51
|
Dual biomarkers long non-coding RNA GAS5 and its target, NR3C1, contribute to acute myeloid leukemia. Exp Mol Pathol 2020; 114:104399. [PMID: 32032633 DOI: 10.1016/j.yexmp.2020.104399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is a complex hematological neoplasm with poor prognosis. At present, overwhelming evidence indicates that different genetic abnormalities are relevant to the pathogenesis of AML. Nevertheless, its exact molecular mechanism is still unknown. Recently, it was reported that lncRNAs play crucial roles in tumorigenesis. But, their role in the molecular pathogenesis of AML has not been extensively explored. GAS5, one of the earliest known lncRNAs, has an essential role in the formation and progression of multiple human cancers. It was recently demonstrated that GAS5 acts as a riborepressor of the Glucocorticoid receptor) GR) and abnormal levels of GAS5 may alter response of hematopoietic cells to glucocorticoids. GAS5 can have interaction with the GR that encoded by NR3C1 gene and inhibit its transcriptional activity. To test whether the genetic variants can be associated with AML risk, we genotyped rs55829688 (T > C) polymorphism in GAS5 and three NR3C1 SNPs namely rs6195, rs41423247 and rs6189/rs6190 in a population of 100 Iranian AML patients and 100 healthy subjects. The analysis of the data showed the frequency of alleles and genotypes of rs55829688 and rs6189/rs6190 polymorphisms did not differ between patients and healthy subjects. But, rs41423247 and rs6195 demonstrated a significant correlation with AML risk. The rs6195 was associated with higher AML susceptibility in the co-dominant (OR = 4.58, 95% CI = 2.11-9.981, P < .0001), dominant (OR = 4.55, 95% CI = 2.155-9.613, P < .0001), and over-dominant (OR = 4.43, 95% CI = 2.042-9.621, P < .0001) models. Also, the rs41423247 polymorphism was associated with higher risk of AML in co-dominant (OR = 2.07, 95% CI = 1.171-4.242, P = .012) and dominant (OR = 2.47, 95% CI = 1.192-5.142, P = .010) models. Furthermore, haplotype analysis (rs41423247, rs6189.rs6190, rs6195, and rs55829688 respectively) demonstrated that GGAT, CGGT, and GGGT haplotypes were associated with higher risk of AML in the studied population (p-values = .007, 0.042 and 0.044, respectively). The present study reveals a possible role for NR3C1 in the pathogenesis of AML.
Collapse
|
52
|
Akbari Bazm M, Goodarzi N, Shahrokhi SR, Khazaei M. The effects of hydroalcoholic extract of Vaccinium arctostaphylos L. on sperm parameters, oxidative injury and apoptotic changes in oxymetholone-induced testicular toxicity in mouse. Andrologia 2020; 52:e13522. [PMID: 32012329 DOI: 10.1111/and.13522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023] Open
Abstract
Anabolic androgenic steroids (AAS) such as oxymetholone (OM) used for athletic enhancement, but increased free radicals damage and changes in hormonal levels, lead to serious and irreversible organ damage. Vaccinium arctostaphylos(V. arctostaphylos( has been demonstrated to have antioxidant and antiinflammatory effects. The aim of present study was to investigate V. arctostaphylos effect on OM-induced oxidative injury in mouse testis and sperm parameters. In this experimental study, 30 BALB/c mice were divided into five groups, including healthy, positive control(5 mg/kg OM) and three treatment groups (100, 200 and 400 mg/kg of V. arctostaphylos extract + 5 mg/kg OM). At the end of the study, serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone levels were measured. Testis stereological and sperm parameters were calculated. Antioxidant status was measured using nitric oxide (NO) and FRAP assay, and malondialdehyde (MDA) levels. Furthermore, the expression of p53, caspase-3, Bax and Bcl-2 was measured. V. arctostaphylos decreased the serum level of testosterone, increased the LH and FSH, and improved the stereological and sperm parameters and down-regulated the p53, caspase-3 and Bax and up-regulated Bcl-2 genes. Furthermore, this dose decreased serum levels of NO and increased testis FRAP and MDA levels in treated groups compared with OM group. V. arctostaphylos extract has protective effects against testicular toxicity caused by OM.
