51
|
Wickstead B, Ersfeld K, Gull K. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res 2004; 14:1014-24. [PMID: 15173109 PMCID: PMC419779 DOI: 10.1101/gr.2227704] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 02/12/2004] [Indexed: 01/09/2023]
Abstract
Most eukaryotic genomes contain large regions of satellite DNA. These arrays are often associated with essential chromosomal functions, but remain largely absent from genome projects because of difficulties in cloning and sequence assembly. The numerous small chromosomes of the parasite Trypanosoma brucei fall into this category, yet are critical to understanding the genome because of their role in antigenic variation. Their relatively small size, however, makes them particularly amenable to physical mapping. We have produced fine-resolution maps of 17 complete minichromosomes and partial maps of two larger intermediate-sized chromosomes. This revealed a canonical structure shared by both chromosomal classes based around a large central core of 177-bp repeats. Around the core are variable-length genic regions, the lengths of which define chromosomal class. We show the core region to be a repetitive palindrome with a single inversion point common to all the chromosomes of both classes, suggesting a mechanism of genesis for these chromosomes. Moreover, palindromy appears to be a feature of (peri)centromeres in other species that can be easily overlooked. We propose that sequence inversion is one of the higher-order sequence motifs that confer chromosomal stability.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | | | | |
Collapse
|
52
|
Abstract
Drug resistance in African trypanosomes has been studied for almost a hundred years. Beginning with Paul Ehrlich's work that led to the chemoreceptor hypothesis, reduction of net drug uptake has emerged as the most frequent cause of resistance. This review, therefore, focuses on trypanosomal drug transporter genes. TbAT1 encodes purine permease P2, which mediates influx of melarsoprol and diamidines. Disruption of TbAT1 in Trypanosoma brucei reduced sensitivity to these trypanocides. TbMRPA encodes a putative trypanothione-conjugate efflux pump, and overexpression of TbMRPA in T. brucei causes melarsoprol resistance. It will be important to determine the role of TbAT1 and TbMRPA in sleeping sickness treatment failures.
Collapse
Affiliation(s)
- Pascal Mäser
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
53
|
Alsford NS, Navarro M, Jamnadass HR, Dunbar H, Ackroyd M, Murphy NB, Gull K, Ersfeld K. The identification of circular extrachromosomal DNA in the nuclear genome of Trypanosoma brucei. Mol Microbiol 2003; 47:277-89. [PMID: 12519183 DOI: 10.1046/j.1365-2958.2003.03266.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear extrachromosomal DNA elements have been identified in several kinetoplastids such as Leishmania and Trypanosoma cruzi, but never in Trypanosoma brucei. They can occur naturally or arise spontaneously as the result of sublethal drug exposure of parasites. In most cases, they are represented as circular elements and are mitotically unstable. In this study we describe the presence of circular DNA in the nucleus of Trypanosoma brucei. This novel type of DNA was termed NR-element (NlaIII repeat element). In contrast to drug-induced episomes in other kinetoplastids, the T. brucei extrachromosomal NR-element is not generated by drug selection. Furthermore, the element is stable during mitosis over many generations. Restriction analysis of tagged NR-element DNA, unusual migration patterns during pulsed field gel electrophoresis (PFGE) and CsCl/ethidium bromide equilibrium centrifugation demonstrates that the NR-element represents circular DNA. Whereas it has been found in all field isolates of the parasites we analysed, it is not detectable in some laboratory strains notably the genome reference strain 927. The DNA sequence of this element is related to a 29 bp repeat present in the subtelomeric region of VSG-bearing chromosomes of T. brucei. It has been suggested that this subtelomeric region is part of a transition zone on chromosomes separating the relatively stable telomeric repeats from the recombinationaly active region downstream of VSG genes. Therefore, we discuss a functional connection between the occurrence of this circular DNA and subtelomeric recombination events in T. brucei.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cattle
- Cell Nucleus/genetics
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Electrophoresis, Gel, Pulsed-Field
- Genome, Protozoan
- Molecular Sequence Data
- Sequence Analysis, DNA
- Telomere/genetics
- Trypanosoma brucei brucei/genetics
- Trypanosomiasis, Bovine/parasitology
Collapse
Affiliation(s)
- N S Alsford
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Lye LF, Cunningham ML, Beverley SM. Characterization of quinonoid-dihydropteridine reductase (QDPR) from the lower eukaryote Leishmania major. J Biol Chem 2002; 277:38245-53. [PMID: 12151409 DOI: 10.1074/jbc.m206543200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biopterin is required for growth of the protozoan parasite Leishmania and is salvaged from the host through the activities of a novel biopterin transporter (BT1) and broad-spectrum pteridine reductase (PTR1). Here we characterize Leishmania major quinonoid-dihydropteridine reductase (LmQDPR), the key enzyme required for regeneration and maintenance of H(4)biopterin pools. LmQDPR shows good homology to metazoan quinonoid-dihydropteridine reductase and conservation of domains implicated in catalysis and regulation. Unlike other organisms, LmQDPR is encoded by a tandemly repeated array of 8-9 copies containing LmQDPR plus two other genes. QDPR mRNA and enzymatic activity were expressed at similar levels throughout the infectious cycle. The pH optima, kinetic properties, and substrate specificity of purified LmQDPR were found to be similar to that of other qDPRs, although it lacked significant activity for non-quinonoid pteridines. These and other data suggest that LmQDPR is unlikely to encode the dihydrobiopterin reductase activity (PTR2) described previously. Similarly LmQDPR is not inhibited by a series of antifolates showing anti-leishmanial activity beyond that attributable to dihydrofolate reductase or PTR1 inhibition. qDPR activity was found in crude lysates of Trypanosoma brucei and Trypanosoma cruzi, further emphasizing the importance of H(4)biopterin throughout this family of human parasites.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
55
|
Pedrosa AL, Cruz AK. The effect of location and direction of an episomal gene on the restoration of a phenotype by functional complementation in Leishmania. Mol Biochem Parasitol 2002; 122:141-8. [PMID: 12106868 DOI: 10.1016/s0166-6851(02)00093-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The feasibility of genetic manipulation in trypanosomatids has allowed the introduction of molecular approaches for the investigation of gene function. The development of cosmids that carry approximately 40 kb of insert and can be easily introduced in trypanosomatids greatly increased the possibility of gene rescue by functional complementation in these parasites. Although functional complementation is widely used, some of its aspects, such as differential levels of expression along the insert clone, are not clear. We have used the DHFRTS gene as a tool to better understand the mechanisms of transcription of genes present in episomes and the results obtained via functional complementation in Leishmania. This gene was chosen not only because its inactivation in the parasite generates an easily recoverable phenotype, auxotrophy for thymidine (TdR), but also because null mutants are already available. The null mutant available contained two resistance markers (neomycin phosphotransferase-NEO and hygromycin phosphotransferase-HYG), and the loss of heterozygosity (LOH) was induced to recover clones sensitive to hygromycin B, which were necessary for the rescue of transfectants. Analyses of the Leishmania clones confirmed the loss of the HYG gene associated with unanticipated genomic rearrangements. A LOH clone was transfected with cosmids containing the DHFRTS gene in several distinct contexts in order to evaluate the levels of expression of the complementing gene. Results presented here show that the lost phenotype is rescued, irrespective to the DHFRTS location or direction of transcription indicating that functional complementation can be achieved without concern for the position of the complementing gene in a cosmid.
