51
|
Fibriansah G, Lim XN, Lok SM. Morphological Diversity and Dynamics of Dengue Virus Affecting Antigenicity. Viruses 2021; 13:v13081446. [PMID: 34452312 PMCID: PMC8402850 DOI: 10.3390/v13081446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/30/2023] Open
Abstract
The four serotypes of the mature dengue virus can display different morphologies, including the compact spherical, the bumpy spherical and the non-spherical clubshape morphologies. In addition, the maturation process of dengue virus is inefficient and therefore some partially immature dengue virus particles have been observed and they are infectious. All these viral particles have different antigenicity profiles and thus may affect the type of the elicited antibodies during an immune response. Understanding the molecular determinants and environmental conditions (e.g., temperature) in inducing morphological changes in the virus and how potent antibodies interact with these particles is important for designing effective therapeutics or vaccines. Several techniques, including cryoEM, site-directed mutagenesis, hydrogen-deuterium exchange mass spectrometry, time-resolve fluorescence resonance energy transfer, and molecular dynamic simulation, have been performed to investigate the structural changes. This review describes all known morphological variants of DENV discovered thus far, their surface protein dynamics and the key residues or interactions that play important roles in the structural changes.
Collapse
Affiliation(s)
- Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Xin-Ni Lim
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Shee-Mei Lok
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Correspondence:
| |
Collapse
|
52
|
Evolution, heterogeneity and global dispersal of cosmopolitan genotype of Dengue virus type 2. Sci Rep 2021; 11:13496. [PMID: 34188091 PMCID: PMC8241877 DOI: 10.1038/s41598-021-92783-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue virus type 2 (DENV-2) contributes substantially to the dengue burden and dengue-related mortality in the tropics and sub-tropics. DENV-2 includes six genotypes, among which cosmopolitan genotype is the most widespread. The present study investigated the evolution, intra-genotype heterogeneity and dispersal of cosmopolitan genotype to understand unique genetic characteristics that have shaped the molecular epidemiology and distribution of cosmopolitan lineages. The spatial analysis demonstrated a wide geo-distribution of cosmopolitan genotype through an extensive inter-continental network, anchored in Southeast Asia and Indian sub-continent. Intra-genotype analyses using 3367 envelope gene sequences revealed six distinct lineages within the cosmopolitan genotype, namely the Indian sub-continent lineage and five other lineages. Indian sub-continent lineage was the most diverged among six lineages and has almost reached the nucleotide divergence threshold of 6% within E gene to qualify as a separate genotype. Genome wide amino acid signatures and selection pressure analyses further suggested differences in evolutionary characteristics between the Indian sub-continent lineage and other lineages. The present study narrates a comprehensive genomic analysis of cosmopolitan genotype and presents notable genetic characteristics that occurred during its evolution and global expansion. Whether those characteristics conferred a fitness advantage to cosmopolitan genotype in different geographies warrant further investigations.
Collapse
|
53
|
Aliaga-Samanez A, Cobos-Mayo M, Real R, Segura M, Romero D, Fa JE, Olivero J. Worldwide dynamic biogeography of zoonotic and anthroponotic dengue. PLoS Negl Trop Dis 2021; 15:e0009496. [PMID: 34097704 PMCID: PMC8211191 DOI: 10.1371/journal.pntd.0009496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/17/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022] Open
Abstract
Dengue is a viral disease transmitted by mosquitoes. The rapid spread of dengue could lead to a global pandemic, and so the geographical extent of this spread needs to be assessed and predicted. There are also reasons to suggest that transmission of dengue from non-human primates in tropical forest cycles is being underestimated. We investigate the fine-scale geographic changes in transmission risk since the late 20th century, and take into account for the first time the potential role that primate biogeography and sylvatic vectors play in increasing the disease transmission risk. We apply a biogeographic framework to the most recent global dataset of dengue cases. Temporally stratified models describing favorable areas for vector presence and for disease transmission are combined. Our models were validated for predictive capacity, and point to a significant broadening of vector presence in tropical and non-tropical areas globally. We show that dengue transmission is likely to spread to affected areas in China, Papua New Guinea, Australia, USA, Colombia, Venezuela, Madagascar, as well as to cities in Europe and Japan. These models also suggest that dengue transmission is likely to spread to regions where there are presently no or very few reports of occurrence. According to our results, sylvatic dengue cycles account for a small percentage of the global extent of the human case record, but could be increasing in relevance in Asia, Africa, and South America. The spatial distribution of factors favoring transmission risk in different regions of the world allows for distinct management strategies to be prepared. The rate of disease emergence is increasing globally, and many long-existing diseases are extending their distribution ranges. This is the case for dengue, a global pandemic whose mosquito vectors are currently occupying ever-increasing numbers of regions worldwide. We updated the most complete global dataset of dengue cases available, and addressed the fine-scale analysis of the geographic changes experienced in dengue-transmission risk since the late 20th century. Our approach is the first to take into account the potential role of primates and sylvatic vectors in increasing the disease transmission risk in tropical forests. We built models that describe the favorable areas for vector presence and for disease occurrence, and combined them in order to obtain a novel model for predicting transmission risk. We show that dengue transmission is likely to spread to affected areas in Asia, Africa, North and South America, and Oceania, and to regions with presently no or very few cases, including cities in Europe and Japan. The global contribution of sylvatic dengue cycles is small but meaningful. Our methodological approach can differentiate the factors favoring risk in different world regions, thus allowing for management strategies to be prepared specifically for each of these regions.
Collapse
Affiliation(s)
- Alisa Aliaga-Samanez
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- * E-mail:
| | - Marina Cobos-Mayo
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raimundo Real
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Málaga, Spain
| | - Marina Segura
- Centro de Vacunación Internacional de Málaga, Ministerio de Sanidad, Consumo y Bienestar Social, Málaga, Spain
| | - David Romero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Laboratorio de Desarrollo Sustentable y Gestión Ambiental del Territorio, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Julia E. Fa
- Division of Biology and Conservation Ecology, Manchester Metropolitan University, Manchester, United Kingdom
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor, Indonesia
| | - Jesús Olivero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Málaga, Spain
| |
Collapse
|
54
|
Carrillo-Hernandez MY, Ruiz-Saenz J, Jaimes-Villamizar L, Robledo-Restrepo SM, Martinez-Gutierrez M. Phylogenetic and evolutionary analysis of dengue virus serotypes circulating at the Colombian-Venezuelan border during 2015-2016 and 2018-2019. PLoS One 2021; 16:e0252379. [PMID: 34048474 PMCID: PMC8162668 DOI: 10.1371/journal.pone.0252379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue is an endemic disease in Colombia. Norte de Santander is a region on the border of Colombia and Venezuela and has reported the co-circulation and simultaneous co-infection of different serotypes of the dengue virus (DENV). This study aimed to conduct a phylogenetic analysis on the origin and genetic diversity of DENV strains circulating in this bordering region. Serum samples were collected from patients who were clinically diagnosed with febrile syndrome associated with dengue during two periods. These samples were tested for DENV and serotyping was performed using reverse transcriptase-polymerase chain reaction. Subsequently, positive samples were amplified and the envelope protein gene of DENV was sequenced. Phylogenetic and phylogeographic analyses were performed using the sequences obtained. Basic local alignment search tool analysis confirmed that six and eight sequences belonged to DENV-1 and DENV-2, respectively. The phylogenetic analysis of DENV-1 showed that the sequences belonged to genotype V and clade I; they formed two groups: in the first group, two sequences showed a close phylogenetic relationship with strains from Ecuador and Panama, whereas the other four sequences were grouped with strains from Venezuela and Colombia. In the case of DENV-2, the analysis revealed that the sequences belonged to the Asian–American genotype and clade III. Furthermore, they formed two groups; in the first group, three sequences were grouped with strains from Colombia and Venezuela, whereas the other five were grouped with strains from Venezuela, Colombia and Honduras. This phylogenetic analysis suggests that the geographical proximity between Colombia and Venezuela is favourable for the export and import of different strains among serotypes or clades of the same DENV serotype, which could favour the spread of new outbreaks caused by new strains or genetic variants of this arbovirus. Therefore, this information highlights the importance of monitoring the transmission of DENV at border regions.
Collapse
Affiliation(s)
- Marlen Yelitza Carrillo-Hernandez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | | | - Sara Maria Robledo-Restrepo
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- * E-mail:
| |
Collapse
|
55
|
Adelino TÉR, Giovanetti M, Fonseca V, Xavier J, de Abreu ÁS, do Nascimento VA, Demarchi LHF, Oliveira MAA, da Silva VL, de Mello ALES, Cunha GM, Santos RH, de Oliveira EC, Júnior JAC, de Melo Iani FC, de Filippis AMB, de Abreu AL, de Jesus R, de Albuquerque CFC, Rico JM, do Carmo Said RF, Silva JA, de Moura NFO, Leite P, Frutuoso LCV, Haddad SK, Martínez A, Barreto FK, Vazquez CC, da Cunha RV, Araújo ELL, de Oliveira Tosta SF, de Araújo Fabri A, Chalhoub FLL, da Silva Lemos P, de Bruycker-Nogueira F, de Castro Lichs GG, Zardin MCSU, Segovia FMC, Gonçalves CCM, Grillo ZDCF, Slavov SN, Pereira LA, Mendonça AF, Pereira FM, de Magalhães JJF, Dos Santos Júnior ADCM, de Lima MM, Nogueira RMR, Góes-Neto A, de Carvalho Azevedo VA, Ramalho DB, Oliveira WK, Macario EM, de Medeiros AC, Pimentel V, Holmes EC, de Oliveira T, Lourenço J, Alcantara LCJ. Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil. Nat Commun 2021; 12:2296. [PMID: 33863880 PMCID: PMC8052316 DOI: 10.1038/s41467-021-22607-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015-2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses.
Collapse
Affiliation(s)
- Talita Émile Ribeiro Adelino
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Vagner Fonseca
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joilson Xavier
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Álvaro Salgado de Abreu
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdinete Alves do Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | | | | | | | | | | | - Roselene Hans Santos
- Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral, Recife, Pernambuco, Brazil
| | | | | | - Felipe Campos de Melo Iani
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Maria Bispo de Filippis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz de Abreu
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | - Jairo Mendez Rico
- Organização Pan-Americana da Saúde/Organização Mundial da Saúde, Brasília, Distrito Federal, Brazil
| | | | - Joscélio Aguiar Silva
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Noely Fabiana Oliveira de Moura
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Priscila Leite
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Lívia Carla Vinhal Frutuoso
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | | | | | | | | | - Emerson Luiz Lima Araújo
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | - Allison de Araújo Fabri
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Löwen Levy Chalhoub
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | - Luiz Augusto Pereira
- Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros, Goiânia, Goiás, Brazil
| | - Ana Flávia Mendonça
- Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros, Goiânia, Goiás, Brazil
| | | | | | | | | | - Rita Maria Ribeiro Nogueira
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aristóteles Góes-Neto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Dario Brock Ramalho
- Secretaria de Saúde do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Victor Pimentel
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - José Lourenço
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, UK.
| | - Luiz Carlos Junior Alcantara
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
56
|
Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emergence of chikungunya and Zika viruses. INFECTION GENETICS AND EVOLUTION 2020; 92:104680. [PMID: 33326875 DOI: 10.1016/j.meegid.2020.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022]
Abstract
Arthropod-borne viruses (arboviruses) comprise a significant and ongoing threat to human health, infecting hundreds of millions annually. Three such arboviruses include circumtropical dengue, Zika, and chikungunya viruses, exhibiting continuous emergence primarily via Aedes mosquito vectors. Nicaragua has experienced endemic dengue virus (DENV) transmission involving multiple serotypes since 1985, with chikungunya virus (CHIKV) reported in 2014-2015, followed by Zika virus (ZIKV) first reported in 2016. In order to identify patterns of genetic variation and selection pressures shaping the evolution of co-circulating DENV serotypes in light of the arrival of CHIKV and ZIKV, we employed whole-genome sequencing on an Illumina MiSeq platform of random-amplified total RNA libraries to characterize 42 DENV low-passage isolates, derived from viremic patients in Nicaragua between 2013 and 2016. Our approach also revealed clinically undetected co-infections with CHIKV. Of the three DENV serotypes (1, 2, and 3) co-circulating during our study, we uncovered distinct patterns of evolution using comparative phylogenetic inference. DENV-1 genetic variation was structured into two distinct co-circulating lineages with no evidence of positive selection in the origins of either lineage, suggesting they are equally fit. In contrast, the evolutionary history of DENV-2 was marked by positive selection, and a unique, divergent lineage correlated with high epidemic potential emerged in 2015 to drive an outbreak in 2016. DENV-3 genetic variation remained unstructured into lineages throughout the period of study. Thus, this study reveals insights into evolutionary and epidemiologic trends exhibited during the circulation of multiple arboviruses in Nicaragua.
