51
|
|
52
|
Pallud J, Mandonnet E, Corns R, Dezamis E, Parraga E, Zanello M, Spena G. Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy. Neurochirurgie 2017; 63:158-163. [DOI: 10.1016/j.neuchi.2016.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 11/24/2016] [Accepted: 12/04/2016] [Indexed: 12/01/2022]
|
53
|
Phielipp NM, Saha U, Sankar T, Yugeta A, Chen R. Safety of repetitive transcranial magnetic stimulation in patients with implanted cortical electrodes. An ex-vivo study and report of a case. Clin Neurophysiol 2017; 128:1109-1115. [DOI: 10.1016/j.clinph.2017.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/11/2017] [Accepted: 01/26/2017] [Indexed: 11/29/2022]
|
54
|
Hiremath SV, Tyler-Kabara EC, Wheeler JJ, Moran DW, Gaunt RA, Collinger JL, Foldes ST, Weber DJ, Chen W, Boninger ML, Wang W. Human perception of electrical stimulation on the surface of somatosensory cortex. PLoS One 2017; 12:e0176020. [PMID: 28489913 PMCID: PMC5425101 DOI: 10.1371/journal.pone.0176020] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 04/04/2017] [Indexed: 12/01/2022] Open
Abstract
Recent advancement in electrocorticography (ECoG)-based brain-computer interface technology has sparked a new interest in providing somatosensory feedback using ECoG electrodes, i.e., cortical surface electrodes. We conducted a 28-day study of cortical surface stimulation in an individual with arm paralysis due to brachial plexus injury to examine the sensation produced by electrical stimulation of the somatosensory cortex. A high-density ECoG grid was implanted over the somatosensory and motor cortices. Stimulation through cortical surface electrodes over the somatosensory cortex successfully elicited arm and hand sensations in our participant with chronic paralysis. There were three key findings. First, the intensity of perceived sensation increased monotonically with both pulse amplitude and pulse frequency. Second, changing pulse width changed the type of sensation based on qualitative description provided by the human participant. Third, the participant could distinguish between stimulation applied to two neighboring cortical surface electrodes, 4.5 mm center-to-center distance, for three out of seven electrode pairs tested. Taken together, we found that it was possible to modulate sensation intensity, sensation type, and evoke sensations across a range of locations from the fingers to the upper arm using different stimulation electrodes even in an individual with chronic impairment of somatosensory function. These three features are essential to provide effective somatosensory feedback for neuroprosthetic applications.
Collapse
Affiliation(s)
- Shivayogi V. Hiremath
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Physical Therapy, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth C. Tyler-Kabara
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jesse J. Wheeler
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Daniel W. Moran
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Robert A. Gaunt
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer L. Collinger
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Stephen T. Foldes
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, Arizona, United States of America
| | - Douglas J. Weber
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Weidong Chen
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Michael L. Boninger
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Wei Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Mallinckrodt Institute of Radiology, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, Missouri, United States of America
| |
Collapse
|
55
|
Merkow MB, Burke JF, Ramayya AG, Sharan AD, Sperling MR, Kahana MJ. Stimulation of the human medial temporal lobe between learning and recall selectively enhances forgetting. Brain Stimul 2017; 10:645-650. [PMID: 28073638 PMCID: PMC5410394 DOI: 10.1016/j.brs.2016.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Direct electrical stimulation applied to the human medial temporal lobe (MTL) typically disrupts performance on memory tasks, however, the mechanism underlying this effect is not known. OBJECTIVE To study the effects of MTL stimulation on memory performance. METHODS We studied the effects of MTL stimulation on memory in five patients undergoing invasive electrocorticographic monitoring during various phases of a memory task (encoding, distractor, recall). RESULTS We found that MTL stimulation disrupted memory performance in a timing-dependent manner; we observed greater forgetting when applying stimulation during the delay between encoding and recall, compared to when it was applied during encoding or recall. CONCLUSIONS The results suggest that recall is most dependent on the MTL between learning and retrieval.
Collapse
Affiliation(s)
- Maxwell B Merkow
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - John F Burke
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ashwin G Ramayya
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ashwini D Sharan
- Department of Neurosurgery, Thomas Jefferson University, 19107, United States
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, 19107, United States
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, 19104, United States.
| |
Collapse
|
56
|
Dimova P, de Palma L, Job-Chapron AS, Minotti L, Hoffmann D, Kahane P. Radiofrequency thermocoagulation of the seizure-onset zone during stereoelectroencephalography. Epilepsia 2017; 58:381-392. [DOI: 10.1111/epi.13663] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Petia Dimova
- Epilepsy Surgery Unit; Department of Neurosurgery; St. Ivan Rilski University Hospital; Sofia Bulgaria
| | - Luca de Palma
- Epilepsy Unit; Neurology Department and GIN; INSERM U836; University Grenoble Alpes and Michallon Hospital; Grenoble France
- Neurology Unit; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - Anne-Sophie Job-Chapron
- Epilepsy Unit; Neurology Department and GIN; INSERM U836; University Grenoble Alpes and Michallon Hospital; Grenoble France
| | - Lorella Minotti
- Epilepsy Unit; Neurology Department and GIN; INSERM U836; University Grenoble Alpes and Michallon Hospital; Grenoble France
| | | | - Philippe Kahane
- Epilepsy Unit; Neurology Department and GIN; INSERM U836; University Grenoble Alpes and Michallon Hospital; Grenoble France
| |
Collapse
|
57
|
Park JT, Baca Vaca GF, Avery J, Miller JP. Utility of Stereoelectroencephalography in Children with Dysembryoplastic Neuroepithelial Tumor and Cortical Malformation. Neurodiagn J 2017; 57:191-210. [PMID: 28898173 DOI: 10.1080/21646821.2017.1326270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Uncontrolled seizures in children can contribute to irreversible cognitive impairment and developmental delay, in addition to placing them at risk for sudden unexplained death in epileptic patients (SUDEP). Since its introduction at Saint Ann Hospital in Paris in the 1960s, stereoelectroencephalography (SEEG) is increasingly being utilized at epilepsy centers in the United States as an invasive tool to help localize the seizure focus in drug-resistant focal epilepsy. INDICATIONS Children with symptomatic epilepsy, commonly due to cortical dysplasia and dysembryoplastic neuroepithelial tumor (DNET), may benefit from SEEG investigation. The arrangement of SEEG electrodes is individually tailored based on the suspected location of the epileptogenic zone (EZ). The implanted depth electrodes are used to electrically stimulate the corresponding cortices to obtain information about the topography of eloquent cortex and EZ. Morbidity: Surgical morbidity in these children undergoing SEEG investigation is low, but not negligible. The number of electrodes directly correlates with the risk of intraoperative complication. Thus a risk and benefit analysis needs to be carefully considered for each patient. Neurodiagnostic technology: Both during and after the SEEG electrode implantation, the intraoperative monitoring and EEG technologists play a vital role in the successful monitoring of the patient. CONCLUSION SEEG is an important tool in the process of epilepsy surgery in children with symptomatic epilepsy, commonly due to cortical dysplasia and DNET.