Collapse
Affiliation(s)
- André L Pedrosa
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, SP, Brazil
| | | |
Collapse
|
56
|
Ouellette M, Drummelsmith J, El-Fadili A, Kündig C, Richard D, Roy G. Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. Int J Parasitol 2002; 32:385-98. [PMID: 11849635 DOI: 10.1016/s0020-7519(01)00346-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The folate metabolic pathway has been exploited successfully for the development of antimicrobial and antineoplasic agents. Inhibitors of this pathway, however, are not useful against Leishmania and other trypanosomatids. Work on the mechanism of methotrexate resistance in Leishmania has dramatically increased our understanding of folate and pterin metabolism in this organism. The metabolic and cellular functions of the reduced form of folates and pterins are beginning to be established and this work has led to several unexpected findings. Moreover, the currently ongoing sequencing efforts on trypanosomatid genomes are suggesting the presence of several gene products that are likely to require folates and pterins. A number of the properties of folate and pterin metabolism are unique suggesting that these pathways are valid and worthwhile targets for drug development.
Collapse
Affiliation(s)
- Marc Ouellette
- Centre de recherche en Infectiologie du CHUL, 2705, boul. Laurier, QC, Sainte-Foy, Canada GIV 4G2.
| | | | | | | | | | | |
Collapse
|
57
|
Akopyants NS, Clifton SW, Martin J, Pape D, Wylie T, Li L, Kissinger JC, Roos DS, Beverley SM. A survey of the Leishmania major Friedlin strain V1 genome by shotgun sequencing: a resource for DNA microarrays and expression profiling. Mol Biochem Parasitol 2001; 113:337-40. [PMID: 11295190 DOI: 10.1016/s0166-6851(01)00227-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- N S Akopyants
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Qin Z, Cohen SN. Long palindromes formed in Streptomyces by nonrecombinational intra-strand annealing. Genes Dev 2000. [DOI: 10.1101/gad.14.14.1789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Long inverted repeats (palindromes) are ubiquitous among prokaryotic and eukaryotic genomes. Earlier work has implicated both DNA breaks and short inverted repeats (IRs) in the formation of long palindromes in yeast and Tetrahymena by a proposed mechanism of intramolecular recombination. Here we report that long-palindromic linear plasmids are formed in Streptomyces following double strand DNA breakage by a nonrecombinational intra-strand annealing process that also involves IRs. By modification of palindrome-generating linear plasmids and development of a novel procedure that enables the sequencing of palindrome junctions, we show that long-palindrome formation occurs by unimolecular intra-strand annealing of IRs followed by 3′ extension of the resulting DNA fold-back. The consequent hairpin structures serve as templates for synthesis of duplex linear plasmids containing long palindromes. We suggest that this model for long-palindrome formation in Streptomyces may represent a generally applicable mechanism for generating DNA palindromes.
Collapse
|
59
|
Cotrim PC, Garrity LK, Beverley SM. Isolation of genes mediating resistance to inhibitors of nucleoside and ergosterol metabolism in Leishmania by overexpression/selection. J Biol Chem 1999; 274:37723-30. [PMID: 10608831 DOI: 10.1074/jbc.274.53.37723] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We tested a general method for the identification of drug resistance loci in the trypanosomatid protozoan parasite Leishmania major. Genomic libraries in a multicopy episomal cosmid vector were transfected into susceptible parasites, and drug selections of these transfectant libraries yielded parasites bearing cosmids mediating resistance. Tests with two antifolates led to the recovery of cosmids encoding DHFR-TS or PTR1, two known resistance genes. Overexpression/selection using the toxic nucleoside tubercidin similarly yielded the TOR (toxic nucleoside resistance) locus, as well as a new locus (TUB2) conferring collateral hypersensitivity to allopurinol. Leishmania synthesize ergosterol rather than cholesterol, making this pathway attractive as a chemotherapeutic target. Overexpression/selection using the sterol synthesis inhibitors terbinafine (TBF, targeting squalene epoxidase) and itraconazole (ITZ, targeting lanosterol C(14)-demethylase) yielded nine new resistance loci. Several conferred resistance to both drugs; several were drug-specific, and two TBF-resistant cosmids induced hypersensitivity to ITZ. One TBF-resistant cosmid encoded squalene synthase (SQS1), which is located upstream of the sites of TBF and ITZ action in the ergosterol biosynthetic pathway. This suggests that resistance to "downstream" inhibitors can be mediated by increased expression of ergosterol biosynthetic intermediates. Our studies establish the feasibility of overexpression/selection in parasites and suggest that many Leishmania drug resistance loci are amenable to identification in this manner.
Collapse
Affiliation(s)
- P C Cotrim
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
60
|
Kündig C, Leblanc E, Papadopoulou B, Ouellette M. Role of the locus and of the resistance gene on gene amplification frequency in methotrexate resistant Leishmania tarentolae. Nucleic Acids Res 1999; 27:3653-9. [PMID: 10471733 PMCID: PMC148619 DOI: 10.1093/nar/27.18.3653] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protozoan parasite Leishmania resists the antifolate methotrexate (MTX) by amplifying the R locus dihydrofolate reductase-thymidylate synthase ( dhfr-ts ) gene, the H locus ptr1 pterin reductase gene, and finally by mutation in a common folate/MTX transporter. Amplification of dhfr-ts has never been observed in Leishmania tarentolae MTX resistant mutants while ptr1 amplification is common. We have selected a L.tarentolae ptr1 null mutant for MTX resistance and observed dhfr-ts amplification in this mutant demonstrating that once a preferred resistance mechanism is unavailable, a second one will take over. By introducing the ptr1 gene at the R locus and the dhfr-ts gene at the H locus by gene targeting, we investigated the role of the resistance gene and the locus on the rate of gene amplification. Transfection studies indicated that ptr1 gave higher levels of MTX resistance than dhfr-ts. Consistent with this, when ptr1 was present as part of either the H locus or the R locus it was invariably amplified, while dhfr-ts was only amplified when ptr1 was inactivated. When dhfr-ts was present in a ptr1 null background on both the H locus and the R locus, amplification from the H locus was more frequent suggesting that both the gene and the locus are determining the frequency of gene amplification in Leishmania.
Collapse
Affiliation(s)
- C Kündig
- Centre de Recherche en Infectiologie du CHUL and Département de Biologie Médicale, Division de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
61
|
Grondin K, Kündig C, Roy G, Ouellette M. Linear amplicons as precursors of amplified circles in methotrexate-resistant Leishmania tarentolae. Nucleic Acids Res 1998; 26:3372-8. [PMID: 9649621 PMCID: PMC147699 DOI: 10.1093/nar/26.14.3372] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene amplification is frequently observed in Leishmania cells selected for drug resistance. By gene targeting we have tagged both alleles of the H locus of Leishmania tarentolae with the neomycin and hygromycin phosphotransferase genes ( neo and hyg ). Selection of these recombinant parasites for low level methotrexate resistance led to amplification of the H locus as part of linear amplicons. The availability of tags has permitted us to determine that both alleles can be amplified in the same cell and that chromosomal deletions are frequent. When methotrexate concentration was increased in subsequent selection steps, circles were observed in several mutants. We have introduced a hyg marker into linear amplicons to test whether the circles originated from linear amplicons. After selection with a high methotrexate concentration, circles with the hyg marker were observed, showing that circles can indeed be formed from linear amplicons. The tagging of H locus alleles permits appreciation of the extent of genetic rearrangements leading to amplicon formation in Leishmania cells selected for drug resistance.