Collapse
Affiliation(s)
- Mohsen Akbari Bazm
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nader Goodarzi
- Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Seyed Reza Shahrokhi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
53
|
Bagherpoor Helabad M, Volkenandt S, Imhof P. Molecular Dynamics Simulations of a Chimeric Androgen Receptor Protein (SPARKI) Confirm the Importance of the Dimerization Domain on DNA Binding Specificity. Front Mol Biosci 2020; 7:4. [PMID: 32083093 PMCID: PMC7005049 DOI: 10.3389/fmolb.2020.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/10/2020] [Indexed: 11/21/2022] Open
Abstract
The DNA binding domains of Androgen/Glucocorticoid receptors (AR/GR), members of class I steroid receptors, bind as a homo-dimer to a cis-regulatory element. These response elements are arranged as inverted repeat (IR) of hexamer “AGAACA”, separated with a 3 base pairs spacer. DNA binding domains of the Androgen receptor, AR-DBDs, in addition, selectively recognize a direct-like repeat (DR) arrangement of this hexamer. A chimeric AR protein, termed SPARKI, in which the second zinc-binding motif of AR is swapped with that of GR, however, fails to recognize DR-like elements. By molecular dynamic simulations, we identify how the DNA binding domains of the wild type AR/GR, and also the chimeric SPARKI model, distinctly interact with both IR and DR response elements. AR binds more strongly to DR than GR binds to IR elements. A SPARKI model built from the structure of the AR (SPARKI-AR) shows significantly fewer hydrogen bond interactions in complex with a DR sequence than with an IR sequence. Moreover, a SPARKI model based on the structure of the GR (SPARKI-GR) shows a considerable distortion in its dimerization domain when complexed to a DR-DNA whereas it remains in a stable conformation in a complex with an IR-DNA. The diminished interaction of SPARKI-AR with and the instability of SPARKI-GR on DR response elements agree with SPARKI's lack of affinity for these sequences. The more GR-like binding specificity of the chimeric SPARKI protein is further emphasized by both SPARKI models binding even more strongly to IR elements than observed for the DNA binding domain of the GR.
Collapse
Affiliation(s)
| | - Senta Volkenandt
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Petra Imhof
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
54
|
Sexual dimorphism in atrophic effects of topical glucocorticoids is driven by differential regulation of atrophogene REDD1 in male and female skin. Oncotarget 2020; 11:409-418. [PMID: 32064044 PMCID: PMC6996908 DOI: 10.18632/oncotarget.27445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022] Open
Abstract
Topical glucocorticoids, well-known anti-inflammatory drugs, induce multiple adverse effects, including skin atrophy. The sex-specific effects of systemic glucocorticoids are known, but sexual dimorphism of therapeutic and side effects of topical steroids has not been studied. We report here that female and male mice were equally sensitive to the anti-inflammatory effect of glucocorticoid fluocinolone acetonide (FA) in ear edema test. At the same time, females were more sensitive to FA-induced skin atrophy. We recently reported that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. We found that REDD1 was more efficiently activated by FA in females, and that REDD1 knockout significantly protected female but not male mice from skin atrophy. Studies using human keratinocytes revealed that both estradiol and FA induced REDD1 mRNA/protein expression, and cooperated when they were combined at low doses. Chromatin immunoprecipitation analysis confirmed that REDD1 is an estrogen receptor (ER) target gene with multiple estrogen response elements in its promoter. Moreover, experiments with GR and ER inhibitors suggested that REDD1 induction by these hormones was interdependent on functional activity of both receptors. Overall, our results are important for the development of safer GR-targeted therapies suited for female and male dermatological patients.
Collapse
|
55
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 PMCID: PMC6942384 DOI: 10.1186/s12943-019-1124-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
56
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 DOI: 10.1186/s12943019-1124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 05/26/2023] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
57
|
Yang Y, Yang T, Liu S, Cao Z, Zhao Y, Su X, Liao Z, Teng X, Hua J. Concentrated ambient PM 2.5 exposure affects mice sperm quality and testosterone biosynthesis. PeerJ 2019; 7:e8109. [PMID: 31799077 PMCID: PMC6885350 DOI: 10.7717/peerj.8109] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Studies suggested that PM2.5 exposure could lead to adverse reproductive effects on male animals. However, the underlying mechanism is still not clear. Besides, animals in the majority of previous studies were exposed to PM2.5 through intratracheal instillation which should be improved. In addition, limited amount of research has been conducted in China where the PM2.5 concentration is higher and the PM2.5 components are different. The aim of this work is to explore the effects of concentrated ambient PM2.5 (CAP) on mice sperm quality and testosterone biosynthesis. Methods A total of 12 male C57BL/6 mice were exposed to filtered air (FA) or CAP for 125 days using the Shanghai Meteorological and Environmental Animal Exposure System. The mice sperm concentration, sperm motility, DNA fragmentation index, high DNA stainability and plasma testosterone were analyzed. Testicular histology and sperm morphology were observed through optical microscope. Testosterone biosynthesis related gene expressions were analyzed using real-time PCR, including cytochrome P450 CHOL side-chain cleavage enzyme (P450scc), steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β HSD), 17β-hydroxysteroid dehydrogenase, cytochrome P450 aromatase (P450arom), estrogen receptor (ER), androgen receptor (AR) and follicle stimulating hormone receptor (FSHR). Results Exposure to CAP resulted in disturbance of various stages of spermatogenesis and significant higher percentage of abnormal sperm (FA vs. CAP: 24.37% vs. 44.83%) in mice testis. CAP exposure significantly decreased sperm concentration (43.00 × 106 vs. 25.33 × 106) and motility (PR: 63.58% vs. 55.15%; PR + NP: 84.00% vs. 77.08%) in epididymis. Plasma testosterone concentration were significantly declined (0.28 ng/ml vs. 0.69 ng/ml) under CAP exposure. Notably, the levels of testosterone biosynthesis related genes, StAR, P450scc, P450arom, ER and FSHR were significantly decreased with CAP exposure. Conclusion Concentrated ambient PM2.5 exposure altered mice sperm concentration, motility and morphology, which might be mediated primarily by the decline in testosterone concentration and testosterone biosynthesis process.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Yang
