in firing rate and pattern. Lesions of dopamine neurons increased the number of NC cells, decreased that of UC cells, and significantly shifted the phase relationship between PC cells and the cortex. These results support the presence of GP neuron subtypes and suggest that each subtype plays a different role in the pathophysiology of Parkinson's disease. Synapse 69:41-51, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brad Karain
- Department of Basic Sciences, Loma Linda University Health Schools of Medicine, Pharmacy, and Behavioral Health Loma Linda, CA 92350, USA
| | - Dan Xu
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health Schools of Medicine, Pharmacy, and Behavioral Health Loma Linda, CA 92350, USA
| | - John A. Bellone
- Department of Psychology, Loma Linda University Health Schools of Medicine, Pharmacy, and Behavioral Health Loma Linda, CA 92350, USA
| | - Richard E. Hartman
- Department of Psychology, Loma Linda University Health Schools of Medicine, Pharmacy, and Behavioral Health Loma Linda, CA 92350, USA
| | - Wei-Xing Shi
- Department of Basic Sciences, Loma Linda University Health Schools of Medicine, Pharmacy, and Behavioral Health Loma Linda, CA 92350, USA
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health Schools of Medicine, Pharmacy, and Behavioral Health Loma Linda, CA 92350, USA
| |
Collapse
|
56
|
Liénard J, Girard B. A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. J Comput Neurosci 2014; 36:445-68. [PMID: 24077957 DOI: 10.1007/s10827-013-0476-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 05/30/2013] [Accepted: 08/04/2013] [Indexed: 11/28/2022]
Abstract
The basal ganglia nuclei form a complex network of nuclei often assumed to perform selection, yet their individual roles and how they influence each other is still largely unclear. In particular, the ties between the external and internal parts of the globus pallidus are paradoxical, as anatomical data suggest a potent inhibitory projection between them while electrophysiological recordings indicate that they have similar activities. Here we introduce a theoretical study that reconciles both views on the intra-pallidal projection, by providing a plausible characterization of the relationship between the external and internal globus pallidus. Specifically, we developed a mean-field model of the whole basal ganglia, whose parameterization is optimized to respect best a collection of numerous anatomical and electrophysiological data. We first obtained models respecting all our constraints, hence anatomical and electrophysiological data on the intrapallidal projection are globally consistent. This model furthermore predicts that both aforementioned views about the intra-pallidal projection may be reconciled when this projection is weakly inhibitory, thus making it possible to support similar neural activity in both nuclei and for the entire basal ganglia to select between actions. Second, we predicts that afferent projections are substantially unbalanced towards the external segment, as it receives the strongest excitation from STN and the weakest inhibition from the striatum. Finally, our study strongly suggests that the intrapallidal connection pattern is not focused but diffuse, as this latter pattern is more efficient for the overall selection performed in the basal ganglia.
Collapse
|
57
|
Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J Neurosci 2014; 34:2087-99. [PMID: 24501350 DOI: 10.1523/jneurosci.4646-13.2014] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell-type diversity in the brain enables the assembly of complex neural circuits, whose organization and patterns of activity give rise to brain function. However, the identification of distinct neuronal populations within a given brain region is often complicated by a lack of objective criteria to distinguish one neuronal population from another. In the external segment of the globus pallidus (GPe), neuronal populations have been defined using molecular, anatomical, and electrophysiological criteria, but these classification schemes are often not generalizable across preparations and lack consistency even within the same preparation. Here, we present a novel use of existing transgenic mouse lines, Lim homeobox 6 (Lhx6)-Cre and parvalbumin (PV)-Cre, to define genetically distinct cell populations in the GPe that differ molecularly, anatomically, and electrophysiologically. Lhx6-GPe neurons, which do not express PV, are concentrated in the medial portion of the GPe. They have lower spontaneous firing rates, narrower dynamic ranges, and make stronger projections to the striatum and substantia nigra pars compacta compared with PV-GPe neurons. In contrast, PV-GPe neurons are more concentrated in the lateral portions of the GPe. They have narrower action potentials, deeper afterhyperpolarizations, and make stronger projections to the subthalamic nucleus and parafascicular nucleus of the thalamus. These electrophysiological and anatomical differences suggest that Lhx6-GPe and PV-GPe neurons participate in different circuits with the potential to contribute to different aspects of motor function and dysfunction in disease.
Collapse
|
58
|
Benhamou L, Cohen D. Electrophysiological characterization of entopeduncular nucleus neurons in anesthetized and freely moving rats. Front Syst Neurosci 2014; 8:7. [PMID: 24574980 PMCID: PMC3918587 DOI: 10.3389/fnsys.2014.00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/12/2014] [Indexed: 11/30/2022] Open
Abstract
The EntoPeduncular nucleus (EP), which is homologous to the internal segment of the Globus Pallidus (GPi) in primates, is one of the two basal ganglia (BG) output nuclei. Despite their importance in cortico-BG information processing, EP neurons have rarely been investigated in rats and there is no available electrophysiological characterization of EP neurons in vivo. We recorded and analyzed the activity of EP neurons in freely moving as well as anesthetized rats, and compared their activity patterns. Examination of neuronal firing statistics during wakefulness suggested that similar to neurons recorded in the primate GPi, EP neurons are a single population characterized by Poisson-like firing. Under isoflurane anesthesia the firing rate of EP neurons decreased substantially and their coefficient of variation and relative duration of quiescence periods increased. Investigation of the relationship between firing rate and depth of anesthesia revealed two distinct neuronal groups: one that decreased its firing rate with the increase in anesthesia level, and a second group where the firing rate was independent of anesthesia level. Post-hoc examination of the firing properties of the two groups showed that they were statistically distinct. These results may thus help reconcile in vitro studies in rats and primates which have reported two distinct neuronal populations, and in vivo studies in behaving primates indicating one homogeneous population. Our data support the existence of two distinct neuronal populations in the rat EP that can be distinguished by their characteristic firing response to anesthesia.
Collapse
Affiliation(s)
- Liora Benhamou
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
59
|
Lavian H, Ben-Porat H, Korngreen A. High and low frequency stimulation of the subthalamic nucleus induce prolonged changes in subthalamic and globus pallidus neurons. Front Syst Neurosci 2013; 7:73. [PMID: 24391553 PMCID: PMC3866651 DOI: 10.3389/fnsys.2013.00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/04/2013] [Indexed: 11/23/2022] Open
Abstract
High frequency stimulation (HFS) of the subthalamic nucleus (STN) is widely used to treat the symptoms of Parkinson’s disease (PD) but the mechanism of this therapy is unclear. Using a rat brain slice preparation maintaining the connectivity between the STN and one of its target nuclei, the globus pallidus (GP), we investigated the effects of high and low frequency stimulation (LFS) (HFS 100 Hz, LFS 10 Hz) on activity of single neurons in the STN and GP. Both HFS and LFS caused changes in firing frequency and pattern of subthalamic and pallidal neurons. These changes were of synaptic origin, as they were abolished by glutamate and GABA antagonists. Both HFS and LFS also induced a long-lasting reduction in firing frequency in STN neurons possibly contending a direct causal link between HFS and the outcome DBS. In the GP both HFS and LFS induced either a long-lasting depression, or less frequently, a long-lasting excitation. Thus, in addition to the intrinsic activation of the stimulated neurons, long-lasting stimulation of the STN may trigger prolonged biochemical processes.