Collapse
Affiliation(s)
- K Grondin
- Centre de Recherche en Infectiologie du CHUL and Département de Biologie Médicale, Division de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
62
|
Kuo MT, Sen S, Hittelman WN, Hsu TC. Chromosomal fragile sites and DNA amplification in drug-resistant cells. Biochem Pharmacol 1998; 56:7-13. [PMID: 9698083 DOI: 10.1016/s0006-2952(98)00040-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been well established that DNA amplification is one of the important mechanisms by which cultured cells acquire resistance to many cytotoxic compounds. Amplification of important genes including those encoding oncoproteins, growth factors, their receptors and cell-cycle regulators has been reported in human neoplasms. Yet, despite intensive research since the first description of DNA amplification in cultured cells about 20 years ago, the mechanisms of DNA amplification remain largely unknown. Many models have been proposed to account for the diverse manifestations of amplified DNA in many different cell sources. It is not the intention of this commentary to review these many different models. Rather, we wil focus on the recent advances in this area of research, made mainly via the fluorescence in situ hybridization technique, that have revealed a fairly common chromosomal manifestation of amplified DNA in the drug-resistant hamster cell lines and have demonstrated the association of chromosomal fragile site breakage with early events in DNA amplification. These new developments underscore the importance of future research toward understanding the molecular bases of chromosomal fragile sites, including mechanisms involved in DNA strand breakage and repair, chromosomal translocations, and deletions, which may, in turn, provide important new insights into genomic plasticity and neoplastic transformation.
Collapse
Affiliation(s)
- M T Kuo
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.
| | | | | | | |
Collapse
|
63
|
Grondin K, Kundig C, Roy G, Ouellette M. Linear amplicons as precursors of amplified circles in methotrexate-resistant Leishmania tarentolae. Nucleic Acids Res 1998. [DOI: 10.1093/nar/26.14.3370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
64
|
Robello C, Navarro P, Castanys S, Gamarro F. A pteridine reductase gene ptr1 contiguous to a P-glycoprotein confers resistance to antifolates in Trypanosoma cruzi. Mol Biochem Parasitol 1997; 90:525-35. [PMID: 9476799 DOI: 10.1016/s0166-6851(97)00207-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have isolated the pteridine reductase-1 gene (ptr1), from Trypanosoma cruzi (Y strain), located contiguous to the Trypanosoma cruzi P-glycoprotein-2 (tcpgp2). The gene encodes a member of the family of short-chain dehydrogenases, enzymes that are involved in several oxidoreduction reactions. One member of the family, pteridine reductase-1 (PTR1) has been previously described in Leishmania as being involved in antifolate resistance. The ptr1 gene from T. cruzi presents an 828 bp open reading frame, coding for a 276 amino acid protein with a predicted molecular mass of 30 kDa. The deduced amino acid sequence exhibited a remarkable homology with the ptr1 genes of Leishmania major and Leishmania tarentolae. Southern blot analysis using a specific probe indicated that T. cruzi PTR1 is encoded by a single copy gene located in two chromosomes of about 0.9 and 1.2 Mb. Western blot analysis using a polyclonal antiserum against recombinant PTR1 revealed that the protein is only expressed in the epimastigote forms of the parasite; we did not detect the protein either in the amastigote or trypomastigote forms. Purified recombinant PTR1 exhibits a NADPH-dependent pteridine reductase activity comparable with those described in Leishmania. Gene transfection experiments using the pTEX expression vector show that, under the conditions tested, T. cruzi PTR1 is involved in resistance to the methotrexate, aminopterin and trimethoprim antifolates.
Collapse
Affiliation(s)
- C Robello
- Departamento de Bioquímica y Farmacología Molecular, Instituto de Parasitología y Biomedicina López-Neyra Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|
65
|
|
66
|
Abstract
Genomes comprising a pair of separated inverted repeats and called 'amphimers' are reviewed. Amphimeric genomes are observed in a large variety of different organisms, ranging from archaebacteria to mammals. The widespread existence of amphimeric genomes in nature could be due to their particular dynamic structure. Amphimeric genomes containing long inverted segments may provide the only form in which a duplicated segment is stably retained in genomes. Amphimers are often found in amplified subgenomes, indicating that they could promote a special mechanism of DNA replication and amplification. The possible mechanisms of generation, isomerization and replication/amplification of different types of amphimeric genomes are discussed. The study of amphimeric mitochondrial petite genomes of yeast could be a good model system for the study of the role of inverted repeat sequences in genome dynamics.
Collapse
Affiliation(s)
- E Rayko
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, Paris, France.
| |
Collapse
|
67
|
Affiliation(s)
- J M Kelly
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, UK
| |
Collapse
|
68
|
Butler DK, Yasuda LE, Yao MC. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes. Cell 1996; 87:1115-22. [PMID: 8978615 DOI: 10.1016/s0092-8674(00)81805-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many amplified genes, including some oncogenes, are organized as large inverted repeats. How such giant palindromes are generated remains largely unknown. Recent studies of a palindrome in the ciliate Tetrahymena suggest a novel mechanism that requires chromosome breakage next to short inverted repeats. The prevalence of short inverted repeats in eukaryotic genomes raises the interesting possibility that this process may occur widely as a response to chromosome damage. Here we demonstrate that in Saccharomyces cerevisiae, large DNA palindromes are formed efficiently, probably by intramolecular recombination, when a double-strand break is introduced next to short inverted repeats. These results suggest a general mechanism for large palindromic DNA formation and reveal an important new source of genome instability resulting from chromosome breakage at selective sites.
Collapse
Affiliation(s)
- D K Butler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
69
|
Ferreira-Pinto KC, Miranda-Vilela AL, Anacleto C, Fernandes AP, Abdo MC, Petrillo-Peixoto ML, Moreira ES. Leishmania (V.) guyanensis: isolation and characterization of glucantime-resistant cell lines. Can J Microbiol 1996; 42:944-9. [PMID: 8864217 DOI: 10.1139/m96-121] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A glucantime sensitive Leishmania (V.) guyanensis strain was used to obtain in vitro resistant cell lines, by increments in glucantime concentrations employing both one step and stepwise protocols. Whereas the effective concentration of drug that inhibited the growth of wild type cells by 50% (EC50 value) was 0.20 mg Sb(v)/mL, the resistant cells were able to grow in glucantime concentrations greater than 8.0 mg/mL. The resistant cell lines were partially characterized by their in vitro response to glucantime, the stability of resistance phenotype, cross resistance to a range of drugs, and also by the analysis of total DNA fragments generated by restriction endonucleases and blot hybridization. Amplified DNA sequence similar to a P-glycoprotein analog from Leishmania tarentolae (ltpgpA gene) was observed in all the resistant cell lines obtained through the one-step protocol. These cell lines showed cross resistance to heavy metals but were sensitive to puromycin, vinblastine, and pentostam.