Collapse
Affiliation(s)
- Jun T Park
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
- b Case Western Reserve University School of Medicine , Cleveland , Ohio
| | - Guadalupe Fernandez Baca Vaca
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
- b Case Western Reserve University School of Medicine , Cleveland , Ohio
| | - Jennifer Avery
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
| | - Jonathan P Miller
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
- b Case Western Reserve University School of Medicine , Cleveland , Ohio
| |
Collapse
|
58
|
Abstract
For a long time, although the functional anatomy of human cortex has extensively been studied, subcortical white matter tracts have received little consideration. Recent advances in tractography have opened the door to a non-invasive investigation of the subcortical fibers in vivo. However, this method cannot study directly the function of the bundles. Interestingly, for the first time in the history of cognitive neurosciences, direct axonal electrostimulation (DES) mapping of the neural pathways offers the unique opportunity to investigate the function of the connectomal anatomy. Indeed, this technique is able to perform real-time anatomo-functional correlations in awake patients who undergo brain surgery, especially at the level of the subcortical fibers. Here, the aim is to review original data issued from DES of myelinated tracts in adults, with regard to the functional connectivity mediating the sensorimotor, visuo-spatial, language, cognitive and emotional functions, as well as the interactions between these different sub-networks, leading ultimately to explore consciousness. Therefore, axonal stimulation is a valuable tool in the field of connectomics, that is, the map of neural connections, in order to switch from the traditional localizationist view of brain processing to a networking model in which cerebral functions are underpinned by the dynamic interactions of large-scale distributed and parallel sub-circuits. Such connectomal account should integrate the anatomic constraint represented by the subcortical fascicles. Indeed, post-lesional neuroplasticity is possible only on the condition that the white matter fibers are preserved, to allow communication and temporal synchronization among delocalized inter-connected networks.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295 Montpellier, France.,National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team "Brain Plasticity, Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 34091 Montpellier, France
| |
Collapse
|
59
|
Electrical Stimulation for Seizure Induction and Functional Mapping in Stereoelectroencephalography. J Clin Neurophysiol 2016; 33:511-521. [DOI: 10.1097/wnp.0000000000000313] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
60
|
Boulogne S, Andre-Obadia N, Kimiskidis VK, Ryvlin P, Rheims S. Cortico-cortical and motor evoked potentials to single and paired-pulse stimuli: An exploratory transcranial magnetic and intracranial electric brain stimulation study. Hum Brain Mapp 2016; 37:3767-3778. [PMID: 27312488 DOI: 10.1002/hbm.23274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Paired-pulse (PP) paradigms are commonly employed to assess in vivo cortical excitability using transcranial magnetic stimulation (TMS) to stimulate the primary motor cortex and modulate the induced motor evoked potential (MEP). Single-pulse cortical direct electrical stimulation (DES) during intracerebral EEG monitoring allows the investigation of brain connectivity by eliciting cortico-cortical evoked potentials (CCEPs). However, PP paradigm using intracerebral DES has rarely been reported and has never been previously compared with TMS. OBJECTIVE The work was intended (i) to verify that the well-established modulations of MEPs following PP TMS remain similar using DES in the motor cortex, and (ii) to evaluate if a similar pattern could be observed in distant cortico-cortical connections through modulations of CCEP. METHODS Three patients undergoing intracerebral EEG monitoring with electrodes implanted in the central region were studied. Single-pulse DES (1-3 mA, 1 ms, 0.2 Hz) and PP DES using six interstimulus intervals (5, 15, 30, 50, 100, and 200 ms) in the motor cortex with concomitant recording of CCEPs and MEPs in contralateral muscles were performed. Finally, a navigated PP TMS session targeted the intracranial stimulation site to record TMS-induced MEPs in two patients. RESULTS MEP modulations elicited by PP intracerebral DES proved similar among the three patients and to those obtained by PP TMS. CCEP modulations elicited by PP intracerebral DES usually showed a pattern comparable to that of MEP, although a different pattern could be observed occasionally. CONCLUSION PP intracerebral DES seems to involve excitatory and inhibitory mechanisms similar to PP TMS and allows the recording of intracortical inhibition and facilitation modulation on cortico-cortical connections. Hum Brain Mapp 37:3767-3778, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sébastien Boulogne
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon, 59 Boulevard Pinel, Bron, 69675, France. .,Lyon's Research Neuroscience Center, Institut National De La Santé Et De La Recherche Médicale U1028, Centre National De La Recherche Scientifique 5292, Lyon, France, CH Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, 69675 Bron, France. .,Lyon 1 University, 43 Boulevard Du 11 Novembre 1918, Villeurbanne, 69100, France.
| | - Nathalie Andre-Obadia
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon, 59 Boulevard Pinel, Bron, 69675, France
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Philippe Ryvlin
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon, 59 Boulevard Pinel, Bron, 69675, France.,Lyon's Research Neuroscience Center, Institut National De La Santé Et De La Recherche Médicale U1028, Centre National De La Recherche Scientifique 5292, Lyon, France, CH Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, 69675 Bron, France.,Lyon 1 University, 43 Boulevard Du 11 Novembre 1918, Villeurbanne, 69100, France.,Department of Clinical neurosciences, CHU Vaudois, 46 Rue Du Bugnon, Lausanne, 1011, Switzerland
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon, 59 Boulevard Pinel, Bron, 69675, France.,Lyon's Research Neuroscience Center, Institut National De La Santé Et De La Recherche Médicale U1028, Centre National De La Recherche Scientifique 5292, Lyon, France, CH Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, 69675 Bron, France.,Lyon 1 University, 43 Boulevard Du 11 Novembre 1918, Villeurbanne, 69100, France
| |
Collapse
|
61
|
Effect of Anatomically Realistic Full-Head Model on Activation of Cortical Neurons in Subdural Cortical Stimulation-A Computational Study. Sci Rep 2016; 6:27353. [PMID: 27273817 PMCID: PMC4895150 DOI: 10.1038/srep27353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/17/2016] [Indexed: 11/09/2022] Open
Abstract
Electrical brain stimulation (EBS) is an emerging therapy for the treatment of neurological disorders, and computational modeling studies of EBS have been used to determine the optimal parameters for highly cost-effective electrotherapy. Recent notable growth in computing capability has enabled researchers to consider an anatomically realistic head model that represents the full head and complex geometry of the brain rather than the previous simplified partial head model (extruded slab) that represents only the precentral gyrus. In this work, subdural cortical stimulation (SuCS) was found to offer a better understanding of the differential activation of cortical neurons in the anatomically realistic full-head model than in the simplified partial-head models. We observed that layer 3 pyramidal neurons had comparable stimulation thresholds in both head models, while layer 5 pyramidal neurons showed a notable discrepancy between the models; in particular, layer 5 pyramidal neurons demonstrated asymmetry in the thresholds and action potential initiation sites in the anatomically realistic full-head model. Overall, the anatomically realistic full-head model may offer a better understanding of layer 5 pyramidal neuronal responses. Accordingly, the effects of using the realistic full-head model in SuCS are compelling in computational modeling studies, even though this modeling requires substantially more effort.