Collapse
Affiliation(s)
- Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University Ramat Gan, Israel ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat Gan, Israel
| | - Hana Ben-Porat
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University Ramat Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University Ramat Gan, Israel ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat Gan, Israel
| |
Collapse
|
60
|
Nevado-Holgado AJ, Mallet N, Magill PJ, Bogacz R. Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations. J Physiol 2013; 592:1429-55. [PMID: 24344162 PMCID: PMC3979604 DOI: 10.1113/jphysiol.2013.259721] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In Parkinsonism, subthalamic nucleus (STN) neurons and two types of external globus pallidus (GP) neuron inappropriately synchronise their firing in time with slow (∼1 Hz) or beta (13-30 Hz) oscillations in cortex. We recorded the activities of STN, Type-I GP (GP-TI) and Type-A GP (GP-TA) neurons in anaesthetised Parkinsonian rats during such oscillations to constrain a series of computational models that systematically explored the effective connections and physiological parameters underlying neuronal rhythmic firing and phase preferences in vivo. The best candidate model, identified with a genetic algorithm optimising accuracy/complexity measures, faithfully reproduced experimental data and predicted that the effective connections of GP-TI and GP-TA neurons are quantitatively different. Estimated inhibitory connections from striatum were much stronger to GP-TI neurons than to GP-TA neurons, whereas excitatory connections from thalamus were much stronger to GP-TA and STN neurons than to GP-TI neurons. Reciprocal connections between GP-TI and STN neurons were matched in weight, but those between GP-TA and STN neurons were not; only GP-TI neurons sent substantial connections back to STN. Different connection weights between and within the two types of GP neuron were also evident. Adding to connection differences, GP-TA and GP-TI neurons were predicted to have disparate intrinsic physiological properties, reflected in distinct autonomous firing rates. Our results elucidate potential substrates of GP functional dichotomy, and emphasise that rhythmic inputs from striatum, thalamus and cortex are important for setting activity in the STN-GP network during Parkinsonian beta oscillations, suggesting they arise from interactions between most nodes of basal ganglia-thalamocortical circuits.
Collapse
Affiliation(s)
- Alejo J Nevado-Holgado
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Mansfield Road, University of Oxford, Oxford OX1 3TH, UK. ; R. Bogacz: Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | | | | | | |
Collapse
|
61
|
Gonzales KK, Pare JF, Wichmann T, Smith Y. GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 2013; 521:2502-22. [PMID: 23296794 PMCID: PMC3983787 DOI: 10.1002/cne.23295] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/14/2012] [Accepted: 12/27/2012] [Indexed: 01/30/2023]
Abstract
Striatal cholinergic interneurons (ChIs) are involved in reward-dependent learning and the regulation of attention. The activity of these neurons is modulated by intrinsic and extrinsic γ-aminobutyric acid (GABA)ergic and glutamatergic afferents, but the source and relative prevalence of these diverse regulatory inputs remain to be characterized. To address this issue, we performed a quantitative ultrastructural analysis of the GABAergic and glutamatergic innervation of ChIs in the postcommissural putamen of rhesus monkeys. Postembedding immunogold localization of GABA combined with peroxidase immunostaining for choline acetyltransferase showed that 60% of all synaptic inputs to ChIs originate from GABAergic terminals, whereas 21% are from putatively glutamatergic terminals that establish asymmetric synapses, and 19% from other (non-GABAergic) sources of symmetric synapses. Double pre-embedding immunoelectron microscopy using substance P and Met-/Leu-enkephalin antibodies to label GABAergic terminals from collaterals of "direct" and "indirect" striatal projection neurons, respectively, revealed that 47% of the indirect pathway terminals and 36% of the direct pathway terminals target ChIs. Together, substance P- and enkephalin-positive terminals represent 24% of all synapses onto ChIs in the monkey putamen. These findings show that ChIs receive prominent GABAergic inputs from multiple origins, including a significant contingent from axon collaterals of direct and indirect pathway projection neurons.
Collapse
Affiliation(s)
- Kalynda Kari Gonzales
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Department of Neurology, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Department of Neurology, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
62
|
Kim J, Kita H. Short-term plasticity shapes activity pattern-dependent striato-pallidal synaptic transmission. J Neurophysiol 2012. [PMID: 23197459 DOI: 10.1152/jn.00459.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cortico-striato (Str)-globus pallidus external segment (GPe) projection plays major roles in the control of neuronal activity in the basal ganglia under both normal and pathological conditions. The present study used rat brain-slice preparations to address our hypothesis that the gain of this disynaptic projection is dynamically controlled by activations of short-term plasticity mechanisms of Str-GPe synapses. The Str-GPe projection neurons fire with very different frequency and firing patterns in vivo depending on the condition of the animal. The results show that the Str-GPe synapses have very strong short-term enhancement mechanisms and that repetitive burst activation of the Str-GPe synapses, which mimic oscillatory burst firing of Str neurons, can sustain enhanced states of synaptic transmission for tens of seconds. The results reveal that the short-term enhancement of Str-GPe synapses contributes to the generation of pauses in the firing of GPe neurons and that signal transfer function in the Str-GPe projection is highly dependent on the firing pattern of Str neurons.
Collapse
Affiliation(s)
- Juhyon Kim
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
63
|
Pavlides A, Hogan SJ, Bogacz R. Improved conditions for the generation of beta oscillations in the subthalamic nucleus--globus pallidus network. Eur J Neurosci 2012; 36:2229-39. [PMID: 22805067 DOI: 10.1111/j.1460-9568.2012.08105.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A key pathology in the development of Parkinson's disease is the occurrence of persistent beta oscillations, which are correlated with difficulty in movement initiation. We investigated the network model composed of the subthalamic nucleus (STN) and globus pallidus (GP) developed by A. Nevado Holgado et al. [(2010) Journal of Neuroscience, 30, 12340-12352], who identified the conditions under which this circuit could generate beta oscillations. Our work extended their analysis by deriving improved analytic stability conditions for realistic values of the synaptic transmission delay between STN and GP neurons. The improved conditions were significantly closer to the results of simulations for the range of synaptic transmission delays measured experimentally. Furthermore, our analysis explained how changes in cortical and striatal input to the STN-GP network influenced oscillations generated by the circuit. As we have identified when a system of mutually connected populations of excitatory and inhibitory neurons can generate oscillations, our results may also find applications in the study of neural oscillations produced by assemblies of excitatory and inhibitory neurons in other brain regions.
Collapse
Affiliation(s)
- Alex Pavlides
- Bristol Centre for Complexity Sciences, Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK.
| | | | | |
Collapse
|
64
|
Benhamou L, Bronfeld M, Bar-Gad I, Cohen D. Globus Pallidus external segment neuron classification in freely moving rats: a comparison to primates. PLoS One 2012; 7:e45421. [PMID: 23028997 PMCID: PMC3448641 DOI: 10.1371/journal.pone.0045421] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/22/2012] [Indexed: 12/02/2022] Open
Abstract
Globus Pallidus external segment (GPe) neurons are well-characterized in behaving primates. Based on their firing properties, these neurons are commonly divided into two distinct groups: high frequency pausers (HFP) and low frequency bursters (LFB). However, no such characterization has been made for behaving rats. The current study characterizes and categorizes extracellularly recorded GPe neurons in freely moving rats, and compares these results to those obtained by extracellular recordings in behaving primates using the same analysis methods. Analysis of our data recorded in rats revealed two distinct neuronal populations exhibiting firing-pattern characteristics that are similar to those obtained in primates. These characteristic firing patterns are conserved between species although the firing rate is significantly lower in rats than in primates. Significant differences in waveform duration and shape were insufficient to create a reliable waveform-based classification in either species. The firing pattern analogy may emphasize conserved processing properties over firing rate per-se. Given the similarity in GPe neuronal activity between human and non-human primates in different pathologies, our results encourage information transfer using complementary studies across species in the GPe to acquire a better understanding of the function of this nucleus in health and disease.
Collapse
Affiliation(s)
- Liora Benhamou
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Maya Bronfeld
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
65
|
Alexander GE. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033559 PMCID: PMC3181806 DOI: 10.31887/dcns.2004.6.3/galexander] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common movement disorder. The characteristic motor impairments - bradykinesia, rigidity, and resting tremor - result from degenerative loss of midbrain dopamine (DA) neurons in the substantia nigra, and are responsive to symptomatic treatment with dopaminergic medications and functional neurosurgery. PD is also the second most common neurodegenerative disorder. Viewed from this perspective, PD is a disorder of multiple functional systems, not simply the motor system, and of multiple neurotransmitter systems, not merely that of DA. The characteristic pathology - intraneuronal Lewy body inclusions and reduced numbers of surviving neurons - is similar in each of the targeted neuron groups, suggesting a common neurodegenerative process. Pathological and experimental studies indicate that oxidative stress, proteolytic stress, and inflammation figure prominently in the pathogenesis of PD. Yet, whether any of these mechanisms plays a causal role in human PD is unknown, because to date we have no proven neuroprotective therapies that slow or reverse disease progression in patients with PD. We are beginning to understand the pathophysiology of motor dysfunction in PD, but its etiopathogenesis as a neurodegenerative disorder remains poorly understood.