Collapse
Affiliation(s)
- K C Ferreira-Pinto
- Departamento de Microbiologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Brasil
| | | | | | | | | | | | | |
Collapse
|
70
|
Affiliation(s)
- A K Cruz
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirao Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
71
|
Grondin K, Roy G, Ouellette M. Formation of extrachromosomal circular amplicons with direct or inverted duplications in drug-resistant Leishmania tarentolae. Mol Cell Biol 1996; 16:3587-95. [PMID: 8668175 PMCID: PMC231354 DOI: 10.1128/mcb.16.7.3587] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Selection for methotrexate resistance in Leishmania spp. is often associated with amplification of the H locus short-chain dehydrogenase-reductase gene ptr1 as part of extrachromosomal elements. Extensive sequences are always coamplified and often contain inverted duplications, most likely formed by the annealing of inverted repeats present at the H locus. By gene targeting mediated by homologous recombination, several repeated sequences were introduced in the vicinity of ptr1. Selection for methotrexate resistance in these transfectants led to ptr1 amplification as part of small circles with direct or inverted duplications whether the integrated sequences consisted of direct or inverted repeats. Hence, for a region to he amplified in L. tarentolae during drug selection, a drug resistance gene is required and must be flanked by (any) homologous repeated sequences. The distance between these repeats and their orientation will determine the length of the amplicon and whether it contains direct or inverted duplications.
Collapse
Affiliation(s)
- K Grondin
- Centre de Recherche en Infectiologie du Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | |
Collapse
|
72
|
Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol 1996; 16:2002-14. [PMID: 8628266 PMCID: PMC231187 DOI: 10.1128/mcb.16.5.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Extrachromosomal circular DNA molecules are associated with genomic instability, and circles containing inverted repeats were suggested to be the early amplification products. Here we present for the first time the use of neutral-neutral two-dimensional (2D) gel electrophoresis as a technique for the identification, isolation, and characterization of heterogeneous populations of circular molecules. Using this technique, we demonstrated that in N-methyl-N'-nitro-N-nitrosoguanidine-treated simian virus 40-transformed Chinese hamster cells (CO60 cells), the viral sequences are amplified as circular molecules of various sizes. The supercoiled circular fraction was isolated and was shown to contain molecules with inverted repeats. 2D gel analysis of extrachromosomal DNA from CHO cells revealed circular molecules containing highly repetitive DNA which are similar in size to the simian virus 40-amplified molecules. Moreover, enhancement of the amount of circular DNA was observed upon N-methyl-N'-nitro-N-nitrosoguanidine treatment of CHO cells. The implications of these findings regarding the processes of gene amplification and genomic instability and the possible use of the 2D gel technique to study these phenomena are discussed.
Collapse
MESH Headings
- Animals
- CHO Cells
- Carcinogens/toxicity
- Cell Line
- Cell Line, Transformed
- Cell Transformation, Viral
- Cricetinae
- DNA Replication/drug effects
- DNA, Circular/biosynthesis
- DNA, Circular/chemistry
- DNA, Circular/ultrastructure
- DNA, Viral/biosynthesis
- DNA, Viral/chemistry
- DNA, Viral/ultrastructure
- Methylnitronitrosoguanidine/toxicity
- Microscopy, Electron
- Models, Structural
- Nucleic Acid Conformation
- Repetitive Sequences, Nucleic Acid
- Simian virus 40/genetics
Collapse
Affiliation(s)
- S Cohen
- Department of Cell Research and Immunology, Tel Aviv University, Israel
| | | |
Collapse
|
73
|
Báez-Camargo M, Lopez-Canovas L, Riveron AM, Chávez P, Orozco E. Fast Procedure To Distinguish Circular and Linear DNA Molecules in Pulsed Field Gel Electrophoresis. ANAL LETT 1996. [DOI: 10.1080/00032719608001780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
74
|
Bi X, Liu LF. recA-independent DNA recombination between repetitive sequences: mechanisms and implications. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:253-92. [PMID: 8768077 DOI: 10.1016/s0079-6603(08)60365-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- X Bi
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
75
|
Lodes MJ, Merlin G, deVos T, Ghosh A, Madhubala R, Myler PJ, Stuart K. Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus. Mol Cell Biol 1995; 15:6845-53. [PMID: 8524251 PMCID: PMC230939 DOI: 10.1128/mcb.15.12.6845] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic protein-coding genes are generally transcribed by RNA polymerase II (Pol II), which has a lower transcription rate than that of Pol I. We report here the duplication of two LD1 genes into the rRNA locus and their resultant transcription by Pol I. The multigenic LD1 locus is present in a 2.2-Mb chromosome in all stocks of Leishmania spp. and is also present in multicopy 200- to 450-kb linear chromosomes or multicopy circular DNAs in over 15% of stocks examined. Genomic rearrangement in Leishmania donovani LSB-51.1 resulted in duplication of a 3.9-kb segment of LD1 containing two genes (orfF and orfG) and of a 1.3-kb segment from approximately 10 kb downstream into the rRNA gene repeat region of the 1.2-Mb chromosome. Short sequences (12 or 13 bp) common to the 2.2-Mb LD1 and 1.2-Mb rRNA loci suggest that this gene conversion occurred by homologous recombination. Transcription of the duplicated genes is alpha-amanitin resistant, indicating transcription by Pol I, in contrast to the alpha-amanitin-sensitive (Pol II) transcription of the genes in the 2.2-Mb LD1 locus. This results in higher transcript abundance than expected from the gene copy number in LSB-51.1 and in elevated expression of at least the orfF gene product.
Collapse
Affiliation(s)
- M J Lodes
- Seattle Biomedical Research Institute, Washington 98109-1651, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Butler DK, Yasuda LE, Yao MC. An intramolecular recombination mechanism for the formation of the rRNA gene palindrome of Tetrahymena thermophila. Mol Cell Biol 1995; 15:7117-26. [PMID: 8524279 PMCID: PMC230967 DOI: 10.1128/mcb.15.12.7117] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Large palindromic DNAs are found in a wide variety of eukaryotic cells. In Tetrahymena thermophila, a large palindrome is formed from a single rRNA gene (rDNA) during nuclear differentiation. We present evidence that a key step in the formation of the rDNA palindrome of T. thermophila involves homologous intramolecular recombination. Heteroduplex micronuclear rDNA molecules were constructed in vitro and microinjected into developing macronuclei, where they formed palindromes. Analysis of the resulting palindromes indicated that both strands of the microinjected rDNA are used to form the same palindrome. This study, together with a previous study (L. F. Yasuda and M.-C. Yao, Cell 67:505-516, 1991), is the first to define a molecular pathway of palindrome formation. The process is initiated by chromosome breakage at sites flanking the micronuclear rDNA. An intramolecular recombination reaction, guided by a pair of short inverted repeats located at the 5' end of the excised rDNA, covalently joins the two strands of micronuclear rDNA in a giant hairpin molecule. Bidirectional DNA replication converts the giant hairpin molecule to a palindrome. We suggest that the general features of this pathway are applicable to palindrome formation in other cell types.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Protozoan/metabolism
- DNA, Ribosomal/metabolism
- Gene Expression
- Genes, Protozoan
- Models, Genetic
- Models, Structural
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleic Acid Heteroduplexes/metabolism
- Oligodeoxyribonucleotides
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Recombination, Genetic
- Restriction Mapping
- Tetrahymena thermophila/genetics
- Tetrahymena thermophila/metabolism
Collapse
Affiliation(s)
- D K Butler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
77
|
Kelly JM. Trypanosomatid shuttle vectors: new tools for the functional dissection of parasite genomes. ACTA ACUST UNITED AC 1995; 11:447-51. [PMID: 15275381 DOI: 10.1016/0169-4758(95)80057-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past five years, gene-transfer systems have been established for each of the medically important trypanosomatids: Leishmania sp, Trypanosoma brucei and T. cruzi. Transformation can be mediated by integration, which occurs exclusively by homologous recombination, or by episomal shuttle vectors. In this article, John Kelly will focus on recent progress in the development and applications of trypanosomatid shuttle vectors, ie. vectors which are maintained extrachromosomally and which are capable of autonomous replication in both trypanosomatid and bacterial hosts.