Collapse
|
62
|
Vincent M, Rossel O, Hayashibe M, Herbet G, Duffau H, Guiraud D, Bonnetblanc F. The difference between electrical microstimulation and direct electrical stimulation – towards new opportunities for innovative functional brain mapping? Rev Neurosci 2016; 27:231-58. [DOI: 10.1515/revneuro-2015-0029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/17/2015] [Indexed: 11/15/2022]
Abstract
AbstractBoth electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the ‘gold standard’ for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).
Collapse
Affiliation(s)
- Marion Vincent
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | - Olivier Rossel
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | - Mitsuhiro Hayashibe
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | | | | | - David Guiraud
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | | |
Collapse
|
63
|
Boulogne S, Ryvlin P, Rheims S. Single and paired-pulse electrical stimulation during invasive EEG recordings. Rev Neurol (Paris) 2016; 172:174-81. [PMID: 26993563 DOI: 10.1016/j.neurol.2016.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/11/2016] [Accepted: 02/23/2016] [Indexed: 12/01/2022]
Abstract
Invasive EEG recordings are frequently required during the presurgical exploration of patients with drug-resistant focal epilepsy in order to clarify the epileptic zone location. Intracranial direct electrical stimulations (DES) induce EEG and/or clinical responses that participate in this evaluation. Clinical DES protocols (1Hz and/or 50Hz) trigger massive cortical activation that can elicit seizures, after-discharges or complex clinical signs. In contrast, low-energy (<1Hz) protocols activate more localized cortical regions using single-pulse electrical stimulations (SPES). SPES can elicit two main types of responses. Cortico-cortical evoked potentials (CCEPs) correspond to highly consistent early responses, appearing before 100ms after stimulation, with fixed latency; they are considered physiological and assess the effective connectivity between the recorded regions. Late responses appear after 100ms; they are rare, inconsistent with variable latency and are suggestive of an underlying epileptogenic cortex. Paired-pulse stimulation paradigm associates a conditioning and a test stimulation to induce intracortical inhibition or facilitation by modifying the response amplitude. Largely used in transcranial magnetic stimulation, it has rarely been applied to CCEP although the mechanisms put in place seem highly similar. Low frequency intracerebral stimulations allow analysing brain connectivity and cortical excitability with a high temporal and spatial resolution. The development of new stimulation protocols and the combination with imaging or statistical techniques recently offered promising results.
Collapse
Affiliation(s)
- S Boulogne
- Department of Functional Neurology and Epileptology, Hospices civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France; Lyon's Research Neuroscience Center, Inserm U1028/CNRS UMPR 5292, CH Le Vinatier, Bâtiment 452, 95, boulevard Pinel, 69675 Bron, France
| | - P Ryvlin
- Department of clinical neurosciences, CHU Vaudois, 46, rue du Bugnon, 1011 Lausanne, Switzerland
| | - S Rheims
- Department of Functional Neurology and Epileptology, Hospices civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France; Lyon's Research Neuroscience Center, Inserm U1028/CNRS UMPR 5292, CH Le Vinatier, Bâtiment 452, 95, boulevard Pinel, 69675 Bron, France.
| |
Collapse
|
64
|
Saito T, Muragaki Y, Maruyama T, Tamura M, Nitta M, Tsuzuki S, Konishi Y, Kamata K, Kinno R, Sakai KL, Iseki H, Kawamata T. Difficulty in identification of the frontal language area in patients with dominant frontal gliomas that involve the pars triangularis. J Neurosurg 2016; 125:803-811. [PMID: 26799301 DOI: 10.3171/2015.8.jns151204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Identification of language areas using functional brain mapping is sometimes impossible using current methods but essential to preserve language function in patients with gliomas located within or near the frontal language area (FLA). However, the factors that influence the failure to detect language areas have not been elucidated. The present study evaluated the difficulty in identifying the FLA in dominant-side frontal gliomas that involve the pars triangularis (PT) to determine the factors that influenced failed positive language mapping. METHODS Awake craniotomy was performed on 301 patients from April 2000 to October 2013 at Tokyo Women's Medical University. Recurrent cases were excluded, and patients were also excluded if motor mapping indicated their glioma was in or around the motor area on the dominant or nondominant side. Eighty-two consecutive cases of primary frontal glioma on the dominant side were analyzed for the present study. MRI was used for all patients to evaluate whether tumors involved the PT and to perform language functional mapping with a bipolar electrical stimulator. Eighteen of 82 patients (mean age 39 ± 13 years) had tumors that showed involvement of the PT, and the detailed characteristics of these 18 patients were examined. RESULTS The FLA could not be identified with intraoperative brain mapping in 14 (17%) of 82 patients; 11 (79%) of these 14 patients had a tumor involving the PT. The negative response rate in language mapping was only 5% in patients without involvement of the PT, whereas this rate was 61% in patients with involvement of the PT. Univariate analyses showed no significant correlation between identification of the FLA and sex, age, histology, or WHO grade. However, failure to identify the FLA was significantly correlated with involvement of the PT (p < 0.0001). Similarly, multivariate analyses with the logistic regression model showed that only involvement of the PT was significantly correlated with failure to identify the FLA (p < 0.0001). In 18 patients whose tumors involved the PT, only 1 patient had mild preoperative dysphasia. One week after surgery, language function worsened in 4 (22%) of 18 patients. Six months after surgery, 1 (5.6%) of 18 patients had a persistent mild speech deficit. The mean extent of resection was 90% ± 7.1%. Conclusions Identification of the FLA can be difficult in patients with frontal gliomas on the dominant side that involve the PT, but the positive mapping rate of the FLA was 95% in patients without involvement of the PT. These findings are useful for establishing a positive mapping strategy for patients undergoing awake craniotomy for the treatment of frontal gliomas on the dominant side. Thoroughly positive language mapping with subcortical electrical stimulation should be performed in patients without involvement of the PT. More careful continuous neurological monitoring combined with subcortical electrical stimulation is needed when removing dominant-side frontal gliomas that involve the PT.