Collapse
Affiliation(s)
- Garrett E Alexander
- Department of Neurology, Emory University School of Medicine, Atlanta, Ga, USA
| |
Collapse
|
66
|
Ge S, Yang C, Li M, Li J, Chang X, Fu J, Chen L, Chang C, Wang X, Zhu J, Gao G. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats. Brain Res 2012; 1465:66-79. [DOI: 10.1016/j.brainres.2012.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 04/24/2012] [Accepted: 05/02/2012] [Indexed: 11/29/2022]
|
67
|
Goldberg J, Bergman H. Computational physiology of the neural networks of the primate globus pallidus: function and dysfunction. Neuroscience 2011; 198:171-92. [DOI: 10.1016/j.neuroscience.2011.08.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|
68
|
Kumar A, Cardanobile S, Rotter S, Aertsen A. The role of inhibition in generating and controlling Parkinson's disease oscillations in the Basal Ganglia. Front Syst Neurosci 2011; 5:86. [PMID: 22028684 PMCID: PMC3199726 DOI: 10.3389/fnsys.2011.00086] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/03/2011] [Indexed: 11/23/2022] Open
Abstract
Movement disorders in Parkinson’s disease (PD) are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe) is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep-brain-stimulation (DBS). These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behavior under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients.
Collapse
Affiliation(s)
- Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg Germany
| | | | | | | |
Collapse
|
69
|
So RQ, Kent AR, Grill WM. Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. J Comput Neurosci 2011; 32:499-519. [PMID: 21984318 DOI: 10.1007/s10827-011-0366-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/16/2011] [Accepted: 09/21/2011] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation (DBS) and lesioning are two surgical techniques used in the treatment of advanced Parkinson's disease (PD) in patients whose symptoms are not well controlled by drugs, or who experience dyskinesias as a side effect of medications. Although these treatments have been widely practiced, the mechanisms behind DBS and lesioning are still not well understood. The subthalamic nucleus (STN) and globus pallidus pars interna (GPi) are two common targets for both DBS and lesioning. Previous studies have indicated that DBS not only affects local cells within the target, but also passing axons within neighboring regions. Using a computational model of the basal ganglia-thalamic network, we studied the relative contributions of activation and silencing of local cells (LCs) and fibers of passage (FOPs) to changes in the accuracy of information transmission through the thalamus (thalamic fidelity), which is correlated with the effectiveness of DBS. Activation of both LCs and FOPs during STN and GPi-DBS were beneficial to the outcome of stimulation. During STN and GPi lesioning, effects of silencing LCs and FOPs were different between the two types of lesioning. For STN lesioning, silencing GPi FOPs mainly contributed to its effectiveness, while silencing only STN LCs did not improve thalamic fidelity. In contrast, silencing both GPi LCs and GPe FOPs during GPi lesioning contributed to improvements in thalamic fidelity. Thus, two distinct mechanisms produced comparable improvements in thalamic function: driving the output of the basal ganglia to produce tonic inhibition and silencing the output of the basal ganglia to produce tonic disinhibition. These results show the importance of considering effects of activating or silencing fibers passing close to the nucleus when deciding upon a target location for DBS or lesioning.
Collapse
Affiliation(s)
- Rosa Q So
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, NC 27708-0281, USA
| | | | | |
Collapse
|
70
|
Cruz AV, Mallet N, Magill PJ, Brown P, Averbeck BB. Effects of dopamine depletion on information flow between the subthalamic nucleus and external globus pallidus. J Neurophysiol 2011; 106:2012-23. [PMID: 21813748 PMCID: PMC3191831 DOI: 10.1152/jn.00094.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/29/2011] [Indexed: 11/22/2022] Open
Abstract
Abnormal oscillatory synchrony is increasingly acknowledged as a pathophysiological hallmark of Parkinson's disease, but what promotes such activity remains unclear. We used novel, nonlinear time series analyses and information theory to capture the effects of dopamine depletion on directed information flow within and between the subthalamic nucleus (STN) and external globus pallidus (GPe). We compared neuronal activity recorded simultaneously from these nuclei in 6-hydroxydopamine-lesioned Parkinsonian rats with that in dopamine-intact control rats. After lesioning, both nuclei displayed pronounced augmentations of beta-frequency (∼20 Hz) oscillations and, critically, information transfer between STN and GPe neurons was increased. Furthermore, temporal profiles of the directed information transfer agreed with the neurochemistry of these nuclei, being "excitatory" from STN to GPe and "inhibitory" from GPe to STN. Separation of the GPe population in lesioned animals into "type-inactive" (GP-TI) and "type-active" (GP-TA) neurons, according to definitive firing preferences, revealed distinct temporal profiles of interaction with STN and each other. The profile of GP-TI neurons suggested their output is of greater causal significance than that of GP-TA neurons for the reduced activity that periodically punctuates the spiking of STN neurons during beta oscillations. Moreover, STN was identified as a key candidate driver for recruiting ensembles of GP-TI neurons but not GP-TA neurons. Short-latency interactions between GP-TI and GP-TA neurons suggested mutual inhibition, which could rhythmically dampen activity and promote anti-phase firing across the two subpopulations. Results thus indicate that information flow around the STN-GPe circuit is exaggerated in Parkinsonism and further define the temporal interactions underpinning this.
Collapse
Affiliation(s)
- Ana V Cruz
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | | | | | | | | |
Collapse
|
71
|
Effects of pallidal neurotensin on haloperidol-induced parkinsonian catalepsy: behavioral and electrophysiological studies. Neurosci Bull 2011; 26:345-54. [PMID: 20882060 DOI: 10.1007/s12264-010-0518-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE The globus pallidus plays a critical role in movement regulation. Previous studies have indicated that the globus pallidus receives neurotensinergic innervation from the striatum, and systemic administration of a neurotensin analog could produce antiparkinsonian effects. The present study aimed to investigate the effects of pallidal neurotensin on haloperidol-induced parkinsonian symptoms. METHODS Behavioral experiments and electrophysiological recordings were performed in the present study. RESULTS Bilateral infusions of neurotensin into the globus pallidus reversed haloperidol-induced parkinsonian catalepsy in rats. Electrophysiological recordings showed that microinjection of neurotensin induced excitation of pallidal neurons in the presence of systemic haloperidol administration. The neurotensin type-1 receptor antagonist SR48692 blocked both the behavioral and the electrophysiological effects induced by neurotensin. CONCLUSION Activation of pallidal neurotensin receptors may be involved in neurotensin-induced antiparkinsonian effects.
Collapse
|
72
|
Li X, Luo F, Shi L, Woodward DJ, Chang J. Ensemble neural activity of the frontal cortical basal ganglia system predicts reaction time task performance in rats. Neurosci Res 2011; 71:149-60. [PMID: 21781993 DOI: 10.1016/j.neures.2011.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/13/2011] [Accepted: 06/30/2011] [Indexed: 01/08/2023]
Abstract
The question pursued in this study was when neural activity appears in the cortico-basal ganglia system that could predict alternate behavioral responses in a reaction time (RT) task. In this protocol, rats first performed a nose poke to initiate a trial, depressed a lever when presented, and then released the lever after a tone cue. Multiple-channel, single-unit recordings (up to 62 units) were obtained simultaneously from the prefrontal cortex, the dorsal medial striatum, the globus pallidus, and the substantia nigra pars reticulata in a single rat during a session. Results indicated that (1) global alterations of neural activity appeared in clusters, which was associated with different behavioral components and observed in each of the targeted areas; (2) small independent subsets of neurons responded differently between error (lever was released before tone presentation) and correct trials (lever was released within 0.5s after tone onset) during these behavioral episodes; (3) significant correlations between RTs and single units activities were found in the early preparation phases of the task. The results reveal that complex early preparatory activity exists several seconds before the final movements in a RT task, which may determine executive functions leading to rapid decoding of alternate behavioral performances.