Collapse
Affiliation(s)
- J M Kelly
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK WCIE 7HT.
| |
Collapse
|
78
|
Olmo A, Arrebola R, Bernier V, González-Pacanowska D, Ruiz-Pérez LM. Co-existence of circular and multiple linear amplicons in methotrexate-resistant Leishmania. Nucleic Acids Res 1995; 23:2856-64. [PMID: 7659507 PMCID: PMC307122 DOI: 10.1093/nar/23.15.2856] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Circular and linear amplicons were analyzed in detail in Leishmania tropica cells resistant to methotrexate (MTX). Both types of elements presented sequences related to the H locus and coexisted in resistant cells. The linear amplicons appeared first during the selection process (at 10 microM MTX) and varied with regard to size and structure in cells exposed to increasing concentrations of drug. The circular element was evident at higher concentrations (50 microMs) but was the major amplified DNA in cells resistant to 1000 microM MTX while the level of amplification of the linear elements remained low. The extrachromosomal DNAs were unstable in the absence of drug and their disappearance coincided with an increase in sensitivity to MTX. Mapping of the minichromosomes and the circular element showed that they were all constituted by inverted duplications. The circular amplicon contained an inverted repeat derived from the H locus that encompassed the pteridine reductase gene (PTR1) responsible for MTX resistance. The amplified segment in the linear amplicons was longer and included the pgpB and pgpC genes that encode P-glycoproteins of unknown function previously characterized in different Leishmania species.
Collapse
Affiliation(s)
- A Olmo
- Instituto de Parasitología y Biomedicina, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | |
Collapse
|
79
|
Ortiz G, Navarro M, Segovia M. Location in the source chromosome of the 180-kb minichromosome of Leishmania major and characterization of the novel junction. Mol Biochem Parasitol 1995; 71:153-61. [PMID: 7477097 DOI: 10.1016/0166-6851(95)00026-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The 180-kb LD1 minichromosome of Leishmania major (M180) is a large inverted duplication which arises spontaneously from a megabasic chromosome. In this work this locus has been located in the source chromosome at a telomeric position. Both the novel junction created in the middle of the minichromosome, as well as its counterpart region in the source chromosome were cloned and sequenced. Two inverted repeats, which could give rise to two imperfect stem-loops, and an A + T-rich DNA sequence were the only particular features observed in this region. A putative model for the formation of the minichromosome is proposed.
Collapse
Affiliation(s)
- G Ortiz
- Departamento de Genética y Microbiología, Facultad de Medicina, Universidad de Murcia, Spain
| | | | | |
Collapse
|
80
|
Rathod PK, Khosla M, Gassis S, Young RD, Lutz C. Selection and characterization of 5-fluoroorotate-resistant Plasmodium falciparum. Antimicrob Agents Chemother 1994; 38:2871-6. [PMID: 7695275 PMCID: PMC188299 DOI: 10.1128/aac.38.12.2871] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies have shown that 100 nM 5-fluoroorotate (5-FO) is sufficient to block the in vitro proliferation of Plasmodium falciparum without causing toxicity to mammalian cells. In anticipation of potential drug resistance, a study was undertaken to identify P. falciparum cells that would proliferate in the presence of 5-FO. About 3 x 10(6) UV-irradiated as well as nonirradiated parasites were subjected to a one-step selection with 100 nM 5-FO both in the absence and in the presence of preformed pyrimidines (uracil, uridine, thymine, and thymidine). The P. falciparum cells that emerged after 3 weeks were cloned, and the 90% inhibitory concentration of 5-FO for the cloned cells was found to be 100- to 400-fold greater than that for the parent cell line. Two clones that were further characterized retained resistance to 5-FO even after prolonged propagation in culture without drug pressure. Since the mutants were not cross-resistant to 5-fluorouracil or to dihydrofolate reductase inhibitors, it was unlikely that alteration of thymidylate synthase or overproduction of the bifunctional dihydrofolate reductase-thymidylate synthase was responsible for 5-FO resistance. Similarly, resistance was not due to the expression of a pyrimidine salvage pathway since the cells were not pyrimidine auxotrophs, they did not show increased utilization of pyrimidine nucleosides, and they did not show increased susceptibility to 5-fluoropyrimidine nucleosides. When the selection experiments were repeated, without mutagenesis, in the presence of 10(-7) M 5-FO with fewer than 10(6) parasites or in the presence of more than 10(-7) M 5-FO with more than 10(8) parasites, viable mutants could not be recovered from the cultures. The implications of these findings for the in vivo use of 5-FO for malaria chemotherapy are discussed.
Collapse
Affiliation(s)
- P K Rathod
- Department of Biology, Catholic University of America, Washington, DC 20064
| | | | | | | | | |
Collapse
|
81
|
Chiquero MJ, Olmo A, Navarro P, Ruiz-Perez LM, Castanys S, Gonzalez-Pacanowska D, Gamarro F. Amplification of the H locus in Leishmania infantum. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1227:188-94. [PMID: 7986827 DOI: 10.1016/0925-4439(94)90094-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have selected for a Leishmania infantum cell line resistant to high levels of methotrexate (MTX). The resulting cells were 1233-fold more resistant than wild-type and contained amplified H-region circles. Homologous genes to the antifolate resistant ltdh gene and to the P-glycoprotein ltpgpA gene of Leishmania tarentolae were observed to be contained within the amplicon. In order to invoke additional mechanisms of resistance, we examined possible variations in MTX accumulation. Resistance was not correlated with a decreased uptake of MTX. On the contrary, the resistant line presented a 3-fold increase in the steady-state accumulation of drug with regard to the wild-type line. Northern blot analysis using gene specific probes, showed that the ltdh probe and the ltpgpA probe recognized single transcripts of 1 kb and 5 kb respectively which were both overexpressed only approx. 5-fold in resistant cells. We propose that amplification of the antifolate resistance gene, homologue to the ltdh gene of L. tarentolae, is apparently the only mechanism involved in resistance to the cytotoxic drug MTX in L. infantum resistant to 1000 microM of MTX.