Collapse
Affiliation(s)
- Taiichi Saito
- Departments of 1 Neurosurgery and.,CREST, Japan Science and Technology Agency, Tokyo
| | - Yoshihiro Muragaki
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University.,CREST, Japan Science and Technology Agency, Tokyo
| | - Takashi Maruyama
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University.,CREST, Japan Science and Technology Agency, Tokyo
| | - Manabu Tamura
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University.,CREST, Japan Science and Technology Agency, Tokyo
| | - Masayuki Nitta
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University.,CREST, Japan Science and Technology Agency, Tokyo
| | | | - Yoshiyuki Konishi
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
| | | | - Ryuta Kinno
- CREST, Japan Science and Technology Agency, Tokyo.,Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo; and.,Division of Neurology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kuniyoshi L Sakai
- CREST, Japan Science and Technology Agency, Tokyo.,Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo; and
| | - Hiroshi Iseki
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
| | | |
Collapse
|
65
|
A comparative study of the effects of pulse parameters for intracranial direct electrical stimulation in epilepsy. Clin Neurophysiol 2016; 127:91-101. [DOI: 10.1016/j.clinph.2015.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
|
66
|
Balestrini S, Francione S, Mai R, Castana L, Casaceli G, Marino D, Provinciali L, Cardinale F, Tassi L. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study. Brain 2015; 138:2596-607. [DOI: 10.1093/brain/awv187] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/05/2015] [Indexed: 12/30/2022] Open
|
67
|
Stecker MM, Patterson T, Netherton BL. Mechanisms of Electrode Induced Injury. Part 1: Theory. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/1086508x.2006.11079592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mark M. Stecker
- Department of Neurology Geisinger Medical Center Danville, Pennsylvania
| | - Terry Patterson
- Department of Neurosurgery Penn State Medical Center Hershey, Pennsylvania
| | | |
Collapse
|
68
|
Jones SE, Zhang M, Avitsian R, Bhattacharyya P, Bulacio J, Cendes F, Enatsu R, Lowe M, Najm I, Nair D, Phillips M, Gonzalez-Martinez J. Functional magnetic resonance imaging networks induced by intracranial stimulation may help defining the epileptogenic zone. Brain Connect 2015; 4:286-98. [PMID: 24735069 DOI: 10.1089/brain.2014.0225] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Patients with medically intractable epilepsy often undergo invasive evaluation and surgery, with a 50% success rate. The low success rate is likely due to poor identification of the epileptogenic zone (EZ), the brain area causing seizures. This work introduces a new method using functional magnetic resonance imaging (fMRI) with simultaneous direct electrical stimulation of the brain that could help localize the EZ, performed in five patients with medically intractable epilepsy undergoing invasive evaluation with intracranial depth electrodes. Stimulation occurred in a location near the hypothesized EZ and a location away. Electrical recordings in response to stimulation were recorded and compared to fMRI. Multiple stimulation parameters were varied, like current and frequency. The brain areas showing fMRI response were compared with the areas resected and the success of surgery. Robust fMRI maps of activation networks were easily produced, which also showed a significant but weak positive correlation between quantitative measures of blood-oxygen-level-dependent (BOLD) activity and measures of electrical activity in response to direct electrical stimulation (mean correlation coefficient of 0.38 for all acquisitions that produced a strong BOLD response). For four patients with outcome data at 6 months, successful surgical outcome is consistent with the resection of brain areas containing high local fMRI activity. In conclusion, this method demonstrates the feasibility of simultaneous direct electrical stimulation and fMRI in humans, which allows the study of brain connectivity with high resolution and full spatial coverage. This innovative technique could be used to better define the localization and extension of the EZ in intractable epilepsies, as well as for other functional neurosurgical procedures.
Collapse
|
69
|
Dziedzic T, Bernstein M. Awake craniotomy for brain tumor: indications, technique and benefits. Expert Rev Neurother 2014; 14:1405-15. [PMID: 25413123 DOI: 10.1586/14737175.2014.979793] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increasing interest in the quality of life of patients after treatment of brain tumors has led to the exploration of methods that can improve intraoperative assessment of neurological status to avoid neurological deficits. The only method that can provide assessment of all eloquent areas of cerebral cortex and white matter is brain mapping during awake craniotomy. This method helps ensure that the quality of life and the neuro-oncological result of treatment are not compromised. Apart from the medical aspects of awake surgery, its economic issues are also favorable. Here, we review the main aspects of awake brain tumor surgery. Neurosurgical, neuropsychological, neurophysiological and anesthetic issues are briefly discussed.
Collapse
Affiliation(s)
- Tomasz Dziedzic
- Medical University of Warsaw, Neurosurgery, Banacha 1a, Warsaw, 02-097, Poland
| | | |
Collapse
|
70
|
Gabran SRI, Salam MT, Dian J, El-Hayek Y, Perez Velazquez JL, Genov R, Carlen PL, Salama MMA, Mansour RR. 3-D Flexible Nano-Textured High-Density Microelectrode Arrays for High-Performance Neuro-Monitoring and Neuro-Stimulation. IEEE Trans Neural Syst Rehabil Eng 2014; 22:1072-82. [DOI: 10.1109/tnsre.2014.2322077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
71
|
Mazzola L, Lopez C, Faillenot I, Chouchou F, Mauguière F, Isnard J. Vestibular responses to direct stimulation of the human insular cortex. Ann Neurol 2014; 76:609-19. [DOI: 10.1002/ana.24252] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Laure Mazzola
- Neurology Department; University Hospital; St-Etienne
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Jean Monnet University; St-Etienne
| | - Christophe Lopez
- Aix Marseille University, National Center for Scientific Research, Integrative and Adaptative Neurosciences Mixed Unit of Research 7260; Marseille
| | - Isabelle Faillenot
- Neurology Department; University Hospital; St-Etienne
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Jean Monnet University; St-Etienne
| | - Florian Chouchou
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
| | - François Mauguière
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Functional Neurology and Epilepsy Department; Neurological Hospital, Civil Hospices of Lyon; Lyon
- Claude Bernard University; Lyon France
| | - Jean Isnard
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Functional Neurology and Epilepsy Department; Neurological Hospital, Civil Hospices of Lyon; Lyon
- Claude Bernard University; Lyon France
| |
Collapse
|
72
|
Abstract
Intraoperative neurophysiologic monitoring endeavors to preserve the integrity of the nervous system at a time of potential risk. The examination of language function in the operative setting is a unique task that requires a detailed and systematic approach to be carried out efficiently and reliably in this dynamic environment. In this review, we detail the technique used to identify eloquent language cortex during awake craniotomy. This technique requires a coordinated effort to testing, which is reliant on preoperative assessment and structured approach to functional cortical mapping by the surgical, anesthetic, and neurophysiology teams. Despite the intricate nature of this modality of testing, the accurate identification of language areas facilitates neurosurgeries for tumor and focal epilepsy syndromes in the dominant cerebral hemisphere, which depend on maximal margins of resection for best outcomes.