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai, China
| | - Shengxin Liu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Zhijuan Cao
- Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Zhao
- Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Su
- Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Xiaoming Teng
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Hua
- Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
58
|
Ohdo S, Koyanagi S, Matsunaga N. Chronopharmacological strategies focused on chrono-drug discovery. Pharmacol Ther 2019; 202:72-90. [DOI: 10.1016/j.pharmthera.2019.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/29/2019] [Indexed: 01/21/2023]
|
59
|
Cruz-Topete D, Oakley RH, Carroll NG, He B, Myers PH, Xu X, Watts MN, Trosclair K, Glasscock E, Dominic P, Cidlowski JA. Deletion of the Cardiomyocyte Glucocorticoid Receptor Leads to Sexually Dimorphic Changes in Cardiac Gene Expression and Progression to Heart Failure. J Am Heart Assoc 2019; 8:e011012. [PMID: 31311395 PMCID: PMC6761632 DOI: 10.1161/jaha.118.011012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The contribution of glucocorticoids to sexual dimorphism in the heart is essentially unknown. Therefore, we sought to determine the sexually dimorphic actions of glucocorticoid signaling in cardiac function and gene expression. To accomplish this goal, we conducted studies on mice lacking glucocorticoid receptors (GR) in cardiomyocytes (cardioGRKO mouse model). Methods and Results Deletion of cardiomyocyte GR leads to an increase in mortality because of the development of spontaneous cardiac pathology in both male and female mice; however, females are more resistant to GR signaling inactivation in the heart. Male cardioGRKO mice had a median survival age of 6 months. In contrast, females had a median survival age of 10 months. Transthoracic echocardiography data showed phenotypic differences between male and female cardioGRKO hearts. By 3 months of age, male cardioGRKO mice exhibited left ventricular systolic dysfunction. Conversely, no significant functional deficits were observed in female cardioGRKO mice at the same time point. Functional sensitivity of male hearts to the loss of cardiomyocyte GR was reversed following gonadectomy. RNA‐Seq analysis showed that deleting GR in the male hearts leads to a more profound dysregulation in the expression of genes implicated in heart rate regulation (calcium handling). In agreement with these gene expression data, cardiomyocytes isolated from male cardioGRKO hearts displayed altered intracellular calcium responses. In contrast, female GR‐deficient cardiomyocytes presented a response comparable with controls. Conclusions These data suggest that GR regulates calcium responses in a sex‐biased manner, leading to sexually distinct responses to stress in male and female mice hearts, which may contribute to sex differences in heart disease, including the development of ventricular arrhythmias that contribute to heart failure and sudden death.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Department of Molecular and Cellular Physiology LSU Health Sciences Center Shreveport LA.,Center for Cardiovascular Diseases and Sciences LSU Health Sciences Center Shreveport LA
| | - Robert H Oakley
- Signal Transduction Laboratory National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Natalie G Carroll
- Department of Molecular and Cellular Physiology LSU Health Sciences Center Shreveport LA
| | - Bo He
- Signal Transduction Laboratory National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Page H Myers
- Comparative Medicine Branch National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Megan N Watts
- Department of Cardiology LSU Health Sciences Center Shreveport LA
| | - Krystle Trosclair
- Department of Cellular Biology and Anatomy LSU Health Sciences Center Shreveport LA
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy LSU Health Sciences Center Shreveport LA.,Center for Cardiovascular Diseases and Sciences LSU Health Sciences Center Shreveport LA
| | - Paari Dominic
- Department of Cardiology LSU Health Sciences Center Shreveport LA.,Center for Cardiovascular Diseases and Sciences LSU Health Sciences Center Shreveport LA
| | - John A Cidlowski
- Signal Transduction Laboratory National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| |
Collapse
|
60
|
Estrogen signaling impacts temporomandibular joint and periodontal disease pathology. Odontology 2019; 108:153-165. [PMID: 31270648 DOI: 10.1007/s10266-019-00439-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
Women experience a higher incidence of oral diseases including periodontal diseases and temporomandibular joint disease (TMD) implicating the role of estrogen signaling in disease pathology. Fluctuating levels of estrogen during childbearing age potentiates facial pain, high estrogen levels during pregnancy promote gingivitis, and low levels of estrogen during menopause predisposes the TMJ to degeneration and increases alveolar bone loss. In this review, an overview of estrogen signaling pathways in vitro and in vivo that regulate pregnancy-related gingivitis, TMJ homeostasis, and alveolar bone remodeling is provided. Deciphering the specific estrogen signaling pathways for individual oral diseases is crucial for potential new drug therapies to promote and maintain healthy tissue.
