51
|
Crystal structure of amyloid precursor-like protein 1 and heparin complex suggests a dual role of heparin in E2 dimerization. Proc Natl Acad Sci U S A 2011; 108:16229-34. [PMID: 21930949 DOI: 10.1073/pnas.1103407108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in amyloid precursor protein (APP) are associated with familial Alzheimer's disease. Recent development suggests that homo- and heterodimerization of APP and APP-like proteins (APLPs), which are enhanced by heparan sulfate binding, may play a role in signal transduction and cell adhesion. Despite efforts to model heparin binding based on known apo crystal structures, the mechanism of heparin-induced APP/APLP dimerization has not been established experimentally. Here we report the crystal structure of a complex between heparin and the E2 domain of APLP1, which harbors the conserved high affinity heparin binding site of the full-length molecule. Within the asymmetric E2:heparin complex, the polysaccharide is snugly bound inside a narrow groove between the two helical subdomains of one protein protomer. The nonreducing end of the sugar is positioned near the protein's 2-fold axis, making contacts with basic residues from the second protomer. The inability of the E2 dimer to accommodate two heparin molecules near its symmetry axis explains the observed 21 binding stoichiometry, which is confirmed by isothermal titration calorimetric experiment carried out in solution. We also show that, at high concentrations, heparin can destabilize E2 dimer, probably by forcing into the unoccupied binding site observed in the 21 complex. The binding model suggested by the crystal structure may facilitate the design of heparin mimetics that are capable of modulating APP dimerization in cells.
Collapse
|
52
|
Demars MP, Bartholomew A, Strakova Z, Lazarov O. Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Res Ther 2011; 2:36. [PMID: 21878106 PMCID: PMC3219067 DOI: 10.1186/scrt77] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/30/2011] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Soluble amyloid precursor protein α (sAPPα) is a proteolyte of APP cleavage by α-secretase. The significance of the cleavage and the physiological role of sAPPα are unknown. A crystal structure of a region of the amino terminal of sAPPα reveals a domain that is similar to cysteine-rich growth factors. While a previous study implicates sAPPα in the regulation of neural progenitor cell proliferation in the subventricular zone of adult mice, the ubiquitous expression of APP suggests that its role as a growth factor might be broader. METHODS sAPPα and α-secretase activities were determined in neural progenitor cells (NPCs), mesenchymal stem cells (MSC) and human decidua parietalis placenta stem cells (hdPSC). Inhibition of α-secretase was achieved by treatment with the matrixmetalloproteinase inhibitor GM6001, and proliferation was determined using clonogenic and immunocytochemical analysis of cell-lineage markers. Recovery of proliferation was achieved by supplementing GM6001-treated cells with recombinant soluble APPα. Expression of APP and its cellular localization in the subventricular zone was determined by Western blot and immunohistochemical analyses of APP wild type and knockout tissue. Alterations in pERK and pAKT expression as a function of soluble APPα production and activity in NPCs were determined by Western blot analysis. RESULTS Here we show that sAPPα is a proliferation factor of adult NPCs, MSCs and hdpPSC. Inhibition of α-secretase activity reduces proliferation of these stem cell populations in a dose-dependent manner. Stem cell proliferation can be recovered by the addition of sAPPα in a dose-dependent manner, but not of media depleted of sAPPα. Importantly, sAPPα operates independently of the prominent proliferation factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), but in association with ERK signaling and MAP-kinase signaling pathways. Levels of sAPPα and putative α-secretase, ADAM10, are particularly high in the subventricular zone of adult mice, suggesting a role for sAPPα in regulation of NPCs in this microenvironment. CONCLUSIONS These results determine a physiological function for sAPPα and identify a new proliferation factor of progenitor cells of ectodermal and mesodermal origin. Further, our studies elucidate a potential pathway for sAPPα signaling through MAP kinase activation.
Collapse
Affiliation(s)
- Michael P Demars
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, 808 S Wood St. Rm. 572 Chicago, IL 60612, USA
| | - Amelia Bartholomew
- Department of Surgery, The University of Illinois at Chicago, 840 S Wood St. Suite 402 Chicago, IL 60612, USA
| | - Zuzana Strakova
- Department of Obstetrics and Gynecology College of Medicine, The University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, 808 S Wood St. Rm. 572 Chicago, IL 60612, USA
| |
Collapse
|
53
|
Cisse M, Braun U, Leitges M, Fisher A, Pages G, Checler F, Vincent B. ERK1-independent α-secretase cut of β-amyloid precursor protein via M1 muscarinic receptors and PKCα/ε. Mol Cell Neurosci 2011; 47:223-32. [PMID: 21570469 DOI: 10.1016/j.mcn.2011.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/17/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022] Open
|
54
|
Ray B, Long JM, Sokol DK, Lahiri DK. Increased secreted amyloid precursor protein-α (sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 2011; 6:e20405. [PMID: 21731612 PMCID: PMC3120811 DOI: 10.1371/journal.pone.0020405] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/23/2011] [Indexed: 12/11/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF) and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels of the secreted amyloid-β (Aβ) precursor protein-alpha form (sAPPα) were significantly elevated relative to controls and patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPα and sAPPβ (proteolytic cleavage products of APP by α- and β-secretase, respectively) are deranged in autism and may contribute to an anabolic environment leading to brain overgrowth. We measured plasma levels of sAPPα, sAPPβ, Aβ peptides and BDNF by corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15 severely autistic patient plasma samples. We have observed that sAPPα levels are increased and BDNF levels decreased in the plasma of patients with severe autism as compared to controls. Further, we show that Aβ1-40, Aβ1-42, and sAPPβ levels are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence that sAPPα levels are generally elevated in severe autism and suggests that these patients may have aberrant non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Justin M. Long
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Deborah K. Sokol
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Debomoy K. Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
55
|
Bordji K, Becerril-Ortega J, Buisson A. Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer's disease. Rev Neurosci 2011; 22:285-94. [PMID: 21568789 DOI: 10.1515/rns.2011.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A direct relationship has been established between synaptic activity and amyloid-β secretion. Dysregulation of neuronal calcium homeostasis was shown to increase production of amyloid-β, contributing to the initiation of Alzheimer's disease. Among the different routes of Ca(2+) entry, N-methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are especially involved in this process because of their ability to gate high levels of Ca(2+) influx. These receptors have been extensively studied for their crucial roles in synaptic plasticity that underlies learning and memory but also in neurotoxicity occurring during acute brain injuries and neurodegenerative diseases. For one decade, several studies provided evidence that NMDA receptor activation could have distinct consequences on neuronal fate, depending on their location. Synaptic NMDA receptor activation is neuroprotective, whereas extrasynaptic NMDA receptors trigger neuronal death and/or neurodegenerative processes. Recent data suggest that chronic activation of extrasynaptic NMDA receptors leads to a sustained neuronal amyloid-β release and could be involved in the pathogenesis of Alzheimer's disease. Thus, as for other neurological diseases, therapeutic targeting of extrasynaptic NMDA receptors could be a promising strategy. Following this concept, memantine, unlike other NMDA receptor antagonists was shown, to preferentially target the extrasynaptic NMDA receptor signaling pathways, while relatively sparing normal synaptic activity. This molecular mechanism could therefore explain why memantine is, to date, the only clinically approved NMDA receptor antagonist for the treatment of dementia.
Collapse
Affiliation(s)
- Karim Bordji
- Groupement d'Intérêt Public Cyceron, Centre National de la Recherche Scientifique, UMR 6232-Centre d'Imagerie Neurosciences et d'Applications aux Pathologies, Bd Becquerel, F-14074 Caen, France.
| | | | | |
Collapse
|
56
|
Zheng H, Koo EH. Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 2011; 6:27. [PMID: 21527012 PMCID: PMC3098799 DOI: 10.1186/1750-1326-6-27] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/28/2011] [Indexed: 01/22/2023] Open
Abstract
The amyloid precursor protein (APP) plays a central role in the pathophysiology of Alzheimer's disease in large part due to the sequential proteolytic cleavages that result in the generation of β-amyloid peptides (Aβ). Not surprisingly, the biological properties of APP have also been the subject of great interest and intense investigations. Since our 2006 review, the body of literature on APP continues to expand, thereby offering further insights into the biochemical, cellular and functional properties of this interesting molecule. Sophisticated mouse models have been created to allow in vivo examination of cell type-specific functions of APP together with the many functional domains. This review provides an overview and update on our current understanding of the pathobiology of APP.