Collapse
|
73
|
Entz L, Tóth E, Keller CJ, Bickel S, Groppe DM, Fabó D, Kozák LR, Erőss L, Ulbert I, Mehta AD. Evoked effective connectivity of the human neocortex. Hum Brain Mapp 2014; 35:5736-53. [PMID: 25044884 DOI: 10.1002/hbm.22581] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/04/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022] Open
Abstract
The role of cortical connectivity in brain function and pathology is increasingly being recognized. While in vivo magnetic resonance imaging studies have provided important insights into anatomical and functional connectivity, these methodologies are limited in their ability to detect electrophysiological activity and the causal relationships that underlie effective connectivity. Here, we describe results of cortico-cortical evoked potential (CCEP) mapping using single pulse electrical stimulation in 25 patients undergoing seizure monitoring with subdural electrode arrays. Mapping was performed by stimulating adjacent electrode pairs and recording CCEPs from the remainder of the electrode array. CCEPs reliably revealed functional networks and showed an inverse relationship to distance between sites. Coregistration to Brodmann areas (BA) permitted group analysis. Connections were frequently directional with 43% of early responses and 50% of late responses of connections reflecting relative dominance of incoming or outgoing connections. The most consistent connections were seen as outgoing from motor cortex, BA6-BA9, somatosensory (SS) cortex, anterior cingulate cortex, and Broca's area. Network topology revealed motor, SS, and premotor cortices along with BA9 and BA10 and language areas to serve as hubs for cortical connections. BA20 and BA39 demonstrated the most consistent dominance of outdegree connections, while BA5, BA7, auditory cortex, and anterior cingulum demonstrated relatively greater indegree. This multicenter, large-scale, directional study of local and long-range cortical connectivity using direct recordings from awake, humans will aid the interpretation of noninvasive functional connectome studies.
Collapse
Affiliation(s)
- László Entz
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, Manhasset, New York, 11030; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1132, Hungary; Department of Functional Neurosurgery and Department of Epilepsy, National Institute of Clinical Neuroscience, Budapest, 1145, Hungary; Péter Pázmány Catholic University, Faculty of Information Technology and Bionics, Budapest, 1083, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Almashaikhi T, Rheims S, Jung J, Ostrowsky-Coste K, Montavont A, De Bellescize J, Arzimanoglou A, Keo Kosal P, Guénot M, Bertrand O, Ryvlin P. Functional connectivity of insular efferences. Hum Brain Mapp 2014; 35:5279-94. [PMID: 24839121 DOI: 10.1002/hbm.22549] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The aim of our study was to explore the functional connectivity between the insula and other cortical regions, in human, using cortico-cortical evoked potentials (CCEPs) EXPERIMENTAL DESIGN We performed intra-cerebral electrical stimulation in eleven patients with refractory epilepsy investigated with depth electrodes, including 39 targeting the insula. Electrical stimulation consisted of two series of 20 pulses of 1-ms duration, 0.2-Hz frequency, and 1-mA intensity delivered at each of the 39 insular bipoles. Rates of connectivity were reported whenever a noninsular cortical region was tested by at least ten stimulating/recording electrode pairs in three or more patients RESULTS Significant CCEPs were elicited in 193 of the 578 (33%) tested connections, with an average latency of 33 ± 5 ms. The highest connectivity rates were observed with the nearby perisylvian structures (59%), followed by the pericentral cortex (38%), the temporal neocortex (28%), the lateral parietal cortex (26%), the orbitofrontal cortex (25%), the mesial temporal structures (24%), the dorsolateral frontal cortex (15%), the temporal pole (14%), and the mesial parietal cortex (11%). No connectivity was detected in the mesial frontal cortex or cingulate gyrus. The pattern of connectivity also differed between the five insular gyri, with greater connectivity rate for the posterior short gyrus (49%), than for the middle short (29%), and two long gyri (28 and 33%) CONCLUSION The human insula is characterized by a rich and complex connectivity that varies as a function of the insular gyrus and appears to partly differ from the efferences described in nonhuman primates.
Collapse
Affiliation(s)
- Talal Almashaikhi
- TIGER, Lyon's Neuroscience Research Centre, INSERM U1028, CNRS 5292, UCB Lyon 1, Lyon, France; Department of Sleep, Epilepsy and Pediatric Clinical Neurophysiology, Hospices Civils de Lyon, Lyon, France; Department of Clinical Physiology, Neurophysiology Division, Sultan Qaboos University Hospital, Muscat, Oman
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Postsurgical pathologies associated with intradural electrical stimulation in the central nervous system: design implications for a new clinical device. BIOMED RESEARCH INTERNATIONAL 2014; 2014:989175. [PMID: 24800260 PMCID: PMC3988712 DOI: 10.1155/2014/989175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/10/2014] [Accepted: 03/05/2014] [Indexed: 11/17/2022]
Abstract
Spinal cord stimulation has been utilized for decades in the treatment of numerous conditions such as failed back surgery and phantom limb syndromes, arachnoiditis, cancer pain, and others. The placement of the stimulating electrode array was originally subdural but, to minimize surgical complexity and reduce the risk of certain postsurgical complications, it became exclusively epidural eventually. Here we review the relevant clinical and experimental pathologic findings, including spinal cord compression, infection, hematoma formation, cerebrospinal fluid leakage, chronic fibrosis, and stimulation-induced neurotoxicity, associated with the early approaches to subdural electrical stimulation of the central nervous system, and the spinal cord in particular. These findings may help optimize the safety and efficacy of a new approach to subdural spinal cord stimulation now under development.