Collapse
Affiliation(s)
- M J Chiquero
- Instituto de Parasitologá y Biomedicina, Consejo Superior de Investigaciones Científicas, Granada,Spain
| | | | | | | | | | | | | |
Collapse
|
82
|
Bello AR, Nare B, Freedman D, Hardy L, Beverley SM. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc Natl Acad Sci U S A 1994; 91:11442-6. [PMID: 7972081 PMCID: PMC45247 DOI: 10.1073/pnas.91.24.11442] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Trypanosomatid protozoans are pterin auxotrophs, a finding noted decades ago which heralded the discovery of key metabolic roles played by pteridines in eukaryotes. We have now identified the enzyme mediating unconjugated pteridine salvage in the human parasite Leishmania major, PTR1 (pteridine reductase 1, formerly hmtxr or ltdh). PTR1 is the gene in the amplified H region responsible for methotrexate (MTX) resistance, and belongs to a large family of oxidoreductases with diverse substrates and roles. We generated Leishmania lacking PTR1 by homologous gene targeting, and these ptr1- mutants required reduced biopterin (dihydro- or tetrahydrobiopterin) for growth. PTR1 purified from engineered Escherichia coli exhibited a MTX-sensitive, NADPH-dependent biopterin reductase activity. PTR1 showed good activity with folate and significant activity with dihydrofolate and dihydrobiopterin, but not with quinonoid dihydrobiopterin. PTR1 thus differs considerably from previously reported pteridine reductases of trypanosomatids and vertebrates. Pteridine reductase activity was diminished in ptr1- Leishmania and was elevated in transfected parasites bearing multiple copies of PTR1; correspondingly, ptr1- was MTX-hypersensitive whereas the multicopy transfectant was MTX-resistant. The concordance of the biochemical and genetic properties of PTR1 suggests that this is the primary enzyme mediating pteridine salvage. These findings suggest several possible mechanisms for PTR1-mediated MTX resistance and should aid in the design of rational chemotherapy.
Collapse
Affiliation(s)
- A R Bello
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | |
Collapse
|
83
|
Navarro M, Liu J, Muthui D, Ortiz G, Segovia M, Hamers R. Inverted repeat structure and homologous sequences in the LD1 amplicons of Leishmania spp. Mol Biochem Parasitol 1994; 68:69-80. [PMID: 7891749 DOI: 10.1016/0166-6851(94)00147-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the parasitic trypanosomatids of the genus Leishmania, novel circular (CD) and linear (LD) multicopy genetic elements arise de novo either spontaneously or as a result of drug selection. We report that the LD1 minichromosomes of L. donovani, L. major and L. mexicana (ranging in size from 180 to 230 kb) have an inverted repeat structure and contain homologous sequences located at similar distances from the telomere; one half of the chromosome being the mirror image of the other. They must therefore have originated from a unique conserved source chromosome; the size polymorphism being generated by the point at which inversion occurs. The circular CD1 elements appear to be circularised segments of the LD1 elements. These observations lead to a unified concept of how minichromosomes LD1 and circular CD1 genetic elements emerge within the Leishmania and contribute to evolution of karyotype.
Collapse
Affiliation(s)
- M Navarro
- Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | |
Collapse
|
84
|
Wilson K, Berens RL, Sifri CD, Ullman B. Amplification of the inosinate dehydrogenase gene in Trypanosoma brucei gambiense due to an increase in chromosome copy number. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)62002-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
85
|
Callahan HL, Roberts WL, Rainey PM, Beverley SM. The PGPA gene of Leishmania major mediates antimony (SbIII) resistance by decreasing influx and not by increasing efflux. Mol Biochem Parasitol 1994; 68:145-9. [PMID: 7891738 DOI: 10.1016/0166-6851(94)00154-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H L Callahan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
86
|
Liu X, Chang KP. Identification by extrachromosomal amplification and overexpression of a zeta-crystallin/NADPH-oxidoreductase homologue constitutively expressed in Leishmania spp. Mol Biochem Parasitol 1994; 66:201-10. [PMID: 7808470 DOI: 10.1016/0166-6851(94)90147-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A gene which overexpresses a 36-kDa protein (p36) in tunicamycin-resistant Leishmania was mapped by transfection and overexpression to the upstream region of the drug maker in the extrachromosomal amplicon. Complete sequencing of this region revealed a single open reading frame of about 1 kb. Authenticity of the cloned gene is verified by immunologic specificity of its recombinant products and sequence identity with a p36 peptide. The gene shares an overall sequence similarity of about 50% with members of the eukaryote alcohol dehydrogenase family at the amino acid level, including essentially all 13 evolutionarily conserved residues and a nucleotide-binding domain. The binding ligands for both structurally and catalytically important zinc atoms are absent, similar to the zeta-crystallin/NADPH:quinone oxidoreductase gene. Consistent with hydrophilicity of its primary sequence and the presence of a nucleotide binding site, p36 is a soluble molecule non-sedimentable at 105,000 x g and binds Blue Sepharose, elutable only with NADPH. The p36 gene is expressed constitutively in both stages of the wild-type and is conserved among all Leishmania species examined, suggestive of its functional significance different from evolutionarily related homologues.
Collapse
Affiliation(s)
- X Liu
- Department of Microbiology/Immunology, University of Health Sciences/Chicago Medical School, IL 60064
| | | |
Collapse
|
87
|
Myler PJ, Lodes MJ, Merlin G, de Vos T, Stuart KD. An amplified DNA element in Leishmania encodes potential integral membrane and nucleotide-binding proteins. Mol Biochem Parasitol 1994; 66:11-20. [PMID: 7984172 DOI: 10.1016/0166-6851(94)90031-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
LD1 is a 27.5-kb sequence that occurs in an approx. 2.2-Mb chromosome in all species and strains of Leishmania. In Leishmania infantum MHOM/BL/67/ITMAP263, LD1 is also present as an inverted dimeric repeat in multicopy, 55-kb circular molecules. Sequence analysis of a 7873-nt segment derived from the circular DNA reveals 4 open reading frames (ORFs) with potential protein coding function. One ORF predicts a protein with an ATP/GTP binding site motif. Another ORF predicts a protein with 10-12 potential membrane-spanning domains, suggesting that it encodes an integral membrane protein. This protein also has homology with that predicted by the ESAG10 gene of Trypanosoma brucei.
Collapse
Affiliation(s)
- P J Myler
- Seattle Biomedical Research Institute, WA 98109-1651
| | | | | | | | | |
Collapse
|
88
|
Soteriadou KP, Tzinia AK, Mamalaki A, Phelouzat MA, Lawrence F, Robert-Gero M. Expression of the major surface glycoprotein of Leishmania, gp63, in wild-type and sinefungin-resistant promastigotes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:61-8. [PMID: 8033909 DOI: 10.1111/j.1432-1033.1994.tb18966.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study, we have surveyed gp63 expression in sinefungin-(SF)-resistant and wild-type Leishmania promastigotes. Documentation of gp63 expression in Leishmania promastigotes was carried out by Western blotting, purification of the protein and assessment of gp63 protease activity. We demonstrated a 3-4-fold and 1.5-2-fold increase of gp63 protein in SF-resistant Leishmania donovani and Leishmania tropica promastigotes compared to wild-type, respectively. Northern blot analysis showed that the increase in the amount of gp63 protein in SF-resistant compared to wild-type parasites was concomitant with an increase in gp63 mRNA. No extrachromosomal DNA was identified by alkaline lysis of isolated DNA samples and Southern blot analysis. Treatment of SF-resistant and wild-type L. donovani promastigotes with cycloheximide resulted in an increase of the steady state levels of gp63 mRNA in the SF-resistant parasites to approximately fivefold that of the wild type. After treating parasites with actinomycin D, estimated gp63 mRNA t1/2 in the wild type was 40 min and increased to 83 min in SF-resistant promastigotes. Therefore, the overexpression of gp63 may be mediated, at least in part, by post-transcriptional stabilization of a gp63 transcript by a protein factor. Down regulation of the latter factor may account for the observed increase in gp63 expression in SF-resistant promastigotes. Attempts to correlate gp63 expression with promastigote virulence suggested that the observed increase in gp63 expression did not result in a significant change in the virulence of SF-resistant compared to wild-type L. donovani promastigotes.