Collapse
Affiliation(s)
- Xianghong Li
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing, China
| | | | | | | | | |
Collapse
|
73
|
Wilson CJ, Beverlin B, Netoff T. Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Front Syst Neurosci 2011; 5:50. [PMID: 21734868 PMCID: PMC3122072 DOI: 10.3389/fnsys.2011.00050] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/05/2011] [Indexed: 11/13/2022] Open
Abstract
High frequency deep-brain stimulation of the subthalamic nucleus (deep brain stimulation, DBS) relieves many of the symptoms of Parkinson's disease in humans and animal models. Although the treatment has seen widespread use, its therapeutic mechanism remains paradoxical. The subthalamic nucleus is excitatory, so its stimulation at rates higher than its normal firing rate should worsen the disease by increasing subthalamic excitation of the globus pallidus. The therapeutic effectiveness of DBS is also frequency and intensity sensitive, and the stimulation must be periodic; aperiodic stimulation at the same mean rate is ineffective. These requirements are not adequately explained by existing models, whether based on firing rate changes or on reduced bursting. Here we report modeling studies suggesting that high frequency periodic excitation of the subthalamic nucleus may act by desynchronizing the firing of neurons in the globus pallidus, rather than by changing the firing rate or pattern of individual cells. Globus pallidus neurons are normally desynchronized, but their activity becomes correlated in Parkinson's disease. Periodic stimulation may induce chaotic desynchronization by interacting with the intrinsic oscillatory mechanism of globus pallidus neurons. Our modeling results suggest a mechanism of action of DBS and a pathophysiology of Parkinsonism in which synchrony, rather than firing rate, is the critical pathological feature.
Collapse
Affiliation(s)
- Charles J Wilson
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | | | | |
Collapse
|
74
|
Moran A, Stein E, Tischler H, Belelovsky K, Bar-Gad I. Dynamic stereotypic responses of Basal Ganglia neurons to subthalamic nucleus high-frequency stimulation in the parkinsonian primate. Front Syst Neurosci 2011; 5:21. [PMID: 21559345 PMCID: PMC3085177 DOI: 10.3389/fnsys.2011.00021] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 04/08/2011] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is a well-established therapy for patients with severe Parkinson's disease (PD); however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia (BG) during high-frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro-stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, BG output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial effect of DBS in PD.
Collapse
Affiliation(s)
- Anan Moran
- The Leslie and Susan Gonda Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
75
|
Jin XT, Paré JF, Smith Y. Differential localization and function of GABA transporters, GAT-1 and GAT-3, in the rat globus pallidus. Eur J Neurosci 2011; 33:1504-18. [PMID: 21410779 DOI: 10.1111/j.1460-9568.2011.07636.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
GABA transporter subtype 1 (GAT-1) and GABA transporter subtype 3 (GAT-3) are the main transporters that regulate inhibitory GABAergic transmission in the mammalian brain through GABA reuptake. In this study, we characterized the ultrastructural localizations and determined the respective roles of these transporters in regulating evoked inhibitory postsynaptic currents (eIPSCs) in globus pallidus (GP) neurons after striatal stimulation. In the young and adult rat GP, GAT-1 was preferentially expressed in unmyelinated axons, whereas GAT-3 was almost exclusively found in glial processes. Except for rare instances of GAT-1 localization, neither of the two transporters was significantly expressed in GABAergic terminals in the rat GP. 1-(4,4-Diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) (10 μm), a GAT-1 inhibitor, significantly prolonged the decay time, but did not affect the amplitude, of eIPSCs induced by striatal stimulation (15-20 V). On the other hand, the semi-selective GAT-3 inhibitor 1-(2-[tris(4-methoxyphenyl)methoxy]ethyl)-(S)-3-piperidinecarboxylic acid (SNAP 5114) (10 μm) increased the amplitude and prolonged the decay time of eIPSCs. The effects of transporter blockade on the decay time and amplitude of eIPSCs were further increased when both inhibitors were applied together. Furthermore, SKF 89976A or SNAP 5114 blockade also increased the amplitude and frequency of spontaneous IPSCs, but did not affect miniature IPSCs. Significant GABA(A) receptor-mediated tonic currents were induced in the presence of high concentrations of both SKF 89976A (30 μm) and SNAP 5114 (30 μm). In conclusion, these data indicate that GAT-1 and GAT-3 represent different target sites through which GABA reuptake may subserve complementary regulation of GABAergic transmission in the rat GP.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
76
|
Chan CS, Glajch KE, Gertler TS, Guzman JN, Mercer JN, Lewis AS, Goldberg AB, Tkatch T, Shigemoto R, Fleming SM, Chetkovich DM, Osten P, Kita H, Surmeier DJ. HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease. Nat Neurosci 2011; 14:85-92. [PMID: 21076425 PMCID: PMC3058391 DOI: 10.1038/nn.2692] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/01/2010] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder characterized by a profound motor disability that is traceable to the emergence of synchronous, rhythmic spiking in neurons of the external segment of the globus pallidus (GPe). The origins of this pathophysiology are poorly defined for the generation of pacemaking. After the induction of a parkinsonian state in mice, there was a progressive decline in autonomous GPe pacemaking, which normally serves to desynchronize activity. The loss was attributable to the downregulation of an ion channel that is essential in pacemaking, the hyperpolarization and cyclic nucleotide-gated (HCN) channel. Viral delivery of HCN2 subunits restored pacemaking and reduced burst spiking in GPe neurons. However, the motor disability induced by dopamine (DA) depletion was not reversed, suggesting that the loss of pacemaking was a consequence, rather than a cause, of key network pathophysiology, a conclusion that is consistent with the ability of L-type channel antagonists to attenuate silencing after DA depletion.
Collapse
Affiliation(s)
- C. Savio Chan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kelly E. Glajch
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tracy S. Gertler
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaime N. Guzman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeff N. Mercer
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alan S. Lewis
- Department of Neurology and Clinical Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alan B. Goldberg
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tatiana Tkatch
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ryuichi Shigemoto
- Division of Cerebral Structures, National Institutes for Physiological Sciences, Myodaiji, Okazaki 444–8787, Japan
| | - Sheila M. Fleming
- Department of Psychology, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Dane M. Chetkovich
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology and Clinical Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pavel Osten
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hitoshi Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Memphis, Memphis, TN 38163, USA
| | - D. James Surmeier
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
77
|
Moyer JT, Danish SF, Finkel LH. Deep brain stimulation: anatomical, physiological, and computational mechanisms. NETWORK (BRISTOL, ENGLAND) 2011; 22:186-207. [PMID: 22149679 DOI: 10.3109/0954898x.2011.638356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Jason T Moyer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, U.S.A
| | | | | |
Collapse
|
78
|
Jin XT, Smith Y. Localization and functions of kainate receptors in the basal ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 717:27-37. [PMID: 21713664 DOI: 10.1007/978-1-4419-9557-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Kainate receptors (KARs) are one of the three subtypes of ionotropic glutamate receptors in the CNS. These receptors are widely expressed pre- and postsynaptically throughout the brain. Thus, kainate receptor activation mediates a large variety of pre- and postsynaptic effects on either glutamatergic or GABAergic synaptic transmission. Although ionotropic functions for KAR have been described in multiple brain regions, there is considerable evidence from various CNS regions that KARs activation modulates GABA release through either G-protein dependent metabotropic pathway or secondary activation of G-protein coupled receptors. In the present chapter, we provide further evidence supporting that these two pathways are also involved in the modulation of GABA release in specific basal ganglia nuclei. Because of their more subtle effects on neurotransmisison regulation than other ionotropic glutamate receptors, KARs represent interesting targets for the future development of pharmacotherapy for basal ganglia diseases.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Division of Neuroscience, Yerkes National Primate Research Center and Department of Neurology, Emory University, 954, Catewood Road Northeast, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
79
|
Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. J Neurosci 2010; 30:12340-52. [PMID: 20844130 DOI: 10.1523/jneurosci.0817-10.2010] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The advance of Parkinson's disease is associated with the existence of abnormal oscillations within the basal ganglia with frequencies in the beta band (13-30 Hz). While the origin of these oscillations remains unknown, there is some evidence suggesting that oscillations observed in the basal ganglia arise due to interactions of two nuclei: the subthalamic nucleus (STN) and the globus pallidus pars externa (GPe). To investigate this hypothesis, we develop a computational model of the STN-GPe network based upon anatomical and electrophysiological studies. Significantly, our study shows that for certain parameter regimes, the model intrinsically oscillates in the beta range. Through an analytical study of the model, we identify a simple set of necessary conditions on model parameters that guarantees the existence of beta oscillations. These conditions for generation of oscillations are described by a set of simple inequalities and can be summarized as follows: (1) The excitatory connections from STN to GPe and the inhibitory connections from GPe to STN need to be sufficiently strong. (2) The time required by neurons to react to their inputs needs to be short relative to synaptic transmission delays. (3) The excitatory input from the cortex to STN needs to be high relative to the inhibition from striatum to GPe. We confirmed the validity of these conditions via numerical simulation. These conditions describe changes in parameters that are consistent with those expected as a result of the development of Parkinson's disease, and predict manipulations that could inhibit the pathological oscillations.