Collapse
|
57
|
Two RNA Tunnel Inhibitors Bind in Highly Conserved Sites in Dengue Virus NS5 Polymerase: Structural and Functional Studies. J Virol 2020; 94:JVI.01130-20. [PMID: 32907977 DOI: 10.1128/jvi.01130-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/29/2020] [Indexed: 11/20/2022] Open
Abstract
Dengue virus (DENV) NS5 RNA-dependent RNA polymerase (RdRp), an important drug target, synthesizes viral RNA and is essential for viral replication. While a number of allosteric inhibitors have been reported for hepatitis C virus RdRp, few have been described for DENV RdRp. Following a diverse compound screening campaign and a rigorous hit-to-lead flowchart combining biochemical and biophysical approaches, two DENV RdRp nonnucleoside inhibitors were identified and characterized. These inhibitors show low- to high-micromolar inhibition in DENV RNA polymerization and cell-based assays. X-ray crystallography reveals that they bind in the enzyme RNA template tunnel. One compound (NITD-434) induced an allosteric pocket at the junction of the fingers and palm subdomains by displacing residue V603 in motif B. Binding of another compound (NITD-640) ordered the fingers loop preceding the F motif, close to the RNA template entrance. Most of the amino acid residues that interacted with these compounds are highly conserved in flaviviruses. Both sites are important for polymerase de novo initiation and elongation activities and essential for viral replication. This work provides evidence that the RNA tunnel in DENV RdRp offers interesting target sites for inhibition.IMPORTANCE Dengue virus (DENV), an important arthropod-transmitted human pathogen that causes a spectrum of diseases, has spread dramatically worldwide in recent years. Despite extensive efforts, the only commercial vaccine does not provide adequate protection to naive individuals. DENV NS5 polymerase is a promising drug target, as exemplified by the development of successful commercial drugs against hepatitis C virus (HCV) polymerase and HIV-1 reverse transcriptase. High-throughput screening of compound libraries against this enzyme enabled the discovery of inhibitors that induced binding sites in the RNA template channel. Characterizations by biochemical, biophysical, and reverse genetics approaches provide a better understanding of the biological relevance of these allosteric sites and the way forward to design more-potent inhibitors.
Collapse
|
58
|
Molecular Characterization of Dengue Type 2 Outbreak in Pacific Islands Countries and Territories, 2017-2020. Viruses 2020; 12:v12101081. [PMID: 32992973 PMCID: PMC7601490 DOI: 10.3390/v12101081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/02/2022] Open
Abstract
Dengue virus (DENV) serotype-2 was detected in the South Pacific region in 2014 for the first time in 15 years. In 2016–2020, DENV-2 re-emerged in French Polynesia, Vanuatu, Wallis and Futuna, and New Caledonia, co-circulating with and later replacing DENV-1. In this context, epidemiological and molecular evolution data are paramount to decipher the diffusion route of this DENV-2 in the South Pacific region. In the current work, the E gene from 23 DENV-2 serum samples collected in Vanuatu, Fiji, Wallis and Futuna, and New Caledonia was sequenced. Both maximum likelihood and Bayesian phylogenetic analyses were performed. While all DENV-2 strains sequenced belong to the Cosmopolitan genotype, phylogenetic analysis suggests at least three different DENV-2 introductions in the South Pacific between 2017 and 2020. Strains retrieved in these Pacific Islands Countries and Territories (PICTs) in 2017–2020 are phylogenetically related, with strong phylogenetic links between strains retrieved from French PICTs. These phylogenetic data substantiate epidemiological data of the DENV-2 diffusion pattern between these countries.
Collapse
|
59
|
Calvez E, Pommelet V, Somlor S, Pompon J, Viengphouthong S, Bounmany P, Chindavong TA, Xaybounsou T, Prasayasith P, Keosenhom S, Brey PT, Telle O, Choisy M, Marcombe S, Grandadam M. Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens 2020; 9:pathogens9090728. [PMID: 32899416 PMCID: PMC7557816 DOI: 10.3390/pathogens9090728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue outbreaks have regularly been recorded in Lao People's Democratic Republic (PDR) since the first detection of the disease in 1979. In 2012, an integrated arbovirus surveillance network was set up in Lao PDR and an entomological surveillance has been implemented since 2016 in Vientiane Capital. Here, we report a study combining epidemiological, phylogenetic, and entomological analyzes during the largest DENV-4 epidemic ever recorded in Lao PDR (2015-2019). Strikingly, from 2015 to 2019, we reported the DENV-4 emergence and spread at the country level after two large epidemics predominated by DENV-3 and DENV-1, respectively, in 2012-2013 and 2015. Our data revealed a significant difference in the median age of the patient infected by DENV-4 compared to the other serotypes. Phylogenetic analysis demonstrated the circulation of DENV-4 Genotype I at the country level since at least 2013. The entomological surveillance showed a predominance of Aedesaegypti compared to Aedesalbopictus and high abundance of these vectors in dry and rainy seasons between 2016 and 2019, in Vientiane Capital. Overall, these results emphasized the importance of an integrated approach to evaluate factors, which could impact the circulation and the epidemiological profile of dengue viruses, especially in endemic countries like Lao PDR.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
- Correspondence:
| | - Virginie Pommelet
- Epidemiology Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos;
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Julien Pompon
- Department of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
- MIVEGEC, University of Montpellier, CNRS, IRD, 34394 Montpellier, France
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Thep Aksone Chindavong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Phoyphaylinh Prasayasith
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Paul T. Brey
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (P.T.B.); (S.M.)
| | - Olivier Telle
- Centre de Sciences Humaines (CHS), Centre National de la Recherche Scientifique (CNRS), Delhi 110001, India;
- Center for Policy Research (CPR), Delhi 110001, India
| | - Marc Choisy
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK;
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam
| | - Sébastien Marcombe
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (P.T.B.); (S.M.)
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
- Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
60
|
Hwang EH, Kim G, Oh H, An YJ, Kim J, Kim JH, Hwang ES, Park JH, Hong J, Koo BS. Molecular and evolutionary analysis of dengue virus serotype 2 isolates from Korean travelers in 2015. Arch Virol 2020; 165:1739-1748. [PMID: 32409874 PMCID: PMC7351809 DOI: 10.1007/s00705-020-04653-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
In Korea, dengue infection has been frequently reported in travelers to tropical and subtropical countries. Global warming increases the probability of autochthonous dengue outbreaks in Korea. In this report, the molecular and evolutionary properties of four dengue virus (DENV) type 2 isolates from Korean overseas travelers were examined. Three of these isolates were classified as Cosmopolitan genotypes and further divided into sublineages 1 (43,253, 43,254) and 2 (43,248), while the other isolate (KBPV-VR29) was related to American genotypes. The variable amino acid motifs related to virulence and replication were identified in the structural and non-structural proteins. A negative selection mechanism was clearly verified in all of the DENV proteins. Potential recombination events were identified in the NS5 protein of the XSBN10 strain. The substitution rate (5.32 × 10-4 substitutions per site) and the time of the most recent common ancestor (TMRCA) for each evolutionary group were determined by the Bayesian skyline coalescent method. This study shows that DENV type 2 strains with distinct phylogenetic, evolutionary, and virulence characteristics have been introduced into Korea by overseas travelers and have the potential to trigger autochthonous dengue outbreaks.
Collapse
Affiliation(s)
- Eun-Ha Hwang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Green Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Hanseul Oh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - You Jung An
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jiyeon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jung Heon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eung-Soo Hwang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - JungJoo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
| |
Collapse
|
61
|
Prajapati S, Napit R, Bastola A, Rauniyar R, Shrestha S, Lamsal M, Adhikari A, Bhandari P, Yadav SR, Manandhar KD. Molecular phylogeny and distribution of dengue virus serotypes circulating in Nepal in 2017. PLoS One 2020; 15:e0234929. [PMID: 32634137 PMCID: PMC7340289 DOI: 10.1371/journal.pone.0234929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Dengue virus (DENV) infection is endemic in Nepal. Although infection rates are reported annually, little information is available about the circulating viral serotypes and genotypes. Here, we report the results of a multicentre cross-sectional study of DENV serotypes and genotypes sampled from individuals with suspected DENV infection in Nepal in 2017. Of the 50 patients sampled, 40 were serologically positive for DENV NS1, 29 for anti-DENV IgM, 21 for anti-DENV IgG and 14 were positive by qRT-PCR. The three serotypes DENV-1, 2 and 3 were detected and there was no DENV-4. Positive samples from serotyping were subjected to PCR amplification by envelope (E) gene specific primer and subsequent bidirectional sequencing of 5 samples. A time to most recent common ancestor phylogenetic tree was constructed from the new sequences obtained here together with historical DENV-1 and DENV-2 E gene sequences. The DENV-1 isolates (n = 2) from Nepalese individuals were closely related to Indian genotype V, whereas DENV-2 isolates (n = 3) belonged to Cosmopolitan genotype IVa, which is closely related to Indonesian isolates. Historical DENV isolates obtained between 2004 and 2013 clustered with Cosmopolitan IVb, Cosmopolitan IVa, and Asian II genotypes. All Nepalese isolates had different lineages with distinct ancestries. With the exception of isolates obtained in 2004, all other previously published isolates had ancestry to geographically distant part of the world. Molecular analysis revealed dengue epidemics to be comprised of different genotypes of serotype 1 and 2 raising concerns on potential role of different genotypes causing Dengue hemorrhagic fever. Also, our result indicated spread of DENV-2 in non-endemic area such as hilly region of Nepal which was considered to be free of dengue due to high altitude and cold weather.
Collapse
Affiliation(s)
- Sabita Prajapati
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Rajindra Napit
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Molecular Biology and Virology, Centre for Molecular Dynamics Nepal, Thapathali, Kathmandu, Nepal
| | - Anup Bastola
- Department of Tropical and Infectious Disease, Sukraraj Tropical and Infectious Disease Hospital, Teku, Kathmandu, Nepal
| | - Ramanuj Rauniyar
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Srijan Shrestha
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Mahesh Lamsal
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anurag Adhikari
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Parmananda Bhandari
- Department of Tropical and Infectious Disease, Sukraraj Tropical and Infectious Disease Hospital, Teku, Kathmandu, Nepal
| | - Sanjay Ray Yadav
- Department of Haematology and Biochemistry, Chitwan Medical College and Teaching Hospital, Chitwan, Bharatpur, Nepal
| | - Krishna Das Manandhar
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- * E-mail:
| |
Collapse
|
62
|
Murugesan A, Aridoss D, Senthilkumar S, Sivathanu L, Sekar R, Shankar EM, Manickan E. Molecular diversity of dengue virus serotypes 1-4 during an outbreak of acute dengue virus infection in Theni, India. Indian J Med Microbiol 2020; 38:401-408. [PMID: 33154254 DOI: 10.4103/ijmm.ijmm_20_89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Dengue fever (DF) is caused by an arthropod-borne dengue virus (DENV), has four serotypes and several genotypes. Although having clinical and epidemiological significance, the information on the circulating serotypes/genotypes is scarce in India. Materials and Methods Blood specimens were collected from the patients suspected of DF and they are tested for DENV NS1 antigen and DENV IgM by ELISA. Antigen-positive samples were further serotyped by reverse transcriptase polymerase chain reaction. Representative samples from each serotype were sequenced to identify the genotypes. Results All the four DENV serotypes were detected with the pre-dominance of DENV-1 (n = 49; 41.9%). Cases with multiple DENV serotype infections were also identified. Genotyping showed that DENV-1 belonging to genotype I, DENV-2 cosmopolitan (IV), DENV-3 genotype III and DENV-4 genotype I were active in the circulation during the outbreak in 2017. Conclusion Our study documents the molecular characteristics of DENV circulating in our geographical locality. The detection of heterologous DENV serotypes highlights the importance of regular molecular monitoring for the early recognition of any switch in pre-dominant serotype.
