51
|
Macroglomeruli for fruit odors change blend preference in Drosophila. Naturwissenschaften 2010; 97:1059-66. [PMID: 20972770 DOI: 10.1007/s00114-010-0727-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 01/18/2023]
Abstract
The olfactory circuitry of Drosophila melanogaster is becoming increasingly clear. However, how olfactory processing translates into appropriate behavioral responses is still poorly understood. Using a sibling species approach, we tested how a perturbation in the olfactory circuitry affects odor preference. In a previous study, we found that the sibling species of D. melanogaster, the specialist D. sechellia, overrepresents a sensillum, ab3, the A neuron of which is sensitive to hexanoate esters, characteristic of the species' sole host, the Morinda citrifolia fruit. Concordantly, the corresponding glomerulus, DM2, is enlarged. In this study, we found that the ab3B neuron, the expansion of which was previously assumed to be pleiotropic and of no ecological significance, is in fact tuned to another morinda fruit volatile, 2-heptanone (HP). Axons of this neuron type arborize in a second enlarged glomerulus. In behavioral experiments we tested how this has affected the fly's odor preference. We demonstrate that D. sechellia has a reversed preference for the key ligands of these macroglomeruli, especially at high concentrations. Whereas D. melanogaster was repelled by high concentrations of these odors, D. sechellia was highly attracted. This was the case for odors presented singly, but more notably for blends thereof. Our study indicates that relatively simple changes, such as a shift in sensillar abundance, and concordant shifts in glomerular size, can distort the resulting olfactory code, and can lead to saltatory shifts in odor preference. D. sechellia has exploited this to align its olfactory preference with its ecological niche.
Collapse
|
52
|
Sombke A, Harzsch S, Hansson BS. Organization of Deutocerebral Neuropils and Olfactory Behavior in the Centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chem Senses 2010; 36:43-61. [DOI: 10.1093/chemse/bjq096] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
53
|
Jarriault D, Gadenne C, Lucas P, Rospars JP, Anton S. Transformation of the sex pheromone signal in the noctuid moth Agrotis ipsilon: from peripheral input to antennal lobe output. Chem Senses 2010; 35:705-15. [PMID: 20601375 DOI: 10.1093/chemse/bjq069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
How information is transformed along synaptic processing stages is critically important to understand the neural basis of behavior in any sensory system. In moths, males rely on sex pheromone to find their mating partner. It is essential for a male to recognize the components present in a pheromone blend, their ratio, and the temporal pattern of the signal. To examine pheromone processing mechanisms at different levels of the olfactory pathway, we performed single-cell recordings of olfactory receptor neurons (ORNs) in the antenna and intracellular recordings of central neurons in the macroglomerular complex (MGC) of the antennal lobe of sexually mature Agrotis ipsilon male moths, using the same pheromone stimuli, stimulation protocol, and response analyses. Detailed characteristics of the ORN and MGC-neuron responses were compared to describe the transformation of the neuronal responses that takes place in the MGC. Although the excitatory period of the response is similar in both neuron populations, the addition of an inhibitory phase following the MGC neuron excitatory phase indicates participation of local interneurons (LN), which remodel the ORN input. Moreover, MGC neurons showed a wider tuning and a higher sensitivity to single pheromone components than ORNs.
Collapse
Affiliation(s)
- David Jarriault
- Unité Mixte de Recherches 1272 Physiologie de l'Insecte, Signalisation et Communication, Institut National de la Recherche Agronomique, Route de Saint-Cyr, F-78000 Versailles, France
| | | | | | | | | |
Collapse
|
54
|
Bernadou A, Démares F, Couret-Fauvel T, Sandoz JC, Gauthier M. Effect of fipronil on side-specific antennal tactile learning in the honeybee. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1099-1106. [PMID: 19723527 DOI: 10.1016/j.jinsphys.2009.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/30/2009] [Accepted: 08/03/2009] [Indexed: 05/28/2023]
Abstract
In the honeybee, the conditioning of the proboscis extension response using tactile antennal stimulations is well suited for studying the side-specificity of learning including the possible bilateral transfer of memory traces in the brain, and the role of inhibitory networks. A tactile stimulus was presented to one antenna in association with a sucrose reward to the proboscis. The other antenna was either not stimulated (A+/0 training), stimulated with a non-reinforced tactile stimulus B (A+/B- training) or stimulated with B reinforced with sucrose to the proboscis (A+/B+ training). Memory tests performed 3 and 24h after training showed in all situations that a tactile stimulus learnt on one side was only retrieved ipsilaterally, indicating no bilateral transfer of information. In all these groups, we investigated the effect of the phenylpyrazole insecticide fipronil by applying a sublethal dose (0.5 ng/bee) on the thorax 15 min before training. This treatment decreased acquisition success and the subsequent memory performances were lowered but the distribution of responses to the tactile stimuli between sides was not affected. These results underline the role of the inhibitory networks targeted by fipronil on tactile learning and memory processes.
Collapse
Affiliation(s)
- A Bernadou
- Centre de Recherches sur la Cognition Animale, UMR CNRS 5169, Université Paul Sabatier, 31062 Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
55
|
Cardona A, Larsen C, Hartenstein V. Neuronal fiber tracts connecting the brain and ventral nerve cord of the early Drosophila larva. J Comp Neurol 2009; 515:427-40. [PMID: 19459219 DOI: 10.1002/cne.22086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By using a combination of dye injections, clonal labeling, and molecular markers, we have reconstructed the axonal connections between brain and ventral nerve cord of the first-instar Drosophila larva. Out of the approximately 1,400 neurons that form the early larval brain hemisphere, less than 50 cells have axons descending into the ventral nerve cord. Descending neurons fall into four topologically defined clusters located in the anteromedial, anterolateral, dorsal, and basoposterior brain, respectively. The anterolateral cluster represents a lineage derived from a single neuroblast. Terminations of descending neurons are almost exclusively found in the anterior part of the ventral nerve cord, represented by the gnathal and thoracic neuromeres. This region also contains small numbers of neurons with axons ascending into the brain. Terminals of the ascending axons are found in the same basal brain regions that also contain descending neurons. We have mapped ascending and descending axons to the previously described scaffold of longitudinal fiber tracts that interconnect different neuromeres of the ventral nerve cord and the brain. This work provides a structural framework for functional and genetic studies addressing the control of Drosophila larval behavior by brain circuits.
Collapse
Affiliation(s)
- Albert Cardona
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, 90095, USA
| | | | | |
Collapse
|
56
|
Varela N, Couton L, Gemeno C, Avilla J, Rospars JP, Anton S. Three-dimensional antennal lobe atlas of the oriental fruit moth, Cydia molesta (Busck) (Lepidoptera: Tortricidae): comparison of male and female glomerular organization. Cell Tissue Res 2009; 337:513-26. [DOI: 10.1007/s00441-009-0839-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/30/2009] [Indexed: 11/28/2022]
|
57
|
Couton L, Minoli S, Kiêu K, Anton S, Rospars JP. Constancy and variability of identified glomeruli in antennal lobes: computational approach in Spodoptera littoralis. Cell Tissue Res 2009; 337:491-511. [PMID: 19649656 DOI: 10.1007/s00441-009-0831-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 06/19/2009] [Indexed: 11/25/2022]
Abstract
The primary olfactory centres share striking similarities across the animal kingdom. The most conspicuous is their subdivision into glomeruli, which are spherical neuropil masses in which synaptic contacts between sensory and central neurons occur. Glomeruli have both an anatomical identity (being invariant in location, size and shape) and a functional identity (each glomerulus receiving afferents from olfactory receptor neurons that express the same olfactory receptor). Identified glomeruli offer a favourable system for analysing quantitatively the constancy and variability of the neuronal circuits, an important issue for understanding their function, development and evolution. The noctuid moth Spodoptera littoralis with its well-studied pheromone communication system has become a model species for olfaction research. We analyse here its glomerular organisation based on ethyl-gallate-stained and synapsin-stained preparations. Although we have confirmed that the majority of glomeruli can be individually identified in various antennal lobes, we have recognised several types of biological variability. Some glomeruli are absent, possibly indicating the lack of the corresponding receptor neuron type or its misrouting during development. The antennal lobes vary in global shape and, consequently, the spatial location of the glomerular changes. Although they do not prevent glomerulus identification when quantitative analysis methods are used, these variations place limits on the straightforward identification of glomeruli in functional studies, e.g. calcium-imaging or single-cell staining, when using conventional three-dimensional maps of individual antennal lobes.