Collapse
|
76
|
Comparison of bipolar versus monopolar extraoperative electrical cortical stimulation mapping in patients with focal epilepsy. Clin Neurophysiol 2014; 125:667-674. [DOI: 10.1016/j.clinph.2013.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 08/16/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022]
|
77
|
|
78
|
Macdonald DB, Skinner S, Shils J, Yingling C. Intraoperative motor evoked potential monitoring - a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol 2013; 124:2291-316. [PMID: 24055297 DOI: 10.1016/j.clinph.2013.07.025] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022]
Abstract
The following intraoperative MEP recommendations can be made on the basis of current evidence and expert opinion: (1) Acquisition and interpretation should be done by qualified personnel. (2) The methods are sufficiently safe using appropriate precautions. (3) MEPs are an established practice option for cortical and subcortical mapping and for monitoring during surgeries risking motor injury in the brain, brainstem, spinal cord or facial nerve. (4) Intravenous anesthesia usually consisting of propofol and opioid is optimal for muscle MEPs. (5) Interpretation should consider limitations and confounding factors. (6) D-wave warning criteria consider amplitude reduction having no confounding factor explanation: >50% for intramedullary spinal cord tumor surgery, and >30-40% for peri-Rolandic surgery. (7) Muscle MEP warning criteria are tailored to the type of surgery and based on deterioration clearly exceeding variability with no confounding factor explanation. Disappearance is always a major criterion. Marked amplitude reduction, acute threshold elevation or morphology simplification could be additional minor or moderate spinal cord monitoring criteria depending on the type of surgery and the program's technique and experience. Major criteria for supratentorial, brainstem or facial nerve monitoring include >50% amplitude reduction when warranted by sufficient preceding response stability. Future advances could modify these recommendations.
Collapse
Affiliation(s)
- D B Macdonald
- Section of Clinical Neurophysiology, Department of Neurosciences, King Faisal Specialist Hospital & Research Center, MBC 76, PO Box 3354, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
79
|
Almashaikhi T, Rheims S, Ostrowsky-Coste K, Montavont A, Jung J, De Bellescize J, Arzimanoglou A, Keo Kosal P, Guénot M, Bertrand O, Ryvlin P. Intrainsular functional connectivity in human. Hum Brain Mapp 2013; 35:2779-88. [PMID: 24027207 DOI: 10.1002/hbm.22366] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES The anatomical organization of the insular cortex is characterized by its rich and heterogeneous cytoarchitecture and its wide network of connections. However, only limited knowledge is available regarding the intrainsular connections subserving the complex integrative role of the insular cortex. The aim of this study was to analyze the functional connectivity within- and across-insular subregions, at both gyral and functional levels. EXPERIMENTAL DESIGN We performed intracerebral electrical stimulation in 10 patients with refractory epilepsy investigated with depth electrodes, 38 of which were inserted in the insula. Bipolar electrical stimulation, consisting of two series of 20 pulses of 1-ms duration, 0.2-Hz frequency, and 1-mA intensity, was delivered at each insular contact. For each stimulated insular anatomical region, we calculated a rate of connectivity, reflecting the proportion of other insular contacts, showing significant evoked potentials. RESULTS Statistically significant evoked potentials were recorded in 74% of tested connections, with an average latency of 26 ± 3 ms. All insular gyri were interconnected, except the anterior and posterior short gyri. Most connections were reciprocal, showing no clear anterior to posterior directionality. No connection was observed between the right and the left insula. CONCLUSIONS These findings point to specific features of human insula connectivity as compared to non-Human primates, and remain consistent with the complex integration role devoted to the human insula in many cognitive domains. Periodicals, Inc.
Collapse
Affiliation(s)
- Talal Almashaikhi
- Translational and Integrative Group in Epilepsy Research (TIGER), Lyon's Neuroscience Research Centre, INSERM U1028, CNRS 5292, UCB Lyon 1, Lyon, France; Pediatric Epilepsy Department, Hospices Civils de Lyon, Lyon, France; Department of Clinical Physiology, Neurophysiology division, Sultan Qaboos University Hospital, Muscat, Oman
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Seo H, Kim D, Jun SC. A comparative study of the 3D precentral gyrus model for unipolar and bipolar current stimulations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1892-5. [PMID: 23366283 DOI: 10.1109/embc.2012.6346322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cortical stimulation (CS) is an appealing method for treating stroke and other disorders by promoting functional recovery. It is necessary to study the effect of different cortical stimulation types through numerical simulations in order to understand the underlying mechanism. In this paper, we simulated four types of invasive CS - unipolar ECS (epidural CS), bipolar ECS, unipolar SCS (subdural CS), and bipolar SCS - to investigate and compare the effects of stimulation types. Current stimulation was considered to increase the observability of the comparison between ECS and SCS. The simulation results obtained from the 3D precentral gyrus model showed ECS and SCS had similar current density distributions with higher stimulated current. However, the differences between bipolar and unipolar stimulation are significant with higher stimulated current. As stimulated current increased, unipolar CS penetrated deeper and wider regions than bipolar CS, so it can be more effective for functional recovery.
Collapse
Affiliation(s)
- Hyeon Seo
- School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | | | |
Collapse
|
81
|
Abstract
Cortical stimulation, either transcranial or by means of electrodes implanted epidurally or subdurally, is used increasingly to treat neuropsychiatric diseases. In cases where transcranial stimulation gives only short-term success, implanted electrodes can yield results that are similar but long-term. Epidural stimulation is used widely to treat chronic neuropathic pain, whereas newer fields are in movement disorders, tinnitus, depression, and functional rehabilitation after stroke. For epidural stimulation, computational models explain the geometry of stimulation parameters (anodal, cathodal, and bifocal) and are used for targeting to yield the best clinical results. Nevertheless, the role of the cerebrospinal fluid layer also has to be taken into consideration. Subdural or intrasulcal stimulation allows a more focused stimulation with lower current intensities. This advantage, however, is counterbalanced by a higher complication rate with regard to epileptic seizures, subdural or intracerebral hemorrhages, and wound infections.
Collapse
Affiliation(s)
- V Tronnier
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany.
| | | |
Collapse
|
82
|
van Kuyck K, Welkenhuysen M, Arckens L, Sciot R, Nuttin B. Histological alterations induced by electrode implantation and electrical stimulation in the human brain: a review. Neuromodulation 2012; 10:244-61. [PMID: 22150838 DOI: 10.1111/j.1525-1403.2007.00114.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objectives. Electrical brain stimulation is used as a treatment for patients with intractable chronic pain and movement disorders. However, the implantation of electrodes and electrical stimulation may induce histological changes around the electrode tip. We aimed to review the histological changes in humans that were electrically stimulated in the brain. Methods. We traced 26 autopsy studies of which 19 patients received cerebellar stimulation and 37 patients deep brain stimulation. Results. Electrode implantation and electrical stimulation induced in part of the cases formation of a fibrous sheath around the electrode, loss of fairly large neurons, and limited gliosis. Macroscopic lesions were present in only some cases, mostly due to pulling at the extension cable in the postoperative evaluation period preceding definite implantation of the electrode wire and stimulator. Conclusions. Electrical brain stimulation induces histological changes in some patients. According to electrical brain stimulation studies in animals, these changes can be related to the charge and charge density per phase (and their interaction).