Collapse
Affiliation(s)
- Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College, Theni; Department of Microbiology, Dr ALM PG IBMS, University of Madras, Chennai; Department of Microbiology, Virus Research and Diagnostic Laboratory, Government Theni Medical College, Theni, Tamil Nadu, India
| | - Dhanasezhian Aridoss
- Department of Microbiology, Government Theni Medical College, Theni; Department of Microbiology, Dr ALM PG IBMS, University of Madras, Chennai; Department of Microbiology, Virus Research and Diagnostic Laboratory, Government Theni Medical College, Theni, Tamil Nadu, India
| | - Swarna Senthilkumar
- Department of Microbiology; Department of Microbiology, Virus Research and Diagnostic Laboratory, Government Theni Medical College, Theni, Tamil Nadu, India
| | - Lallitha Sivathanu
- Department of Microbiology; Department of Microbiology, Virus Research and Diagnostic Laboratory, Government Theni Medical College, Theni, Tamil Nadu, India
| | - Ramalingam Sekar
- Department of Microbiology; Department of Microbiology, Virus Research and Diagnostic Laboratory, Government Theni Medical College, Theni, Tamil Nadu, India
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Elanchezhiyan Manickan
- Department of Microbiology, Dr ALM PG IBMS, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
63
|
Alkaff AH, Saragih M, Fardiansyah MA, Tambunan USF. Role of Immunoinformatics in Accelerating Epitope-Based Vaccine Development against Dengue Virus. Open Biochem J 2020. [DOI: 10.2174/1874091x02014010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue Fever (DF) has emerged as a significant public health problem of international concern with its high prevalence in the tropic and subtropical regions. Dengue Virus (DENV), which is the cause of DF, consists of four serotypes of antigenically distinct viruses. The immense variation and limited identity similarity at the amino acid level lead to a problematic challenge in the development of an efficacious vaccine. Fortunately, the extensively available immunological data, the advance in antigenic peptide prediction, and the incorporation of molecular docking and dynamics simulation in immunoinformatics have directed the vaccine development towards the rational design of the epitope-based vaccine. Here, we point out the current state of dengue epidemiology and the recent development in vaccine development. Subsequently, we provide a systematic review of our validated method and tools for B- and T-cell epitope prediction as well as the use of molecular docking and dynamics in evaluating epitope affinity and stability in the discovery of a new tetravalent dengue vaccine through computational epitope-based vaccine design.
Collapse
|
64
|
Damodaran L, de Bernardi Schneider A, Chen S, Janies D. Evolution of endemic and sylvatic lineages of dengue virus. Cladistics 2020; 36:115-128. [PMID: 34618965 DOI: 10.1111/cla.12402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Recent disease outbreaks have raised awareness of tropical pathogens, especially mosquito-borne viruses. Dengue virus (DENV) is a widely studied mammalian pathogen transmitted by various species of mosquito in the genus Aedes, especially Aedes aegypti and Aedes albopictus. The prevailing view of the research community is that endemic viral lineages that cause epidemics of DENV in humans have emerged over time from sylvatic viral lineages, which persist in wild, non-human primates. These notions have been examined by researchers through phylogenetic analyses of the envelope gene (E) from the four serotypes of DENV (serotypes DENV-1 to DENV-4). In these previous reports, researchers used visual inspection of a phylogeny in order to assert that sylvatic lineages lead to endemic clades. In making this assertion, these researchers also reasserted the model of periodic sylvatic to endemic disease outbreaks. Since that study, there has been a significant increase in data both in terms of metadata (e.g., place and host of isolation) and genetic sequences of DENV. Here, we re-examine the model of sylvatic to endemic shifts in viral lineages through a phylogenetic tree search and character evolution study of metadata on the tree. We built a dataset of nucleotide sequences for 188 isolates of DENV that have metadata on sylvatic or endemic sampling along with three orthologous sequences from West Nile virus as the outgroup for the phylogenetic analysis. In contrast to previous research, we find that there are several shifts from endemic to sylvatic lineages as well as sylvatic to endemic lineages, indicating a much more dynamic model of evolution. We propose that a model that allows oscillation between sylvatic and endemic hosts better captures the dynamics of DENV transmission.
Collapse
Affiliation(s)
- Lambodhar Damodaran
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, 28223-0001, NC, USA.,Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, 30602, GA, USA
| | - Adriano de Bernardi Schneider
- AntiViral Research Center, Department of Medicine, University of California San Diego, 220 Dickinson St, Suite A, San Diego, 92103-8208, CA, USA
| | - Shi Chen
- Department of Public Health Sciences, College of Health and Human Services, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, 28223-0001, NC, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, 28223-0001, NC, USA
| |
Collapse
|
65
|
Johari NA, Voon K, Toh SY, Sulaiman LH, Yap IKS, Lim PKC. Sylvatic dengue virus type 4 in Aedes aegypti and Aedes albopictus mosquitoes in an urban setting in Peninsular Malaysia. PLoS Negl Trop Dis 2019; 13:e0007889. [PMID: 31730672 PMCID: PMC6881067 DOI: 10.1371/journal.pntd.0007889] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/27/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
Dengue fever is endemic in Malaysia, contributing to significant economic and health burden in the country. Aedes aegypti and Ae. albopictus are the main vectors of the dengue virus (DENV), which circulates in sylvatic and human transmission cycles and has been present in Malaysia for decades. The study investigated the presence and distribution of DENV in urban localities in the Klang Valley, Peninsular Malaysia. A total of 364 Ae. aegypti and 1,025 Ae. albopictus larvae, and 10 Ae. aegypti and 42 Ae. albopictus adult mosquitoes were screened for the presence of DENV. In total, 31 (2.2%) samples were positive, of which 2 Ae. albopictus larvae were co-infected with two serotypes, one with DENV-2 and DENV-3 and the other with DENV-3 and DENV-4. Phylogenetic analysis determined that the isolates belonged to DENV-1 genotype I (1 Ae. aegypti adult), DENV-2 (1 Ae. albopictus larva), DENV-3 genotype V (3 Ae. aegypti larvae and 10 Ae. albopictus larvae) and DENV-4 genotype IV (6 Ae. aegypti larvae and 12 Ae. albopictus larvae), a sylvatic strain of DENV-4 which was most closely related with sylvatic strains isolated from arboreal mosquitoes and sentinel monkeys in Peninsular Malaysia in the 1970s. All four DENV serotypes were co-circulating throughout the study period. The detection of a sylvatic strain of DENV-4 in Ae. aegypti and Ae. albopictus mosquitoes in urban areas in Peninsular Malaysia highlights the susceptibility of these vectors to infection with sylvatic DENV. The infectivity and vector competence of these urban mosquitoes to this strain of the virus needs further investigation, as well as the possibility of the emergence of sylvatic virus into the human transmission cycle.
Collapse
Affiliation(s)
- Nur Alia Johari
- Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Kenny Voon
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Shen Yung Toh
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Lokman Hakim Sulaiman
- Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- Department of Community Medicine, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Ivan Kok Seng Yap
- Sarawak Research and Development Council, Ministry of Education, Science and Technological Research, Sarawak, Malaysia
| | - Patricia Kim Chooi Lim
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
66
|
Alagarasu K, Patil JA, Kakade MB, More AM, Bote M, Chowdhury D, Seervi M, Rajesh NT, Ashok M, Anukumar B, Abraham AM, Parashar D, Shah PS. Spatio-temporal distribution analysis of circulating genotypes of dengue virus type 1 in western and southern states of India by a one-step real-time RT-PCR assay. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 75:103989. [PMID: 31376506 PMCID: PMC6832813 DOI: 10.1016/j.meegid.2019.103989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022]
Abstract
Dengue virus type 1 (DENV-1) Asian and American/African (AM/AF) genotypes were reported to be co-circulating in southern and western states of India based on envelope (E) gene sequencing of few representative samples. The objective of the present study was to develop a one-step real-time RT-PCR to discriminate between Asian and AM/AF genotypes of DENV-1 and investigate the spatio-temporal distribution of the DENV-1 genotypes in southern and western states of India. A one-step real-time RT-PCR to discriminate the Asian and AM/AF genotypes of DENV-1 was developed and validated using 40 samples (17 Asian and 23 AM/AF), for which the envelope (E) gene sequence data was available. DENV-2, DENV-3 and DENV-4 isolates, one each and DENV negative samples (n = 17) were also tested by the assay. Additional 296 samples positive for DENV-1 from selected Southern and Western states of India were genotyped using the real-time RT-PCR assay. Among the samples used for validation, the genotyping results were concordant with sequencing results for 39 samples. In the one discordant sample which was positive for AM/AF by sequencing, the genotyping assay tested positive for both Asian and AM/AF genotype. DENV-2, DENV-3 and DENV-4 isolates were not reactive in the assay. None of the DENV negative samples were positive (sensitivity 100% and specificity 98.2%). A total of 336 samples (40 samples with sequence data and 296 samples without sequence data) were used for spatio-temporal distribution analysis. The results revealed that the Asian genotype was the predominant genotype in Tamil Nadu and Kerala, the southern states. The AM/AF genotype was the predominant genotype in Maharashtra, a western state of India. In Nashik district of Maharashtra, Asian genotype was observed in 32.6% of DENV-1 samples during 2017 while the same decreased to 7.3% during 2018. In Pune district, Asian genotype was observed in 40.0% of DENV-1 samples during 2018 only. To conclude, a one step real-time RT-PCR has been developed for discriminating Asian and AM/AF genotypes of DENV-1. This assay can act as a complement to sequencing but not a substitute and can be utilized in resource limited settings for molecular surveillance of DENV-1. DENV-1 Asian genotype was the dominant genotype in South India while, AM/AF genotype was dominant in Western India.
Collapse
Affiliation(s)
- K Alagarasu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India.
| | - J A Patil
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - M B Kakade
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - A M More
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - M Bote
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - D Chowdhury
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - M Seervi
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - N T Rajesh
- PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
| | - M Ashok
- ICMR-National Institute of Virology, Bangalore Field Unit, Bengaluru, Karnataka, India
| | - B Anukumar
- ICMR-National Institute of Virology, Kerala Field Unit, Alappuzha, Kerala, India
| | - A M Abraham
- Christian Medical College, Vellore, Tamil Nadu, India
| | - D Parashar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - P S Shah
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| |
Collapse
|
67
|
Lim XN, Shan C, Marzinek JK, Dong H, Ng TS, Ooi JSG, Fibriansah G, Wang J, Verma CS, Bond PJ, Shi PY, Lok SM. Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C. PLoS Pathog 2019; 15:e1007996. [PMID: 31536610 PMCID: PMC6752767 DOI: 10.1371/journal.ppat.1007996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
The ability of DENV2 to display different morphologies (hence different antigenic properties) complicates vaccine and therapeutics development. Previous studies showed most strains of laboratory adapted DENV2 particles changed from smooth to “bumpy” surfaced morphology when the temperature is switched from 29°C at 37°C. Here we identified five envelope (E) protein residues different between two alternative passage history DENV2 NGC strains exhibiting smooth or bumpy surface morphologies. Several mutations performed on the smooth DENV2 infectious clone destabilized the surface, as observed by cryoEM. Molecular dynamics simulations demonstrated how chemically subtle substitution at various positions destabilized dimeric interactions between E proteins. In contrast, three out of four DENV2 clinical isolates showed a smooth surface morphology at 37°C, and only at high fever temperature (40°C) did they become “bumpy”. These results imply vaccines should contain particles representing both morphologies. For prophylactic and therapeutic treatments, this study also informs on which types of antibodies should be used at different stages of an infection, i.e., those that bind to monomeric E proteins on the bumpy surface or across multiple E proteins on the smooth surfaced virus. DENV2 particles have been shown to change their morphologies (compact smooth to loose bumpy surfaced) when temperature is switched from 28°C to 37°C. We used two DENV2 viruses both belonging to the same strain designation but with a different passage history—one of which exhibited the smooth surfaced morphology while the other was bumpy surfaced, observed by cryoEM. We mutated residues in the E protein of the DENV2 infectious clone that has the smooth surfaced morphology to determine if any could result in a bumpy morphology. Results showed several different mutations could lead to this change. Using molecular dynamics simulations, we showed how these mutations likely destabilize the E protein dimeric interactions. We investigated whether the bumpy morphology also occurs in DENV2 clinical isolates, and showed that these viruses can exhibit both morphologies, indicating that vaccine and therapeutics development should target both virus forms.