Collapse
|
61
|
Glucocorticoid receptor dysfunction orchestrates inflammasome effects on chronic obstructive pulmonary disease-induced depression: A potential mechanism underlying the cross talk between lung and brain. Brain Behav Immun 2019; 79:195-206. [PMID: 30738183 DOI: 10.1016/j.bbi.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/21/2018] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
Depression is highly prevalent among patients with chronic obstructive pulmonary disease (COPD). However, depression with COPD comorbidity is often underdiagnosed and undertreated, and pathogenic research is also insufficient. In the present study, we characterised pulmonary and hippocampal dysfunction by researching the interaction between inflammasome-regulated cytokines and glucocorticoid receptor (GR) signalling by investigating the role of fluoxetine (FLU), one of the most widely used antidepressants in clinical practice. Mice were exposed to cigarette smoke (CS) to induce the model of COPD with comorbid depression, and pathological alterations in serum, hippocampus, lung, and bronchoalveolar lavage fluid were determined. Our results showed that the CS procedure induced the accumulation of inflammatory cells (macrophages, neutrophils, and lymphocytes), the production of cytokines, the activation of inflammasome components (NLRP3, ASC, caspase-1), depression-related behaviours, and the stimulation of GR signalling. Intriguingly, glucocorticoid resistance occurred in CS-exposed mice, with elevated serum corticosterone and suppressed hippocampal GR levels, which suggested a novel potential regulatory mechanism underlying COPD-induced depression comorbidity. Furthermore, chronic CS exposure decreased the pGR-S211/pGR-S226 ratio, increased the active nuclear GR, and impaired cytosolic GR binding capacity and GR transcriptional activity, which might be responsible for the activation of the inflammasome-induced inflammatory cascade. These alterations were reversed by chronic FLU treatment, indicating that FLU-mediated GR signalling was involved in the COPD induced inflammasome activation. Our research explored the underlying molecular mechanism of comorbid COPD/depression and provided in vivo evidence that glucocorticoid resistance occurred during CS-induced central nervous system inflammation, a potential mechanism underlying the cross talk between the lung and brain.
Collapse
|
62
|
Kaushik S, Sanawar R, Lekshmi A, Chandrasekhar L, Nair M, Bhatnagar S, Santhoshkumar TR. ER alpha selective chromone, isoxazolylchromones, induces ROS‐mediated cell death without autophagy. Chem Biol Drug Des 2019; 94:1352-1367. [DOI: 10.1111/cbdd.13510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Swati Kaushik
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
- Novel Molecule Synthesis Laboratory Amity Institute of Biotechnology Amity University Noida Uttar Pradesh India
| | - Rahul Sanawar
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
- Manipal Academy of Higher Education (MAHE) Manipal Karnataka India
| | - Asha Lekshmi
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
| | - Leena Chandrasekhar
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
| | - Mydhily Nair
- Cancer Research Program 1 Rajiv Gandhi Centre for Biotechnology, KINFRA CampusTrivandrum Kerala India
| | - Seema Bhatnagar
- Novel Molecule Synthesis Laboratory Amity Institute of Biotechnology Amity University Noida Uttar Pradesh India
| | | |
Collapse
|
63
|
Hamouri F, Zhang W, Aujard I, Le Saux T, Ducos B, Vriz S, Jullien L, Bensimon D. Optical control of protein activity and gene expression by photoactivation of caged cyclofen. Methods Enzymol 2019; 624:1-23. [PMID: 31370925 DOI: 10.1016/bs.mie.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. While many of these approaches use a fusion between a light activatable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly and locally in a live organism. Here, we present the experimental details behind this approach.