Collapse
Affiliation(s)
- Louise Couton
- INRA, UMR 1272 Physiologie de l'Insecte, Versailles, France
| | | | | | | | | |
Collapse
|
58
|
Jarriault D, Gadenne C, Rospars JP, Anton S. Quantitative analysis of sex-pheromone coding in the antennal lobe of the moth Agrotis ipsilon: a tool to study network plasticity. ACTA ACUST UNITED AC 2009; 212:1191-201. [PMID: 19329752 DOI: 10.1242/jeb.024166] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To find a mating partner, moths rely on pheromone communication. Released in very low amounts, female sex pheromones are used by males to identify and localize females. Depending on the physiological state (i.e. age, reproductive state), the olfactory system of the males of the noctuid moth Agrotis ipsilon is 'switched on or off'. To understand the neural basis of this behavioural plasticity, we performed a detailed characterization of the qualitative, quantitative and temporal aspects of pheromone coding in the primary centre of integration of pheromonal information, the macroglomerular complex (MGC) of the antennal lobe. MGC neurons were intracellularly recorded and stained in sexually mature virgin males. When stimulating antennae of males with the three main components of the female pheromone blend, most of the neurons showed a biphasic excitatory-inhibitory response. Although they showed different preferences, 80% of the neurons responded at least to the main pheromone component (Z-7-dodecenyl acetate). Six stained neurons responding to this component had their dendrites in the largest MGC glomerulus. Changes in the stimulus intensity and duration affected the excitatory phase but not the inhibitory phase properties. The stimulus intensity was shown to be encoded in the firing frequency, the number of spikes and the latency of the excitatory phase, whereas the stimulus duration only changed its duration. We conclude that the inhibitory input provided by local interneurons following the excitatory phase might not contribute directly to the encoding of stimulus characteristics. The data presented will serve as a basis for comparison with those of immature and mated males.
Collapse
Affiliation(s)
- David Jarriault
- INRA, UMR1272, Physiologie de l'Insecte: Signalisation et Communication, Versailles, F-78000, France
| | | | | | | |
Collapse
|
59
|
Antennal motor activity induced by pilocarpine in the American cockroach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:351-63. [DOI: 10.1007/s00359-008-0411-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 12/22/2008] [Accepted: 12/26/2008] [Indexed: 11/26/2022]
|
60
|
Hill SR, Hansson BS, Ignell R. Characterization of antennal trichoid sensilla from female southern house mosquito, Culex quinquefasciatus Say. Chem Senses 2009; 34:231-52. [PMID: 19153252 DOI: 10.1093/chemse/bjn080] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culex quinquefasciatus, the southern house mosquito, is highly dependent on its olfactory system for vector-related activities such as host seeking and oviposition. The antennae are the primary olfactory organs in mosquitoes. We describe 5 morphological types of sensilla on the antenna of C. quinquefasciatus: 1) a pair of sensilla coeloconica located at the distal tip, 2) long and short sensilla chaetica present on all 13 antennal flagella, 3) sensilla ampullacea found on the 2 proximal-most flagella, 4) 2 morphological types of grooved pegs dispersed throughout the flagella, and 5) 5 morphological subtypes of sensilla trichodea distributed among all flagella. Antennal trichoid and grooved peg sensilla of mosquitoes have been demonstrated to house the olfactory receptor neurons (ORNs) that detect many of the odors involved in eliciting vector-related behaviors. In order to initiate the functional characterization of the peripheral olfactory system in female C. quinquefasciatus, we mapped the physiological responses of all 5 morphological subtypes of sensilla trichodea to an odor panel of 44 behaviorally relevant odor compounds. We identified 17 functional classes of sensilla trichodea: 3 short sharp-tipped, 9 short blunt-tipped type I, and 5 short blunt-tipped type II sensilla. One morphological subtype remains unclassified as the long sharp-tipped sensilla did not respond to any of the volatiles tested. The functional classes of the ORNs were analyzed with respect to stimulus response profiles, stimuli sensitivity, and temporal coding patterns. Comparisons with other functionally classified mosquito antennal sensilla trichodea are discussed.
Collapse
Affiliation(s)
- Sharon R Hill
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-23053 Alnarp, Sweden.
| | | | | |
Collapse
|
61
|
Kristoffersen L, Larsson MC, Anderbrant O. Functional characteristics of a tiny but specialized olfactory system: olfactory receptor neurons of carrot psyllids (Homoptera: Triozidae). Chem Senses 2008; 33:759-69. [PMID: 18653644 DOI: 10.1093/chemse/bjn034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With only approximately 50 olfactory receptor neurons (ORNs), the carrot psyllid Trioza apicalis (Homoptera: Psylloidea) may have the smallest olfactory system described in adult Neopteran insects. Using single sensillum recordings (SSR) and gas chromatograph-linked SSR, we characterized 4 olfactory sensilla forming a distinct morphological type, which together house approximately 25% of all ORNs. We recorded responses to extracts and single constituents from Daucus carota ssp. sativus, from the conifers Picea abies, Pinus sylvestris, and Juniperus communis, as well as from male and female T. apicalis. Receptor neurons were highly selective; only 9 compounds in total elicited repeatable responses, and each neuron responded to at most 3 individual compounds. Chemical profiles of carrot and conifers showed significant overlap, with 4 out of 9 electrophysiologically active compounds occurring in more than one type of extract, but a carrot-specific compound elicited the most repeated responses. We identified 4 tentative neuron classes and found a rather high degree of neuronal redundancy, with 1 neuron class present in 3 and another present in all 4 of the sensilla, respectively.
Collapse
Affiliation(s)
- Lina Kristoffersen
- Department of Crop Protection Biology, Chemical Ecology, Swedish University of Agricultural Sciences, Box 102, SE-23053 Alnarp, Sweden
| | | | | |
Collapse
|
62
|
Kristoffersen L, Hansson BS, Anderbrant O, Larsson MC. Aglomerular hemipteran antennal lobes--basic neuroanatomy of a small nose. Chem Senses 2008; 33:771-8. [PMID: 18653643 DOI: 10.1093/chemse/bjn044] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have compared the basic organization of the primary olfactory centre, the antennal lobe (AL), in 4 hemipteran species representing the 2 major lineages in this order. The Homoptera were represented by the psyllid Trioza apicalis and its aphid relatives the grain aphid Sitobion avenae Fabricius and the rose-grain aphid Metopolophium dirhodum Walker, whereas the Heteroptera were represented by the pentatomid stink bug Euschistus heros Fabricius. The olfactory systems of psyllids and aphids are generally very small, with low numbers of afferents in comparison to other insect groups, and the smallest described so far belongs to T. apicalis, comprising less than 50 olfactory receptor neurons (ORNs). Originally, we tried to estimate numbers of olfactory glomeruli in the AL of T. apicalis, which in insects generally correspond closely to the number of different types of ORNs. Neither immunocytochemical staining nor anterograde staining of ORNs revealed any glomerular structures in the ALs of T. apicalis or the 2 aphids that were included for comparison. In contrast, the ALs of the pentatomid stink bug E. heros displayed numerous distinct and well-delineated glomeruli, showing that aglomerular ALs are not typical of all insects within the order Hemiptera. Glomeruli are hallmark features of olfactory lobes in many different phyla, and the absence of glomerular structures in psyllids and aphids appears to be unique in insects that depend on olfactory orientation.