Collapse
|
80
|
Bugaysen J, Bronfeld M, Tischler H, Bar-Gad I, Korngreen A. Electrophysiological characteristics of globus pallidus neurons. PLoS One 2010; 5:e12001. [PMID: 20700458 PMCID: PMC2917366 DOI: 10.1371/journal.pone.0012001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/13/2010] [Indexed: 11/20/2022] Open
Abstract
Extracellular recordings in primates have identified two types of neurons in the external segment of the globus pallidus (GPe): high frequency pausers (HFP) and low frequency bursters (LFB). The aim of the current study was to test whether the properties of HFP and LFB neurons recorded extracellularly in the primate GPe are linked to cellular mechanisms underlying the generation of action potential (AP) firing. Thus, we recorded from primate and rat globus pallidus neurons. Extracellular recordings in primates revealed that in addition to differences in firing patterns the APs of neurons in these two groups have different widths (APex). To quantitatively investigate this difference and to explore the heterogeneity of pallidal neurons we carried out cell-attached and whole-cell recordings from acute slices of the rat globus pallidus (GP, the rodent homolog of the primate GPe), examining both spontaneous and evoked activity. Several parameters related to the extracellular activity were extracted in order to subdivide the population of recorded GP neurons into groups. Statistical analysis showed that the GP neurons in the rodents may be differentiated along six cellular parameters into three subgroups. Combining two of these groups allowed a better separation of the population along nine parameters. Four of these parameters (Fmax, APamp, APhw, and AHPs amplitude) form a subset, suggesting that one group of neurons may generate APs at significantly higher frequencies than the other group. This may suggest that the differences between the HFP and LFB neurons in the primate are related to fundamental underlying differences in their cellular properties.
Collapse
Affiliation(s)
- Jenia Bugaysen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maya Bronfeld
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Hadass Tischler
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
81
|
Song X, Su W, Chen L, Ji JJ. Functional expression of large-conductance Ca2+-activated potassium channels in lateral globus pallidus neurons. Neuroscience 2010; 169:1548-56. [PMID: 20600663 DOI: 10.1016/j.neuroscience.2010.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
The presence of large-conductance Ca(2+)-activated potassium (BK) channels, which are considered to play an important role in the excitability of neurons, in the highly-excitable lateral globus pallidus (LGP) neurons has yet to be confirmed. In this study, we confirmed the functional expression of BK channels in mouse LGP neurons and investigated the characteristics of their single-channel currents using inside-out patch-clamp recordings. These BK channels had a conductance of 276 pS, were activated by the elevation of both the transmembrane potential and intracellular calcium concentration ([Ca(2+)](i)), and were completely blocked by the BK channel-specific blocker paxilline (100 nM). In addition, the channel currents were sensitive to high-energy phosphate compounds and low internal pH. The cellular function of these BK channels was then investigated by nystatin-perforated whole-cell recording. Paxilline (100 nM) had no effect on the frequency and half-width of the action potential (AP) in LGP neurons under control conditions, but significantly attenuated the hyperpolarization that was caused by carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of ATP synthesis. In addition, the pancreatic beta-cell type ATP-sensitive potassium channel (K(ATP) channel) blocker tolbutamide (0.25 mM) also attenuated the hyperpolarization, in a manner similar to paxilline. The voltage-dependent potassium channel blocker tetraethylammonium (TEA, 2 mM) significantly decreased the frequency and increased the half-width of the AP in LGP neurons under control conditions, and attenuated CCCP-induced hyperpolarization to an extent close to that of paxilline. The results presented here suggest that functional BK channels are present in LGP neurons, and may behave as partners of K(ATP) channels in the regulation of neuronal activity under metabolic stress conditions.
Collapse
Affiliation(s)
- X Song
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | |
Collapse
|
82
|
Lobb CJ, Wilson CJ, Paladini CA. A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 2010; 104:403-13. [PMID: 20445035 DOI: 10.1152/jn.00204.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dopaminergic neurons are subject to a significant background GABAergic input in vivo. The presence of this GABAergic background might be expected to inhibit dopaminergic neuron firing. However, dopaminergic neurons are not all silent but instead fire in single-spiking and burst firing modes. Here we present evidence that phasic changes in the tonic activity of GABAergic afferents are a potential extrinsic mechanism that triggers bursts and pauses in dopaminergic neurons. We find that spontaneous single-spiking is more sensitive to activation of GABA receptors than phasic N-methyl-D-aspartate (NMDA)-mediated burst firing in rat slices (P15-P31). Because tonic activation of GABA(A) receptors has previously been shown to suppress burst firing in vivo, our results suggest that the activity patterns seen in vivo are the result of a balance between excitatory and inhibitory conductances that interact with the intrinsic pacemaking currents observed in slices. Using the dynamic clamp technique, we applied balanced, constant NMDA and GABA(A) receptor conductances into dopaminergic neurons in slices. Bursts could be produced by disinhibition (phasic removal of the GABA(A) receptor conductance), and these bursts had a higher frequency than bursts produced by the same NMDA receptor conductance alone. Phasic increases in the GABA(A) receptor conductance evoked pauses in firing. In contrast to NMDA receptor, application of constant AMPA and GABA(A) receptor conductances caused the cell to go into depolarization block. These results support a bidirectional mechanism by which GABAergic inputs, in balance with NMDA receptor-mediated excitatory inputs, control the firing pattern of dopaminergic neurons.
Collapse
Affiliation(s)
- Collin J Lobb
- Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
83
|
Xue Y, Han XH, Chen L. Effects of Pharmacological Block of GABA(A) Receptors on Pallidal Neurons in Normal and Parkinsonian State. Front Cell Neurosci 2010; 4:2. [PMID: 20204138 PMCID: PMC2831626 DOI: 10.3389/neuro.03.002.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/26/2010] [Indexed: 11/19/2022] Open
Abstract
The globus pallidus plays a central integrative role in the basal ganglia circuitry. Morphological studies have revealed a high level of GABA and GABAA receptors in the globus pallidus. To further investigate the effects of endogenous GABAA neurotransmission in the globus pallidus of normal and parkinsonian rats, in vivo extracellular recording and behavioral tests were performed in the present studies. In normal rats, micro-pressure ejection of GABAA receptor antagonist gabazine (0.1 mM) increased the spontaneous firing rate of pallidal neurons by 28.3%. Furthermore, in 6-hydroxydopamine parkinsonian rats, gabazine increased the firing rate by 46.0% on the lesioned side, which was significantly greater than that on the unlesioned side (21.5%, P < 0.05), as well as that in normal rats (P < 0.05). In the behaving rats, unilateral microinjection of gabazine (0.1 mM) evoked consistent contralateral rotation in normal rats, and significantly potentiated the number of apomorphine-induced contralateral rotations in parkinsonian rats. The present electrophysiological and behavioral findings may provide a rational for further investigations into the potential of pallidal endogenous GABAA neurotransmission in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Yan Xue
- Department of Physiology, Qingdao University Qingdao, China
| | | | | |
Collapse
|
84
|
Tsirogiannis GL, Tagaris GA, Sakas D, Nikita KS. A population level computational model of the basal ganglia that generates parkinsonian Local Field Potential activity. BIOLOGICAL CYBERNETICS 2010; 102:155-176. [PMID: 20041261 DOI: 10.1007/s00422-009-0360-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 12/14/2009] [Indexed: 05/28/2023]
Abstract
Recordings from the basal ganglia's subthalamic nucleus are acquired via microelectrodes immediately prior to the application of Deep Brain Stimulation (DBS) treatment for Parkinson's Disease (PD) to assist in the selection of the final point for the implantation of the DBS electrode. The acquired recordings reveal a persistent characteristic beta band peak in the power spectral density function of the Local Field Potential (LFP) signals. This peak is considered to lie at the core of the causality-effect relationships of the parkinsonian pathophysiology. Based on LFPs acquired from human subjects during DBS for PD, we constructed a computational model of the basal ganglia on the population level that generates LFPs to identify the critical pathophysiological alterations that lead to the expression of the beta band peak. To this end, we used experimental data reporting that the strengths of the synaptic connections are modified under dopamine depletion. The hypothesis that the altered dopaminergic modulation may affect both the amplitude and the time course of the postsynaptic potentials is validated by the model. The results suggest a pivotal role of both of these parameters to the pathophysiology of PD.