Collapse
Affiliation(s)
- Xin-Ni Lim
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chao Shan
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jan K. Marzinek
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Thiam Seng Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Justin S. G. Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Guntur Fibriansah
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jiaqi Wang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Peter J. Bond
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PJB); (PS); (SL)
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Texas, United States of America
- * E-mail: (PJB); (PS); (SL)
| | - Shee-mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PJB); (PS); (SL)
| |
Collapse
|
68
|
Abdul-Ghani R, Mahdy MAK, Al-Eryani SMA, Fouque F, Lenhart AE, Alkwri A, Al-Mikhlafi AM, Wilke ABB, Thabet AAQ, Beier JC. Impact of population displacement and forced movements on the transmission and outbreaks of Aedes-borne viral diseases: Dengue as a model. Acta Trop 2019; 197:105066. [PMID: 31226251 DOI: 10.1016/j.actatropica.2019.105066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023]
Abstract
Population displacement and other forced movement patterns following natural disasters, armed conflicts or due to socioeconomic reasons contribute to the global emergence of Aedes-borne viral disease epidemics. In particular, dengue epidemiology is critically affected by situations of displacement and forced movement patterns, particularly within and across borders. In this respect, waves of human movements have been a major driver for the changing epidemiology and outbreaks of the disease on local, regional and global scales. Both emerging dengue autochthonous transmission and outbreaks in countries known to be non-endemic and co-circulation and hyperendemicity with multiple dengue virus serotypes have led to the emergence of severe disease forms such as dengue hemorrhagic fever and dengue shock syndrome. This paper reviews the emergence of dengue outbreaks driven by population displacement and forced movements following natural disasters and conflicts within the context of regional and sub-regional groupings.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen; Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana'a, Yemen.
| | - Mohammed A K Mahdy
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen; Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana'a, Yemen
| | - Samira M A Al-Eryani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - Florence Fouque
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Audrey E Lenhart
- Center for Global Health/Division of Parasitic Diseases and Malaria/Entomology Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Abdulsamad Alkwri
- Integrated Vector Management Unit, National Malaria Control Programme, Ministry of Public Health and Population, Sana'a, Yemen
| | - Abdulsalam M Al-Mikhlafi
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - André B B Wilke
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ahmed A Q Thabet
- Neglected Tropical Diseases and Pandemic Influenza Preparedness Department, WHO Office, Sana'a, Yemen
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
69
|
Bell SM, Katzelnick L, Bedford T. Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. eLife 2019; 8:42496. [PMID: 31385805 PMCID: PMC6731059 DOI: 10.7554/elife.42496] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/05/2019] [Indexed: 01/11/2023] Open
Abstract
Dengue virus (DENV) exists as four genetically distinct serotypes, each of which is historically assumed to be antigenically uniform. Recent analyses suggest that antigenic heterogeneity may exist within each serotype, but its source, extent and impact remain unclear. Here, we construct a sequence-based model to directly map antigenic change to underlying genetic divergence. We identify 49 specific substitutions and four colinear substitution clusters that robustly predict dengue antigenic relationships. We report moderate antigenic diversity within each serotype, resulting in genotype-specific patterns of heterotypic cross-neutralization. We also quantify the impact of antigenic variation on real-world DENV population dynamics, and find that serotype-level antigenic fitness is a dominant driver of dengue clade turnover. These results provide a more nuanced understanding of the relationship between dengue genetic and antigenic evolution, and quantify the effect of antigenic fitness on dengue evolutionary dynamics.
Collapse
Affiliation(s)
- Sidney M Bell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cell Biology Program, University of Washington, Seattle, United States
| | - Leah Katzelnick
- Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, United States.,Department of Biology, University of Florida, Gainesville, United States
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
70
|
Ali A, Fatima Z, Wahid B, Rafique S, Idrees M. Cosmopolitan A1 lineage of dengue virus serotype 2 is circulating in Pakistan: A study from 2017 dengue viral outbreak. J Med Virol 2019; 91:1909-1917. [PMID: 31273791 DOI: 10.1002/jmv.25537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 05/14/2019] [Indexed: 11/10/2022]
Abstract
Dengue viral infection has become a challenge in tropical and subtropical countries where dengue virus is endemic. Its epidemics are occurring at higher rates amid its circulation throughout the year. Since the first documented outbreak in Pakistan in 1994, this region has reported many sporadic cases and epidemics. There is availability of small scale demographic and epidemiological studies on dengue viral infection in Pakistan. The year 2017 witnessed a huge dengue outbreak in Peshawar city of Pakistan with 69 deaths and 24 807 laboratory-confirmed cases. We suspect that the circulation of a different lineage or genotype could be responsible for the enhanced number of infected patients in Pakistan's 2017 outbreak since previous studies have already described this phenomenon in other countries. For this, we collected 1447 suspected blood samples and their epidemiological data. After serotyping through polymerase chain reaction nine samples of Dengue virus2 (DENV2) were randomly selected and were subjected to Sanger's sequencing for genotyping analysis. The mean distance, genetic diversity, and phylogenetic analysis were carried out using K2 model. The phylogenetic analysis split Pakistani isolates into two lineages, the sequences from 2017 outbreak in Peshawar grouped within A1 lineage of cosmopolitan genotype (IV) of DENV2. The difference in distance, genetic diversity, and amino acids composition strongly back the results that the new lineage is circulating in the region. This is significant as Pakistan is struggling to control dengue epidemics which have caused much loss in both monetary and health sectors.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan.,Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Zareen Fatima
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Braira Wahid
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Shazia Rafique
- Divison of Virology, Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Divison of Virology, Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| |
Collapse
|
71
|
Mast cell stabilizing effect of a geranyl acetophenone in dengue virus infection using in vitro model of DENV3-induced RBL-2H3 cells. Biosci Rep 2019; 39:BSR20181273. [PMID: 31110077 PMCID: PMC6549089 DOI: 10.1042/bsr20181273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both β-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.
Collapse
|
72
|
Harapan H, Michie A, Yohan B, Shu P, Mudatsir M, Sasmono RT, Imrie A. Dengue viruses circulating in Indonesia: A systematic review and phylogenetic analysis of data from five decades. Rev Med Virol 2019; 29:e2037. [DOI: 10.1002/rmv.2037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
| | - Alice Michie
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
| | | | - Pei‐Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease ControlMinistry of Health and Welfare Taiwan Republic of China
| | - Mudatsir Mudatsir
- Medical Research Unit, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
- Department of Microbiology, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
| | | | - Allison Imrie
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
- Pathwest Laboratory Medicine Nedlands Western Australia Australia
| |
Collapse
|
73
|
Lizarazo E, Couto N, Vincenti-Gonzalez M, Raangs EC, Velasco Z, Bethencourt S, Jaenisch T, Friedrich AW, Tami A, Rossen JW. Applied shotgun metagenomics approach for the genetic characterization of dengue viruses. J Biotechnol 2019; 306S:100009. [PMID: 34112375 DOI: 10.1016/j.btecx.2019.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Dengue virus (DENV), an arthropod-borne virus, has rapidly spread in recent years. DENV diagnosis is performed through virus serology, isolation or molecular detection, while genotyping is usually done through Sanger sequencing of the envelope gene. This study aimed to optimize the use of shotgun metagenomics and subsequent bioinformatics analysis to detect and type DENV directly from clinical samples without targeted amplification. Additionally, presence of DENV quasispecies (intra-host variation) was revealed by detecting single nucleotide variants. Viral RNA was isolated with or without DNase-I treatment from 17 DENV (1-4) positive blood samples. cDNA libraries were generated using either a combination of the NEBNext® RNA to synthesize cDNA followed by Nextera XT DNA library preparation, or the TruSeq RNA V2 (TS) library preparation kit. Libraries were sequenced using both the MiSeq and NextSeq. Bioinformatic analysis showed complete ORFs for all samples by all approaches, but longer contigs and higher sequencing depths were obtained with the TS kit. No differences were observed between MiSeq and NextSeq sequencing. Detection of multiple DENV serotypes in a single sample was feasible. Finally, results were obtained within three days with associated reagents costs between €130-170/sample. Therefore, shotgun metagenomics is suitable for identification and typing of DENV in a clinical setting.
Collapse
Affiliation(s)
- Erley Lizarazo
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Maria Vincenti-Gonzalez
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Erwin C Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Zoraida Velasco
- Universidad de Carabobo, Facultad Experimental de Ciencias y Tecnología, Departamento de Biología, Valencia, Venezuela
| | - Sarah Bethencourt
- Universidad de Carabobo, Facultad de Ciencias de la Salud. Departamento de Ciencias Fisiológicas, Unidad de Investigación en Inmunología, Valencia, Venezuela
| | - Thomas Jaenisch
- University of Heidelberg, Heidelberg University Hospital, Department of Infectious Diseases, Section of Clinical Tropical Medicine, Heidelberg, Germany
| | - Alexander W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Adriana Tami
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands; Universidad de Carabobo, Facultad de Ciencias de la Salud, Departamento de Parasitología, Valencia, Venezuela
| | - John W Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands.
| |
Collapse
|
74
|
Fonseca V, Libin PJK, Theys K, Faria NR, Nunes MRT, Restovic MI, Freire M, Giovanetti M, Cuypers L, Nowé A, Abecasis A, Deforche K, Santiago GA, de Siqueira IC, San EJ, Machado KCB, Azevedo V, Filippis AMBD, da Cunha RV, Pybus OG, Vandamme AM, Alcantara LCJ, de Oliveira T. A computational method for the identification of Dengue, Zika and Chikungunya virus species and genotypes. PLoS Negl Trop Dis 2019; 13:e0007231. [PMID: 31067235 PMCID: PMC6527240 DOI: 10.1371/journal.pntd.0007231] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 05/20/2019] [Accepted: 02/11/2019] [Indexed: 11/19/2022] Open
Abstract
In recent years, an increasing number of outbreaks of Dengue, Chikungunya and Zika viruses have been reported in Asia and the Americas. Monitoring virus genotype diversity is crucial to understand the emergence and spread of outbreaks, both aspects that are vital to develop effective prevention and treatment strategies. Hence, we developed an efficient method to classify virus sequences with respect to their species and sub-species (i.e. serotype and/or genotype). This tool provides an easy-to-use software implementation of this new method and was validated on a large dataset assessing the classification performance with respect to whole-genome sequences and partial-genome sequences. Available online: http://krisp.org.za/tools.php.