Collapse
Affiliation(s)
- Lina Kristoffersen
- Department of Crop Protection Biology, Chemical Ecology, Swedish University of Agricultural Sciences, PO Box 44, SE-230 53 Alnarp, Sweden
| | | | | | | |
Collapse
|
63
|
Spaethe J, Brockmann A, Halbig C, Tautz J. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 2007; 94:733-9. [PMID: 17479233 DOI: 10.1007/s00114-007-0251-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 02/27/2007] [Accepted: 04/05/2007] [Indexed: 11/26/2022]
Abstract
The eusocial bumblebees exhibit pronounced size variation among workers of the same colony. Differently sized workers engage in different tasks (alloethism); large individuals are found to have a higher probability to leave the colony and search for food, whereas small workers tend to stay inside the nest and attend to nest duties. We investigated the effect of size variation on morphology and physiology of the peripheral olfactory system and the behavioral response thresholds to odors in workers of Bombus terrestris. Number and density of olfactory sensilla on the antennae correlate significantly with worker size. Consistent with these morphological changes, we found that antennal sensitivity to odors increases with body size. Antennae of large individuals show higher electroantennogram responses to a given odor concentration than those of smaller nestmates. This finding indicates that large antennae exhibit an increased capability to catch odor molecules and thus are more sensitive to odors than small antennae. We confirmed this prediction in a dual choice behavioral experiment showing that large workers indeed are able to respond correctly to much lower odor concentrations than small workers. Learning performance in these experiments did not differ between small and large bumblebees. Our results clearly show that, in the social bumblebees, variation in olfactory sensilla number due to size differences among workers strongly affects individual odor sensitivity. We speculate that superior odor sensitivity of large workers has favored size-related division of labor in bumblebee colonies.
Collapse
Affiliation(s)
- Johannes Spaethe
- BEEgroup, Zoologie II, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | | | | | |
Collapse
|
64
|
Kelber C, Rössler W, Kleineidam CJ. Multiple olfactory receptor neurons and their axonal projections in the antennal lobe of the honeybee Apis mellifera. J Comp Neurol 2006; 496:395-405. [PMID: 16566001 DOI: 10.1002/cne.20930] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The poreplate sensilla of honeybees are equipped with multiple olfactory receptor neurons (ORNs), which innervate glomeruli of the antennal lobe (AL). We investigated the axonal projection pattern in glomeruli of the AL (glomerular pattern), formed by the multiple ORNs of individual poreplate sensilla. We used the different glomerular patterns to draw conclusions about the equipment of poreplate sensilla with different ORN types. ORNs of single poreplate sensilla were stained and analyzed by laser-scanning confocal microscopy and 3D software (AMIRA). In 13 specimens we found between 7 and 23 ORNs. This is in accordance with data found in the literature (5-35 ORNs) suggesting that all ORNs of the single poreplate sensilla were stained. The ORNs innervate the AL via all four sensory tracts (T1-T4), and glomeruli of the anterior part of the AL are more often innervated. Each ORN innervates a single glomerulus (uniglomerular), and all ORNs of one poreplate sensillum project to different glomeruli. Visual inspection and individual identification of glomeruli, based on the honeybee digital AL atlas, were used to evaluate mapping of glomeruli by a rigid transformation of the experimental ALs onto a reference AL. ORNs belonging to individual poreplate sensilla form variable glomerular patterns, and we did not find a common organization of glomerular patterns. We conclude that poreplate sensilla are equipped with different ORN types but that the same ORN types can be found in different poreplate sensilla. The equipment of poreplate sensilla with ORNs is overlapping. The mapping of glomeruli by rigid transformation is revealed to be a powerful tool for comparative neuroanatomy.
Collapse
Affiliation(s)
- Christina Kelber
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Germany
| | | | | |
Collapse
|
65
|
Skiri HT, Rø H, Berg BG, Mustaparta H. Consistent organization of glomeruli in the antennal lobes of related species of heliothine moths. J Comp Neurol 2006; 491:367-80. [PMID: 16175552 DOI: 10.1002/cne.20692] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glomeruli of the antennal lobes in insects reflect the organization of the olfactory system, which is important for species-specific behaviors in response to insect- and plant-produced odorants. We studied the antennal lobes of the polyphagous moth Helicoverpa armigera and the oligophagous H. assulta (Heliothinae; Lepidoptera; Noctuidae) in order to see whether there are any anatomical differences that might elucidate how information about odorants is analyzed. Three-dimensional models of the antennal lobes were made, based on synaptic antibody staining combined with confocal laser scanning microscopy. These showed 65 glomeruli in each sex of H. armigera and 66 glomeruli in females of H. assulta. Sixty-two of the glomeruli were identified in both sexes and species and were given the same numbers. The sex-specific glomeruli included three macroglomerular units in H. armigera males, as well as three and four female-specific glomeruli in H. armigera and H. assulta, respectively. The species specificity of H. assulta females also appeared by the particular large size of two ordinary glomeruli. The accumulating knowledge on how biologically relevant information is encoded in receptor and antennal lobe neurons in heliothines makes these moths particularly interesting for studying the functional organization of the glomeruli. The anatomical atlases of the antennal lobes, as presented here, are prerequisites for identifying glomeruli ascribed to particular functions across sexes and species.
Collapse
Affiliation(s)
- Hanne Therese Skiri
- Neuroscience Unit, Department of Biology, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | | | | | | |
Collapse
|
66
|
Abstract
Insect odor and taste receptors are highly sensitive detectors of food, mates, and oviposition sites. Following the identification of the first insect odor and taste receptors in Drosophila melanogaster, these receptors were identified in a number of other insects, including the malaria vector mosquito Anopheles gambiae; the silk moth, Bombyx mori; and the tobacco budworm, Heliothis virescens. The chemical specificities of many of the D. melanogaster receptors, as well as a few of the A. gambiae and B. mori receptors, have now been determined either by analysis of deletion mutants or by ectopic expression in in vivo or heterologous expression systems. Here we discuss recent advances in our understanding of the molecular and cellular basis of odor and taste coding in insects.
Collapse
Affiliation(s)
- Elissa A Hallem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
67
|
Perk CG, Mercer AR. Dopamine modulation of honey bee (Apis mellifera) antennal-lobe neurons. J Neurophysiol 2005; 95:1147-57. [PMID: 16282199 DOI: 10.1152/jn.01220.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary olfactory centers [antennal lobes (ALs)] of the honey bee brain are invaded by dopamine (DA)-immunoreactive neurons early in development (pupal stage 3), immediately before a period of rapid growth and compartmentalization of the AL neuropil. Here we examine the modulatory actions of DA on honey bee AL neurons during this period. Voltage-clamp recordings in whole cell configuration were used to determine the effects of DA on ionic currents in AL neurons in vitro from pupal bees at stages 4-6 of the nine stages of metamorphic adult development. In approximately 45% of the neurons tested, DA (5-50 x 10(-5) M) reduced the amplitude of outward currents in the cells. In addition to a slowly activating, sustained outward current, DA reduced the amplitude of a rapidly activating, transient outward conductance in some cells. Both of the currents modulated by DA could be abolished by the removal of Ca2+ from the external medium or by treatment of cells with charybdotoxin (2 x 10(-8) M), a blocker of Ca2+-dependent K+ currents in the cells. Ca2+ currents were not affected by DA, nor were A-type K+ currents (I(A)). Results suggest that the delayed rectifier-like current (I(KV)) also remains intact in the presence of DA. Taken together, our data indicate that Ca2+-dependent K+ currents are targets of DA modulation in honey bee AL neurons. This study lends support to the hypothesis that DA plays a role in the developing brain of the bee.