Collapse
Affiliation(s)
- Hui Zheng
- Huffington Center on Aging and Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
57
|
PKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer's disease transgenic mice. J Neurosci 2011; 31:630-43. [PMID: 21228172 DOI: 10.1523/jneurosci.5209-10.2011] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the pathologic hallmarks of Alzheimer's disease (AD) neurodegeneration, only synaptic loss in the brains of AD patients closely correlates with the degree of dementia in vivo. Here, we describe a molecular basis for this AD loss of synapses: pathological reduction of synaptogenic PKC isozymes and their downstream synaptogenic substrates, such as brain-derived neurotrophic factor. This reduction, particularly of PKC α and ε, occurs in association with elevation of soluble β amyloid protein (Aβ), but before the appearance of the amyloid plaques or neuronal loss in the Tg2576 AD transgenic mouse strain. Conversely, treatment of the Tg2576 mouse brain with the PKC activator, bryostatin-1, restores normal or supranormal levels of PKC α and ε, reduces the level of soluble Aβ, prevents and/or reverses the loss of hippocampal synapses, and prevents the memory impairment observed at 5 months postpartum. Similarly, the PKC ε-specific activator, DCP-LA, effectively prevents synaptic loss, amyloid plaques, and cognitive deficits (also prevented by bryostatin-1) in the much more rapidly progressing 5XFAD transgenic strain. These results suggest that synaptic loss and the resulting cognitive deficits depend on the balance between the lowering effects of Aβ on PKC α and ε versus the lowering effects of PKC on Aβ in AD transgenic mice.
Collapse
|
58
|
Van De Parre TJL, Guns PJDF, Fransen P, Martinet W, Bult H, Herman AG, De Meyer GRY. Attenuated atherogenesis in apolipoprotein E-deficient mice lacking amyloid precursor protein. Atherosclerosis 2011; 216:54-8. [PMID: 21316678 DOI: 10.1016/j.atherosclerosis.2011.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recent evidence suggests that amyloid precursor protein (APP) is overexpressed in atherosclerosis-prone regions of mouse aorta. We therefore investigated in the present study whether APP has a role in the progression and composition of atherosclerotic plaques. METHODS AND RESULTS Apolipoprotein E-deficient (apoE(-/-)) mice were crossbred with animals lacking APP (APP(-/-)). After 16 weeks on a Western-type diet, apoE(-/-) and APP(-/-)/apoE(-/-) mice showed similar cholesterol levels. However, atherosclerotic plaque size was significantly reduced in the distal thoracic aorta (90% reduction) and abdominal aorta (75% reduction) of APP(-/-)/apoE(-/-) mice as compared to apoE(-/-). Plaques at the level of the aortic valves were not different in size, but showed a more stable phenotype in APP(-/-)/apoE(-/-) mice, as indicated by a reduced macrophage content, an increased amount of collagen and a thicker fibrous cap. CONCLUSION Our findings provide evidence that lack of APP attenuates atherogenesis and leads to plaque stability.
Collapse
Affiliation(s)
- Tim J L Van De Parre
- Division of Pharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
59
|
Jiménez-Escrig A, Bianco-Jerez C, Orensanz LM. Molecular biology and genetics of Alzheimer's disease. Eur J Neurol 2011; 2:465-76. [DOI: 10.1111/j.1468-1331.1995.tb00157.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Lindhagen-Persson M, Brännström K, Vestling M, Steinitz M, Olofsson A. Amyloid-β oligomer specificity mediated by the IgM isotype--implications for a specific protective mechanism exerted by endogenous auto-antibodies. PLoS One 2010; 5:e13928. [PMID: 21085663 PMCID: PMC2978096 DOI: 10.1371/journal.pone.0013928] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/18/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alzheimers disease (AD) has been strongly linked to an anomalous self-assembly of the amyloid-β peptide (Aβ). The correlation between clinical symptoms of AD and Aβ depositions is, however, weak. Instead small and soluble Aβ oligomers are suggested to exert the major pathological effects. In strong support of this notion, immunological targeting of Aβ oligomers in AD mice-models shows that memory impairments can be restored without affecting the total burden of Aβ deposits. Consequently a specific immunological targeting of Aβ oligomers is of high therapeutic interest. METHODOLOGY/PRINCIPAL FINDINGS Previously the generation of conformational-dependent oligomer specific anti-Aβ antibodies has been described. However, to avoid the difficult task of identifying a molecular architecture only present on oligomers, we have focused on a more general approach based on the hypothesis that all oligomers expose multiple identical epitopes and therefore would have an increased binding to a multivalent receptor. Using the polyvalent IgM immunoglobulin we have developed a monoclonal anti-Aβ antibody (OMAB). OMAB only demonstrates a weak interaction with Aβ monomers and dimers having fast on and off-rate kinetics. However, as an effect of avidity, its interaction with Aβ-oligomers results in a strong complex with an exceptionally slow off-rate. Through this mechanism a selectivity towards Aβ oligomers is acquired and OMAB fully inhibits the cytotoxic effect exerted by Aβ(1-42) at highly substoichiometric ratios. Anti-Aβ auto-antibodies of IgM isotype are frequently present in the sera of humans. Through a screen of endogenous anti-Aβ IgM auto-antibodies from a group of healthy individuals we show that all displays a preference for oligomeric Aβ. CONCLUSIONS/SIGNIFICANCE Taken together we provide a simple and general mechanism for targeting of oligomers without the requirement of conformational-dependent epitopes. In addition, our results suggest that IgM anti-Aβ auto-antibodies may exert a more specific protective mechanism in vivo than previously anticipated.
Collapse
Affiliation(s)
| | | | - Monika Vestling
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Michael Steinitz
- Department of Pathology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
61
|
Gough M, Parr-Sturgess C, Parkin E. Zinc metalloproteinases and amyloid Beta-Peptide metabolism: the positive side of proteolysis in Alzheimer's disease. Biochem Res Int 2010; 2011:721463. [PMID: 21152187 PMCID: PMC2989646 DOI: 10.1155/2011/721463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/07/2010] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative condition characterized by an accumulation of toxic amyloid beta- (Aβ-)peptides in the brain causing progressive neuronal death. Aβ-peptides are produced by aspartyl proteinase-mediated cleavage of the larger amyloid precursor protein (APP). In contrast to this detrimental "amyloidogenic" form of proteolysis, a range of zinc metalloproteinases can process APP via an alternative "nonamyloidogenic" pathway in which the protein is cleaved within its Aβ region thereby precluding the formation of intact Aβ-peptides. In addition, other members of the zinc metalloproteinase family can degrade preformed Aβ-peptides. As such, the zinc metalloproteinases, collectively, are key to downregulating Aβ generation and enhancing its degradation. It is the role of zinc metalloproteinases in this "positive side of proteolysis in Alzheimer's disease" that is discussed in the current paper.