Collapse
Affiliation(s)
- Fatima Hamouri
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France
| | - Weiting Zhang
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France
| | - Isabelle Aujard
- PASTEUR, Département de Chimie de l'ENS, CNRS, PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de Chimie de l'ENS, CNRS, PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR 7241, INSERM U1050, Paris, France; Department of Life Sciences, Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie de l'ENS, CNRS, PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - David Bensimon
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
64
|
Frump AL, Selej M, Wood JA, Albrecht M, Yakubov B, Petrache I, Lahm T. Hypoxia Upregulates Estrogen Receptor β in Pulmonary Artery Endothelial Cells in a HIF-1α-Dependent Manner. Am J Respir Cell Mol Biol 2019; 59:114-126. [PMID: 29394091 DOI: 10.1165/rcmb.2017-0167oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
17β-Estradiol (E2) attenuates hypoxia-induced pulmonary hypertension (HPH) through estrogen receptor (ER)-dependent effects, including inhibition of hypoxia-induced endothelial cell proliferation; however, the mechanisms responsible for this remain unknown. We hypothesized that the protective effects of E2 in HPH are mediated through hypoxia-inducible factor 1α (HIF-1α)-dependent increases in ERβ expression. Sprague-Dawley rats and ERα or ERβ knockout mice were exposed to hypobaric hypoxia for 2-3 weeks. The effects of hypoxia were also studied in primary rat or human pulmonary artery endothelial cells (PAECs). Hypoxia increased expression of ERβ, but not ERα, in lungs from HPH rats as well as in rat and human PAECs. ERβ mRNA time dependently increased in PAECs exposed to hypoxia. Normoxic HIF-1α/HIF-2α stabilization increased PAEC ERβ, whereas HIF-1α knockdown decreased ERβ abundance in hypoxic PAECs. In turn, ERβ knockdown in hypoxic PAECs increased HIF-2α expression, suggesting a hypoxia-sensitive feedback mechanism. ERβ knockdown in hypoxic PAECs also decreased expression of the HIF inhibitor prolyl hydroxylase 2 (PHD2), whereas ERβ activation increased PHD2 and decreased both HIF-1α and HIF-2α, suggesting that ERβ regulates the PHD2/HIF-1α/HIF-2α axis during hypoxia. Whereas hypoxic wild-type or ERα knockout mice treated with E2 demonstrated less pulmonary vascular remodeling and decreased HIF-1α after hypoxia compared with untreated hypoxic mice, ERβ knockout mice exhibited increased HIF-2α and an attenuated response to E2 during hypoxia. Taken together, our results demonstrate a novel and potentially therapeutically targetable mechanism whereby hypoxia, via HIF-1α, increases ERβ expression and the E2-ERβ axis targets PHD2, HIF-1α, and HIF-2α to attenuate HPH development.
Collapse
Affiliation(s)
- Andrea L Frump
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Mona Selej
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Jordan A Wood
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Marjorie Albrecht
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Bakhtiyor Yakubov
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Irina Petrache
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine.,2 Richard L. Roudebush VA Medical Center, and
| | - Tim Lahm
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine.,2 Richard L. Roudebush VA Medical Center, and.,3 Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
65
|
PI3K inhibitors protect against glucocorticoid-induced skin atrophy. EBioMedicine 2019; 41:526-537. [PMID: 30737086 PMCID: PMC6441871 DOI: 10.1016/j.ebiom.2019.01.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background Skin atrophy is a major adverse effect of topical glucocorticoids. We recently reported that REDD1 (regulated in development and DNA damage 1) and FKBP51 (FK506 binding protein 5), negative regulators of mTOR/Akt signaling, are induced by glucocorticoids in mouse and human skin and are central drivers of steroid skin atrophy. Thus, we hypothesized that REDD1/FKBP51 inhibitors could protect skin against catabolic effects of glucocorticoids. Methods Using drug repurposing approach, we screened LINCS library (http://lincsproject.org/LINCS/) to identify repressors of REDD1/FKBP51 expression. Candidate compounds were tested for their ability to inhibit glucocorticoid-induced REDD1/FKBP51 expression in human primary/immortalized keratinocytes and in mouse skin. Reporter gene expression, microarray, and chromatin immunoprecipitation were employed to evaluate effect of these inhibitors on the glucocorticoid receptor (GR) signaling. Findings Bioinformatics analysis unexpectedly identified phosphoinositide-3-kinase (PI3K)/mTOR/Akt inhibitors as a pharmacological class of REDD1/FKBP51 repressors. Selected PI3K/mTOR/Akt inhibitors-Wortmannin (WM), LY294002, AZD8055, and two others indeed blocked REDD1/FKBP51expression in human keratinocytes. PI3K/mTOR/Akt inhibitors also modified global effect of glucocorticoids on trascriptome, shifting it towards therapeutically important transrepression; negatively impacted GR phosphorylation; nuclear translocation; and GR loading on REDD1/FKBP51 gene promoters. Further, topical application of LY294002 together with glucocorticoid fluocinolone acetonide (FA) protected mice against FA-induced proliferative block and skin atrophy but did not alter the anti-inflammatory activity of FA in ear edema test. Interpretation Our results built a strong foundation for development of safer GR-targeted therapies for inflammatory skin diseases using combination of glucocorticoids with PI3K/mTOR/Akt inhibitors. Fund Work is supported by NIH grants R01GM112945, R01AI125366, and HESI-THRIVE foundation.