Collapse
|
68
|
Kleineidam CJ, Obermayer M, Halbich W, Rössler W. A Macroglomerulus in the Antennal Lobe of Leaf-cutting Ant Workers and its Possible Functional Significance. Chem Senses 2005; 30:383-92. [PMID: 15843501 DOI: 10.1093/chemse/bji033] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ants have a well-developed olfactory system, and pheromone communication is essential for regulating social life within their colonies. We compared the organization of primary olfactory centers (antennal lobes, ALs) in the brain of two closely related species of leaf-cutting ants (Atta vollenweideri, Atta sexdens). Both species express a striking size polymorphism associated with polyethism. We discovered that the ALs of large workers contain a substantially enlarged glomerulus (macroglomerulus, MG) at the entrance of the antennal nerve. This is the first description of an MG in non-sexual individuals of an insect. The location of the MG is laterally reversed in the two species, and workers of different size express a disproportional allometry of glomerular volumes. While ALs of large workers contain an MG, glomeruli in small workers are all similar in size. We further compared electroantennogram (EAG) responses to two common trail pheromone components of leaf-cutting ants: 4-methylpyrrol-2-carboxylate and 2-ethyl-3,6-dimethylpyrazine. At high concentrations the ratio of the EAG signals to 2-ethyl-3,6-dimethylpyrazine versus 4-methylpyrrol-2-carboxylate was significantly smaller in A. vollenweideri compared with the ratio of EAG signals to the same two components in A. sexdens. The differences in EAG signals and the species specific MG location in large workers provide correlative evidence that the MG may be involved in the detection of the trail pheromone.
Collapse
Affiliation(s)
- C J Kleineidam
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
69
|
Masante-Roca I, Gadenne C, Anton S. Three-dimensional antennal lobe atlas of male and female moths, Lobesia botrana (Lepidoptera: Tortricidae) and glomerular representation of plant volatiles in females. J Exp Biol 2005; 208:1147-59. [PMID: 15767314 DOI: 10.1242/jeb.01508] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Spatiotemporal odour coding is thought to be linked closely with the specific glomerular anatomy of the primary olfactory centre. In most insects the number of the glomeruli within the antennal lobe is limited to fewer than 100, allowing their individual identification. In the grapevine moth, Lobesia botrana, a map of the antennal lobe glomeruli was reconstructed three-dimensionally, by comparing three different brains in males and females. The map of the antennal lobe of females served then as a basis to identify glomeruli containing dendritic arborisations of 14 physiologically characterised projection neurons. Projection neurons responding to the same plant compound did not always arborise in the same glomerulus and some neurons arborising in the same glomerulus responded to different compounds. Different zones of target glomeruli were, however,identified when pooling all neurons responding to one of two different compounds respectively (α-farnesene and nonatriene). All identified glomeruli of specifically responding projection neurons were situated close to the anterior surface of the antennal lobe. One broadly responding projection neuron arborised in a more posteriorly situated glomerulus. A local interneuron responding to only one compound was arborising densely in a neighbouring glomerulus and had sparse branches in all other glomeruli. These results are discussed with respect to plant odour processing and structure-function relations in antennal lobe neurons. The 3D AL atlas will,in the future, also be used to obtain a better understanding of coding mechanisms of grapevine odours in this pest insect.
Collapse
Affiliation(s)
- Ingwild Masante-Roca
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche en Santé Végétale, Centre de Recherche de Bordeaux, BP81, 33883 Villenave d'Ornon Cedex, France
| | | | | |
Collapse
|
70
|
Nishino H, Nishikawa M, Yokohari F, Mizunami M. Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain. J Comp Neurol 2005; 493:291-308. [PMID: 16255033 DOI: 10.1002/cne.20757] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The antennae of most insects move actively and detect the physical and chemical composition of objects encountered by using their associated tactile sensors. Positional information is required for these sensory modalities to interpret the physical environment. Although we have a good understanding of antennal olfactory pathways, little is known about the destinations of antennal mechanosensory and contact chemosensory (gustatory) receptor neurons in the central nervous system. The cockroach Periplaneta is equipped with a pair of long, thin antennae, which are covered in bristles. The distal portions of each antenna possess about 6,500 bimodal bristles that house one tactile sensory and one to four contact chemosensory neurons. In this study, we investigated the morphologies of bimodal bristle receptor afferents by staining individual or populations of bristles. Unlike olfactory afferents, which project exclusively into the glomeruli in the ventral region of the deutocerebrum, both the presumptive mechanosensory and the contact chemosensory afferents projected into the posterior dorsal region of the deutocerebrum and the anterior region of the subesophageal ganglion. Each afferent showed multilayered segmentation and spatial occupation reflecting its three-dimensional position in the periphery. Presumptive contact chemosensory afferents, characterized by their thin axons and unique branching pattern, occupied more medioventral positions compared with the presumptive tactile afferents. Furthermore, projection fields of presumptive contact chemosensory afferents from single sensilla tended to be segregated from each other. These observations suggest that touch and taste positional information from the antenna is precisely represented in primary centers in a modality-specific manner.
Collapse
Affiliation(s)
- Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan.
| | | | | | | |
Collapse
|
71
|
Okada J, Toh Y. Spatio-temporal patterns of antennal movements in the searching cockroach. J Exp Biol 2004; 207:3693-706. [PMID: 15371477 DOI: 10.1242/jeb.01201] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
To characterize the spatio-temporal patterns of antennal behavior in insects, the voluntary movement of both right and left antennae was examined in the cockroach Periplaneta americana. The position of the tip of the antenna (flagellum) is controlled by two mobile joints at its base (the scape and the pedicel) and by the neck. Horizontal and vertical components of movement at the antennal basal joints exhibited rhythmic activities during locomotory (walking) and non-locomotory (pausing) states in the searching animal. In both states, the horizontal component was slower than vertical one. Joint-manipulation experiments suggested that the faster vertical component is due mainly to movements of the scape–pedicel joint, while the slower horizontal component may originate from the head–scape joint. Large horizontal deflections of the antenna corresponded consistently with the yaw component of head movement. The trajectories of the antennae showed little patterned regularity in most animals. In a few cases, however, loop-like patterns appeared. The area scanned by an antenna was narrower in the walking state than in the pausing state, mainly because of a decrease in the horizontal angular range. Cross-correlation analyses revealed that the coupling between right and left horizontal antennal motor systems and that for the vertical systems were both significantly stronger in the walking state than during pausing. These results indicate that the spatio-temporal pattern of antennal movements changes dynamically depending on the animal's behavioral state.
Collapse
Affiliation(s)
- Jiro Okada
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
72
|
Okada J, Toh Y. Antennal system in cockroaches: a biological model of active tactile sensing. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
73
|
Vermeulen A, Rospars JP. Why are insect olfactory receptor neurons grouped into sensilla? The teachings of a model investigating the effects of the electrical interaction between neurons on the transepithelial potential and the neuronal transmembrane potential. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:633-43. [PMID: 15138735 DOI: 10.1007/s00249-004-0405-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/10/2004] [Accepted: 03/19/2004] [Indexed: 12/01/2022]
Abstract
Insect olfactory receptor neurons are compartmentalized in sensilla. In a sensillum, typically two receptor neurons are in close contact and can influence each other through electrical interaction during stimulation. This interaction is passive, non-synaptic and a consequence of the electrical structure of the sensillum. It is analysed in a sensillum model and its effects on the neuron receptor potentials are investigated. The neurons in a sensillum can be both sensitive to a given odorant compound with the same sensory threshold or with different thresholds, or only one neuron be sensitive to the odorant. These three types of sensilla are compared with respect to maximum amplitude, threshold and dynamic range of the potentials. It is found that gathering neurons in the same sensillum is disadvantageous if they are identical, but can be advantageous if their thresholds differ. Application of these results to actual recordings from pheromone and food-odour olfactory sensilla is discussed.