Collapse
Affiliation(s)
- Mallory Gough
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Catherine Parr-Sturgess
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Edward Parkin
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
62
|
Lazarov O, Marr RA. Neurogenesis and Alzheimer's disease: at the crossroads. Exp Neurol 2010; 223:267-281. [PMID: 19699201 PMCID: PMC2864344 DOI: 10.1016/j.expneurol.2009.08.009] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/29/2009] [Accepted: 08/05/2009] [Indexed: 12/16/2022]
Abstract
While a massive and progressive neuronal loss in specific areas such as the hippocampus and cortex unequivocally underlies cognitive deterioration and memory loss in Alzheimer's disease, noteworthy alterations take place in the neurogenic microenvironments, namely, the subgranule layer of the dentate gyrus and the subventricular zone. Compromised neurogenesis presumably takes place earlier than onset of hallmark lesions or neuronal loss, and may play a role in the initiation and progression of neuropathology in Alzheimer's disease. Neurogenesis in the adult brain is thought to play a role in numerous forms and aspects of learning and memory and contribute to the plasticity of the hippocampus and olfactory system. Misregulated or impaired neurogenesis on the other hand, may compromise plasticity and neuronal function in these areas and exacerbate neuronal vulnerability. Interestingly, increasing evidence suggests that molecular players in Alzheimer's disease, including PS1, APP and its metabolites, play a role in adult neurogenesis. In addition, recent studies suggest that alterations in tau phosphorylation are pronounced in neurogenic areas, and may interfere with the potential central role of tau proteins in neuronal maturation and differentiation. On the other hand, numerous neurogenic players, such as Notch-1, ErbB4 and L1 are substrates of alpha- beta- and gamma- secretase that play a major role in Alzheimer's disease. This review will discuss current knowledge concerning alterations of neurogenesis in Alzheimer's disease with specific emphasis on the cross-talk between signaling molecules involved in both processes, and the ways by which familial Alzheimer's disease-linked dysfunction of these signaling molecules affect neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, 808 S Wood St. M/C 512, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
63
|
Venkataramani V, Rossner C, Iffland L, Schweyer S, Tamboli IY, Walter J, Wirths O, Bayer TA. Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the alzheimer amyloid precursor protein. J Biol Chem 2010; 285:10678-89. [PMID: 20145244 PMCID: PMC2856276 DOI: 10.1074/jbc.m109.057836] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 02/05/2010] [Indexed: 11/06/2022] Open
Abstract
The beta-amyloid precursor protein (APP) represents a type I transmembrane glycoprotein that is ubiquitously expressed. In the brain, it is a key player in the molecular pathogenesis of Alzheimer disease. Its physiological function is however less well understood. Previous studies showed that APP is up-regulated in prostate, colon, pancreatic tumor, and oral squamous cell carcinoma. In this study, we show that APP has an essential role in growth control of pancreatic and colon cancer. Abundant APP staining was found in human pancreatic adenocarcinoma and colon cancer tissue. Interestingly, treating pancreatic and colon cancer cells with valproic acid (VPA, 2-propylpentanoic acid), a known histone deacetylase (HDAC) inhibitor, leads to up-regulation of GRP78, an endoplasmic reticulum chaperone immunoglobulin-binding protein. GRP78 is involved in APP maturation and inhibition of tumor cell growth by down-regulation of APP and secreted soluble APPalpha. Trichostatin A, a pan-HDAC inhibitor, also lowered APP and increased GRP78 levels. In contrast, treating cells with valpromide, a VPA derivative lacking HDAC inhibitory properties, had no effect on APP levels. VPA did not modify the level of epidermal growth factor receptor, another type I transmembrane protein, and APLP2, a member of the APP family, demonstrating the specificity of the VPA effect on APP. Small interfering RNA-mediated knockdown of APP also resulted in significantly decreased cell growth. Based on these observations, the data suggest that APP down-regulation via HDAC inhibition provides a novel mechanism for pancreatic and colon cancer therapy.
Collapse
Affiliation(s)
- Vivek Venkataramani
- From the Department of Molecular Psychiatry, Alzheimer Ph.D. Graduate School, and
| | - Christian Rossner
- From the Department of Molecular Psychiatry, Alzheimer Ph.D. Graduate School, and
| | - Lara Iffland
- From the Department of Molecular Psychiatry, Alzheimer Ph.D. Graduate School, and
| | - Stefan Schweyer
- Department of Pathology, University of Goettingen, 37075 Goettingen and
| | - Irfan Y. Tamboli
- the Department of Molecular Cell Biology, University of Bonn, 53127 Bonn, Germany
| | - Jochen Walter
- the Department of Molecular Cell Biology, University of Bonn, 53127 Bonn, Germany
| | - Oliver Wirths
- From the Department of Molecular Psychiatry, Alzheimer Ph.D. Graduate School, and
| | - Thomas A. Bayer
- From the Department of Molecular Psychiatry, Alzheimer Ph.D. Graduate School, and
| |
Collapse
|
64
|
Wild type but not mutant APP is involved in protective adaptive responses against oxidants. Amino Acids 2010; 39:271-83. [DOI: 10.1007/s00726-009-0438-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/27/2009] [Indexed: 01/05/2023]
|
65
|
Yang X, Sheng W, He Y, Cui J, Haidekker MA, Sun GY, Lee JCM. Secretory phospholipase A2 type III enhances alpha-secretase-dependent amyloid precursor protein processing through alterations in membrane fluidity. J Lipid Res 2009; 51:957-66. [PMID: 19805624 DOI: 10.1194/jlr.m002287] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the non-amyloidogenic pathway, amyloid precursor protein (APP) is cleaved by alpha-secretases to produce alpha-secretase-cleaved soluble APP (sAPP(alpha)) with neuroprotective and neurotrophic properties; therefore, enhancing the non-amyloidogenic pathway has been suggested as a potential pharmacological approach for the treatment of Alzheimer's disease. Here, we demonstrate the effects of type III secretory phospholipase A(2) (sPLA(2)-III) on sAPP(alpha) secretion. Exposing differentiated neuronal cells (SH-SY5Y cells and primary rat neurons) to sPLA(2)-III for 24 h increased sAPP(alpha) secretion and decreased levels of Abeta(1-42) in SH-SY5Y cells, and these changes were accompanied by increased membrane fluidity. We further tested whether sPLA(2)-III-enhanced sAPP(alpha) release is due in part to the production of its hydrolyzed products, including arachidonic acid (AA), palmitic acid (PA), and lysophosphatidylcholine (LPC). Addition of AA but neither PA nor LPC mimicked sPLA(2)-III-induced increases in sAPP(alpha) secretion and membrane fluidity. Treatment with sPLA(2)-III and AA increased accumulation of APP at the cell surface but did not alter total expressions of APP, alpha-secretases, and beta-site APP cleaving enzyme. Taken together, these results support the hypothesis that sPLA(2)-III enhances sAPP(alpha) secretion through its action to increase membrane fluidity and recruitment of APP at the cell surface.
Collapse
Affiliation(s)
- Xiaoguang Yang
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Kim M, Suh J, Romano D, Truong MH, Mullin K, Hooli B, Norton D, Tesco G, Elliott K, Wagner SL, Moir RD, Becker KD, Tanzi RE. Potential late-onset Alzheimer's disease-associated mutations in the ADAM10 gene attenuate {alpha}-secretase activity. Hum Mol Genet 2009; 18:3987-96. [PMID: 19608551 DOI: 10.1093/hmg/ddp323] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
ADAM10, a member of a disintegrin and metalloprotease family, is an alpha-secretase capable of anti-amyloidogenic proteolysis of the amyloid precursor protein. Here, we present evidence for genetic association of ADAM10 with Alzheimer's disease (AD) as well as two rare potentially disease-associated non-synonymous mutations, Q170H and R181G, in the ADAM10 prodomain. These mutations were found in 11 of 16 affected individuals (average onset age 69.5 years) from seven late-onset AD families. Each mutation was also found in one unaffected subject implying incomplete penetrance. Functionally, both mutations significantly attenuated alpha-secretase activity of ADAM10 (>70% decrease), and elevated Abeta levels (1.5-3.5-fold) in cell-based studies. In summary, we provide the first evidence of ADAM10 as a candidate AD susceptibility gene, and report two potentially pathogenic mutations with incomplete penetrance for late-onset familial AD.
Collapse
Affiliation(s)
- Minji Kim
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Variations in the neuropathology of familial Alzheimer's disease. Acta Neuropathol 2009; 118:37-52. [PMID: 19306098 DOI: 10.1007/s00401-009-0521-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 12/25/2022]
Abstract
Mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes cause autosomal dominant familial Alzheimer's disease (AD). PSEN1 and PSEN2 are essential components of the gamma-secretase complex, which cleaves APP to affect Abeta processing. Disruptions in Abeta processing have been hypothesised to be the major cause of AD (the amyloid cascade hypothesis). These genetic cases exhibit all the classic hallmark pathologies of AD including neuritic plaques, neurofibrillary tangles (NFT), tissue atrophy, neuronal loss and inflammation, often in significantly enhanced quantities. In particular, these cases have average greater hippocampal atrophy and NFT, more significant cortical Abeta42 plaque deposition and more substantial inflammation. Enhanced cerebral Abeta40 angiopathy is a feature of many cases, but particularly those with APP mutations where it can be the dominant pathology. Additional frontotemporal neuronal loss in association with increased tau pathology appears unique to PSEN mutations, with mutations in exons 8 and 9 having enlarged cotton wool plaques throughout their cortex. The mechanisms driving these pathological differences in AD are discussed.