Collapse
|
66
|
Gorbacheva AM, Kuprash DV, Mitkin NA. Glucocorticoid Receptor Binding Inhibits an Intronic IL33 Enhancer and is Disrupted by rs4742170 (T) Allele Associated with Specific Wheezing Phenotype in Early Childhood. Int J Mol Sci 2018; 19:ijms19123956. [PMID: 30544846 PMCID: PMC6321062 DOI: 10.3390/ijms19123956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin 33 (IL-33) is a cytokine constitutively expressed by various cells of barrier tissues that contribute to the development of inflammatory immune responses. According to its function as an alarmin secreted by lung and airway epithelium, IL-33 plays a significant role in pathogenesis of allergic disorders. IL-33 is strongly involved in the pathogenesis of asthma, anaphylaxis, allergy and dermatitis, and genetic variations in IL33 locus are associated with increased susceptibility to asthma. Genome-wide association studies have identified risk "T" allele of the single-nucleotide polymorphism rs4742170 located in putative IL33 enhancer area as susceptible variant for development of specific wheezing phenotype in early childhood. Here, we demonstrate that risk "T" rs4742170 allele disrupts binding of glucocorticoid receptor (GR) transcription factor to IL33 putative enhancer. The IL33 promoter/enhancer constructs containing either 4742170 (T) allele or point mutations in the GR-binding site, were significantly more active and did not respond to cortisol in a pulmonary epithelial cell line. At the same time, the constructs containing rs4742170 (C) allele with a functional GR-binding site were less active and further inhibitable by cortisol. The latter effect was GR-dependent as it was completely abolished by GR-specific siRNA. This mechanism may explain the negative effect of the rs4742170 (T) risk allele on the development of wheezing phenotype that strongly correlates with allergic sensitization in childhood.
Collapse
Affiliation(s)
- Alisa M Gorbacheva
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Dmitry V Kuprash
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Nikita A Mitkin
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
67
|
Eid EEM, Azam F, Hassan M, Taban IM, Halim MA. Zerumbone binding to estrogen receptors: an in-silico investigation. J Recept Signal Transduct Res 2018; 38:342-351. [PMID: 30396310 DOI: 10.1080/10799893.2018.1531886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most frequent malignancy among females worldwide. Estrogen receptor (ER) mediate important pathophysiological signaling pathways induced by estrogens, and is regarded as a promising target for the treatment of breast cancer. Zerumbone (2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-one; ZER), a chemical constituent present in the Zingiber zerumbet is known to exhibit anti-breast cancer activity by modulating several proteins to induce apoptosis. Medicinal chemists usually exploit lead compounds of natural origin to develop molecules with improved pharmacological properties. Current study is intended to utilize molecular modeling techniques to investigate the interaction of ZER with estrogen receptors. AutoDock was used to predict the binding modes of ZER and target receptors. Stability of the ZER-ER complex was verified by molecular dynamics simulation using Desmond software. Docked ZER was further optimized by density functional theory (DFT) using Gaussian09 program. Analysis of docked conformations in terms of binding energy disclosed estrogen receptor-β (ERβ) as more promising than estrogen receptor-α (ERα). Evaluation of MD trajectories of ZER bound to both ERα and ERβ showed appreciable stability with minimum Cα-atom root mean square deviation shifts. DFT based global reactivity descriptors such as electron affinity, hardness, chemical potential, electronegativity and electrophilicity index, calculated from the energies of highest occupied and lowest unoccupied molecular orbitals underscored the electronic features governing viability of the ZER for interaction with the target receptors. In conclusion, these findings can be exploited to design and develop novel anticancer agents based on the lead compound, ZER.