Collapse
Affiliation(s)
- Arthur Vermeulen
- Royal Netherlands Naval College, Het Nieuwe Diep 8, 1781 AC Den Helder, The Netherlands.
| | | |
Collapse
|
74
|
Greiner B, Gadenne C, Anton S. Three-dimensional antennal lobe atlas of the male moth,Agrotis ipsilon: A tool to study structure-function correlation. J Comp Neurol 2004; 475:202-10. [PMID: 15211461 DOI: 10.1002/cne.20173] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The glomerular structure of the primary olfactory neuropil has long been thought to play an important role in odour coding. In insects, the number of glomeruli in the antennal lobe is limited in most species to fewer than 100 compared with more than 1,000 in vertebrates, making it possible to identify individual glomeruli. A complete three-dimensional atlas of the glomeruli within the antennal lobe of the male noctuid moth Agrotis ipsilon was constructed. All 66 glomeruli were singly identifiable in both antennal lobes of the three brains investigated. Further, six antennal lobes containing intracellularly stained projection neurones were reconstructed. By using the atlas, the respective target glomerulus of each projection neurone could be identified. The importance of the glomerular atlas as a tool to study central olfactory processing and its plasticity is discussed.
Collapse
Affiliation(s)
- Birgit Greiner
- Department of Cell and Organism Biology, Lund University, S-22362 Lund, Sweden.
| | | | | |
Collapse
|
75
|
Anton S, van Loon JJA, Meijerink J, Smid HM, Takken W, Rospars JP. Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes. ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:319-327. [PMID: 18089015 DOI: 10.1016/j.asd.2003.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 09/10/2003] [Indexed: 05/25/2023]
Abstract
In insects, olfactory receptor neurons (ORNs) are located in cuticular sensilla, that are present on the antennae and on the maxillary palps. Their axons project into spherical neuropil, the glomeruli, which are characteristic structures in the primary olfactory center throughout the animal kingdom. ORNs in insects often respond specifically to single odor compounds. The projection patterns of these neurons within the primary olfactory center, the antennal lobe, are, however, largely unknown. We developed a method to stain central projections of intact receptor neurons known to respond to host odor compounds in the malaria mosquito, Anopheles gambiae. Terminal arborizations from ORNs from antennal sensilla had only a few branches apparently restricted to a single glomerulus. Axonal arborizations of the different neurons originating from the same sensillum did not overlap. ORNs originating from maxillary palp sensilla all projected into a dorso-medial area in both the ipsi- and contralateral antennal lobe, which received in no case axon terminals from antennal receptor neurons. Staining of maxillary palp receptor neurons in a second mosquito species (Aedes aegypti) revealed unilateral arborizations in an area at a similar position as in An. gambiae.
Collapse
Affiliation(s)
- Sylvia Anton
- Department of Ecology, Lund University, Ecology Building, Sölveg. 37, 223 62 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
76
|
Okada J, Kanamaru Y, Toh Y. Mechanosensory control of antennal movement by the scapal hair plate in the American cockroach. Zoolog Sci 2002; 19:1201-10. [PMID: 12499662 DOI: 10.2108/zsj.19.1201] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The voluntary movement of antennae of blinded cockroaches was examined in the tethered-walking condition. An object of metal plate was presented to a tip of a single antenna in order to induce tactile orientation behavior. Horizontal movements of the antenna before and during the object presentation were analyzed both before and after ablation of a mechanosensory organ, the scapal hair plate (S-HP), at the base of antenna. The resting antennal position shifted outwardly by about 20 degrees after the S-HP ablation. Spontaneous antennal movements in ablated animals became stiff and wider ranged. The tactile object was set at two different horizontal positions, 45 degrees and 90 degrees clockwise to the head, for the right side antenna. The number of contacts in a constant test period was significantly decreased in the tests at 45 degrees after ablation. Trajectories of antennal movements before and after contacts were categorized into four patterns. In the case that an antenna made contact with the object during its abduction (outward) movement, it then passed the object outwardly or withdrew inwardly. These were termed "outward-pass (O-P)" and "outward-withdrawal (O-W)" patterns, respectively. Similarly, contacts during the adduction (inward) movement were divided into "inward-pass (I-P)" or "inward-withdrawal (I-W)" pattern. Significant effects of the S-HP ablation appeared in the tests at 90 degrees : the I-P pattern mostly disappeared and was replaced by the I-W pattern. The results strongly suggest that the S-HP has crucial roles for controlling both spontaneous and stimulated movements of the cockroach antenna.
Collapse
Affiliation(s)
- Jiro Okada
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
77
|
Oland LA, Tolbert LP. Key interactions between neurons and glial cells during neural development in insects. ANNUAL REVIEW OF ENTOMOLOGY 2002; 48:89-110. [PMID: 12194908 DOI: 10.1146/annurev.ento.48.091801.112654] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nervous system function is entirely dependent on the intricate and precise pattern of connections made by individual neurons. Much of the insightful research into mechanisms underlying the development of this pattern of connections has been done in insect nervous systems. Studies of developmental mechanisms have revealed critical interactions between neurons and glia, the non-neuronal cells of the nervous system. Glial cells provide trophic support for neurons, act as struts for migrating neurons and growing axons, form boundaries that restrict neuritic growth, and have reciprocal interactions with neurons that govern specification of cell fate and axonal pathfinding. The molecular mechanisms underlying these interactions are beginning to be understood. Because many of the cellular and molecular mechanisms underlying neural development appear to be common across disparate insect species, and even between insects and vertebrates, studies in developing insect nervous systems are elucidating mechanisms likely to be of broad significance.
Collapse
Affiliation(s)
- Lynne A Oland
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
78
|
Sadek MM, Hansson BS, Rospars JP, Anton S. Glomerular representation of plant volatiles and sex pheromone components in the antennal lobe of the female Spodoptera littoralis. J Exp Biol 2002; 205:1363-76. [PMID: 11976349 DOI: 10.1242/jeb.205.10.1363] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We studied the projection patterns of antennal lobe (AL) interneurones sensitive to plant volatiles and female-produced sex pheromone components in the female moth, Spodoptera littoralis. Ten compounds (eight plant-derived compounds and two sex pheromone components) were singly applied to the antenna and, using intracellular recording and staining techniques, the physiological and morphological characteristics of responding neurones were investigated. In addition, ALs stained with a synapsin antibody were optically sectioned using confocal microscopy, and a three-dimensional map of glomeruli in the anterior aspect of the AL was reconstructed. We used the map as a reference for identification of glomeruli innervated by projection neurones(PNs) that respond to plant volatiles and/or pheromone components. Nineteen PNs, responding to one to seven compounds of the ten tested stimuli, were stained with neurobiotin. These neurones each arborised in a single glomerulus in the frontal side of the AL. PNs responding to the same compound arborised in different glomeruli and PNs arborising in the same glomerulus responded to different compounds. Accordingly, glomeruli harbouring the dendritic arborisations of PNs responding to each of the tested compounds constituted a unique array of glomeruli that were not necessarily adjacent. It was thus clear that, at the output level, a single plant volatile or a sex pheromone component was not represented within a single glomerulus in the AL. We expect complex patterns of glomeruli to be involved in the coding of plant-derived compounds, as well as sex pheromone components, in female S. littoralis.