Collapse
|
68
|
Takayama KI, Tsutsumi S, Suzuki T, Horie-Inoue K, Ikeda K, Kaneshiro K, Fujimura T, Kumagai J, Urano T, Sakaki Y, Shirahige K, Sasano H, Takahashi S, Kitamura T, Ouchi Y, Aburatani H, Inoue S. Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Cancer Res 2009; 69:137-42. [PMID: 19117996 DOI: 10.1158/0008-5472.can-08-3633] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) is a critical transcription factor that regulates various target genes and contributes to the pathophysiology of prostate cancer hormone dependently. Here, we identify amyloid precursor protein (APP) as a primary androgen target through chromatin immunoprecipitation (ChIP) combined with genome tiling array analysis (ChIP-chip). ChIP-treated DNA were obtained from prostate cancer LNCaP cells with R1881 or vehicle treatment using AR or acetylated histone H3 antibodies. Ligand-dependent AR binding was further enriched by PCR subtraction. Using chromosome 21/22 arrays, we identified APP as one of the androgen-regulated genes with adjacent functional AR binding sites. APP expression is androgen-inducible in LNCaP cells and APP immunoreactivity was correlated with poor prognosis in patients with prostate cancer. Gain-of-function and loss-of-function studies revealed that APP promotes the tumor growth of prostate cancer. The present study reveals a novel APP-mediated pathway responsible for the androgen-dependent growth of prostate cancer. Our findings will indicate that APP could be a potential molecular target for the diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
|
70
|
Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008; 283:29615-9. [PMID: 18650430 DOI: 10.1074/jbc.r800019200] [Citation(s) in RCA: 844] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular trafficking and proteolytic processing of amyloid precursor protein (APP) have been the focus of numerous investigations over the past two decades. APP is the precursor to the amyloid beta-protein (Abeta), the 38-43-amino acid residue peptide that is at the heart of the amyloid cascade hypothesis of Alzheimer disease (AD). Tremendous progress has been made since the initial identification of Abeta as the principal component of brain senile plaques of individuals with AD. Specifically, molecular characterization of the secretases involved in Abeta production has facilitated cell biological investigations on APP processing and advanced efforts to model AD pathogenesis in animal models. This minireview summarizes salient features of APP trafficking and amyloidogenic processing and discusses the putative biological functions of APP.
Collapse
Affiliation(s)
- Gopal Thinakaran
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
71
|
Mileusnic R, Lancashire CL, Johnston ANB, Rose SPR. APP is required during an early phase of memory formation. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2000.01344.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Abstract
In Alzheimer's disease (AD), characteristic lesions develop in brain regions that subserve cognitive functions, ultimately leading to dementia. There are now several lesioned or transgenic small-animal models of the disease that model select aspects of cognitive deficits and/or recapitulate many, but not all, of the characteristic pathologic lesions observed in AD. This overview describes the most common approaches used to model AD in rodents, highlights their utility, and discusses some of their deficiencies.
Collapse
|
73
|
Bell KFS, Zheng L, Fahrenholz F, Cuello AC. ADAM-10 over-expression increases cortical synaptogenesis. Neurobiol Aging 2008; 29:554-65. [PMID: 17187903 DOI: 10.1016/j.neurobiolaging.2006.11.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 10/25/2006] [Accepted: 11/07/2006] [Indexed: 11/27/2022]
Abstract
Cortical cholinergic, glutamatergic and GABAergic terminals become upregulated during early stages of the transgenic amyloid pathology. Abundant evidence suggests that sAPP alpha, the product of the non-amyloidogenic alpha-secretase pathway, is neurotrophic both in vitro and when exogenously applied in vivo. The disintegrin metalloprotease ADAM-10 has been shown to have alpha-secretase activity in vivo. To determine whether sAPP alpha has an endogenous biological influence on cortical presynaptic boutons in vivo, we quantified cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities in either ADAM-10 moderate expressing (ADAM-10 mo) transgenic mice, which moderately overexpress ADAM-10, or age-matched non-transgenic controls. Both early and late ontogenic time points were investigated. ADAM-10 mo transgenic mice display significantly elevated cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities at the early time point (8 months). Only the cholinergic presynaptic bouton density remains significantly elevated in late-staged ADAM-10 mo transgenic animals (18 months). To confirm that the observed elevations were due to increased levels of endogenous murine sAPP alpha, exogenous human sAPP alpha was infused into the cortex of non-transgenic control animals for 1 week. Exogenous infusion of sAPP alpha led to significant elevations in the cholinergic, glutamatergic and GABAergic cortical presynaptic bouton populations. These results are the first to demonstrate an in vivo influence of ADAM-10 on neurotransmitter-specific cortical synaptic plasticity and further confirm the neurotrophic influence of sAPP alpha on cortical synaptogenesis.
Collapse
Affiliation(s)
- Karen F S Bell
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
74
|
Lim JS, Cho H, Hong HS, Kwon H, Mook-Jung I, Kwon YK. Upregulation of amyloid precursor protein by platelet-derived growth factor in hippocampal precursor cells. Neuroreport 2007; 18:1225-9. [PMID: 17632272 DOI: 10.1097/wnr.0b013e3281ac2306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amyloid precursor protein generates the secreted amyloid precursor protein alpha, which protects hippocampal neurons from ischemic injury and facilitates neuronal survival and synaptogenesis in the developing nervous system. Here, we examined whether platelet-derived growth factor regulates the generation of secreted amyloid precursor protein alpha during the neuronal differentiation of hippocampal precursor cells, HiB5. We showed that platelet-derived growth factor promoted amyloid precursor protein production and secreted amyloid precursor protein alpha secretion. These effects of platelet-derived growth factor were diminished by the PI3K-specific inhibitor wortmannin and the protein kinase C-specific inhibitor GF109203X, suggesting the involvement of the PI3K and protein kinase C-signaling pathway. Furthermore, the conditioned media enriched with secreted amyloid precursor protein alpha promoted the survival of HiB5 cells during neuronal differentiation. These results suggest that the neurotrophic effect of platelet-derived growth factor is mediated in part via upregulation of the expression and release of secreted amyloid precursor protein alpha.
Collapse
Affiliation(s)
- Jung Su Lim
- Department of Biology and Life and Nanopharmaceutical Science, Institute of Age-related and Brain Disease, Kyunghee University, Korea
| | | | | | | | | | | |
Collapse
|
75
|
Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Filippov MA, Herms J, Buchholz C, Eckman CB, Korte M, Wolfer DP, Müller UC. The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 2007; 27:7817-26. [PMID: 17634375 PMCID: PMC6672885 DOI: 10.1523/jneurosci.1026-07.2007] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is well established that the proteolytic processing of the beta-amyloid precursor protein (APP) generates beta-amyloid (Abeta), which plays a central role in the pathogenesis of Alzheimer's disease (AD). In contrast, the physiological role of APP and of its numerous proteolytic fragments and the question of whether a loss of these functions contributes to AD are still unknown. To address this question, we replaced the endogenous APP locus by gene-targeted alleles and generated two lines of knock-in mice that exclusively express APP deletion variants corresponding either to the secreted APP ectodomain (APPs alpha) or to a C-terminal (CT) truncation lacking the YENPTY interaction motif (APPdeltaCT15). Interestingly, the deltaCT15 deletion resulted in reduced turnover of holoAPP, increased cell surface expression, and strongly reduced Abeta levels in brain, likely because of reduced processing in the endocytic pathway. Most importantly, we demonstrate that in both APP knock-in lines the expression of APP N-terminal domains either grossly attenuated or completely rescued the prominent deficits of APP knock-out mice, such as reductions in brain and body weight, grip strength deficits, alterations in circadian locomotor activity, exploratory activity, and the impairment in spatial learning and long-term potentiation. Together, our data suggest that the APP C terminus is dispensable and that APPs alpha is sufficient to mediate the physiological functions of APP assessed by these tests.