Collapse
Affiliation(s)
- K P Soteriadou
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | | | | | |
Collapse
|
89
|
Gamarro F, Chiquero MJ, Amador MV, Légaré D, Ouellette M, Castanys S. P-glycoprotein overexpression in methotrexate-resistant Leishmania tropica. Biochem Pharmacol 1994; 47:1939-47. [PMID: 7912069 DOI: 10.1016/0006-2952(94)90067-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A methotrexate (MTX)-resistant Leishmania tropica line develops a stable drug-resistant phenotype in which the resistance mechanism is associated with a significant reduction in MTX accumulation. After a 2 hr exposure to [3H]MTX, a L. tropica line resistant to 1000 microM of MTX did not accumulate more than 3% of the amount of drug incorporated by wild-type cells. The same resistant cell line was found to be cross-resistant to several unrelated drugs. The monoclonal antibody C219, directed against the cytoplasmic domain of mammalian P-glycoproteins, recognized a putative P-glycoprotein of 240 kDa overexpressed in the resistant line. Also, this resistant line showed the overexpression of the putative homolog of the ltpgpE gene, as determined by northern blot analysis using gene-specific probes for the P-glycoprotein genes of Leishmania tarentolae. This overexpression was not correlated with a proportional increase in the copy number of the gene, but Southern blot analysis suggested that the ltpgpE homolog was overexpressed as a consequence of gene rearrangement. This would be considered as an epiphenomenon that probably does not arise from the same MTX-resistant mechanism.
Collapse
Affiliation(s)
- F Gamarro
- Instituto de Parasitología y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | | | |
Collapse
|
90
|
Papadopoulou B, Roy G, Ouellette M. Autonomous replication of bacterial DNA plasmid oligomers in Leishmania. Mol Biochem Parasitol 1994; 65:39-49. [PMID: 7935627 DOI: 10.1016/0166-6851(94)90113-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extrachromosomal amplicons are frequently observed in drug-resistant Leishmania. A dominant selectable marker, the neomycin phosphotransferase gene, was introduced by gene targeting in a circular amplicon derived from the H locus of Leishmania in a mutant cell. This recombinant amplicon was isolated and transfected in a wild-type cell. The amplicon was kept in the wild-type cells, provided the selective pressure was maintained, suggesting that it was capable of autonomous replication. Novel Leishmania expression vectors suited for stable transfections were made to isolate, by a high transformation assay, the putative origin of replication in the amplicons. However, these plasmids, which did not contain a single Leishmania nucleotide, were found as extrachromosomal circular oligomers in Leishmania transfectants. Their relative stability, in addition to changes in their methylation pattern, indicated that these plasmids were most likely replicating. No specific sequences seem to be required for replication (and expression) in Leishmania, therefore precluding the isolation of origins of replication by genetic transformation.
Collapse
|
91
|
Lai CY, Baumann L, Baumann P. Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proc Natl Acad Sci U S A 1994; 91:3819-23. [PMID: 8170994 PMCID: PMC43673 DOI: 10.1073/pnas.91.9.3819] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Survival of aphids is dependent on an association with a prokaryotic endosymbiont (Buchnera aphidicola) found in specialized cells within the aphid body cavity. Recent nutritional and physiological studies have indicated that one of the functions of the endosymbionts is the synthesis of tryptophan [Douglas, A. E. & Prosser, W. A. (1992) J. Insect Physiol. 38, 565-568]. B. aphidicola resembles in many of its properties free-living prokaryotes. An adaptation to an endosymbiosis involving the overproduction of tryptophan would necessitate alterations that modify the effect of regulatory systems that in free-living organisms function to reduce enzyme activity under conditions of excess tryptophan. We have cloned and sequenced the genes for B. aphidicola trpEG encoding anthranilate synthase, the first enzyme of the tryptophan biosynthetic pathway, which in free-living bacteria is feedback-inhibited by tryptophan. Amino acid sequence comparisons indicate that the B. aphidicola enzyme has all of the key residues involved in allosteric feedback inhibition. Evidence is presented indicating that trpEG is present as four tandem repeats on a circular plasmid. Relative to B. aphidicola trpDC(F)BA (the chromosomal genes coding for the remaining enzymes of the tryptophan biosynthetic pathway) trpEG is amplified 14- to 15-fold. These findings suggest that the effect of inhibition by accumulated tryptophan may be overcome by overproduction of anthranilate synthase. Our results demonstrate the acquisition of a new property (gene amplification) as an adaptation to an endosymbiotic association in which B. aphidicola overproduces tryptophan for the aphid host.
Collapse
Affiliation(s)
- C Y Lai
- Microbiology Section, University of California, Davis 95616-8665
| | | | | |
Collapse
|
92
|
Isolation and characterization of a mutant dihydrofolate reductase-thymidylate synthase from methotrexate-resistant Leishmania cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34100-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
93
|
Segovia M. Leishmania gene amplification: a mechanism of drug resistance. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1994; 88:123-30. [PMID: 8067807 DOI: 10.1080/00034983.1994.11812849] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Leishmania spp. are excellent models for analysing the mechanisms of drug resistance, one of the major barriers to the treatment and control of several major diseases. They may become refractory to drugs as the result of gene amplification. Amplified Leishmania DNA are extrachromosomal, usually circular, and arise from a source chromosome. Several multicopy extrachromosomal DNA have been identified, either spontaneously in unselected stocks or, more commonly, in response to multiple rounds of step-wise increases in drug concentration. R circles, G circles and ODC140-L minichromosomes are extrachromosomal amplifications encoding copies of dihydrofolate reductase-thymidylate synthase, glycosyltransferase, and ornithine decarboxylase, respectively, and conferring resistance to inhibitors of these gene products (methotrexate, tunicamycin and alpha-difluoromethylornithine, respectively). Another DNA amplification, named the H circle, has been detected in response to several unrelated drugs and confers drug resistance. Leishmania spp. represent a unique model since, even without drug pressure, gene amplifications appear and remain as extrachromosomal circular and linear amplicons. The CD1/LD1 elements, of unknown biological role, arise de novo in cultures in the absence of drug pressure.
Collapse
Affiliation(s)
- M Segovia
- Departamento de Genética y Microbiología, Facultad de Medicina, Universidad de Murcia, Spain
| |
Collapse
|
94
|
Abstract
Evidence for the phenomenon of multiple drug resistance (MDR) in the well studied pathogenic protozoa has been examined. This has been placed in the more familiar context of the MDR efflux transporters and the cloned mdr genes of mammalian cells. Homologues of the mdr gene family in protozoa and their possible role in drug efflux have been compared with their mammalian counterparts. Possible mechanisms and models for drug efflux have been considered. The unusual and extensive range of substrates transported by the ATP-binding cassette (ABC) family of transporters which includes the MDRs has been raised. The impact of kinetics, structure and bioenergetics of the MDR family members on mechanisms of transport has been accentuated to argue that MDR efflux considered in isolation appears bizarre but may be better understood in a broader context.