Collapse
Affiliation(s)
- Medhat M Sadek
- Division of Chemical Ecology, Department of Ecology, Lund University, SE-223 62 Lund, Sweden
| | | | | | | |
Collapse
|
79
|
Berg BG, Galizia CG, Brandt R, Mustaparta H. Digital atlases of the antennal lobe in two species of tobacco budworm moths, the Oriental Helicoverpa assulta (male) and the American Heliothis virescens (male and female). J Comp Neurol 2002; 446:123-34. [PMID: 11932931 DOI: 10.1002/cne.10180] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The antennal lobe of the moth brain is the primary olfactory center processing information about pheromones and plant odors. We present here a digital atlas of the glomerular antennal lobe structures in the male of Helicoverpa assulta and the male and female of Heliothis virescens, based on synaptic antibody staining combined with confocal microscopy. The numbers of the glomeruli in the three specimens were similar, 65, 66, and 62, respectively. Whereas the male antennal lobe has a macroglomerular complex consisting of three and four units in the two species, the female lobe has two enlarged glomeruli at a corresponding position, near the entrance of the antennal nerve. Another large glomerulus, showing homology in the three specimens, is ventrally located. The small size of the heliothine moths is advantageous for confocal microscopy because the entire brain can be visualized as a single image stack. The maps are freely accessible on the internet, and the digital form of the data allows each atlas to be rotated and sectioned at any angle, providing for the identification of glomeruli in different preparations.
Collapse
Affiliation(s)
- Bente G Berg
- Department of Zoology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | | | |
Collapse
|
80
|
Okada J, Toh Y. Peripheral representation of antennal orientation by the scapal hair plate of the cockroach Periplaneta americana. J Exp Biol 2001; 204:4301-9. [PMID: 11815654 DOI: 10.1242/jeb.204.24.4301] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Arthropods have hair plates that are clusters of mechanosensitive hairs, usually positioned close to joints, which function as proprioceptors for joint movement. We investigated how angular movements of the antenna of the cockroach (Periplaneta americana) are coded by antennal hair plates. A particular hair plate on the basal segment of the antenna, the scapal hair plate, can be divided into three subgroups: dorsal, lateral and medial. The dorsal group is adapted to encode the vertical component of antennal direction, while the lateral and medial groups are specialized for encoding the horizontal component. Of the three subgroups of hair sensilla, those of the lateral scapal hair plate may provide the most reliable information about the horizontal position of the antenna, irrespective of its vertical position. Extracellular recordings from representative sensilla of each scapal hair plate subgroup revealed the form of the single-unit impulses in response to hair deflection. The mechanoreceptors were characterized as typically phasic-tonic. The tonic discharge was sustained indefinitely (>20 min) as long as the hair was kept deflected. The spike frequency in the transient (dynamic) phase was both velocity- and displacement-dependent, while that in the sustained (steady) phase was displacement-dependent.
Collapse
Affiliation(s)
- J Okada
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
81
|
Chiang AS, Liu YC, Chiu SL, Hu SH, Huang CY, Hsieh CH. Three-dimensional mapping of brain neuropils in the cockroach, Diploptera punctata. J Comp Neurol 2001; 440:1-11. [PMID: 11745603 DOI: 10.1002/cne.1365] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Herein, we present a complete three-dimensional (3D) map of major neuropil structures in the central brain of the cockroach Diploptera punctata. The positions of the structures have been ascertained by confocal microscopy, which, until now-for reasons of tissue opacity and nonhomogeneity-has been thought impractical in imaging fluorescently labeled structures thicker than 150 microm. In this report, however, we have used digestive enzymes and microwave-aided fixation to stain, clear, and optically section, in its entirety, an intact central brain more than 500 microm thick. The central brain from an adult female cockroach was stained thoroughly with the membrane probe NBD-ceramide and the DNA probe propidium iodide. The central brain as well as such neuropil regions as mushroom bodies, central complex, antennal glomeruli, and lobus glomerulati were individually outlined, segmented, and reconstructed in three dimensions to a spatial resolution of approximately 1 microm in the X-Y plane and 3 microm in the Z plane. The volume and surface area of each neuropil compartment were determined, and Kenyon cells of the mushroom bodies were counted. We determined that each brain hemisphere contains about 230,000 Kenyon cells, 99 antennal lobe glomeruli, and 40 lobus glomerulatus glomeruli. Segmented compartments were assigned as separate channels and merged into a single data base to reconstruct a 3D central brain containing eight different channels. This is the first 3D map at submicron resolution of an entire animal's brain that measures more than 500 microm in thickness.
Collapse
Affiliation(s)
- A S Chiang
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
82
|
Larsson MC, Leal WS, Hansson BS. Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). JOURNAL OF INSECT PHYSIOLOGY 2001; 47:1065-1076. [PMID: 11472769 DOI: 10.1016/s0022-1910(01)00087-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have identified several types of olfactory receptor neurons in male and female Anomala cuprea beetles. The receptor neurons were sensitive to female sex pheromone components, flower volatiles, green leaf volatiles and unknown volatiles from males. Olfactory sensilla were located on three lamellae forming the antennal club. There was a clear spatial separation between some types of sensilla on each lamella. Receptor neurons for the two sex pheromone components were situated in sensilla placodea covering a specific area on each lamella in both males and females. All sex pheromone receptor neurons were found in these sensilla. Most other receptor neurons were located in a longitudinal, heterogeneous streak formed by various types of sensilla. Receptor neurons for plant-derived compounds appeared to be specialists with a high sensitivity to their respective key compound. The most remarkable among these are the green leaf volatile-specific receptor neurons, which were both sensitive and selective, with the key compound being at least 1000 times as effective as any other compound. These green leaf volatile detectors are apparently homologous to detectors recently found in the scarab Phyllopertha diversa. Our results emphasize the role of single-sensillum recordings as a tool in the identification of biologically active odours.
Collapse
Affiliation(s)
- M C. Larsson
- Department of Ecology, Lund University, S-223 62, Lund, Sweden
| | | | | |
Collapse
|
83
|
Gebhardt M, Honegger HW. Physiological characterisation of antennal mechanosensory descending interneurons in an insect (Gryllus bimaculatus, Gryllus campestris) brain. J Exp Biol 2001; 204:2265-75. [PMID: 11507110 DOI: 10.1242/jeb.204.13.2265] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We investigated five different descending brain interneurons with dendritic arborizations in the deutocerebrum in the crickets Gryllus bimaculatus and G. campestris. These interneurones convey specific antennal mechanosensory information to the ventral nerve cord and all responded to forced antennal movements. These interneurones coded for velocity and showed preferences for distinct sectors of the total range of antennal movements. Their axons descended into the posterior connective either ipsilateral or contalateral to the cell body. Electrical stimulation of sensory nerves indicated that the interneurons received input from different afferents of the two antennal base segments. One interneuron had a particularly large axon with a conduction velocity of 4.4ms−1. This was the only one of the five interneurons that also received visual input. Its activity was reduced during voluntary antennal movements. The reduction in activity occurred even after de-efferentation of the antenna, indicating that it had a central origin. Although we do not have experimental evidence for behavioural roles for the descending antennal mechanosensory interneurons, the properties described here suggest an involvement in the perception of objects in the path of the cricket.
Collapse
Affiliation(s)
- M Gebhardt
- Institut und Lehrstuhl für Zoologie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | |
Collapse
|
84
|
Galizia CG, Menzel R. The role of glomeruli in the neural representation of odours: results from optical recording studies. JOURNAL OF INSECT PHYSIOLOGY 2001; 47:115-130. [PMID: 11064019 DOI: 10.1016/s0022-1910(00)00106-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Odours are received by olfactory receptors, which send their axons to the first sensory neuropils, the antennal lobes (in insects) or the olfactory bulb (in vertebrates). From here, processed olfactory information is relayed to higher-order brain centres. A striking similarity in olfactory systems across animal phyla is the presence of glomeruli in this first sensory neuropil. Various experiments have shown that odours elicit a mosaic of activated glomeruli, suggesting that odour quality is coded in an 'across-glomeruli' activity code. In recent years, studies using optical recording techniques have greatly improved our understanding of the resulting 'across-glomeruli pattern', making it possible to simultaneously measure responses in several, often identifiable, glomeruli. For the honeybee Apis mellifera, a functional atlas of odour representation is being created: in this atlas, the glomeruli that are activated by different odorants are named. However, several limitations remain to be investigated. In this paper, we review what optical recording of odour-evoked glomerular activity patterns has revealed so far, and discuss the necessary next steps, with emphasis on the honeybee.