Collapse
Affiliation(s)
- Vagner Fonseca
- Laboratório de Flavivírus, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZuluNatal, Durban, South Africa
- Laboratório de Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pieter J. K. Libin
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
- KU Leuven—University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Kristof Theys
- KU Leuven—University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Nuno R. Faria
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Maria I. Restovic
- Laboratório de Patologia Experimental, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Murilo Freire
- Laboratório de Patologia Experimental, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Marta Giovanetti
- Laboratório de Flavivírus, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lize Cuypers
- KU Leuven—University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Ann Nowé
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ana Abecasis
- Center for Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Gilberto A. Santiago
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United states of America
| | | | - Emmanuel J. San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZuluNatal, Durban, South Africa
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rivaldo Venâncio da Cunha
- Coordenação de Vigilância em Saúde e Laboratórios de Referências, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Anne-Mieke Vandamme
- KU Leuven—University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Luiz C. J. Alcantara
- Laboratório de Flavivírus, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZuluNatal, Durban, South Africa
| |
Collapse
|
75
|
Development of a Standardized Sanger-Based Method for Partial Sequencing and Genotyping of Dengue Viruses. J Clin Microbiol 2019; 57:JCM.01957-18. [PMID: 30760533 DOI: 10.1128/jcm.01957-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 11/20/2022] Open
Abstract
The global expansion of dengue viruses (DENV-1 to DENV-4) has contributed to the divergence, transmission, and establishment of genetic lineages of epidemiological concern; however, tracking the phylogenetic relationships of these virus is not always possible due to the inability of standardized sequencing procedures in resource-limited public health laboratories. Consequently, public genomic data banks contain inadequate representation of geographical regions and historical periods. In order to improve detection of the DENV-1 to DENV-4 lineages, we report the development of a serotype-specific Sanger-based method standardized to sequence DENV-1 to DENV-4 directly from clinical samples using universal primers that detect most DENV genotypes. The resulting envelope protein coding sequences are analyzed for genotyping with phylogenetic methods. We evaluated the performance of this method by detecting, amplifying, and sequencing 54 contemporary DENV isolates, including 29 clinical samples, representing a variety of genotypes of epidemiological importance and global presence. All specimens were sequenced successfully and phylogenetic reconstructions resulted in the expected genotype classification. To further improve genomic surveillance in regions where dengue is endemic, this method was transferred to 16 public health laboratories in 13 Latin American countries, to date. Our objective is to provide an accessible method that facilitates the integration of genomics with dengue surveillance.
Collapse
|
76
|
Chetry S, Khan SA, Dutta P, Apum B, Medhi PS, Saikia DC, Temsu T, Mawii L, Marak BC. Dengue virus serotypes and genotypic characterization from northeast India. J Med Virol 2019; 91:918-927. [PMID: 30698841 DOI: 10.1002/jmv.25418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/11/2018] [Accepted: 11/24/2018] [Indexed: 12/31/2022]
Abstract
Dengue is a rapidly spreading acute arboviral infection transmitted through a human and Aedes mosquito cycle. Though northeast region of India has been experiencing dengue outbreaks regularly for over a decade, reports on genetic characterization of the virus from this region are limited. The present study was undertaken to detect the genotype and genetic composition of circulating dengue virus (DENV) in this region. Blood samples were collected from 918 suspected dengue patients of five northeast Indian states. Serological investigations, viz, nonstructural 1 (NS1) enzyme-linked immunosorbent assay (ELISA), immunoglobulin M (IgM) ELISA, and immunoglobulin G (IgG) ELISA were performed followed by molecular detection. Sequence analysis and phylogenetic tree construction based on capsid-premembrane (C-prM) gene junction was done by BioEdit and MEGA6 software, respectively. Serological detection showed 35.34% NS1 and 18.12% IgM positivity. Secondary infection was observed in 24.53%. All four serotypes were detected. Phylogenetic analysis demonstrated circulation of genotype III of DENV-1, genotype IV of DENV-2, and genotype III of DENV-3. Sequences from this region form distinct clades in the phylogenetic tree. Characterization of the C-prM gene junction reveals divergence among the DENV strains. As genetic variation within the DENV is known to be associated with diverse clinical outcomes, information regarding the genetic composition of circulating virus could be beneficial in designing an effective intervention strategy.
Collapse
Affiliation(s)
- Sumi Chetry
- ICMR- Regional Medical Research Centre, NE Region, Dibrugarh, Assam, India
| | - Siraj A Khan
- ICMR- Regional Medical Research Centre, NE Region, Dibrugarh, Assam, India
| | - Prafulla Dutta
- ICMR- Regional Medical Research Centre, NE Region, Dibrugarh, Assam, India
| | - Basumoti Apum
- Bakin Pertin General Hospital, Pasighat, Arunachal Pradesh, India
| | | | | | - Temjen Temsu
- Dimapur District Hospital, Dimapur, Nagaland, India
| | | | | |
Collapse
|
77
|
Higuera A, Ramírez JD. Molecular epidemiology of dengue, yellow fever, Zika and Chikungunya arboviruses: An update. Acta Trop 2019; 190:99-111. [PMID: 30444971 DOI: 10.1016/j.actatropica.2018.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/10/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Arboviruses are a group of viruses transmitted by arthropods. They are characterized by a wide geographic distribution, which is associated with the presence of the vector, and cause asymptomatic infections or febrile diseases in humans in both enzootic and urban cycles. Recent reports of human infections caused by viruses such as dengue, Zika, and chikungunya have raised concern regarding public health, and have led to the re-evaluation of surveillance mechanisms and measures to control the transmission of these arboviruses. Viruses such as Mayaro and Usutu are not currently responsible for a high number of symptomatic infections in humans, but should remain under epidemiological surveillance to avoid the emergence of new epidemics, as happened with Zika virus, that are associated with new or more severe symptoms. Additionally, significant variation has been observed in these viruses, giving rise to different lineages. Until recently, the emergence of new lineages has primarily been related to geographical distribution and dispersion, allowing us to ascertain the possible origins and direction of expansion of each virus type, and to make predictions regarding regions where active infections in humans are likely to occur. Therefore, this review is focused on untangling the molecular epidemiology of Dengue, Yellow fever, Zika and Chikungunya due to their recent epidemics in Latinamerica but provides an update on the geographical distribution globally of these viral variants, and outlines the need for further understanding of the genotypes/lineages assignment.
Collapse
|
78
|
Ahamed SF, Rosario V, Britto C, Dias M, Nayak K, Chandele A, Kaja MK, Shet A. Emergence of new genotypes and lineages of dengue viruses during the 2012-15 epidemics in southern India. Int J Infect Dis 2019; 84S:S34-S43. [PMID: 30639622 DOI: 10.1016/j.ijid.2019.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To genotypically characterize dengue virus (DENV) isolates among dengue-infected children from 2012-13/2014-15 outbreaks in southern India. METHODS Children hospitalized with suspected dengue were tested for dengue RT-PCR targeting Capsid-preMembrane (C-prM) and Envelope (Env) regions. Following virologic confirmation (n=612), a representative selection of DENV isolates (n=99) were sequenced for C-prM, aligned using ClustalW and subjected to phylogenetic analysis by maximum-likelihood method in MEGA6. RESULTS In 2012-13 (n=113), DENV-3 (44, 38.9%) and DENV-2 (43, 38.1%) predominated; DENV-1 (22, 19.5%) and DENV-4 (1, 0.9%) were less common. The pattern changed in 2014-15 (n=499), when DENV-1 (329, 65.7%) predominated, followed by DENV-2 (97, 21.2%), DENV-3 (36, 6.7%) and DENV-4 (10, 2.0%). Multiple-serotype co-infections occurred in 2.7% and 5.4% in 2012-13 and 2014-15, respectively. Genotype III (GIII) of DENV-1 predominated (85.7%) in 2012-13, ceding to GI predominance (80.8%) in 2014-15. Among DENV-2, 71.9% (23/32) showed distinct clustering suggesting a new lineage, 'GIVc'. All tested DENV-4 were GIC, whose clustering pattern showed the emergence of two distinct clades. CONCLUSIONS New genotypic/lineage variations in DENV-1 and DENV-2 may have influenced the magnitude and severity of dengue epidemics in southern India during this period. These findings emphasize the role of active surveillance of DENV serotypes/genotypes in aiding outbreak control and vaccine studies.
Collapse
Affiliation(s)
- Syed Fazil Ahamed
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India; The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bangalore, 560064, Karnataka, India.
| | - Vivek Rosario
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India.
| | - Carl Britto
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK.
| | - Mary Dias
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India; Department of Microbiology, St. John's Medical College Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India.
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Murali-Krishna Kaja
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Pediatrics, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Anita Shet
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, 415 N Washington St, Baltimore 21231, USA.
| |
Collapse
|
79
|
Hill ME, Yildiz M, Hardy JA. Cysteine Disulfide Traps Reveal Distinct Conformational Ensembles in Dengue Virus NS2B-NS3 Protease. Biochemistry 2018; 58:776-787. [PMID: 30472839 DOI: 10.1021/acs.biochem.8b00978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dengue virus protease (NS2B-NS3pro) plays a critical role in the dengue viral life cycle, making it an attractive drug target for dengue-related pathologies, including dengue hemorrhagic fever. A number of studies indicate that NS2B-NS3pro undergoes a transition between two widely different conformational states: an "open" (inactive) conformation and a "closed" (active) conformation. For the past several years, the equilibrium between these states and the resting conformation of NS2B-NS3pro have been debated, although a strong consensus is emerging. To investigate the importance of such conformational states, we developed versions of NS2B-NS3pro that allow us to trap the enzyme in various distinct conformations. Our data from these variants suggest that the enzymatic activity appears to be dependent on the movement of NS2B and may rely on the flexibility of the protease core. Locking the enzyme into the "closed" conformation dramatically increased activity, strongly suggesting that the "closed" conformation is the active conformation. The observed resting state of the enzyme depends largely on the construct used to express the NS2B-NS3pro complex. In an "unlinked" construct, in which the NS2B and NS3 regions exist as independent, co-expressed polypeptides, the enzyme rests predominantly in a "closed", active conformation. In contrast, in a "linked" construct, in which NS2B and NS3 are attached by a nine-amino acid linker, NS2B-NS3pro adopts a more relaxed, alternative conformation. Nevertheless, even the unlinked construct samples both the "closed" and other alternative conformations. Given our findings, and the more realistic resemblance of NS2B-NS3pro to the native enzyme, these data strongly suggest that studies should focus on the "unlinked" constructs moving forward. Additionally, the results from these studies provide a more detailed understanding of the various poses of the dengue virus NS2B-NS3 protease and should help guide future drug discovery efforts aimed at this enzyme.
Collapse
Affiliation(s)
- Maureen E Hill
- Department of Chemistry , University of Massachusetts , 374 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Muslum Yildiz
- Department of Chemistry , University of Massachusetts , 374 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Jeanne A Hardy
- Department of Chemistry , University of Massachusetts , 374 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
80
|
Keasey SL, Smith JL, Fernandez S, Durbin AP, Zhao BM, Ulrich RG. Impact of Dengue Virus Serotype 2 Strain Diversity on Serological Immune Responses to Dengue. ACS Infect Dis 2018; 4:1705-1717. [PMID: 30347144 DOI: 10.1021/acsinfecdis.8b00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dengue is a mosquito-borne disease caused by four dengue virus serotypes (DENV1-4) that are loosely categorized by sequence commonalities and antibody recognition profiles. The highly variable envelope protein (E) that is prominently displayed on the surface of DENV is an essential component of vaccines currently under development, yet the impact of using single strains to represent each serotype in tetravalent vaccines has not been adequately studied. We synthesized chimeric E by replacing highly variable residues from a dengue virus serotype 2 vaccine strain (PUO-218) with those from 16 DENV2 lineages spanning 60 years of antigen evolution. Examining sera from human and rhesus macaques challenged with single strains of DENV2, antibody-E interactions were markedly inhibited or enhanced by residues mainly focused within a 480 Å2 footprint displayed on the E backbone. The striking impact of E diversity on polyclonal immune responses suggests that frequent antigen updates may be necessary for vaccines to counter shifts in circulating strains.
Collapse
Affiliation(s)
- Sarah L. Keasey
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Jessica L. Smith
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Anna P. Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway, Room 251, Baltimore, Maryland 21205, United States
| | - Bryan M. Zhao
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| |
Collapse
|
81
|
Cuypers L, Libin PJK, Simmonds P, Nowé A, Muñoz-Jordán J, Alcantara LCJ, Vandamme AM, Santiago GA, Theys K. Time to Harmonize Dengue Nomenclature and Classification. Viruses 2018; 10:E569. [PMID: 30340326 PMCID: PMC6213058 DOI: 10.3390/v10100569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Dengue virus (DENV) is estimated to cause 390 million infections per year worldwide. A quarter of these infections manifest clinically and are associated with a morbidity and mortality that put a significant burden on the affected regions. Reports of increased frequency, intensity, and extended geographical range of outbreaks highlight the virus's ongoing global spread. Persistent transmission in endemic areas and the emergence in territories formerly devoid of transmission have shaped DENV's current genetic diversity and divergence. This genetic layout is hierarchically organized in serotypes, genotypes, and sub-genotypic clades. While serotypes are well defined, the genotype nomenclature and classification system lack consistency, which complicates a broader analysis of their clinical and epidemiological characteristics. We identify five key challenges: (1) Currently, there is no formal definition of a DENV genotype; (2) Two different nomenclature systems are used in parallel, which causes significant confusion; (3) A standardized classification procedure is lacking so far; (4) No formal definition of sub-genotypic clades is in place; (5) There is no consensus on how to report antigenic diversity. Therefore, we believe that the time is right to re-evaluate DENV genetic diversity in an essential effort to provide harmonization across DENV studies.