Collapse
Affiliation(s)
- George L Tsirogiannis
- Biomedical Simulations and Imaging Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|
85
|
Subthalamic nucleus evokes similar long lasting glutamatergic excitations in pallidal, entopeduncular and nigral neurons in the basal ganglia slice. Neuroscience 2010; 166:808-18. [PMID: 20074618 DOI: 10.1016/j.neuroscience.2010.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/06/2010] [Indexed: 11/20/2022]
Abstract
The subthalamic nucleus (STN) modulates the activity of globus pallidus (GP), entopeduncular nucleus (EP) and substantia nigra pars reticulata (SNr) neurons via its direct glutamatergic projections. To investigate the mechanism by which STN affects activity in these structures and whether STN induced activity is comparable among STN target neurons, we performed patch clamp recordings in a tilted, parasagittal, basal ganglia slice (BGS) that preserves these functional connections. We report that single, brief stimulation of the STN generates a brief monosynaptic AMPA-mediated excitatory postsynaptic current (EPSC) in GP, EP and SNr neurons. A higher intensity, supra-threshold activation evokes a compound EPSC consisting of an early monosynaptic component followed by a slow inward NMDA-mediated current with an overlying barrage of AMPA-mediated EPSCs. These late EPSCs were polysynaptic and gave rise to bursts of spikes that lasted several hundreds of milliseconds. They were eliminated by surgical removal of the STN from the BGS slice, indicating that the STN is required for their generation. Reconstruction of biocytin-filled STN neurons revealed that a third of STN neurons project intra-STN axon collaterals that may underlie polysynaptic activity. We propose that activation of the STN yields comparable long lasting excitations in its target neurons by means of a polysynaptic network.
Collapse
|
86
|
Gerfen CR, Bolam JP. The Neuroanatomical Organization of the Basal Ganglia. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374767-9.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
87
|
Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons. J Neurosci 2009; 29:8452-61. [PMID: 19571136 DOI: 10.1523/jneurosci.0576-09.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Globus pallidus (GP) neurons fire rhythmically in the absence of synaptic input, suggesting that they may encode their inputs as changes in the phase of their rhythmic firing. Action potential afterhyperpolarization (AHP) enhances precision of firing by ensuring that the ion channels recover from inactivation by the same amount on each cycle. Voltage-clamp experiments in slices showed that the longest component of the GP neuron's AHP is blocked by apamin, a selective antagonist of calcium-activated SK channels. Application of 100 nm apamin also disrupted the precision of firing in perforated-patch and cell-attached recordings. SK channel blockade caused a small depolarization in spike threshold and made it more variable, but there was no reduction in the maximal rate of rise during an action potential. Thus, the firing irregularity was not caused solely by a reduction in voltage-gated Na(+) channel availability. Subthreshold voltage ramps triggered a large outward current that was sensitive to the initial holding potential and had properties similar to the A-type K(+) current in GP neurons. In numerical simulations, the availability of both Na(+) and A-type K(+) channels during autonomous firing were reduced when SK channels were removed, and a nearly equal reduction in Na(+) and K(+) subthreshold-activated ion channel availability produced a large decrease in the neuron's slope conductance near threshold. This change made the neuron more sensitive to intrinsically generated noise. In vivo, this change would also enhance the sensitivity of GP neurons to small synaptic inputs.
Collapse
|
88
|
Noori HR, Jäger W. Neurochemical Oscillations in the Basal Ganglia. Bull Math Biol 2009; 72:133-47. [DOI: 10.1007/s11538-009-9441-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 06/12/2009] [Indexed: 12/26/2022]
|
89
|
Sani S, Ostrem JL, Shimamoto S, Levesque N, Starr PA. Single unit "pauser" characteristics of the globus pallidus pars externa distinguish primary dystonia from secondary dystonia and Parkinson's disease. Exp Neurol 2009; 216:295-9. [PMID: 19146856 PMCID: PMC2659350 DOI: 10.1016/j.expneurol.2008.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 11/16/2022]
Abstract
The presence of high frequency discharge neurons with long periods of silence or "pauses" in the globus pallidus pars externa (GPe) is a unique identifying feature of this nucleus. Prior studies have demonstrated that pause characteristics reflect synaptic inputs into GPe. We hypothesized that GPe pause characteristics should distinguish movement disorders whose basal ganglia network abnormalities are different. We examined pause characteristics in 224 GPe units in patients with primary generalized dystonia, Parkinson's disease (PD), and secondary dystonia, undergoing single unit microelectrode recording for DBS placement in the awake state. Pauses in neuronal discharge were identified using the Poisson surprise method. Mean pause length in primary dystonia (606.8373.3) was higher than in PD (557.4366.6) (p<0.05). Interpause interval (IPI) was lower in primary dystonia (2331.63874.1) than PD (3646.45894.5) (p<0.01), and mean pause frequency was higher in primary dystonia (0.140.10) than PD (0.070.12) (p<0.01). Comparison of pause characteristics in primary versus secondary generalized dystonia revealed a significantly longer mean pause length in primary (606.8373.3) than in secondary dystonia (495.6236.5) (p<0.01). IPI was shorter in primary (2331.6+/-3874.1) than in secondary dystonia (3484.5+/-3981.6) (p<0.01). The results show that pause characteristics recorded in the awake human GPe distinguish primary dystonia from Parkinson's disease and secondary dystonia. The differences may reflect increased phasic input from striatal D2 receptor positive cells in primary dystonia, and are consistent with a recent model proposing that GPe provides capacity scaling for cortical input.
Collapse
Affiliation(s)
- Sepehr Sani
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
90
|
Sims RE, Woodhall GL, Wilson CL, Stanford IM. Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. Eur J Neurosci 2009; 28:2401-8. [PMID: 19087170 DOI: 10.1111/j.1460-9568.2008.06546.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a central integrator of basal ganglia function, the external segment of the globus pallidus (GP) plays a critical role in the control of voluntary movement. Driven by intrinsic mechanisms and excitatory glutamatergic inputs from the subthalamic nucleus, GP neurons receive GABAergic inhibitory input from the striatum (Str-GP) and from local collaterals of neighbouring pallidal neurons (GP-GP). Here we provide electrophysiological evidence for functional differences between these two inhibitory inputs. The basic synaptic characteristics of GP-GP and Str-GP GABAergic synapses were studied using whole-cell recordings with paired-pulse and train stimulation protocols and variance-mean (VM) analysis. We found (i) IPSC kinetics are consistent with local collaterals innervating the soma and proximal dendrites of GP neurons whereas striatal inputs innervate more distal regions. (ii) Compared to GP-GP synapses Str-GP synapses have a greater paired-pulse ratio, indicative of a lower probability of release. This was confirmed using VM analysis. (iii) In response to 20 and 50 Hz train stimulation, GP-GP synapses are weakly facilitatory in 1 mM external calcium and depressant in 2.4 mM calcium. This is in contrast to Str-GP synapses which display facilitation under both conditions. This is the first quantitative study comparing the properties of GP-GP and Str-GP synapses. The results are consistent with the differential location of these inhibitory synapses and subtle differences in their release probability which underpin stable GP-GP responses and robust short-term facilitation of Str-GP responses. These fundamental differences may provide the physiological basis for functional specialization.