Collapse
Affiliation(s)
- P Upcroft
- Queensland Institute of Medical Research, Bancroft Centre, Brisbane, Australia
| |
Collapse
|
95
|
Wong AK, Chow LM, Wirth DF. A homologous recombination strategy to analyze the vinblastine resistance property of the V-circle in Leishmania. Mol Biochem Parasitol 1994; 64:75-86. [PMID: 8078525 DOI: 10.1016/0166-6851(94)90136-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The generation of extrachromosomal DNA elements in Leishmania sp. can occur naturally or during in vitro selection with drugs. Previously, we had established a strong association between V-circle amplification and drug resistance in L. enriettii stepwise selected with increasing concentrations of vinblastine. Further, we demonstrated the presence of the lemdr1 gene in the amplified V-circle and subsequent functional analysis by transfection of this gene alone confirmed its role in conferring a drug-resistant phenotype, but the level of resistance was significantly lower than in cell lines obtained from stepwise drug selection. The aim of this work was to determine if other genes either on the V-circle or elsewhere in the genome were necessary for expression of vinblastine resistance. We report here the development of a homologous recombination method to convert the entire V-circle from the LeV160 cell line into a shuttle vector and further the targeted disruption of specific sites within the V-circle. Our results clearly demonstrate that the V-circle alone is sufficient to confer full vinblastine resistance and the disruption of the lemdr1 locus destroys the ability of the V-circle to confer vinblastine resistance.
Collapse
Affiliation(s)
- A K Wong
- Department of Tropical Public Health, Harvard School of Public Health, Boston, MA
| | | | | |
Collapse
|
96
|
Papadopoulou B, Roy G, Mourad W, Leblanc E, Ouellette M. Changes in folate and pterin metabolism after disruption of the Leishmania H locus short chain dehydrogenase gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37285-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
97
|
Papadopoulou B, Roy G, Ouellette M. Frequent amplification of a short chain dehydrogenase gene as part of circular and linear amplicons in methotrexate resistant Leishmania. Nucleic Acids Res 1993; 21:4305-12. [PMID: 8414986 PMCID: PMC310065 DOI: 10.1093/nar/21.18.4305] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The H locus of Leishmania codes for a short chain dehydrogenase gene (ltdh) that is involved in antifolate resistance. Leishmania tarentolae cells, selected in a step by step fashion for resistance to the antifolate methotrexate (MTX), frequently amplified ltdh in response to drug selection. Both circular and linear extrachromosomal amplicons were generated de novo from the chromosomal H locus and several contained inverted duplications. At least four different rearrangement points were used during the formation of amplicons, with one of them used preferentially. All mutants highly resistant to MTX, whether or not they have the H locus amplified, showed a decreased steady-state accumulation of MTX. Nevertheless, two types of transport mutants were clearly discernable. In the first type, accumulation was reduced four to five-fold, whereas in the second class of mutants, accumulation was reduced more than 50-fold. The ltdh gene was amplified in all the mutants with the transport mutation of the first type, but not in all the mutants with a more pronounced decrease in the steady-state accumulation of MTX. Both types of transport mutation, leading to the reduction in MTX accumulation, arose early during the selection process and were stable even when cells were grown in absence of the drug for prolonged period.
Collapse
Affiliation(s)
- B Papadopoulou
- Centre de Recherche du CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | |
Collapse
|
98
|
Grondin K, Papadopoulou B, Ouellette M. Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. Nucleic Acids Res 1993; 21:1895-901. [PMID: 8098523 PMCID: PMC309430 DOI: 10.1093/nar/21.8.1895] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The protozoan parasite Leishmania often responds to drug pressure by amplifying part of its genome. At least two loci derived from the same 800 kb chromosome were amplified either as extrachromosomal circles or linear fragments after sodium arsenite selection. A 50 kb linear amplicon was detected in six independent arsenite mutants and revertants grown in absence of arsenite rapidly lost the amplicon and part of their resistance. The circular extrachromosomal amplicons, all derived from the H locus of Leishmania, were characterized more extensively. In all cases, direct repeated sequences appeared to be involved in the formation of circular amplicons. Most amplicons were generated after homologous recombination between two linked P-glycoprotein genes. This recombination event was, in two cases, associated with the loss of one allele of the chromosomal copy. A novel rearrangement point was found in a mutant where the amplicon was created by recombination between two 541 bp direct repeats surrounding the P-glycoprotein gene present at the H locus. It is also at one of these repeats that an H circle with large inverted duplications was formed. We propose that the presence of repeated sequences in the H locus facilitates the amplification of the drug resistance genes concentrated in this locus.
Collapse
Affiliation(s)
- K Grondin
- Service d'Infectiologie du Centre de Recherche du CHUL, Québec, Canada
| | | | | |
Collapse
|
99
|
Unstable amplification of two extrachromosomal elements in alpha-difluoromethylornithine-resistant Leishmania donovani. Mol Cell Biol 1992. [PMID: 1448081 DOI: 10.1128/mcb.12.12.5499] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the first example of unstable gene amplification consisting of linear extrachromosomal DNAs in drug-resistant eukaryotic cells. alpha-Difluoromethylornithine (DFMO)-resistant Leishmania donovani with an amplified ornithine decarboxylase (ODC) gene copy number contained two new extrachromosomal DNAs, both present in 10 to 20 copies. One of these was a 140-kb linear DNA (ODC140-L) on which all of the amplified copies of the odc gene were located. The second was a 70-kb circular DNA (ODC70-C) containing an inverted repeat but lacking the odc gene. Both ODC140-L and ODC70-C were derived from a preexisting wild-type chromosome, probably by a conservative amplification mechanism. Both elements were unstable in the absence of DFMO, and their disappearance coincided with a decrease in ODC activity and an increase in DFMO growth sensitivity. These results suggest the possibility that ODC70-C may play a role in DFMO resistance. These data expand the diversity of known amplification mechanisms in eukaryotes to include the simultaneous unstable amplification of both linear and circular DNAs. Further characterization of these molecules will provide insights into the molecular mechanisms underlying gene amplification, including the ability of linear amplified DNAs to acquire telomeres and the determinants of chromosomal stability.
Collapse
|
100
|
Wilson K, Beverley SM, Ullman B. Stable amplification of a linear extrachromosomal DNA in mycophenolic acid-resistant Leishmania donovani. Mol Biochem Parasitol 1992; 55:197-206. [PMID: 1359409 DOI: 10.1016/0166-6851(92)90140-f] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulsed field gel electrophoretic analysis of chromosomes of MPA100 cells, a strain of Leishmania donovani that possesses an approx. 15-fold amplified IMP dehydrogenase (IMPDH) gene copy number, revealed a new 280-kb extrachromosomal DNA, IMPDH-280, that was not present in wild type parental cells. Southern blots of these pulsed field gels revealed that the vast majority of the amplified impdh genes were localized on IMPDH-280. In addition to the 700-kb wild type chromosome, the impdh probe also recognized a 740-kb chromosome in the MPA100 genome. The pulse time-dependent relative mobility of IMPDH-280 in pulsed field gels, the failure of limited gamma-irradiation to generate a new discrete DNA fragment, and the susceptibility of IMPDH-280 to lambda-exonuclease digestion, demonstrated that IMPDH-280 was a linear molecule. IMPDH-280 was also recognized by a telomere probe but not by fragments derived from amplified DNAs found in other drug-resistant Leishmania. IMPDH-280 and the drug resistance phenotype remained stable when MPA100 cells were propagated in the absence of drug for 2 years. The appearance of IMPDH-280 in MPA100 cells represents one of the first examples of an amplification of a linear extrachromosomal DNA element mediating drug resistance in Leishmania and the first instance of a linear DNA amplification that is stable in the absence of selective pressure.
Collapse
Affiliation(s)
- K Wilson
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098
| | | | | |
Collapse
|