Collapse
Affiliation(s)
- Sabine Ring
- Department of Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Uberti D, Cenini G, Olivari L, Ferrari-Toninelli G, Porrello E, Cecchi C, Pensalfini A, Pensafini A, Liguri G, Govoni S, Racchi M, Maurizio M. Over-expression of amyloid precursor protein in HEK cells alters p53 conformational state and protects against doxorubicin. J Neurochem 2007; 103:322-33. [PMID: 17608641 DOI: 10.1111/j.1471-4159.2007.04757.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we show that human embryonic kidney (HEK) cells stably transfected with amyloid precursor protein (HEK-APP), expressed a conformational mutant-like and transcriptionally inactive p53 isoform, and turned out to be less sensitive to the cytotoxin doxorubicin in comparison with untransfected cells. Treatment of HEK-APP cells with gamma- and beta-secretase inhibitors prevented generation of unfolded, mutant-like p53 isoform and made the cells vulnerable to doxorubicin as untransfected cells. Changes in p53 conformational state and reduced sensitivity to doxorubicin were also found in untransfected HEK cells after exposure to nanomolar concentrations of beta-amyloid (Abeta) and these effects were antagonized by vitamin E. The modulator effects of Abeta on p53 conformational state were, at least in part, due to the intracellular peptides as (i) treatment of HEK-APP cells with an antibody that sequestered extracellular Abeta did not modify the capability of the cells to express the mutant-like p53 isoform; (ii) in the presence of 1% serum exogenous Abeta peptide crossed the plasma membrane, as demonstrated by confocal analysis and ELISA, and induced p53 conformational change; and (iii) in the presence of 10% serum Abeta did not enter the cells and consequently did not influence the p53 conformational state.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Gralle M, Ferreira ST. Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 2007; 82:11-32. [PMID: 17428603 DOI: 10.1016/j.pneurobio.2007.02.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/26/2006] [Accepted: 02/01/2007] [Indexed: 12/30/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane protein that plays major roles in the regulation of several important cellular functions, especially in the nervous system, where it is involved in synaptogenesis and synaptic plasticity. The secreted extracellular domain of APP, sAPPalpha, acts as a growth factor for many types of cells and promotes neuritogenesis in post-mitotic neurons. Alternative proteolytic processing of APP releases potentially neurotoxic species, including the amyloid-beta (Abeta) peptide that is centrally implicated in the pathogenesis of Alzheimer's disease (AD). Reinforcing this biochemical link to neuronal dysfunction and neurodegeneration, APP is also genetically linked to AD. In this review, we discuss the biological functions of APP in the context of tissue morphogenesis and restructuring, where APP appears to play significant roles both as a contact receptor and as a diffusible factor. Structural investigation of APP, which is necessary for a deeper understanding of its roles at a molecular level, has also been advancing rapidly. We summarize recent progress in the determination of the structure of isolated APP fragments and of the conformations of full-length sAPPalpha, in both monomeric and dimeric states. The potential role of APP dimerization for the regulation of its biological functions is also discussed.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | | |
Collapse
|
78
|
Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer's disease amyloid beta peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1976-90. [PMID: 17433250 DOI: 10.1016/j.bbamem.2007.02.002] [Citation(s) in RCA: 462] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/28/2022]
Abstract
There is a growing body of evidence to support a role for oxidative stress in Alzheimer's disease (AD), with increased levels of lipid peroxidation, DNA and protein oxidation products (HNE, 8-HO-guanidine and protein carbonyls respectively) in AD brains. The brain is a highly oxidative organ consuming 20% of the body's oxygen despite accounting for only 2% of the total body weight. With normal ageing the brain accumulates metals ions such iron (Fe), zinc (Zn) and copper (Cu). Consequently the brain is abundant in antioxidants to control and prevent the detrimental formation of reactive oxygen species (ROS) generated via Fenton chemistry involving redox active metal ion reduction and activation of molecular oxygen. In AD there is an over accumulation of the Amyloid beta peptide (Abeta), this is the result of either an elevated generation from amyloid precursor protein (APP) or inefficient clearance of Abeta from the brain. Abeta can efficiently generate reactive oxygen species in the presence of the transition metals copper and iron in vitro. Under oxidative conditions Abeta will form stable dityrosine cross-linked dimers which are generated from free radical attack on the tyrosine residue at position 10. There are elevated levels of urea and SDS resistant stable linked Abeta oligomers as well as dityrosine cross-linked peptides and proteins in AD brain. Since soluble Abeta levels correlate best with the degree of degeneration [C.A. McLean, R.A. Cherny, F.W. Fraser, S.J. Fuller, M.J. Smith, K. Beyreuther, A.I. Bush, C.L. Masters, Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann. Neurol. 46 (1999) 860-866] we suggest that the toxic Abeta species corresponds to a soluble dityrosine cross-linked oligomer. Current therapeutic strategies using metal chelators such as clioquinol and desferrioxamine have had some success in altering the progression of AD symptoms. Similarly, natural antioxidants curcumin and ginkgo extract have modest but positive effects in slowing AD development. Therefore, drugs that target the oxidative pathways in AD could have genuine therapeutic efficacy.
Collapse
Affiliation(s)
- Danielle G Smith
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
79
|
|
80
|
|
81
|
Icking A, Amaddii M, Ruonala M, Höning S, Tikkanen R. Polarized Transport of Alzheimer Amyloid Precursor Protein Is Mediated by Adaptor Protein Complex AP1-1B. Traffic 2006; 8:285-96. [PMID: 17319802 DOI: 10.1111/j.1600-0854.2006.00526.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer amyloid precursor protein (APP) is the precursor for the Abeta peptide involved in pathogenesis of Alzheimer's disease. The soluble ectodomain fragment of APP (sAPP) functions as a growth factor for epithelial cells, suggesting an important function for APP outside neuronal tissue. Previous studies have shown that in polarized epithelial cells, APP is targeted to the basolateral domain. Tyr653 within the cytoplasmic tail of APP mediates the basolateral targeting of APP, but the sorting machinery that binds to this residue has largely remained unknown. In this study, we analyzed the role of adaptor complexes in the polarized sorting of APP. We show that the medium subunit mu1B of the epithelia-specific adaptor protein (AP)-1B binds onto the cytoplasmic tail of APP in a Tyr653-dependent way. Moreover, ectopic expression of mu1B in cells lacking AP-1B resulted in correction of apical missorting of wild-type but not Tyr653Ala APP. Basolateral secretion of sAPP was found to be independent of Tyr653. We propose a model for polarized targeting of APP according to which sorting of APP to basolateral domain is dependent on binding of AP-1B on Tyr653 in basolateral endosomes. This model is in accordance with the current understanding of sorting mechanisms mediating polarized targeting of membrane proteins.
Collapse
Affiliation(s)
- Ann Icking
- Institute of Biochemistry II and Cluster of Excellence 'Macromolecular Complexes', University Clinic of Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
82
|
Zheng H, Koo EH. The amyloid precursor protein: beyond amyloid. Mol Neurodegener 2006; 1:5. [PMID: 16930452 PMCID: PMC1538601 DOI: 10.1186/1750-1326-1-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/03/2006] [Indexed: 12/28/2022] Open
Abstract
The amyloid precursor protein (APP) takes a central position in Alzheimer's disease (AD) pathogenesis: APP processing generates the beta-amyloid (Abeta) peptides, which are deposited as the amyloid plaques in brains of AD individuals; Point mutations and duplications of APP are causal for a subset of early onset of familial Alzheimer's disease (FAD). Not surprisingly, the production and pathogenic effect of Abeta has been the central focus in AD field. Nevertheless, the biological properties of APP have also been the subject of intense investigation since its identification nearly 20 years ago as it demonstrates a number of interesting putative physiological roles. Several attractive models of APP function have been put forward recently based on in vitro biochemical studies. Genetic analyses of gain- and loss-of-function mutants in Drosophila and mouse have also revealed important insights into its biological activities in vivo. This article will review the current understanding of APP physiological functions.
Collapse
Affiliation(s)
- Hui Zheng
- Huffington Center on Aging and Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edward H Koo
- Huffington Center on Aging and Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
83
|
Thornton E, Vink R, Blumbergs PC, Van Den Heuvel C. Soluble amyloid precursor protein α reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res 2006; 1094:38-46. [PMID: 16697978 DOI: 10.1016/j.brainres.2006.03.107] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/14/2006] [Accepted: 03/23/2006] [Indexed: 11/23/2022]
Abstract
Amyloid precursor protein (APP) has previously been shown to increase following traumatic brain injury (TBI). Whereas a number of investigators assume that increased APP may lead to the production of neurotoxic Abeta and be deleterious to outcome, the soluble alpha form of APP (sAPPalpha) is a product of the non-amyloidogenic cleavage of amyloid precursor protein that has previously been shown in vitro to have many neuroprotective and neurotrophic functions. However, no study to date has addressed whether sAPPalpha may be neuroprotective in vivo. The present study examined the effects of in vivo, posttraumatic sAPPalpha administration on functional motor outcome, cellular apoptosis, and axonal injury following severe impact-acceleration TBI in rats. Intracerebroventricular administration of sAPPalpha at 30 min posttrauma significantly improved motor outcome compared to vehicle-treated controls as assessed using the rotarod task. Immunohistochemical analysis using antibodies directed toward caspase-3 showed that posttraumatic treatment with sAPPalpha significantly reduced the number of apoptotic neuronal perikarya within the hippocampal CA3 region and within the cortex 3 days after injury compared to vehicle-treated animals. Similarly, sAPPalpha-treated animals demonstrated a reduction in axonal injury within the corpus callosum at all time points, with the reduction being significant at both 3 and 7 days postinjury. Our results demonstrate that in vivo administration of sAPPalpha improves functional outcome and reduces neuronal cell loss and axonal injury following severe diffuse TBI in rats. Promotion of APP processing toward sAPPalpha may thus be a novel therapeutic strategy in the treatment of TBI.