Collapse
Affiliation(s)
- Robert E Sims
- Biomedical Sciences, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | | | | | |
Collapse
|
91
|
Mallet N, Pogosyan A, Márton LF, Bolam JP, Brown P, Magill PJ. Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci 2008; 28:14245-58. [PMID: 19109506 PMCID: PMC4243385 DOI: 10.1523/jneurosci.4199-08.2008] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 11/21/2022] Open
Abstract
Inappropriately synchronized beta (beta) oscillations (15-30 Hz) in the subthalamic nucleus (STN) accompany movement difficulties in idiopathic Parkinson's disease (PD). The cellular and network substrates underlying these exaggerated beta oscillations are unknown but activity in the external globus pallidus (GP), which forms a candidate pacemaker network with STN, might be of particular importance. Using a clinically relevant rat model of PD, we demonstrate that oscillatory activity in GP neuronal networks becomes excessively and selectively synchronized at beta frequencies in a spatially widespread and brain state-dependent manner after lesion of dopamine neurons. Although synchronization of GP unit activity increased by almost 100-fold during beta oscillations, the mean firing rate of GP neurons decreased compared with controls. Importantly, in parkinsonian animals, two main types of GP neuron were identified according to their distinct and inversely related firing rates and patterns. Moreover, neurons of the same type tended to fire together, with small phase differences, whereas different types of neuron tended not to do so. This functional dichotomy in temporal coupling persisted across extreme brain states, suggesting that maladaptive interactions are dominated by hardwiring. Finally, the precisely timed discharges of GP and STN neurons indicated that rhythmic sequences of recurrent excitation and inhibition in the STN-GP network, and lateral inhibition between GP neurons, could actively support abnormal beta oscillations. We propose that GP neurons, by virtue of their spatiotemporal synchronization, widespread axon collaterals and feed-back/feed-forward mechanisms, are well placed to orchestrate and propagate exaggerated beta oscillations throughout the entire basal ganglia in PD.
Collapse
Affiliation(s)
- Nicolas Mallet
- Medical Research Council Anatomical Neuropharmacology Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | - Alek Pogosyan
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | - László F. Márton
- Medical Research Council Anatomical Neuropharmacology Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
- Neural Systems Research Group, Sapientia–Hungarian University of Transylvania, 540485 Târgu-Mureş, Romania
| | - J. Paul Bolam
- Medical Research Council Anatomical Neuropharmacology Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
| | - Peter Brown
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | - Peter J. Magill
- Medical Research Council Anatomical Neuropharmacology Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
| |
Collapse
|
92
|
Elias S, Ritov Y, Bergman H. Balance of increases and decreases in firing rate of the spontaneous activity of basal ganglia high-frequency discharge neurons. J Neurophysiol 2008; 100:3086-104. [PMID: 18842958 DOI: 10.1152/jn.90714.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most neurons in the external and internal segments of the globus pallidus and the substantia nigra pars reticulata (GPe, GPi, and SNr) are characterized by a high-frequency discharge (HFD) rate (50-80 Hz) that, in most GPe neurons, is also interrupted by pauses. Almost all (approximately 90%) of the synaptic inputs to these HFD neurons are GABAergic and inhibitory. Nevertheless, their responses to behavioral events are usually dominated by increases in discharge rate. Additionally, there are no reports of prolonged bursts in the spontaneous activity of these cells that could reflect their disinhibition by GPe pauses. We recorded the spontaneous activity of 385 GPe, GPi, and SNr HFD neurons during a quiet-wakeful state from two monkeys. We developed three complementary methods to quantify the balance of increases and decreases in the spontaneous discharge of HFD neurons and validated them by simulations. Unlike the behavioral evoked responses, the spontaneous activity of pallidal and SNr neurons is not dominated by increases. Moreover, the activity of basal ganglia neurons does not include bursts that could reflect disinhibition by the spontaneous pauses of GPe neurons. These findings suggest that the discharge increase/decrease balance during a quiet-wakeful state better reflects the inhibitory input of the HFD basal ganglia neurons than during responses to behavioral events; however, the GPe pauses are not echoed by comparable bursts either in the GPe or in the output nuclei. Changes in the excitatory drive of these structures (e.g., during behavioral activity) thus may lead to a remarkable change in this balance.
Collapse
Affiliation(s)
- Shlomo Elias
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | |
Collapse
|
93
|
Atherton JF, Wokosin DL, Ramanathan S, Bevan MD. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus. J Physiol 2008; 586:5679-700. [PMID: 18832425 DOI: 10.1113/jphysiol.2008.155861] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na(+) (Na(v)) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of approximately 5 m s(-1) and approximately 0.7 m s(-1), respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na(+)] ACSF or the selective Na(v) channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Na(v) channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABA(A) receptors regulates the axonal initiation of action potentials.
Collapse
Affiliation(s)
- Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
94
|
Zheng M, Qu L, Lou Y. Effects of icariin combined with Panax notoginseng saponins on ischemia reperfusion-induced cognitive impairments related with oxidative stress and CA1 of hippocampal neurons in rat. Phytother Res 2008; 22:597-604. [PMID: 18398927 DOI: 10.1002/ptr.2276] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies suggest that treatment with icariin (ICA) combined with Panax notoginseng saponins (PNS) improved behavior and cholinergic system disorders followed by amyloid beta-peptide(25-35) lateral ventricle injection in rats. The present study investigated whether administration of ICA + PNS had preventive and therapeutic effects on bilateral common carotid arteries (CCA) occlusion-induced cerebral ischemia-reperfusion (IR) injury in rats. Male Sprague-Dawley rats were divided randomly as follows: sham-operated, i.g. vehicle, ICA (5 mg/kg), PNS (40 mg/kg), ICA + PNS (2.5 + 20, 5 + 40 or 10 + 80 mg/kg), and ergoloid mesylate as a positive control (0.45 mg/kg) in model rats. Treatment was performed once a day for 7 days prior to ischemia. The rats were subjected to transient global IR induced by CCA occlusion in combination with intraperitoneal injection of sodium nitroprusside (2.0 mg/kg), then treated with ICA + PNS for another 14 days continuously. ICA + PNS significantly improved the rat passive avoidance task in step-down paradigms, and spatial cognition in the eight-arm radial maze, concomitant with an improvement of blood viscosity. Increased lipid peroxidation in brain after IR injury was observed, MDA being 0.56 +/- 0.10 nmol/mg prot vs 0.48 +/- 0.06 nmol/mg prot in the vehicle control (p < 0.05). Treatment with ICA + PNS 2.5 + 10, 5 + 40, 10 + 80 mg/kg produced a marked reduction in the MDA level to 0.46 +/- 0.06, 0.42 +/- 0.09 and 0.45 +/- 0.08 nmol/mg prot, respectively vs 0.56 +/- 0.10 nmol/mg prot in IR injury only control (p < 0.05, p < 0.01). A decrease in superoxide dismutase activity was observed in the brain of IR rats (the SOD activity being 72.75 +/- 4.62 U/mg prot vs 80.97 +/- 6.06 U/mg prot in control, p < 0.05). ICA + PNS 5 + 40 mg/kg prevented the IR injury mediated fall in superoxide dismutase activity being 78.90 +/- 6.61 U/mg prot versus 72.75 +/- 4.62 U/mg prot (p < 0.05). ICA + PNS tended to attenuate apoptosis in hippocampal CA1 pyramidal neurons. Either ICA or PNS treatment alone did not obviously improve cognitive impairment (except that lipid peroxidation was reduced by PNS-treatment). The results indicated that ICA + PNS may ameliorate learning and memory deficit and blood viscosity by protecting neurons from oxidative stress in ischemic brain.
Collapse
Affiliation(s)
- Ming Zheng
- Institute of Pharmacology and Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
95
|
Araujo-Alvarez JM, Trujillo-Ferrara JG, Ponce-Franco D, Correa-Basurto J, Delgado A, Querejeta E. (+)-(S)-trujillon, (+)-(S)-4-(2,2-diphenyl-1,3,2-oxazabolidin-5-oxo)propionic acid, a novel glutamatergic analog, modifies the activity of globus pallidus neurons by selective NMDA receptor activation. Chirality 2008; 23:429-37. [DOI: 10.1002/chir.20594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 04/15/2008] [Indexed: 11/06/2022]
|
96
|
Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 2007; 27:13552-66. [PMID: 18057213 DOI: 10.1523/jneurosci.3430-07.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neurons in the external segment of the globus pallidus (GPe) are autonomous pacemakers that are capable of sustained fast spiking. The cellular and molecular determinants of pacemaking and fast spiking in GPe neurons are not fully understood, but voltage-dependent Na+ channels must play an important role. Electrophysiological studies of these neurons revealed that macroscopic activation and inactivation kinetics of their Na+ channels were similar to those found in neurons lacking either autonomous activity or the capacity for fast spiking. What was distinctive about GPe Na+ channels was a prominent resurgent gating mode. This mode was significantly reduced in GPe neurons lacking functional Nav1.6 channels. In these Nav1.6 null neurons, pacemaking and the capacity for fast spiking were impaired, as was the ability to follow stimulation frequencies used to treat Parkinson's disease (PD). Simulations incorporating Na+ channel models with and without prominent resurgent gating suggested that resurgence was critical to fast spiking but not to pacemaking, which appeared to be dependent on the positioning of Na+ channels in spike-initiating regions of the cell. These studies not only shed new light on the mechanisms underlying spiking in GPe neurons but also suggest that electrical stimulation therapies in PD are unlikely to functionally inactivate neurons possessing Nav1.6 Na+ channels with prominent resurgent gating.