Collapse
Affiliation(s)
- Lize Cuypers
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium.
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Pieter J K Libin
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium.
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Ann Nowé
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Jorge Muñoz-Jordán
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR 00920, USA.
| | | | - Anne-Mieke Vandamme
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium.
- Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| | - Gilberto A Santiago
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR 00920, USA.
| | - Kristof Theys
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
82
|
Revisiting Key Entry Routes of Human Epidemic Arboviruses into the Mainland Americas through Large-Scale Phylogenomics. Int J Genomics 2018; 2018:6941735. [PMID: 30402454 PMCID: PMC6196792 DOI: 10.1155/2018/6941735] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 11/18/2022] Open
Abstract
The rapid worldwide spread of chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viruses have raised great international concern. Knowledge about the entry routes and geographic expansion of these arboviruses to the mainland Americas remain incomplete and controversial. Epidemics caused by arboviruses continue to cause socioeconomic burden globally, particularly in countries where vector control is difficult due to climatic or infrastructure factors. Understanding how the virus circulates and moves from one country to another is of paramount importance to assist government and health officials in anticipating future epidemics, as well as to take steps to help control or mitigate the spread of the virus. Through the analyses of the sequences of arbovirus genomes collected at different locations over time, we identified patterns of accumulated mutations, being able to trace routes of dispersion of these viruses. Here, we applied robust phylogenomic methods to trace the evolutionary dynamics of these arboviruses with special focus on Brazil, the epicenter of these triple epidemics. Our results show that CHIKV, DENV-1–4, and ZIKV followed a similar path prior to their first introductions into the mainland Americas, underscoring the need for systematic arboviral surveillance at major entry points of human population movement between countries such as airports and seaports.
Collapse
|
83
|
First Reported Complete Genome Sequence of a Dengue Virus Serotype 4 Strain from Papua New Guinea. Microbiol Resour Announc 2018; 7:MRA01082-18. [PMID: 30533658 PMCID: PMC6256681 DOI: 10.1128/mra.01082-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022] Open
Abstract
A male patient in his 50s who traveled from Papua New Guinea (PNG) to Australia in 2016 was diagnosed with a dengue virus serotype 4 (DENV-4) infection, and the virus was isolated from his acute-phase serum. Here, we describe the first complete genome sequence of a DENV-4 strain from PNG. A male patient in his 50s who traveled from Papua New Guinea (PNG) to Australia in 2016 was diagnosed with a dengue virus serotype 4 (DENV-4) infection, and the virus was isolated from his acute-phase serum. Here, we describe the first complete genome sequence of a DENV-4 strain from PNG.
Collapse
|
84
|
El Hadad S, Alhebshi A, Al Amri H. Molecular Characterization of Dengue E/NS1 Junction Genotype 2 Isolated From Saudi Patients, Jeddah Province. Pak J Biol Sci 2018; 21:38-50. [PMID: 30187718 DOI: 10.3923/pjbs.2018.38.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Dengue is the most important arthropod-borne viral disease which caused by the four-dengue virus serotypes (1-4) and its incidence has grown dramatically around the world in the recent decades. This study was conducted to determine the molecular characterization of dengue virus genotypes spreading in Jeddah province. METHODOLOGY To distinguish dengue virus genotypes, serum samples from 13 infected patients were subjected to envelop and non-structural 1 (E/NS1) gene amplification and sequence analysis at the nucleotide and amino acid levels. RESULTS The present partial dengue virus phylogenetic analysis announced the domination of dengue virus 2 genotype among the current dengue virus samples circulating in Jeddah province. Dengue virus 2 current isolates were grouped in one branch and seemed to be more closely related to various strains isolated from Sri-Lanka, Australia and Singapore and confirmed by internucleotide distance average ranged +/-0.01. Interestingly, sequences analysis of amino acids confirmed substitution of 8 amino acid residue (Ser729Gua, Ser729Arg, Val762Gau, Val780phe, Val781Leu, Val781Ala, Glu858Asp and Gln873His) among the present isolates comparing with previous references strains isolated from different countries. Remarkably, one unique amino acid residue Ala741Val was verified in the 10 present isolates compared to the reference sequence previously isolated from Jeddah. CONCLUSION Notably, the present study demonstrated the sequencing analysis of the dengue virus 2-E/NS1 on both nucleotide and amino acid levels and confirmed its endogenously prevalence in Jeddah.
Collapse
|
85
|
Nunes PCG, de Filippis AMB, Lima MQDR, Faria NRDC, de Bruycker-Nogueira F, Santos JB, Heringer M, Chouin-Carneiro T, Couto-Lima D, de Santis Gonçalves B, Sampaio SA, de Araújo ESM, Sánchez-Arcila JC, dos Santos FB, Nogueira RMR. 30 years of dengue fatal cases in Brazil: a laboratorial-based investigation of 1047 cases. BMC Infect Dis 2018; 18:346. [PMID: 30053833 PMCID: PMC6062978 DOI: 10.1186/s12879-018-3255-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/13/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Dengue viruses (DENV) have emerged and reemerged in Brazil in the past 30 years causing explosive epidemics. The disease may range from clinically asymptomatic infections to severe and fatal outcomes. We aimed to describe the epidemiological, clinical and laboratorial aspects of the dengue fatal cases received by a Regional Reference Laboratory, Brazil in 30 years. METHODS A total of 1047 suspected fatal dengue cases were received from 1986 to 2015 and analyzed in the Laboratory of Flavivirus, FIOCRUZ. Suspected cases were submitted to viral detection, serological and molecular methods for cases confirmation. Influence of gender, age, serotype and type of infection (primary/secondary) on death outcome, as well the interactions between serotype and age or infection and age and type of infection were also studied. RESULTS A total of 359 cases (34.2%) were confirmed and DENV-1 (11.1%), DENV-2 (43.9%), DENV-3 (32.8%) and DENV-4 (13.7%) were detected. Overall, fatal cases occurred more often in primary infections (59.3%, p = 0.001). However, in 2008, fatal cases were mainly associated to secondary infections (p = 0.003). In 2008 and 2011, deaths were more frequent on children and those infected by DENV-2 presented a higher risk for fatal outcome. Moreover, children with secondary infections had a 4-fold higher risk for death. CONCLUSIONS Dengue is a multifactorial disease and, factors such as viral strain/serotype, occurrence of secondary infections and co-morbidities may lead to a severe outcome. However, the high dengue incidence and transmission during epidemics, such as those observed in Brazil may overwhelm and collapse the public health services, potentially impacting on increased disease severity and mortality.
Collapse
Affiliation(s)
- Priscila Conrado Guerra Nunes
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Monique Queiroz da Rocha Lima
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Nieli Rodrigues da Costa Faria
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Fernanda de Bruycker-Nogueira
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Jaqueline Bastos Santos
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Thaís Chouin-Carneiro
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
- Hematozoa Transmittors Mosquitoes Laboratory, Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Dinair Couto-Lima
- Hematozoa Transmittors Mosquitoes Laboratory, Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Bianca de Santis Gonçalves
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Simone Alves Sampaio
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | | | - Juan Camilo Sánchez-Arcila
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Flávia Barreto dos Santos
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Rita Maria Ribeiro Nogueira
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
86
|
Dwivedi VD, Tripathi IP, Tripathi RC, Bharadwaj S, Mishra SK. Genomics, proteomics and evolution of dengue virus. Brief Funct Genomics 2018; 16:217-227. [PMID: 28073742 DOI: 10.1093/bfgp/elw040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genome of a pathogenic organism possesses a specific order of nucleotides that contains not only information about the synthesis and expression of proteomes, which are required for its growth and survival, but also about its evolution. Inhibition of any particular protein, which is required for the survival of that pathogenic organism, can be used as a potential therapeutic target for the development of effective drugs to treat its infections. In this review, the genomics, proteomics and evolution of dengue virus have been discussed, which will be helpful in better understanding of its origin, growth, survival and evolution, and may contribute toward development of new efficient anti-dengue drugs.
Collapse
|
87
|
Chen L, Wang H, Guo T, Xiao C, Liu L, Zhang X, Liu B, Li P, Liu A, Li B, Li B, Mao Y. A rapid point-of-care test for dengue virus-1 based on a lateral flow assay with a near-infrared fluorescent dye. J Immunol Methods 2018; 456:23-27. [DOI: 10.1016/j.jim.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
|
88
|
Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, Abd-Jamil J, Shu MH, Mahadi NM, AbuBakar S. Emergence of the Asian lineage dengue virus type 3 genotype III in Malaysia. BMC Evol Biol 2018; 18:58. [PMID: 29699483 PMCID: PMC5921268 DOI: 10.1186/s12862-018-1175-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2018] [Indexed: 01/16/2023] Open
Abstract
Background Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally. Results Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5–553I/M, NS5–629 T, and NS5–820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013. Conclusions Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region. Electronic supplementary material The online version of this article (10.1186/s12862-018-1175-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul-Izzani Zulkifle
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Syuhaida Sulaiman
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sui-Ping Pang
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - NurAsyura NorAmdan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - NorAziyah MatRahim
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Juraina Abd-Jamil
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Meng-Hooi Shu
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
89
|
Stabell AC, Meyerson NR, Gullberg RC, Gilchrist AR, Webb KJ, Old WM, Perera R, Sawyer SL. Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir. eLife 2018; 7:31919. [PMID: 29557779 PMCID: PMC5860865 DOI: 10.7554/elife.31919] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/08/2018] [Indexed: 12/25/2022] Open
Abstract
Human dengue viruses emerged from primate reservoirs, yet paradoxically dengue does not reach high titers in primate models. This presents a unique opportunity to examine the genetics of spillover versus reservoir hosts. The dengue virus 2 (DENV2) - encoded protease cleaves human STING, reducing type I interferon production and boosting viral titers in humans. We find that both human and sylvatic (reservoir) dengue viruses universally cleave human STING, but not the STING of primates implicated as reservoir species. The special ability of dengue to cleave STING is thus specific to humans and a few closely related ape species. Conversion of residues 78/79 to the human-encoded 'RG' renders all primate (and mouse) STINGs sensitive to viral cleavage. Dengue viruses may have evolved to increase viral titers in the dense and vast human population, while maintaining decreased titers and pathogenicity in the more rare animals that serve as their sustaining reservoir in nature.