Collapse
Affiliation(s)
- Emma Thornton
- Department of Pathology Level 3, Medical School North, The University of Adelaide South Australia, Australia 5005
| | | | | | | |
Collapse
|
84
|
Abstract
It is currently thought that Alzheimer's disease develops due to aberrant generation of amyloid-beta peptides. However, the mechanisms underlying the aberrant generation of amyloid-beta peptides remain unknown. An emerging concept suggests that impaired axonal transport may play a pivotal role in the aberrant generation of amyloid-beta peptides. Here we review and discuss advances in understanding AD with the primary focus on the possible role of molecular motors and axonal transport in its pathogenesis.
Collapse
Affiliation(s)
- Gorazd B Stokin
- Institute of Clinical Neurophysiology, Division of Neurology, University Medical Center, Zaloska Cesta 7, SI-1525 Ljubljana, Slovenia
| | | |
Collapse
|
85
|
Xu F, Davis J, Miao J, Previti ML, Romanov G, Ziegler K, Van Nostrand WE. Protease nexin-2/amyloid beta-protein precursor limits cerebral thrombosis. Proc Natl Acad Sci U S A 2005; 102:18135-40. [PMID: 16330760 PMCID: PMC1312400 DOI: 10.1073/pnas.0507798102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The amyloid beta-protein precursor (AbetaPP) is best known as the parent molecule to the amyloid beta-peptide that accumulates in the brains of patients with Alzheimer's disease. Secreted isoforms of AbetaPP that contain the Kunitz proteinase inhibitor domain are analogous to the previously identified cell-secreted proteinase inhibitor known as protease nexin-2 (PN2). Although PN2/AbetaPP is enriched in brain and in circulating blood platelets, little is understood of its physiological function and potential role in disease processes outside of amyloid beta-peptide generation. We hypothesized that the potent inhibition of certain procoagulant proteinases by PN2/AbetaPP, coupled with its abundance in platelets and brain, indicate that it may function to regulate cerebral thrombosis. Here we show that specific and modest 2-fold overexpression of PN2/AbetaPP in circulating platelets of transgenic mice caused a marked inhibition of thrombosis in vivo. In contrast, deletion of PN2/AbetaPP in AbetaPP gene knockout mice resulted in a significant increase in thrombosis. Similarly, platelet PN2/AbetaPP transgenic mice developed larger hematomas in experimental intracerebral hemorrhage, whereas AbetaPP gene knockout mice exhibited reduced hemorrhage size. These findings indicate that PN2/AbetaPP plays a significant role in regulating cerebral thrombosis and that modest increases in this protein can profoundly enhance cerebral hemorrhage.
Collapse
Affiliation(s)
- Feng Xu
- Department of Medicine, Stony Brook University, NY 11794, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Unger C, Hedberg MM, Mustafiz T, Svedberg MM, Nordberg A. Early changes in Aβ levels in the brain of APPswe transgenic mice—Implication on synaptic density, α7 neuronal nicotinic acetylcholine- and N-methyl-d-aspartate receptor levels. Mol Cell Neurosci 2005; 30:218-27. [PMID: 16107318 DOI: 10.1016/j.mcn.2005.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 06/22/2005] [Accepted: 07/18/2005] [Indexed: 10/25/2022] Open
Abstract
Tg 2576 (APPswe) mice develop age-related amyloid deposition as well as behavioural- and electrophysiological changes in the brain. In this study, APPswe mice were investigated from 7 to 90 days of age. We observed high Abeta levels in the cortex of APPswe mice at 7 days of age, suggesting that these mice produce Abeta from birth. A positive correlation between Abeta and synaptophysin levels, followed by changes in ERK MAPK activity, indicated that Abeta causes altered synaptic function and an increase in the number of synaptic terminals. In addition, alterations in [(125)I]alphabungarotoxin- and [(3)H]MK-801 binding sites were also observed in APPswe mice compared to controls. In conclusion, over-expression of Abeta early in life causes changes in synaptophysin levels and number of [(125)I]alphabungarotoxin- and [(3)H]MK-801 binding sites. The results may provide important information about the onset and consequences of Abeta pathology in this transgenic mouse model.
Collapse
Affiliation(s)
- Christina Unger
- Karolinska Institutet, Department of Neurotec, Division of Molecular Neuropharmacology, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
87
|
Abstract
The amyloid precursor protein (APP) was initially detected in cells of the central nervous system where it is considered to be involved in the pathogenesis of Alzheimer's disease. However, APP is also found in peripheral organs with exceptionally strong expression in the mammalian epidermis where it fulfils a variety of distinct biological roles. Full length APP appears to facilitate keratinocyte adhesion due to its ability to interact with the extracellular matrix. The C-terminus of APP also serves as adapter protein for binding the motor protein kinesin thereby mediating the centripetal transport of melanosomes in epidermal melanocytes. By the action of alpha-secretase sAPPalpha, the soluble N-terminal portion of APP, is released. sAPPalpha has been shown to be a potent epidermal growth factor thus stimulating proliferation and migration of keratinocytes as well as the exocytic release of melanin by melanocytes. The release of sAPPalpha can be almost completely blocked by inhibiting alpha-secretase with hydroxamic acid-based zinc metalloproteinase inhibitors. In hyperproliferative keratinocytes from psoriatic skin this inhibition results in normalized growth.
Collapse
Affiliation(s)
- Volker Herzog
- Institute of Cell Biology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
88
|
Wehner S, Siemes C, Kirfel G, Herzog V. Cytoprotective function of sAppalpha in human keratinocytes. Eur J Cell Biol 2005; 83:701-8. [PMID: 15679114 DOI: 10.1078/0171-9335-00427] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
sAPPalpha, the soluble form of the beta-amyloid precursor protein, has been shown to act as a potent epidermal growth factor by stimulating keratinocyte proliferation and migration. In this report we provide evidence for a cytoprotective role of sAPPalpha. As a model we used HaCaT cells and normal human keratinocytes (NHK) cultured in the absence of fetal calf serum and bovine pituitary extract. Under these conditions keratinocytes began to undergo apoptosis at increasing rates after 96 h of culture. Surprisingly, keratinocytes were protected from apoptosis by the addition of 50 nM recombinant sAPPalpha. Subsequent experiments were performed to elucidate the regulatory basis of the cytoprotective role of sAPPalpha. We found that recombinant sAPPalpha facilitated the substrate adhesion of keratinocytes in the first 30 minutes after seeding. The basis for this adhesion-promoting function was shown by the ability of recombinant sAPPalpha to continuously coat the culture dish thereby promoting the ability to bind keratinocytes. A second mechanism explaining the cytoprotective role was found in the significant inhibition of apoptosis by recombinant sAPPalpha. In HaCaT cells moderate UV-B irradiation was sufficient to induce apoptosis. In contrast, induction of apoptosis in NHK required additionally the depletion of endogenous sAPPalpha suggesting that sAPPalpha mediates protection against UV-B irradiation. Staurosporine-induced apoptosis rates were significantly reduced by about 59% after addition of recombinant sAPPalpha. These results show that sAPPalpha exerts a pronounced cytoprotective effect and that this effect is mediated by facilitated cell adhesion and by the antiapoptotic function of sAPPalpha.