Collapse
Affiliation(s)
- Eltayeb E M Eid
- a Unaizah College of Pharmacy, Qassim University , Unaizah , Saudi Arabia
| | - Faizul Azam
- a Unaizah College of Pharmacy, Qassim University , Unaizah , Saudi Arabia
| | - Mahmoud Hassan
- b Swiss Tropical & Public Health Institute, University of Basel , Switzerland
| | - Ismail M Taban
- c School of Biosciences, Cardiff University , Cardiff , United Kingdom
| | - Mohammad A Halim
- d Division of Computer-aided Drug Design , The Red-Green Research Center , BICCB , Dhaka , Bangladesh.,e Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon , Villeurbanne Cedex , France
| |
Collapse
|
68
|
Reitzel AM, Macrander J, Mane-Padros D, Fang B, Sladek FM, Tarrant AM. Conservation of DNA and ligand binding properties of retinoid X receptor from the placozoan Trichoplax adhaerens to human. J Steroid Biochem Mol Biol 2018; 184:3-10. [PMID: 29510228 PMCID: PMC6120813 DOI: 10.1016/j.jsbmb.2018.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors are a superfamily of transcription factors restricted to animals. These transcription factors regulate a wide variety of genes with diverse roles in cellular homeostasis, development, and physiology. The origin and specificity of ligand binding within lineages of nuclear receptors (e.g., subfamilies) continues to be a focus of investigation geared toward understanding how the functions of these proteins were shaped over evolutionary history. Among early-diverging animal lineages, the retinoid X receptor (RXR) is first detected in the placozoan, Trichoplax adhaerens. To gain insight into RXR evolution, we characterized ligand- and DNA-binding activity of the RXR from T. adhaerens (TaRXR). Like bilaterian RXRs, TaRXR specifically bound 9-cis-retinoic acid, which is consistent with a recently published result and supports a conclusion that the ancestral RXR bound ligand. DNA binding site specificity of TaRXR was determined through protein binding microarrays (PBMs) and compared with human RXRɑ. The binding sites for these two RXR proteins were broadly conserved (∼85% shared high-affinity sequences within a targeted array), suggesting evolutionary constraint for the regulation of downstream genes. We searched for predicted binding motifs of the T. adhaerens genome within 1000 bases of annotated genes to identify potential regulatory targets. We identified 648 unique protein coding regions with predicted TaRXR binding sites that had diverse predicted functions, with enriched processes related to intracellular signal transduction and protein transport. Together, our data support hypotheses that the original RXR protein in animals bound a ligand with structural similarity to 9-cis-retinoic acid; the DNA motif recognized by RXR has changed little in more than 1 billion years of evolution; and the suite of processes regulated by this transcription factor diversified early in animal evolution.
Collapse
Affiliation(s)
- Adam M Reitzel
- Department of Biological Sciences, University of North Carolina, Charlotte, Charlotte, NC 28223 USA
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina, Charlotte, Charlotte, NC 28223 USA
| | - Daniel Mane-Padros
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 95251, USA
| | - Bin Fang
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 95251, USA
| | - Frances M Sladek
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 95251, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Mailstop 33, Woods Hole, MA 02543 USA.
| |
Collapse
|
69
|
Current status of androgen receptor-splice variant 7 inhibitor niclosamide in castrate-resistant prostate-cancer. Invest New Drugs 2018; 36:1133-1137. [PMID: 30083960 DOI: 10.1007/s10637-018-0653-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
Castrate-Resistant Prostate-Cancer (CRPC) is one of the most common malignancies occurring in men. Unfortunately, even if several recently approved agents clinically improved the outcome of CRPC patients, none of these is curative especially for a splice version of the Androgen Receptor (AR) AR-V7, which is a variant of the receptor constitutively activated and does not require the presence of androgens for the activation AR down-stream pathways. Since high AR-V7 expression is one of the most common features of CRPC, targeting this receptor variant is considered as one of the most promising strategies for treating this disease. Therefore anti-AR-V7 molecules could lead to a potential shift in paradigm in the treatment of CRPC. Niclosamide, an already FDA-approved anti-helminthic drug, was identified as a potent AR-V7 inhibitor in prostate cancer cells. Due to the recent positive preclinical results, niclosamide may be an interesting and novel type of targeted treatments for CRPC. This mini-review outlines the most recent pre- and clinical- data on the current status of niclosamide in the treatment of ARV7-positive CRPC patients.