Collapse
|
97
|
Jin XT, Smith Y. Activation of presynaptic kainate receptors suppresses GABAergic synaptic transmission in the rat globus pallidus. Neuroscience 2007; 149:338-49. [PMID: 17881134 PMCID: PMC2175023 DOI: 10.1016/j.neuroscience.2007.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 11/27/2022]
Abstract
The globus pallidus (GP) plays a central integrative role in the basal ganglia circuitry. It receives strong GABAergic inputs from the striatum (Str) and significant glutamatergic afferents from the subthalamic nucleus (STN). The change in firing rate and pattern of GP neurons is a cardinal feature of Parkinson's disease pathophysiology. Kainate receptor (KAR) GluR6/7 subunit immunoreactivity is expressed presynaptically in GABAergic striatopallidal terminals which provides a substrate for regulation of GABAergic transmission in GP. To test this hypothesis, we recorded GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) in the GP following electrical stimulation of the Str. Following blockade of AMPA and N-methyl-d-aspartate receptors with selective antagonists, bath application of kainate (KA) (0.3-3 microM) reduced significantly the amplitude of evoked IPSCs. This inhibition was associated with a significant increase in paired-pulse facilitation ratio and a reduction of the frequency, but not amplitude, of miniature inhibitory postsynaptic currents (mIPSCs), suggesting a presynaptic site of KA action. The KA effects on striatopallidal GABAergic transmission were blocked by the G-protein inhibitor, N-ethylmaleimide (NEM), or protein kinase C (PKC) inhibitor calphostin C. Our results demonstrate that KAR activation inhibits GABAergic transmission through a presynaptic G protein-coupled, PKC-dependent metabotropic mechanism in the rat GP. These findings open up the possibility for the development of KA-mediated pharmacotherapies aimed at decreasing the excessive and abnormally regulated inhibition of GP neurons in Parkinson's disease.
Collapse
Affiliation(s)
- X-T Jin
- Division of Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322, USA.
| | | |
Collapse
|
98
|
Zold CL, Larramendy C, Riquelme LA, Murer MG. Distinct changes in evoked and resting globus pallidus activity in early and late Parkinson's disease experimental models. Eur J Neurosci 2007; 26:1267-79. [PMID: 17767504 DOI: 10.1111/j.1460-9568.2007.05754.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The main clinical manifestations of Parkinson's disease are caused by alterations of basal ganglia activity that are tied in with the progressive loss of mesencephalic dopaminergic neurons. Recent theoretical and modeling studies have suggested that changes in resting neuronal activity occurred later in the course of the disease than those evoked by phasic cortical input. However, there is no empirical support for this proposal. Here we report a marked increase in the responsiveness of globus pallidus neurons to electrical motor cortex stimulation, in the absence of noticeable changes in resting activity, in anesthetized rats that had consistently shown a deficit in forelimb use during behavioral testing before the experiments, and had approximately 45% dopamine neurons spared in the substantia nigra. Pallidal neurons were also over-responsive to motor cortex stimulation and lost spatial selectivity for cortical inputs in rats with extensive nigrostriatal damage. After partial lesions, over-responsiveness was mainly due to an increased proportion of neurons showing excitatory responses, while extensive lesions led to an increased likelihood of inhibitory responding neurons. Changes in resting neuronal activity, comprising pauses disrupting tonic discharge, occurred across different global brain states, including an activated condition which shares similarities with natural patterns of cortical activity seen in awake states and rapid eye-movement sleep, but only after massive nigrostriatal degeneration. These results suggest that a loss of functional segregation and an abnormal temporal encoding of phasic cortical inputs by globus pallidus neurons may contribute to inducing early motor impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Camila L Zold
- Laboratorio de Fisiología de Circuitos Neuronales, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Ciudad de Buenos Aires (CP1121), Argentina.
| | | | | | | |
Collapse
|
99
|
Zold CL, Ballion B, Riquelme LA, Gonon F, Murer MG. Nigrostriatal lesion induces D2-modulated phase-locked activity in the basal ganglia of rats. Eur J Neurosci 2007; 25:2131-44. [PMID: 17439497 DOI: 10.1111/j.1460-9568.2007.05475.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is a debate as to what modifications of neuronal activity underlie the clinical manifestations of Parkinson's disease and the efficacy of antiparkinsonian pharmacotherapy. Previous studies suggest that release of GABAergic striatopallidal neurons from D2 receptor-mediated inhibition allows spreading of cortical rhythms to the globus pallidus (GP) in rats with 6-hydroxydopamine-induced nigrostriatal lesions. Here this abnormal spreading was thoroughly investigated. In control urethane-anaesthetized rats most GP neurons were excited during the active part of cortical slow waves ('direct-phase' neurons). Two neuronal populations having opposite phase relationships with cortical and striatal activity coexisted in the GP of 6-hydroxydopamine-lesioned rats. 'Inverse-phase' GP units exhibited reduced firing coupled to striatal activation during slow waves, suggesting that this GP oscillation was driven by striatopallidal hyperactivity. Half of the pallidonigral neurons identified by antidromic stimulation exhibited inverse-phase activity. Therefore, spreading of inverse-phase oscillations through pallidonigral axons might contribute to the abnormal direct-phase cortical entrainment of basal ganglia output described previously. Systemic administration of the D2 agonist quinpirole to 6-hydroxydopamine-lesioned rats reduced GP inverse-phase coupling with slow waves, and this effect was reversed by the D2 antagonist eticlopride. Because striatopallidal hyperactivity was only slightly reduced by quinpirole, other mechanisms might have contributed to the effect of quinpirole on GP oscillations. These results suggest that antiparkinsonian efficacy may rely on other actions of D2 agonists on basal ganglia activity. However, abnormal slow rhythms may promote enduring changes in functional connectivity along the striatopallidal axis, contributing to D2 agonist-resistant clinical signs of parkinsonism.
Collapse
Affiliation(s)
- Camila L Zold
- Laboratorio de Fisiología de Circuitos Neuronales, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Ciudad de Buenos Aires (CP1121), Argentina.
| | | | | | | | | |
Collapse
|
100
|
Belluscio MA, Riquelme LA, Murer MG. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats. Eur J Neurosci 2007; 25:2791-804. [PMID: 17561844 DOI: 10.1111/j.1460-9568.2007.05527.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During movement, inhibitory neurons in the basal ganglia output nuclei show complex modulations of firing, which are presumptively driven by corticostriatal and corticosubthalamic input. Reductions in discharge should facilitate movement by disinhibiting thalamic and brain stem nuclei while increases would do the opposite. A proposal that nigrostriatal dopamine pathway degeneration disrupts trans-striatal pathways' balance resulting in sustained overactivity of basal ganglia output nuclei neurons and Parkinson's disease clinical signs is not fully supported by experimental evidence, which instead shows abnormal synchronous oscillatory activity in animal models and patients. Yet, the possibility that variation in motor cortex activity drives transient overactivity in output nuclei neurons in parkinsonism has not been explored. In Sprague-Dawley rats with 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions, approximately 50% substantia nigra pars reticulata (SNpr) units show abnormal cortically driven slow oscillations of discharge. Moreover, these units selectively show abnormal responses to motor cortex stimulation consisting in augmented excitations of an odd latency, which overlapped that of inhibitory responses presumptively mediated by the trans-striatal direct pathway in control rats. Delivering D1 or D2 dopamine agonists into the striatum of parkinsonian rats by reverse microdialysis reduced these abnormal excitations but had no effect on pathological oscillations. The present study establishes that dopamine-deficiency related changes of striatal function contribute to producing abnormally augmented excitatory responses to motor cortex stimulation in the SNpr. If a similar transient overactivity of basal ganglia output were driven by motor cortex input during movement, it could contribute to impeding movement initiation or execution in Parkinson's disease.
Collapse
Affiliation(s)
- Mariano A Belluscio
- Laboratorio de Fisiología de Circuitos Neuronales, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Ciudad de Buenos Aires (CP1121), Argentina.
| | | | | |
Collapse
|