Collapse
Affiliation(s)
- Sven Wehner
- Institute of Cell Biology and Bonner Forum Biomedizin, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
89
|
Rosa MLNM, Guimarães FS, de Oliveira RMW, Padovan CM, Pearson RCA, Del Bel EA. Restraint stress induces beta-amyloid precursor protein mRNA expression in the rat basolateral amygdala. Brain Res Bull 2005; 65:69-75. [PMID: 15680546 DOI: 10.1016/j.brainresbull.2004.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 11/03/2004] [Accepted: 11/12/2004] [Indexed: 11/17/2022]
Abstract
Several studies have shown the involvement of beta-amyloid precursor proteins (APP) isoforms in physiological process like development of the central nervous system (CNS), functional roles in mature brain, and in pathological process like Alzheimer's disease, neuronal experimental damage, and stress, among others. However, the APP functions are still not clear. In the brain, APP(695) isoform is predominantly found in neurons while APP(751/770) isoforms are predominantly found in astroglial cells and have been associated to neurodegenerative processes. Acute or chronic stress in rats may trigger specific response mechanisms in several brain areas such as amygdala, hippocampus and cortex with the involvement of multiple neurotransmitters. Chronic stress may also induce neuronal injury in rat hippocampus. In situ hybridization (ISH) was used to investigate the expression of APP(695) and APP(751/770) mRNA in amygdala and hippocampus of male Wistar rats (n=4-6 per group) after acute (2 or 6h) or chronic (2h daily/7 days or 6h daily/21 days) restraint stress. Only the APP(695) mRNA expression was significantly increased in the basolateral amygdaloid nuclei following acute or chronic restraint. No APP isoform changed in hippocampus after any stress condition. These results suggest that restraint stress induces changes in gene expression of APP(695) in basolateral amygdaloid nucleus, an area related to stress response.
Collapse
|
90
|
Larner AJ, Rossor MN. Alzheimer’s disease: towards therapeutic manipulation of the amyloid precursor protein and amyloid β-peptides. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.7.10.1115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
91
|
McKeon-O’Malley C, Saunders AJ, Bush AI, Tanzi RE. Potential therapeutic targets for Alzheimer’s disease. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.2.2.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
92
|
Li Y, Liu T, Peng Y, Yuan C, Guo A. Specific functions of Drosophila amyloid precursor-like protein in the development of nervous system and nonneural tissues. ACTA ACUST UNITED AC 2005; 61:343-58. [PMID: 15389603 DOI: 10.1002/neu.20048] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Drosophila amyloid precursor-like protein (APPL) is expressed extensively in the nervous system soon after neuronal differentiation. By utilizing different transgenic flies, we studied the physiological function of two APPL protein forms, membrane-bound form (mAPPL) and secreted form (sAPPL), in neural development. We found that neither deletion nor overexpression of APPL protein altered the gross structure of mushroom bodies in the adult brain. No changes were detected in cell types and their relative ration in embryo-derived cultures from all APPL mutants. However, the neurite length was significantly increased in mutants overexpressing mAPPL. In addition, mutants lacking sAPPL had numerous neurite branches with abnormal lamellate membrane structures (LMSs) and blebs, while no apoptosis was detected in these neurons. The abnormal neurite morphology was most likely due to the disorganization of the cytoskeleton, as shown by double staining of actin filaments and microtubules. Electrophysiologically, A-type K+ current was significantly enhanced, and spontaneous excitatory postsynaptic potentials (sEPSPs) were greatly increased in APPL mutants lacking sAPPL. Moreover, panneural overexpression of different forms of APPL protein generated different defects of wings and cuticle in adult flies. Taken together, our results suggest that both mAPPL and sAPPL play essential roles in the development of the central nervous system and nonneural tissues.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Visual Information Processing, Center for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, ChaoYang Dist., 15 DaTun Rd, Beijing 100101, People's Republic of China
| | | | | | | | | |
Collapse
|
93
|
López-Sánchez N, Müller U, Frade JM. Lengthening of G2/mitosis in cortical precursors from mice lacking β-amyloid precursor protein. Neuroscience 2005; 130:51-60. [PMID: 15561424 DOI: 10.1016/j.neuroscience.2004.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 12/31/2022]
Abstract
The beta-amyloid precursor protein (APP) is expressed within the nervous system, even at the earliest stages of embryonic development when cell growth and proliferation is particularly important. In order to study the function of APP at these early developmental stages, we have studied the development of the cerebral cortex in both wild type and App-/- mutant mice. Here, we demonstrate that APP mRNA is expressed in cortical precursor cells and that APP protein is concentrated within their apical domains during interphase. However, during mitosis, APP re-localizes to the peripheral space surrounding the metaphase plate. In APP-deficient cortical precursors, the duration of mitosis is increased and a higher proportion of cortical precursor cells contained nuclei in late G2. We conclude that during cortical development APP plays a role in controlling cell cycle progression, particularly affecting G2 and mitosis. These observations may have important implications for our understanding of how APP influences the progression of Alzheimer's disease, since degenerating cortical neurons have been shown to up-regulate cell cycle markers and re-enter the mitotic cycle before dying.
Collapse
Affiliation(s)
- N López-Sánchez
- Instituto Cajal, CSIC, Avda. Dr Arce, 37, E-28002 Madrid, Spain
| | | | | |
Collapse
|
94
|
Wang Y, Ha Y. The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain. Mol Cell 2004; 15:343-53. [PMID: 15304215 DOI: 10.1016/j.molcel.2004.06.037] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/20/2004] [Accepted: 05/24/2004] [Indexed: 01/08/2023]
Abstract
Amyloid beta-peptide, which forms neuronal and vascular amyloid deposits in Alzheimer's disease, is derived from an integral membrane protein precursor. The biological function of the precursor is currently unclear. Here we describe the X-ray structure of E2, the largest of the three conserved domains of the precursor. The structure of E2 consists of two coiled-coil substructures connected through a continuous helix and bears an unexpected resemblance to the spectrin family of protein structures. E2 can reversibly dimerize in the solution, and the dimerization occurs along the longest dimension of the molecule in an antiparallel orientation, which enables the N-terminal substructure of one monomer to pack against the C-terminal substructure of a second monomer. Heparan sulfate proteoglycans, the putative ligand for the precursor present in extracellular matrix, bind to E2 at a conserved and positively charged site near the dimer interface.
Collapse
Affiliation(s)
- Yongcheng Wang
- Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
95
|
Wen Y, Onyewuchi O, Yang S, Liu R, Simpkins JW. Increased beta-secretase activity and expression in rats following transient cerebral ischemia. Brain Res 2004; 1009:1-8. [PMID: 15120577 DOI: 10.1016/j.brainres.2003.09.086] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2003] [Indexed: 11/29/2022]
Abstract
The aberrant proteolytic processing of the amyloid precursor protein (APP) by beta- and gamma-secretases is key to amyloid plaque formation in Alzheimer's disease (AD). Identification of an aspartyl protease as the beta-secretase (beta-site APP cleaving enzyme, BACE) involved in APP processing provides a pharmaceutical target for potential AD treatment. In the present studies, we demonstrate that transient cerebral ischemia in female rats caused a 30% increase in beta-secretase activity. alpha-Secretase activity did not increase significantly. We examined protein levels of BACE1, and its analogue BACE2, in ischemic brain extracts. BACE1 protein levels increased 67%, while BACE2 protein level did not change after such a transient ischemia. Immunohistochemical studies demonstrated that BACE1 protein was increased in the ischemic neocortex, when compared with its contralateral cortex. Further, colocalization assessment indicated that BACE1 strongly associated with staining for the apoptotic marker, TUNEL. These results may partially explain epidemiological study, which demonstrate a higher incidence of dementia after stroke. Further, our results support the hypothesis that apoptosis and aberrant APP processing are correlated events in AD brain, and suggest that inhibition of BACE may have a therapeutic effect in the prevention of dementia after stroke recovery.