Collapse
Affiliation(s)
- CG Galizia
- Institut für Biologie-Neurobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin Luise Strasse 28-30, 14195, Berlin, Germany
| | | |
Collapse
|
85
|
Hansson BS, Anton S. Function and morphology of the antennal lobe: new developments. ANNUAL REVIEW OF ENTOMOLOGY 2000; 45:203-31. [PMID: 10761576 DOI: 10.1146/annurev.ento.45.1.203] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The antennal lobe of insects has emerged as an excellent model for olfactory processing in the CNS. In the present review we compile data from areas where substantial progress has been made during recent years: structure-function relationships within the glomerular array, integration and blend specificity, time coding and the effects of neuroactive substances and hormones on antennal lobe processing.
Collapse
Affiliation(s)
- B S Hansson
- Department of Ecology, Lund University, Sweden.
| | | |
Collapse
|
86
|
Kirchhof B, Homberg U, Mercer A. Development of dopamine-immunoreactive neurons associated with the antennal lobes of the honey bee,Apis mellifera. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990906)411:4<643::aid-cne8>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
87
|
Bouret S, Lestienne R. [A network capable of reading the temporal codes in the olfactory discrimination of insects]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:735-41. [PMID: 10547715 DOI: 10.1016/s0764-4469(00)80031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent work on the insect olfactory system has shown that its mushroom bodies (one of its major components) are involved in the fine discrimination of odours and that the temporal organisation of spike discharges plays a fundamental role. We propose here a model of a network that is able to decode the temporal patterns which characterise an odour. This model has three fundamental properties that seem to exist in all mushroom bodies of insects studied so far: a) long lasting inhibitions with rebounds, able to facilitate delayed spike generation; b) synaptic plasticity, which allows the network to learn to recognise temporal patterns; c) above all a large interconnection, which allows this network to recognise intervals of various duration. This model thus appears suited to identify combinations of temporal patterns in the dendrites of Kenyon cells (the principal cells in the calyces of the mushroom bodies). Moreover, the mushroom bodies integrate multimodal inputs, suggesting that the detection of temporal patterns may be extended to the detection of a complex environment, combining in particular olfactive and visual inputs.
Collapse
Affiliation(s)
- S Bouret
- Institut des neurosciences (CNRS UMR 7624), université Paris-VI, France
| | | |
Collapse
|
88
|
Galizia CG, Sachse S, Rappert A, Menzel R. The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci 1999; 2:473-8. [PMID: 10321253 DOI: 10.1038/8144] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Odors are coded by glomerular activity patterns in the insect antennal lobe (AL) and in the mammalian olfactory bulb. We measured glomerular responses to 30 different odors in the AL of honeybees using calcium-sensitive dyes. By subsequently staining glomeruli and identifying individual glomerular outlines, we were able to compare the patterns between animals. Regardless of whether the odors were mixtures or pure substances, environmental odors or pheromones, their representations were highly conserved among individuals. Therefore, it may be possible to create a functional atlas of the AL in which particular molecular receptive ranges are attributed to each glomerulus.
Collapse
Affiliation(s)
- C G Galizia
- Institut für Neurobiologie, Freie Universitat Berlin, Germany.
| | | | | | | |
Collapse
|
89
|
Laissue P, Reiter C, Hiesinger P, Halter S, Fischbach K, Stocker R. Three-dimensional reconstruction of the antennal lobe inDrosophila melanogaster. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990322)405:4%3c543::aid-cne7%3e3.0.co;2-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
Laissue P, Reiter C, Hiesinger P, Halter S, Fischbach K, Stocker R. Three-dimensional reconstruction of the antennal lobe inDrosophila melanogaster. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990322)405:4<543::aid-cne7>3.0.co;2-a] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
91
|
Distler PG, Gruber C, Boeckh J. Synaptic connections between GABA-immunoreactive neurons and uniglomerular projection neurons within the antennal lobe of the cockroach, Periplaneta americana. Synapse 1998; 29:1-13. [PMID: 9552171 DOI: 10.1002/(sici)1098-2396(199805)29:1<1::aid-syn1>3.0.co;2-c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synapses within deutocerebral glomeruli between GABA-immunoreactive, putatively inhibitory local interneurons and uniglomerular projection (output) neurons were demonstrated by means of a combination of GABA-immunogold labeling and intracellular HRP injection. The following connections were identified. 1) GABA-immunoreactive (GABAir) neurons form output synapses in a dyadic fashion onto a uniglomerular projection neuron and, in addition, a second GABAir neuron. A uniglomerular projection neuron in turn forms dyadic output synapses onto two GABAir neurons. Several examples of reciprocal connections have been identified between, first, GABAir neurons and uniglomerular projection neurons, and, second, GABAir neurons themselves. 2) GABAir neurons are serially connected with uniglomerular projection neurons via interposed GABAir processes. In some cases, also the first GABAir process of such a polysynaptic connection formed an output synapse onto the projection neuron. Such serial connections may form the structural basis for both, the feedforward inhibition as well as the feedforward disinhibition of uniglomerular projection neurons by GABAergic neurons. The reciprocal contacts may serve as control devices that modulate the output activity of the projection neurons.
Collapse
Affiliation(s)
- P G Distler
- Institut für Zoologie, Universität Regensburg, Germany.
| | | | | |
Collapse
|
92
|
|
93
|
Sun XJ, Tolbert LP, Hildebrand JG. Synaptic organization of the uniglomerular projection neurons of the antennal lobe of the moth Manduca sexta: a laser scanning confocal and electron microscopic study. J Comp Neurol 1997; 379:2-20. [PMID: 9057110 DOI: 10.1002/(sici)1096-9861(19970303)379:1<2::aid-cne2>3.0.co;2-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The detailed branching pattern and synaptic organization of the uniglomerular projection neurons of the antennal lobe, the first processing center of the olfactory pathway, of the moth Manduca sexta were studied with laser scanning confocal microscopy and a technique combining laser scanning confocal microscopy and electron microscopy. Uniglomerular projection neurons, identified electrophysiologically or morphologically, were stained intracellularly with neurobiotin or biocytin. Brains containing the injected neurons were treated with streptavidin-immunogold to label the injected material for electron microscopy and with Cy3-streptavidin to label the neurons with fluorescence for laser scanning confocal microscopy, and then embedded in Epon. Labeled neurons were imaged and reconstructed with laser scanning confocal microscopy (based on the retained fluorescence of the labeled neuron in the Epon block), and thin sections were cut at selected optical levels for correlation of light microscopic data and electron microscopic detail. Each neuron had a cell body in one of the three cell-body clusters of the antennal lobe, a primary neurite that extended across the coarse neuropil at the center of the antennal lobe and then formed a dense tuft of processes within a single glomerulus, and an axon that emanated from the primary neurite and projected from the antennal lobe via the antenno-cerebral tract to the lateral horn of the ipsilateral protocerebrum and, collaterally, to the calyces of the mushroom body. In the electron microscope, the fine dendritic branches in the apical zones of the glomeruli, where sensory axons terminate, were found to receive many input synapses. In deeper layers across the glomeruli, the processes participated in both input and output synapses, and the bases of the glomeruli, the most proximal, thickest branches formed output synapses. In both of the protocerebral areas in which axonal branches terminated, those branches formed exclusively output synapses. Our findings indicate that, in addition to conveying olfactory information to the protocerebrum, uniglomerular projection neurons in the antennal lobes of M. sexta participate in local intraglomerular synaptic circuitry.