Collapse
Affiliation(s)
- Kris van Kuyck
- Laboratory of Experimental Functional Neurosurgery, Department of Neuroscience, K.U.Leuven, Leuven, Belgium; Laboratory Neuroplasticity and Neuroproteomics, Department of Biology, K.U.Leuven, Leuven, Belgium; and Morphology and Molecular Pathology Section, Department of Morphology and Medical Imaging, K.U.Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
83
|
Choi BD, Mehta AI, Batich KA, Friedman AH, Sampson JH. The Use of Motor Mapping to Aid Resection of Eloquent Gliomas. Neurosurg Clin N Am 2012; 23:215-25, vii. [DOI: 10.1016/j.nec.2012.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
84
|
Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E, Knowlton B, Fried I. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med 2012; 366:502-10. [PMID: 22316444 PMCID: PMC3447081 DOI: 10.1056/nejmoa1107212] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The medial temporal structures, including the hippocampus and the entorhinal cortex, are critical for the ability to transform daily experience into lasting memories. We tested the hypothesis that deep-brain stimulation of the hippocampus or entorhinal cortex alters memory performance. METHODS We implanted intracranial depth electrodes in seven subjects to identify seizure-onset zones for subsequent epilepsy surgery. The subjects completed a spatial learning task during which they learned destinations within virtual environments. During half the learning trials, focal electrical stimulation was given below the threshold that elicits an afterdischarge (i.e., a neuronal discharge that occurs after termination of the stimulus). RESULTS Entorhinal stimulation applied while the subjects learned locations of landmarks enhanced their subsequent memory of these locations: the subjects reached these landmarks more quickly and by shorter routes, as compared with locations learned without stimulation. Entorhinal stimulation also resulted in a resetting of the phase of the theta rhythm, as shown on the hippocampal electroencephalogram. Direct hippocampal stimulation was not effective. In this small series, no adverse events associated with the procedure were observed. CONCLUSIONS Stimulation of the entorhinal region enhanced memory of spatial information when applied during learning. (Funded by the National Institutes of Health and the Dana Foundation.).
Collapse
Affiliation(s)
- Nanthia Suthana
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095-7039, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Kikuchi T, Matsumoto R, Mikuni N, Yokoyama Y, Matsumoto A, Ikeda A, Fukuyama H, Miyamoto S, Hashimoto N. Asymmetric bilateral effect of the supplementary motor area proper in the human motor system. Clin Neurophysiol 2012; 123:324-34. [DOI: 10.1016/j.clinph.2011.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 05/28/2011] [Accepted: 06/11/2011] [Indexed: 12/01/2022]
|
86
|
Catenoix H, Magnin M, Mauguière F, Ryvlin P. Evoked potential study of hippocampal efferent projections in the human brain. Clin Neurophysiol 2011; 122:2488-97. [PMID: 21669549 DOI: 10.1016/j.clinph.2011.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/14/2011] [Accepted: 05/15/2011] [Indexed: 11/24/2022]
|
87
|
|
88
|
Mazzola L, Isnard J, Peyron R, Mauguière F. Stimulation of the human cortex and the experience of pain: Wilder Penfield's observations revisited. ACTA ACUST UNITED AC 2011; 135:631-40. [PMID: 22036962 DOI: 10.1093/brain/awr265] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thanks to the seminal work of Wilder Graves Penfield (1891-1976) at the Montreal Neurological Institute, electrical stimulation is used worldwide to localize the epileptogenic cortex and to map the functionally eloquent areas in the context of epilepsy surgery or lesion resections. In the functional map of elementary and experiential responses he described through >20 years of careful exploration of the human cortex via stimulation of the cortical surface, Penfield did not identify any 'pain cortical area'. We reinvestigated this issue by analysing subjective and videotaped behavioural responses to 4160 cortical stimulations using intracerebral electrodes implanted in all cortical lobes that were carried out over 12 years during the presurgical evaluation of epilepsy in 164 consecutive patients. Pain responses were scarce (1.4%) and concentrated in the medial part of the parietal operculum and neighbouring posterior insula where pain thresholds showed a rostrocaudal decrement. This deep cortical region remained largely inaccessible to the intraoperative stimulation of the cortical surface carried out by Penfield after resection of the parietal operculum. It differs also from primary sensory areas described by Penfield et al. in the sense that, with our stimulation paradigm, pain represented only 10% of responses. Like Penfield et al., we obtained no pain response anywhere else in the cortex, including in regions consistently activated by pain in most functional imaging studies, i.e. the first somatosensory area, the lateral part of the secondary somatosensory area, anterior and mid-cingulate gyri (mid-cingulate cortex), anterior frontal, posterior parietal and supplementary motor areas. The medial parietal operculum and posterior insula are thus the only areas where electrical stimulation is able to trigger activation of the pain cortical network and thus the experience of somatic pain.
Collapse
Affiliation(s)
- Laure Mazzola
- Department of Neurology, University Hospital, St-Etienne, 42055 cedex 2, France
| | | | | | | |
Collapse
|
89
|
Implanted Subdural Electrodes: Safety Issues and Complication Avoidance. Neurosurg Clin N Am 2011; 22:519-31, vii. [DOI: 10.1016/j.nec.2011.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
90
|
Szelényi A, Senft C, Jardan M, Forster M, Franz K, Seifert V, Vatter H. Intra-operative subcortical electrical stimulation: A comparison of two methods. Clin Neurophysiol 2011; 122:1470-5. [DOI: 10.1016/j.clinph.2010.12.055] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/24/2010] [Accepted: 12/06/2010] [Indexed: 11/28/2022]
|
91
|
Abstract
STUDY DESIGN Retrospective review. OBJECTIVE To report on the safety of repetitive transcranial electric stimulation (RTES) for eliciting motor-evoked potentials during spine surgery. SUMMARY OF BACKGROUND DATA Theoretical concerns over the safety of RTES have hindered broader acceptance of transcranial electric motor-evoked potentials (tceMEP), despite successful implementation of spinal cord monitoring with tceMEPs in many large spine centers, as well as their apparent superiority over mixed-nerve somatosensory-evoked potentials (SSEP) for detection of spinal cord injury. METHODS The records of 18,862 consecutive patients who met inclusion criteria and underwent spine surgery with tceMEP monitoring were reviewed for RTES-related complications. RESULTS This large retrospective review identified only 26 (0.14%) cases with RTES-related complications; all but one of these were tongue lacerations, most of which were self-limiting. CONCLUSIONS The results demonstrate that RTES is a highly safe modality for monitoring spinal cord motor tract function intraoperatively.