Collapse
Affiliation(s)
- Alex C Stabell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Rebekah C Gullberg
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States
| | - Alison R Gilchrist
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Kristofor J Webb
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Rushika Perera
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
90
|
Yergolkar PN, Cherian SS, Jadhav S, Raut CG, Mourya DT. Genetic characterization of dengue virus types 1 and 2 in India, with emphasis on the viruses circulating in Karnataka. Indian J Med Res 2018; 146:662-665. [PMID: 29512610 PMCID: PMC5861479 DOI: 10.4103/ijmr.ijmr_452_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Prasanna N Yergolkar
- ICMR-National Institute of Virology, Bengaluru Unit, Bengaluru, Karnataka, India
| | - Sarah S Cherian
- ICMR-National Institute of Virology, Pune 411 001, Maharashtra, India
| | - Santosh Jadhav
- ICMR-National Institute of Virology, Pune 411 001, Maharashtra, India
| | - C G Raut
- ICMR-National Institute of Virology, Bengaluru Unit, Bengaluru, Karnataka, India
| | - Devendra T Mourya
- ICMR-National Institute of Virology, Pune 411 001, Maharashtra, India
| |
Collapse
|
91
|
Hyperendemic dengue transmission and identification of a locally evolved DENV-3 lineage, Papua New Guinea 2007-2010. PLoS Negl Trop Dis 2018; 12:e0006254. [PMID: 29494580 PMCID: PMC5849365 DOI: 10.1371/journal.pntd.0006254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/13/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022] Open
Abstract
Background Dengue is endemic in the Western Pacific and Oceania and the region reports more than 200,000 cases annually. Outbreaks of dengue and severe dengue occur regularly and movement of virus throughout the region has been reported. Disease surveillance systems, however, in many areas are not fully established and dengue incidence is underreported. Dengue epidemiology is likely least understood in Papua New Guinea (PNG), where the prototype DENV-2 strain New Guinea C was first isolated by Sabin in 1944 but where routine surveillance is not undertaken and little incidence and prevalence data is available. Methodology/Principal findings Serum samples from individuals with recent acute febrile illness or with non-febrile conditions collected between 2007–2010 were tested for anti-DENV neutralizing antibody. Responses were predominantly multitypic and seroprevalence increased with age, a pattern indicative of endemic dengue. DENV-1, DENV-2 and DENV-3 genomes were detected by RT-PCR within a nine-month period and in several instances, two serotypes were identified in individuals sampled within a period of 10 days. Phylogenetic analysis of whole genome sequences identified a DENV-3 Genotype 1 lineage which had evolved on the northern coast of PNG which was likely exported to the western Pacific five years later, in addition to a DENV-2 Cosmopolitan Genotype lineage which had previously circulated in the region. Conclusions/Significance We show that dengue is hyperendemic in PNG and identify an endemic, locally evolved lineage of DENV-3 that was associated with an outbreak of severe dengue in Pacific countries in subsequent years, although severe disease was not identified in PNG. Additional studies need to be undertaken to understand dengue epidemiology and burden of disease in PNG. Dengue virus (DENV) was first identified in Papua New Guinea (PNG) in 1944. Dengue is currently assumed to be an endemic disease in PNG although there is little incidence or prevalence data, and the evidence consensus for dengue presence is low. Routine surveillance is not undertaken and dengue is not a notifiable disease. Severe dengue is rarely identified by local clinicians and the reasons for this are unclear but may be related to poor recognition of dengue and a low index of suspicion, despite high incidence and prevalence rates in neighbouring countries. For example, Indonesia shares borders with PNG and regularly reports outbreaks of severe dengue and transmission of multiple DENV serotypes. DENV infection is identified in travellers from PNG however there are no data on locally circulating strains and how they may compare to viruses associated with severe dengue epidemics in other countries in the Asia Pacific region. We identified evidence for previous infection with all four DENV serotypes among people living on the northern coast of PNG, in Madang, and on Lihir Island in the Bismarck Archipelago off the northeastern coast. We also detected DENV-1, DENV-2, and DENV-3 virus in febrile patients, and we describe the first whole genome sequences of endemically circulating DENV since the prototype 1944 DENV-2New Guinea C strain was characterized. Of note, severe dengue was not diagnosed in any patient infected with these viruses in PNG although introduction of the PNG DENV-3 strain into the Solomon Islands five years later resulted in a large outbreak of severe dengue with hospitalizations and deaths in that country. Dengue epidemiology and burden of disease should be investigated in PNG.
Collapse
|
92
|
Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018; 102:2977-2996. [PMID: 29470620 DOI: 10.1007/s00253-018-8822-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022]
Abstract
Dengue viruses are emerging mosquito-borne pathogens belonging to Flaviviridae family which are transmitted to humans via the bites of infected mosquitoes Aedes aegypti and Aedes albopictus. Because of the wide distribution of these mosquito vectors, more than 2.5 billion people are approximately at risk of dengue infection. Dengue viruses cause dengue fever and severe life-threatening illnesses as well as dengue hemorrhagic fever and dengue shock syndrome. All four serotypes of dengue virus can cause dengue diseases, but the manifestations are nearly different depending on type of the virus in consequent infections. Infection by any serotype creates life-long immunity against the corresponding serotype and temporary immunity to the others. This transient immunity declines after a while (6 months to 2 years) and is not protective against other serotypes, even may enhance the severity of a secondary heterotypic infection with a different serotype through a phenomenon known as antibody-depended enhancement (ADE). Although, it can be one of the possible explanations for more severe dengue diseases in individuals infected with a different serotype after primary infection. The envelope protein (E protein) of dengue virus is responsible for a wide range of biological activities, including binding to host cell receptors and fusion to and entry into host cells. The E protein, and especially its domain III (EDIII), stimulates host immunity responses by inducing protective and neutralizing antibodies. Therefore, the dengue E protein is an important antigen for vaccine development and diagnostic purposes. Here, we have provided a comprehensive review of dengue disease, vaccine design challenges, and various approaches in dengue vaccine development with emphasizing on newly developed envelope domain III-based dengue vaccine candidates.
Collapse
|
93
|
González-Durán E, Vázquez-Pichardo M, Torres-Flores JM, Garcés-Ayala F, Méndez-Tenorio A, Curiel-Quesada E, Ortiz-Alcántara JM, Castelán-Sánchez HG, Salas-Benito JS, Torres-Longoria B, López-Martínez I, Hernández-Rivas L, Membrillo-Hernández J, Díaz-Quiñonez JA, Ramírez-González JE. Genotypic variability analysis of DENV-1 in Mexico reveals the presence of a novel Mexican lineage. Arch Virol 2018; 163:1643-1647. [PMID: 29426993 DOI: 10.1007/s00705-018-3759-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
Here, we report for the first time the circulation of dengue virus type 1 (DENV-1) belonging to the lineage IV of genotype V (African American genotype) based on phylogenetic analysis of nucleotide sequences from 10 DENV-1-positive samples obtained in Mexico between 2012 and 2014. Our data revealed that the lineages III and IV of DENV-1 genotype V were found circulating during the same period, probably explaining the rise in the number of cases of severe dengue during that period.
Collapse
Affiliation(s)
- Elizabeth González-Durán
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| | - Mauricio Vázquez-Pichardo
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| | - Jesús Miguel Torres-Flores
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, 11340, Mexico, CDMX, Mexico
| | - Fabiola Garcés-Ayala
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| | - Alfonso Méndez-Tenorio
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, 11340, Mexico, CDMX, Mexico
| | - Everardo Curiel-Quesada
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, 11340, Mexico, CDMX, Mexico
| | - Joanna María Ortiz-Alcántara
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| | - Hugo Gildardo Castelán-Sánchez
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| | - Juan Santiago Salas-Benito
- Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, 07320, Mexico, CDMX, Mexico
| | - Belem Torres-Longoria
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| | - Irma López-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| | - Lucía Hernández-Rivas
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| | - Jorge Membrillo-Hernández
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| | - José Alberto Díaz-Quiñonez
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico. .,División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico, CDMX, Mexico.
| | - José Ernesto Ramírez-González
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Báez" (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Lomas de Plateros, 01480, Mexico, CDMX, Mexico
| |
Collapse
|
94
|
Ramasamy V, Arora U, Shukla R, Poddar A, Shanmugam RK, White LJ, Mattocks MM, Raut R, Perween A, Tyagi P, de Silva AM, Bhaumik SK, Kaja MK, Villinger F, Ahmed R, Johnston RE, Swaminathan S, Khanna N. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Negl Trop Dis 2018; 12:e0006191. [PMID: 29309412 PMCID: PMC5774828 DOI: 10.1371/journal.pntd.0006191] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/19/2018] [Accepted: 12/26/2017] [Indexed: 12/29/2022] Open
Abstract
Background Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs). Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies. Methodology/principal findings We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII), which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S) antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs). These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice. Conclusions/significance Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent seroconversion. DSV4 has a significant potential to emerge as a safe, efficacious and inexpensive subunit dengue vaccine candidate. Dengue is mosquito-borne viral disease which is currently a global public health problem. It is caused by four different types of dengue viruses. Nearly a 100 million people a year suffer from overt sickness, which may range from mild fever to potentially fatal disease. A virus-based dengue vaccine was launched for the first time in late 2015. Unexpectedly, this vaccine mimics the dengue viruses in that it appears to elicit disease-enhancing antibodies. To reduce such risk, safer vaccines that eliminate viral proteins responsible for undesirable antibodies are needed. We focused our attention on a small domain of the dengue virus surface protein known as envelope domain III (EDIII). Humans make only a small amount of antibodies against EDIII, but these antibodies are effective in blocking dengue virus from entering cells. We used a yeast expression system to display EDIIIs of all four types of dengue viruses on the surface of non-infectious virus-like particles (VLPs). These VLPs elicited antibodies, in mice and monkeys, which blocked all four dengue virus types and their variants from entering cells in culture. Importantly, these antibodies did not enhance dengue infection in a mouse model.
Collapse
Affiliation(s)
- Viswanathan Ramasamy
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Upasana Arora
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Shukla
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ankur Poddar
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rajgokul K. Shanmugam
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Laura J. White
- Global Vaccines Inc., 801 Capitola Dr., Ste. 11, Durham, NC, United States of America
| | - Melissa M. Mattocks
- Global Vaccines Inc., 801 Capitola Dr., Ste. 11, Durham, NC, United States of America
| | - Rajendra Raut
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Ashiya Perween
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Poornima Tyagi
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Siddhartha K. Bhaumik
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Murali Krishna Kaja
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, United States of America
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - François Villinger
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Robert E. Johnston
- Global Vaccines Inc., 801 Capitola Dr., Ste. 11, Durham, NC, United States of America
| | - Sathyamangalam Swaminathan
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (SS); , (NK)
| | - Navin Khanna
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, United States of America
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, INDIA
- * E-mail: (SS); , (NK)
| |
Collapse
|
95
|
Díaz Y, Cisneros J, Guzmán H, Cordoba P, Carrera JP, Moreno B, Chen R, Mewa JC, García L, Cerezo L, da Rosa AT, Gundacker ND, Armién B, Weaver SC, Vasilakis N, López-Vergès S, Tesh R. The reintroduction of DENV-2 in 2011 in Panama and subsequent outbreak characteristic. Acta Trop 2018; 177:58-65. [PMID: 28986247 PMCID: PMC6295316 DOI: 10.1016/j.actatropica.2017.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/20/2017] [Accepted: 09/30/2017] [Indexed: 01/23/2023]
Abstract
The circulation of the South-east Asian/American (AS/AM) dengue 2 virus (DENV-2) genotype in the Americas has been associated with a high rate of severe disease. From 1993, the year DENV was reintroduced in Panama, until 2011 there were 29 dengue-associated deaths, 17 of which occurred in 2011, the most severe outbreak with a case fatality rate (CFR) of 44% (17 deaths out of 38 severe dengue cases). During this outbreak DENV-2 was reintroduced into the country, whereas over the prior five years DENV-1 and -3 were predominant. Herein, we describe the 2011 Panama outbreak and genetically characterize the Panamanian DENV-2 strains, which were associated with severe dengue disease in Panama. Our results suggest that the DENV-2 isolates from this outbreak belonged to the AS/AM genotype sub-clade 2BI and were genetically close to viruses described in the outbreaks in Nicaragua, Honduras, Guatemala and Mexico from 2006-2011. Sub-clade 2BI has previously been associated with severe disease in Nicaragua during outbreaks from 2005-2007.