Collapse
Affiliation(s)
- X J Sun
- A.R.L. Division of Neurobiology, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
94
|
Tissot M, Gendre N, Hawken A, Störtkuhl KF, Stocker RF. Larval chemosensory projections and invasion of adult afferents in the antennal lobe of Drosophila. JOURNAL OF NEUROBIOLOGY 1997; 32:281-97. [PMID: 9058321 DOI: 10.1002/(sici)1097-4695(199703)32:3<281::aid-neu3>3.0.co;2-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have studied the fate of olfactory afferents during metamorphic transformation of Drosophila melanogaster. Intracellular labeling of afferents from larval head chemosensilla suggests that the larval antennal lobe may be an olfactory target, whereas tritocerebral and suboesophageal centers are likely targets of gustatory sensilla. Application of monoclonal antibody 22C10 shows that the larval antennal nerve is the precursor of the adult antennal nerve and is used as a centripetal pathway for the adult afferents. Likely guidance cues are larval olfactory afferents that persist during early metamorphosis. P[GAL4] enhancer trap lines are introduced as efficient markers to follow the establishment of adult sensory projection. beta-Galactosidase and the bovine TAU protein were used as reporter proteins, and their expression patterns are compared. P[GAL4] lines MT14 and KL116 demonstrate that adult antennal afferents have arrived in the antennal lobe 24 h after pupariation and extend to the contralateral lobe 6 h later. Line MT14 expresses GAL4 mostly in basiconic sensilla and in certain trichoid sensilla, whereas KL116 is specific for trichoid and a small subset of basiconic sensilla. In the antennal lobe, largely complementary subsets of glomeruli are labeled by the two lines, in agreement with the observation that particular types of sensilla project to particular target glomeruli.
Collapse
Affiliation(s)
- M Tissot
- Institute of Zoology, University of Fribourg, Pérolles, Switzerland
| | | | | | | | | |
Collapse
|
95
|
Distler PG, Boeckh J. Synaptic connections between identified neuron types in the antennal lobe glomeruli of the cockroach,Periplaneta americana: I. uniglomerular projection neurons. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970217)378:3<307::aid-cne1>3.0.co;2-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
96
|
Suboesophageal DUM neurons innervate the principal neuropiles of the locust brain. Philos Trans R Soc Lond B Biol Sci 1997. [DOI: 10.1098/rstb.1991.0051] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The morphology of the dorsal unpaired median (DUM ) neurons of the suboesophageal ganglion (SOG) of the migratory locust,
Locusta migratoria
, were studied by using intracellular staining. The SOG lacks segmental DUM neurons with peripheral axons. All DUM neurons are either intersegmentally projecting (towards the brain or the thoracic nerve cord) or they are local. In addition to previously described DUM neurons with axons in peripheral nerves of the brain (Bräunig 1990), the SOG contains DUM neurons which, in the brain, innervate principal neuropile areas such as the antennal lobes, the pedunculi and calyces of the mushroom body, and the central complex. The number and location of DUM cell bodies stained with intracellular fills is compared with those obtained with either backfilling cervical or circumoesophageal connectives, or octopamine-immunocytochemistry. Additional experiments show that the locust brain, like the SOG, lacks both segmental DUM neurons with peripheral axons, and axons descending into the ventral nerve cord.
Collapse
|
97
|
Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 1997; 20:595-631. [PMID: 9056726 DOI: 10.1146/annurev.neuro.20.1.595] [Citation(s) in RCA: 701] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Olfaction begins with the transduction of the information carried by odor molecules into electrical signals in sensory neurons. The activation of different subsets of sensory neurons to different degrees is the basis for neural encoding and further processing of the odor information by higher centers in the olfactory pathway. Recent evidence has converged on a set of transduction mechanisms, involving G-protein-coupled second-messenger systems, and neural processing mechanisms, involving modules called glomeruli, that appear to be adapted for the requirements of different species. The evidence is highlighted in this review by focusing on studies in selected vertebrates and in insects and crustaceans among invertebrates. The findings support the hypothesis that olfactory transduction and neural processing in the peripheral olfactory pathway involve basic mechanisms that are universal across most species in most phyla.
Collapse
Affiliation(s)
- J G Hildebrand
- ARL Division of Neurobiology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
98
|
Abstract
A model is proposed to describe the collective behavior of a biologically plausible neural network, composed of interconnected spiking neurons which separately receive external stationary stimulations. The spiking dynamics of each neuron is represented by an hourglass metaphor. This network model was first studied in a special case where the connections are only inhibitory (Cottrell, 1988, 1992). We study the network dynamics as a function of the parameters which quantify the strengths of both inhibitory and excitatory connections. We show that the model exhibits two kinds of limit states. In the first states (convergent case), the system is ergodic and all neurons have a positive mean firing rate. In the other states (divergent case), some neurons become definitively inactive while the sub-network of the active neurons is ergodic. The patterns which result from these divergent states can be seen as a neural coding of the external stimulation by the network. This property is applied to the olfactory system to produce a code for an odor. The role of inhibitory connections in odor discrimination is studied.
Collapse
|
99
|
Distler PG, Boeckh J. Synaptic connection between olfactory receptor cells and uniglomerular projection neurons in the antennal lobe of the American cockroach, Periplaneta americana. J Comp Neurol 1996; 370:35-46. [PMID: 8797155 DOI: 10.1002/(sici)1096-9861(19960617)370:1<35::aid-cne4>3.0.co;2-m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Both antennal receptor cell axons and uniglomerular projection neurons of the antennal lobe were specifically labeled, and their synaptic relationship was studied at the fine structural level. The labelings were applied in different combinations: i) Experimentally induced anterograde degeneration of sensory-afferent axons was combined with injection of horseradish peroxidase into uniglomerular projection neurons. ii) Lucifer Yellow was injected into uniglomerular projection neurons, and receptor cell axons were anterogradely labeled with the lipophilic dye DiI. The fluorescent dyes were transformed by immuno- or photochemical treatment into electron-dense markers. In both types of preparations, a considerable number of monosynaptic output synapses from antennal receptor neurons onto processes of uniglomerular projection neurons were identified within the glomeruli of the lobe. In most cases, the receptor axon was connected in a dyadic fashion firstly to a process of a projection neuron and secondly to a nonlabeled process. The results clearly demonstrate a direct connection between receptor cells and output neurons of the cockroach antennal lobe which exists in parallel to the already proposed and demonstrated polysynaptic connection via inhibitory local interneurons.
Collapse
Affiliation(s)
- P G Distler
- Institut für Zoologie, Universität Regensburg, Germany.
| | | |
Collapse
|
100
|
Heming BS. Structure and development of larval antennae in embryos ofLytta viridanaLeConte (Coleoptera: Meloidae). CAN J ZOOL 1996. [DOI: 10.1139/z96-114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At time of hatch (252–264 h at 25 ± 0.5 °C), each antenna in Lytta viridana has three flagellomeres, three extrinsic muscles, and 25 sensilla of five different types, including a large composite sensillum of 19 sensory units on flagellomere II. Each antenna evaginates from epidermis on either side the stomodaeum beginning at 16% of embryogenesis. At 21%, a cell near its apex divides into two pioneer neurons that move into its lumen and project their axons to the brain by 29%. Sensillar stem cells begin to emerge at 23%, those of the appendix within a large embryonic placode and, from 26 to 48%, divide asymmetrically to generate the neurons and accessory cells of each sensillum. Sensillar axonogenesis begins at 34%, the first axons contact the brain at 35%, and antennal glomeruli begin to form within the deutocerebra at 57%. At 35%, the trichogen cell of each sensillum begins to grow out and larval cuticle is deposited about these, beginning at 57%. Upon withdrawal of trichogen cytoplasm from within the appendix at 81%, the dendrites of each sensory unit grow into it and begin to branch. Functional aspects are addressed and the observations compared with the limited information available on embryos of other insects.
Collapse
|