Collapse
|
92
|
Does the insula tell our brain that we are in pain? Pain 2011; 152:946-951. [DOI: 10.1016/j.pain.2010.12.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 12/11/2010] [Accepted: 12/15/2010] [Indexed: 11/21/2022]
|
93
|
Using subdural electrodes to assess the safety of resections. Epilepsy Behav 2011; 20:223-9. [PMID: 20880755 DOI: 10.1016/j.yebeh.2010.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/20/2022]
Abstract
Subdural electrodes are frequently used to aid in the neurophysiological assessment of patients with intractable seizures. We review their use for localizing cortical regions supporting movement, sensation, and language.
Collapse
|
94
|
Fernández G, Hufnagel A, Helmstaedter C, Zentner J, Elger C. Memory function during low intensity hippocampal electrical stimulation in patients with temporal lobe epilepsy. Eur J Neurol 2011. [DOI: 10.1111/j.1468-1331.1996.tb00227.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
95
|
Afif A, Minotti L, Kahane P, Hoffmann D. Anatomofunctional organization of the insular cortex: a study using intracerebral electrical stimulation in epileptic patients. Epilepsia 2010; 51:2305-15. [PMID: 20946128 DOI: 10.1111/j.1528-1167.2010.02755.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Different lines of evidence suggest that the insular cortex has many important functional roles. Direct electrical stimulation (ES) of the human insular cortex during surgical procedures for epilepsy, functional imaging techniques, and lesion studies also occasionally induces clinical responses. METHODS In this study, we evaluated 25 patients with drug-refractory focal epilepsy by stereotactically implanting at least one electrode into the insular cortex using an oblique approach (transfrontal or transparietal). One hundred twenty-eight insular sites (each situated between two contiguous contacts within the same electrode) were examined within the gyral substructures. We located each stimulation site by fusing preimplantation three-dimensional (3D) magnetic resonance imaging (MRI) images with the postimplantation 3D computed tomography (CT) scans that revealed the electrode contacts. RESULTS Sixty-seven stimulations induced at least one clinical response. Stimulation from within the insular cortex evoked 83 responses, without evidence of afterdischarge in the insular or extrainsular regions. We classified the principal responses as sensory (paresthesias and localized warm sensations), motor, pain, auditory, oropharyngeal, speech disturbances (including speech arrest and reduced voice intensity) and neurovegetative phenomena, such as facial reddening, generalized sensations of warmth or cold, hypogastric sensations, anxiety attacks, respiratory accelerations, sensations of rotation, and nausea. CONCLUSIONS These findings may indicate a functional specificity for the insular gyri and show the need for exploring this structure during invasive presurgical evaluation of epileptic patients according to seizure manifestations.
Collapse
Affiliation(s)
- Afif Afif
- Department of Neurosurgery, Neurological Hospital, Hospices Civils de Lyon, Lyon, France.
| | | | | | | |
Collapse
|
96
|
Lesser RP, Crone NE, Webber WRS. Subdural electrodes. Clin Neurophysiol 2010; 121:1376-1392. [PMID: 20573543 PMCID: PMC2962988 DOI: 10.1016/j.clinph.2010.04.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/21/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Subdural electrodes are frequently used to aid in the neurophysiological assessment of patients with intractable seizures. We review the indications for these, their uses for localizing epileptogenic regions and for localizing cortical regions supporting movement, sensation, and language.
Collapse
Affiliation(s)
- Ronald P Lesser
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - W R S Webber
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| |
Collapse
|
97
|
|
98
|
Szelényi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, Neuloh G, Signorelli F, Sala F. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus 2010; 28:E7. [PMID: 20121442 DOI: 10.3171/2009.12.focus09237] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is increasing evidence that the extent of tumor removal in low-grade glioma surgery is related to patient survival time. Thus, the goal of resecting the largest amount of tumor possible without leading to permanent neurological sequelae is a challenge for the neurosurgeon. Electrical stimulation of the brain to detect cortical and axonal areas involved in motor, language, and cognitive function and located within the tumor or along its boundaries has become an essential tool in combination with awake craniotomy. Based on a literature review, discussions within the European Low-Grade Glioma Group, and illustrative clinical experience, the authors of this paper provide an overview for neurosurgeons, neurophysiologists, linguists, and anesthesiologists as well as those new to the field about the stimulation techniques currently being used for mapping sensorimotor, language, and cognitive function in awake surgery for low-grade glioma. The paper is intended to help the understanding of these techniques and facilitate a comparison of results between users.
Collapse
Affiliation(s)
- Andrea Szelényi
- Department of Neurosurgery, Johann Wolfgang Goethe University, D-60528 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
The safety of transcranial magnetic stimulation with deep brain stimulation instruments. Parkinsonism Relat Disord 2010; 16:127-31. [DOI: 10.1016/j.parkreldis.2009.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 11/23/2022]
|
100
|
Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir (Wien) 2010; 152:185-93. [PMID: 19639247 DOI: 10.1007/s00701-009-0469-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 07/04/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND While the fundamental and clinical contribution of direct electrical stimulation (DES) of the brain is now well acknowledged, its advantages and limitations have not been re-evaluated for a long time. METHOD Here, we critically review exactly what DES can tell us about cerebral function. RESULTS First, we show that DES is highly sensitive for detecting the cortical and axonal eloquent structures. Moreover, DES also provides a unique opportunity to study brain connectivity, since each area responsive to stimulation is in fact an input gate into a large-scale network rather than an isolated discrete functional site. DES, however, also has a limitation: its specificity is suboptimal. Indeed, DES may lead to interpretations that a structure is crucial because of the induction of a transient functional response when stimulated, whereas (1) this effect is caused by the backward spreading of the electro-stimulation along the network to an essential area and/or (2) the stimulated region can be functionally compensated owing to long-term brain plasticity mechanisms. CONCLUSION In brief, although DES is still the gold standard for brain mapping, its combination with new methods such as perioperative neurofunctional imaging and biomathematical modeling is now mandatory, in order to clearly differentiate those networks that are actually indispensable to function from those that can be compensated.
Collapse
|