Collapse
Affiliation(s)
- Yi Wen
- Department of Pharmacology and Neuroscience, University of North Texas, Health Science Center Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
96
|
Mileusnic R, Lancashire CL, Rose SPR. The peptide sequence Arg-Glu-Arg, present in the amyloid precursor protein, protects against memory loss caused by A beta and acts as a cognitive enhancer. Eur J Neurosci 2004; 19:1933-8. [PMID: 15078567 DOI: 10.1111/j.1460-9568.2004.03276.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acid sequences containing the palindromic tripeptide RER, matching amino acids 328-330 of the amyloid precursor protein APP, when injected intracerebrally prior to or just after training, protect against memory loss induced by amyloid-beta (A beta) in a one-trial passive avoidance task in the young chick. RER also acts as a cognitive enhancer, strengthening memory for a weak version of the task. N-terminal acylation of RER protects it against rapid degradation, and AcRER is effective in restoring memory if administered peripherally. Biotinylated RER binds to chick neuronal perikarya in an APP-displaceable manner via 66 and approximately 110 kDa neuronal cell membrane proteins. We suggest that RER binding is likely to exert effects on memory retention via receptor-mediated events that include activation of second messenger pathways. These findings suggest that RER and its derivatives may offer a novel approach to enhancing the neuroprotective effects of APP and alleviating the effects of memory loss in the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- R Mileusnic
- Brain and Behaviour Research Group, The Open University, Milton Keynes, MK7 6AA, UK.
| | | | | |
Collapse
|
97
|
Caillé I, Allinquant B, Dupont E, Bouillot C, Langer A, Müller U, Prochiantz A. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 2004; 131:2173-81. [PMID: 15073156 DOI: 10.1242/dev.01103] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid precursor protein (APP) is a type I transmembrane protein of unknown physiological function. Its soluble secreted form (sAPP) shows similarities with growth factors and increases the in vitro proliferation of embryonic neural stem cells. As neurogenesis is an ongoing process in the adult mammalian brain, we have investigated a role for sAPP in adult neurogenesis. We show that the subventricular zone (SVZ) of the lateral ventricle, the largest neurogenic area of the adult brain, is a major sAPP binding site and that binding occurs on progenitor cells expressing the EGF receptor. These EGF-responsive cells can be cultured as neurospheres (NS). In vitro, EGF provokes soluble APP (sAPP) secretion by NS and anti-APP antibodies antagonize the EGF-induced NS proliferation. In vivo, sAPP infusions increase the number of EGF-responsive progenitors through their increased proliferation. Conversely, blocking sAPP secretion or downregulating APP synthesis decreases the proliferation of EGF-responsive cells, which leads to a reduction of the pool of progenitors. These results reveal a new function for sAPP as a regulator of SVZ progenitor proliferation in the adult central nervous system.
Collapse
Affiliation(s)
- Isabelle Caillé
- CNRS UMR 8542, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
98
|
Liu Q, Zhao B. Nicotine attenuates beta-amyloid peptide-induced neurotoxicity, free radical and calcium accumulation in hippocampal neuronal cultures. Br J Pharmacol 2004; 141:746-54. [PMID: 14757701 PMCID: PMC1574236 DOI: 10.1038/sj.bjp.0705653] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 12/02/2003] [Indexed: 11/08/2022] Open
Abstract
1. Recent studies indicate that neuronal loss in Alzheimer's disease (AD) is accompanied by the deposition of beta-amyloid protein (A beta) in senile plaques. Nicotine as a major component of cigarette smoke has been suggested to have a protective effect for neurons against A beta neurotoxicity. 2. Our present study demonstrates that nicotine protected cultured hippocampal neurons against the A beta-induced apoptosis. Nicotine effectively inhibits apoptosis in hippocampal cultures caused by A beta(25-35) or A beta(1-40) treatment and increase of caspase activity induced by A beta(25-35) or A beta(1-40). 3. Measurements of cellular oxidation and intracellular free Ca(2+) showed that nicotine suppressed A beta-induced accumulation of free radical and increase of intracellular free Ca(2+). 4. Cholinergic antagonist mecamylamine inhibited nicotine-induced protection against A beta-induced caspase-3 activation and ROS accumulation. 5. The data show that the protection of nicotine is partly via nicotinic receptors. Our results suggest that nicotine may be beneficial in retarding the neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Qiang Liu
- Laboratory of Visual Processing Information, Center of Brain & Cognitive Science, Institute of Biophysics, Academia Sinica, Beijing 100101, People's Republic of China
| | - Baolu Zhao
- Laboratory of Visual Processing Information, Center of Brain & Cognitive Science, Institute of Biophysics, Academia Sinica, Beijing 100101, People's Republic of China
| |
Collapse
|
99
|
Atwood CS, Bowen RL, Smith MA, Perry G. Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintenance of vascular integrity and blood supply. ACTA ACUST UNITED AC 2004; 43:164-78. [PMID: 14499467 DOI: 10.1016/s0165-0173(03)00206-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The integrity of the vasculature and the maintenance of the blood supply to the brain are crucial for the survival of higher vertebrates. However, peripheral mechanisms of sealing the vasculature that rely on the clotting of blood and platelet aggregation around the site of a 'leak' would lead to decreased cerebral perfusion and compromise the viability of terminally differentiated and irreplaceable neurons. Therefore, in higher organisms it is likely that a sealant/anti-coagulant system that maintains vascular supply has evolved as a necessity to life. We propose that one such system involves the amyloid-beta precursor protein (AbetaPP) and its cleavage product Abeta since (1) both AbetaPP/Abeta are known to deposit in the media of the cerebrovasculature wall following localized injury, (2) Abeta is generated from AbetaPP, a known acute phase reactant, (3) Abeta's physiochemical properties allow it to span between the extracellular matrix and the (endothelial) cell membrane and under inflammatory conditions aggregate to form an intracranial 'scab', thereby maintaining structural integrity of the blood brain barrier, (4) AbetaPP/Abeta together act as an anti-coagulant, (5) Abeta promotes vascular/neuronal remodeling, and (6) Abeta deposits resolve after injury. These properties are consistent with the acute phase generation and rapid cortical deposition of AbetaPP/Abeta following injury (either sustained by trauma or stresses associated with aging) that would be an important compensatory response aimed at limiting the loss of terminally differentiated neurons. Such a system would allow the maintenance of blood supply to the brain by sealing vascular lesions, preventing hemorrhagic stroke while at the same time inhibiting the coagulation cascade from blocking capillaries. Obviously, strategies to remove Abeta would have serious consequences for the integrity of the blood-brain barrier. Indeed, recent in vivo evidence demonstrates that the removal of deposited Abeta from the vasculature leads to increased cerebral microhemorrhage and strongly support the above mentioned functions of AbetaPP/Abeta. These insights also explain the root cause of the encephalitis and meningitis suffered by individuals in immunotherapy trials as being directly associated with the removal of Abeta from the vasculature, i.e. immunological responses to Abeta vaccination do not discriminate between physiologically purposive deposits of Abeta (vascular deposits) and pathological deposits of Abeta (senile plaques).
Collapse
Affiliation(s)
- Craig S Atwood
- School of Medicine, University of Wisconsin and William S. Middleton Memorial Veterans Administration, GRECC 11G, 2500 Overlook Terrace, Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
100
|
Botelho MG, Gralle M, Oliveira CLP, Torriani I, Ferreira ST. Folding and stability of the extracellular domain of the human amyloid precursor protein. J Biol Chem 2003; 278:34259-67. [PMID: 12796495 DOI: 10.1074/jbc.m303189200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-amyloid peptide (A beta), the major component of the senile plaques found in the brains of Alzheimer's disease patients, is derived from proteolytic processing of a transmembrane glycoprotein known as the amyloid precursor protein (APP). Human APP exists in various isoforms, of which the major ones contain 695, 751, and 770 amino acids. Proteolytic cleavage of APP by alpha- or beta-secretases releases the extracellular soluble fragments sAPP alpha or sAPP beta, respectively. Despite the fact that sAPP alpha plays important roles in both physiological and pathological processes in the brain, very little is known about its structure and stability. We have recently presented a structural model of sAPP alpha 695 obtained from small-angle x-ray scattering measurements (Gralle, M., Botelho, M. M., Oliveira, C. L. P., Torriani, I., and Ferreira, S. T. (2002) Biophys. J. 83, 3513-3524). We now report studies on the folding and stabilities of sAPP alpha 695 and sAPP alpha 770. The combined use of intrinsic fluorescence, 4-4'-Dianilino-1,1'binaphthyl-5,5'-disulfonic acid (bis-ANS) fluorescence, circular dichroism, differential ultraviolet absorption, and small-angle x-ray scattering measurements of the equilibrium unfolding of sAPP alpha 695 and sAPP alpha 770 by GdnHCl and urea revealed multistep folding pathways for both sAPP alpha isoforms. Such stepwise folding processes may be related to the identification of distinct structural domains in the three-dimensional model of sAPP alpha. Furthermore, the relatively low stability of the native state of sAPP alpha suggests that conformational plasticity may play a role in allowing APP to interact with a number of distinct physiological ligands.
Collapse
Affiliation(s)
- Michelle G Botelho
- Department of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | | | | |
Collapse
|