Collapse
Affiliation(s)
- Yamilka Díaz
- Department of Research in Virology and Biotechnology Department, Gorgas Memorial Institute of Health Studies, Panama City, Justo Arosemena Avenue and 35st Street, 0816-02593, Panama
| | - Julio Cisneros
- Department of Research in Virology and Biotechnology Department, Gorgas Memorial Institute of Health Studies, Panama City, Justo Arosemena Avenue and 35st Street, 0816-02593, Panama
| | - Hilda Guzmán
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States
| | - Paola Cordoba
- Department of Research in Virology and Biotechnology Department, Gorgas Memorial Institute of Health Studies, Panama City, Justo Arosemena Avenue and 35st Street, 0816-02593, Panama
| | - Jean-Paul Carrera
- Department of Research in Virology and Biotechnology Department, Gorgas Memorial Institute of Health Studies, Panama City, Justo Arosemena Avenue and 35st Street, 0816-02593, Panama
| | - Brechla Moreno
- Department of Research in Virology and Biotechnology Department, Gorgas Memorial Institute of Health Studies, Panama City, Justo Arosemena Avenue and 35st Street, 0816-02593, Panama
| | - Rubing Chen
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States
| | - Juan Castillo Mewa
- Department of Research in Genetics and Proteomics, Gorgas Memorial Institute of Health Studies, Panama City, Justo Arosemena Avenue and 35 St Street, 0816-02593, Panama
| | - Lourdes García
- Epidemiology Department, Ministry of Health of Panama, Panama City, Ancon, Gorgas street, building 265, Panama
| | - Lizbeth Cerezo
- Epidemiology Department, Ministry of Health of Panama, Panama City, Ancon, Gorgas street, building 265, Panama
| | - Amelia Travassos da Rosa
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States
| | - Nathan D Gundacker
- University of Alabama at Birmingham, Birmingham, Alabama, Birminghan AL 35294, United States
| | - Blas Armién
- Department of Research in Zoonotic and emergent diseases, Gorgas Memorial Institute of Health Studies, Panama City, Justo Arosemena avenue and 35St street, 0816-02593, Panama; Research Direction, Universidad Interamericana de Panama, Panama City, Ricardo J. Alfaro Avenue, Panama
| | - Scott C Weaver
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States; Center for Tropical Diseases and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States
| | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States; Center for Tropical Diseases and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States
| | - Sandra López-Vergès
- Department of Research in Virology and Biotechnology Department, Gorgas Memorial Institute of Health Studies, Panama City, Justo Arosemena Avenue and 35st Street, 0816-02593, Panama.
| | - Robert Tesh
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, 301 University Boulevard Galveston, TX 77555-0609, United States.
| |
Collapse
|
96
|
Moore PR, van den Hurk AF, Mackenzie JS, Pyke AT. Dengue viruses in Papua New Guinea: evidence of endemicity and phylogenetic variation, including the evolution of new genetic lineages. Emerg Microbes Infect 2017; 6:e114. [PMID: 29259329 PMCID: PMC5750459 DOI: 10.1038/emi.2017.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 01/10/2023]
Abstract
Dengue is the most common cause of mosquito-borne viral disease in humans, and is endemic in more than 100 tropical and subtropical countries. Periodic outbreaks of dengue have been reported in Papua New Guinea (PNG), but there is only limited knowledge of its endemicity and disease burden. To help elucidate the status of the dengue viruses (DENVs) in PNG, we performed envelope (E) gene sequencing of DENV serotypes 1-4 (DENV 1-4) obtained from infected patients who traveled to Australia or from patients diagnosed during local DENV transmission events between 2001 and 2016. Phylogenetic analysis and comparison with globally available DENV sequences revealed new endemic PNG lineages for DENV 1-3 which have emerged within the last decade. We also identified another possible PNG lineage for DENV-4 from 2016. The DENV-1 and 3 PNG lineages were most closely related to recent lineages circulating on Pacific island nations while the DENV-2 lineage and putative DENV-4 PNG lineage were most similar to Indonesian sequences. This study has demonstrated for the first time the co-circulation of DENV 1-4 strains in PNG and provided molecular evidence of endemic DENV transmission. Our results provide an important platform for improved surveillance and monitoring of DENVs in PNG and broaden the global understanding of DENV genetic diversity.
Collapse
Affiliation(s)
- Peter R Moore
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - Andrew F van den Hurk
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, Perth, Western Australia 6102, Australia
- Division of Microbiology and Infectious Diseases, PathWest, Nedlands, Western Australia 6909, Australia
| | - Alyssa T Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| |
Collapse
|
97
|
Sittivicharpinyo T, Wonnapinij P, Surat W. Phylogenetic analyses of DENV-3 isolated from field-caught mosquitoes in Thailand. Virus Res 2017; 244:27-35. [PMID: 29126872 DOI: 10.1016/j.virusres.2017.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
Abstract
Dengue virus serotype 3 (DENV-3) can cause all forms of dengue diseases and is a predominant serotype in many countries. This serotype is classified into five genotypes: I-V. Genotypes I-III have widely spread throughout the world, whereas genotypes IV and V are rare. Despite the impact on the spread of dengue diseases, only a few studies have reported the characteristics of DENV present in mosquito vectors. Hence, this study aimed to identify DENV-3 genotypes and reveal genetic variation of this virus presented in field-caught mosquitoes collected from endemic areas in Thailand during 2011-2015. First, we examined the effectiveness of the E gene sequence on DENV-3 genotyping, with results supporting the use of this gene for genotype identification. Then, we sequenced this gene in ten DENV-3 strains isolated from mosquitoes. The results showed that eight and two samples were genotypes III and V, respectively, and that they are closely related to DENV-3 isolated from Southeast and East Asian samples. The translated E gene sequences showed 25 unique amino acid (AA) residues located at 23 positions. Eight out of 25 residues have different chemical properties compared to the conserved AAs that are distributed across the three domains functioning in virus-host interaction. Hence, our study reports the first DENV-3 genotype V in Thailand, with these viruses potentially influencing both the disease severity and epidemic potential of DENV-3.
Collapse
Affiliation(s)
- Thikhumporn Sittivicharpinyo
- Evolutionary Genetics and Computational Biology Research Unit, Department of Genetics, Faculty of Science, Kasetsart University, Thailand
| | - Passorn Wonnapinij
- Evolutionary Genetics and Computational Biology Research Unit, Department of Genetics, Faculty of Science, Kasetsart University, Thailand; Centre for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University (CASTNAR, NRU-KU), Thailand
| | - Wunrada Surat
- Evolutionary Genetics and Computational Biology Research Unit, Department of Genetics, Faculty of Science, Kasetsart University, Thailand; Centre for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University (CASTNAR, NRU-KU), Thailand.
| |
Collapse
|
98
|
Kuno G, Mackenzie JS, Junglen S, Hubálek Z, Plyusnin A, Gubler DJ. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017; 9:E185. [PMID: 28703771 PMCID: PMC5537677 DOI: 10.3390/v9070185] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Control and Prevention, Fort Collins, CO, USA.
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
- Division of Microbiology & Infectious Diseases, PathWest, Nedlands, Western Australia 6009.
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Helmut-Ruska-Haus, Chariteplatz 1, 10117 Berlin, Germany.
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of Czech Republic, 60365 Brno, Czech Republic.
| | - Alexander Plyusnin
- Department of Virology, University of Helsinki, Haartmaninkatu 3, University of Helsinki, 00014 Helsinki, Finland.
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd., Singapore 169857 Singapore.
| |
Collapse
|
99
|
Holbrook MR. Historical Perspectives on Flavivirus Research. Viruses 2017; 9:E97. [PMID: 28468299 PMCID: PMC5454410 DOI: 10.3390/v9050097] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquito or tick vectors. These "arboviruses" are found around the world and account for a significant number of cases of human disease. The flaviviruses cause diseases ranging from mild or sub-clinical infections to lethal hemorrhagic fever or encephalitis. In many cases, survivors of neurologic flavivirus infections suffer long-term debilitating sequelae. Much like the emergence of West Nile virus in the United States in 1999, the recent emergence of Zika virus in the Americas has significantly increased the awareness of mosquito-borne viruses. The diseases caused by several flaviviruses have been recognized for decades, if not centuries. However, there is still a lot that is unknown about the flaviviruses as the recent experience with Zika virus has taught us. The objective of this review is to provide a general overview and some historical perspective on several flaviviruses that cause significant human disease. In addition, available medical countermeasures and significant gaps in our understanding of flavivirus biology are also discussed.
Collapse
Affiliation(s)
- Michael R Holbrook
- NIAID Integrated Research Facility, 8200 Research Plaza, Ft. Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
100
|
Neumayr A, Muñoz J, Schunk M, Bottieau E, Cramer J, Calleri G, López-Vélez R, Angheben A, Zoller T, Visser L, Serre-Delcor N, Genton B, Castelli F, Van Esbroeck M, Matteelli A, Rochat L, Sulleiro E, Kurth F, Gobbi F, Norman F, Torta I, Clerinx J, Poluda D, Martinez M, Calvo-Cano A, Sanchez-Seco MP, Wilder-Smith A, Hatz C, Franco L. Sentinel surveillance of imported dengue via travellers to Europe 2012 to 2014: TropNet data from the DengueTools Research Initiative. ACTA ACUST UNITED AC 2017; 22:30433. [PMID: 28080959 PMCID: PMC5388098 DOI: 10.2807/1560-7917.es.2017.22.1.30433] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022]
Abstract
We describe the epidemiological pattern and genetic characteristics of 242 acute dengue infections imported to Europe by returning travellers from 2012 to 2014. The overall geographical pattern of imported dengue (South-east Asia > Americas > western Pacific region > Africa) remained stable compared with 1999 to 2010. We isolated the majority of dengue virus genotypes and epidemic lineages causing outbreaks and epidemics in Asia, America and Africa during the study period. Travellers acted as sentinels for four unusual dengue outbreaks (Madeira, 2012–13; Luanda, 2013; Dar es Salaam, 2014; Tokyo, 2014). We were able to characterise dengue viruses imported from regions where currently no virological surveillance data are available. Up to 36% of travellers infected with dengue while travelling returned during the acute phase of the infection (up to 7 days after symptom onset) or became symptomatic after returning to Europe, and 58% of the patients with acute dengue infection were viraemic when seeking medical care. Epidemiological and virological data from dengue-infected international travellers can add an important layer to global surveillance efforts. A considerable number of dengue-infected travellers are viraemic after arrival back home, which poses a risk for dengue introduction and autochthonous transmission in European regions where suitable mosquito vectors are prevalent.
Collapse
Affiliation(s)
- Andreas Neumayr
- Department of Medicine and Diagnostics, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Jose Muñoz
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Mirjam Schunk
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jakob Cramer
- Department of Internal Medicine I, Section Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Guido Calleri
- Travel Medicine Unit, Department of Infectious Diseases, Amedeo di Savoia Hospital- ASLTO2, Torino, Italy
| | - Rogelio López-Vélez
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Andrea Angheben
- Centre for Tropical Diseases, Sacro Cuore - Don Calabria Hospital, Negrar, Italy
| | - Thomas Zoller
- University of Basel, Switzerland.,Clinical Research Unit, Department of Medicine and Diagnostics, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Infectious Diseases and Respiratory Medicine, Charité University Medical Center, Berlin, Germany
| | - Leo Visser
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Núria Serre-Delcor
- Tropical Medicine and International Health Unit Vall d'Hebron-Drassanes. PROSICS. Hospital Vall d'Hebron. Institut Català de la Salut, Barcelona, Spain
| | - Blaise Genton
- Infectious Disease Service & Department of Ambulatory Care, University Hospital, Lausanne, Switzerland
| | - Francesco Castelli
- University Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alberto Matteelli
- University Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| | - Laurence Rochat
- Travel Clinic, Department of Ambulatory Care and Community Medicine, University Hospital, Lausanne, Switzerland
| | - Elena Sulleiro
- Microbiology Department, Hospital Vall d´Hebron. PROSICS Barcelona. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité University Medical Center, Berlin, Germany
| | - Federico Gobbi
- Centre for Tropical Diseases, Sacro Cuore - Don Calabria Hospital, Negrar, Italy
| | - Francesca Norman
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Ilaria Torta
- Travel Medicine Unit, Department of Infectious Diseases, Amedeo di Savoia Hospital- ASLTO2, Torino, Italy
| | - Jan Clerinx
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - David Poluda
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Miguel Martinez
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Antonia Calvo-Cano
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - Annelies Wilder-Smith
- Institute of Public Health, University of Heidelberg, Germany.,Department of Global Health and Epidemiology, Umea University, Umea, Sweden
| | - Christoph Hatz
- Department of Medicine and Diagnostics, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Leticia Franco
- National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain.,Gorgas Memorial Institute, Panama, Panama
| | | |
Collapse
|