Collapse
|
70
|
Song T, Lin T, Ma J, Guo L, Zhang L, Zhou X, Ye T. Regulation of TRPV5 transcription and expression by E2/ERα signalling contributes to inhibition of osteoclastogenesis. J Cell Mol Med 2018; 22:4738-4750. [PMID: 30063124 PMCID: PMC6156443 DOI: 10.1111/jcmm.13718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
The increasing of osteoclasts formation and activity because of oestrogen (E2) deficiency is very important in the aetiology of postmenopausal osteoporosis. Our previous studies showed that E2 inhibited osteoclastic bone resorption by increasing the expression of Transient Receptor Potential Vanilloid 5 (TRPV5) channel. However, the exact mechanism by which E2 increases TRPV5 expression is not fully elucidated. In this study, Western blot, quantitative real‐time PCR, tartrate‐resistant acid phosphatase staining, F‐actin ring staining, chromatin immunoprecipitation and luciferase assay were applied to explore the mechanisms that E2‐induced TRPV5 expression contributes to the inhibition of osteoclastogenesis. The results showed that silencing or overexpressing of TRPV5 significantly affected osteoclasts differentiation and activity. Silencing of TRPV5 obviously alleviated E2‐inhibited osteoclastogenesis, resulting in increasing of bone resorption. E2 stimulated mature osteoclasts apoptosis by increasing TRPV5 expression. Further studies showed that E2 increased TRPV5 expression through the interaction of the oestrogen receptor α (ERα) with NF‐κB, which could directly bind to the fragment of −286 nt ~ −277 nt in the promoter region of trpv5. Taken together, we conclude that TRPV5 plays a dominant effect in E2‐mediated osteoclasts formation, bone resorption activity and osteoclasts apoptosis. Furthermore, NF‐κB plays an important role in the transcriptional activation of E2‐ERα stimulated TRPV5 expression.
Collapse
Affiliation(s)
- Tengfei Song
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Lin
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Ma
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Medical Genetics, Second Military Medical University, shanghai, China
| | - Xuhui Zhou
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianwen Ye
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
71
|
A Fluorescent Biosensors for Detection Vital Body Fluids' Agents. SENSORS 2018; 18:s18082357. [PMID: 30042294 PMCID: PMC6111579 DOI: 10.3390/s18082357] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
The clinical applications of sensing tools (i.e., biosensors) for the monitoring of physiologically important analytes are very common. Nowadays, the biosensors are being increasingly used to detect physiologically important analytes in real biological samples (i.e., blood, plasma, urine, and saliva). This review focuses on biosensors that can be applied to continuous, time-resolved measurements with fluorescence. The material presents the fluorescent biosensors for the detection of neurotransmitters, hormones, and other human metabolites as glucose, lactate or uric acid. The construction of microfluidic devices based on fluorescence uses a variety of materials, fluorescent dyes, types of detectors, excitation sources, optical filters, and geometrical systems. Due to their small size, these devices can perform a full analysis. Microfluidics-based technologies have shown promising applications in several of the main laboratory techniques, including blood chemistries, immunoassays, nucleic-acid amplification tests. Of the all technologies that are used to manufacture microfluidic systems, the LTCC technique seems to be an interesting alternative. It allows easy integration of electronic and microfluidic components on a single ceramic substrate. Moreover, the LTCC material is biologically and chemically inert, and is resistant to high temperature and pressure. The combination of all these features makes the LTCC technology particularly useful for implementation of fluorescence-based detection in the ceramic microfluidic systems.
Collapse
|
72
|
Hachemi Y, Rapp AE, Picke AK, Weidinger G, Ignatius A, Tuckermann J. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol 2018; 61:R75-R90. [PMID: 29588427 PMCID: PMC5976078 DOI: 10.1530/jme-18-0024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Glucocorticoid hormones (GCs) have profound effects on bone metabolism. Via their nuclear hormone receptor - the GR - they act locally within bone cells and modulate their proliferation, differentiation, and cell death. Consequently, high glucocorticoid levels - as present during steroid therapy or stress - impair bone growth and integrity, leading to retarded growth and glucocorticoid-induced osteoporosis, respectively. Because of their profound impact on the immune system and bone cell differentiation, GCs also affect bone regeneration and fracture healing. The use of conditional-mutant mouse strains in recent research provided insights into the cell-type-specific actions of the GR. However, despite recent advances in system biology approaches addressing GR genomics in general, little is still known about the molecular mechanisms of GCs and GR in bone cells. Here, we review the most recent findings on the molecular mechanisms of the GR in general and the known cell-type-specific actions of the GR in mesenchymal cells and their derivatives as well as in osteoclasts during bone homeostasis, GC excess, bone regeneration and fracture healing.
Collapse
Affiliation(s)
- Yasmine Hachemi
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Anna E Rapp
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Ann-Kristin Picke
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular BiologyUlm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| |
Collapse
|
73
|
White JT, Li J, Grasso E, Wrabl JO, Hilser VJ. Ensemble allosteric model: energetic frustration within the intrinsically disordered glucocorticoid receptor. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170175. [PMID: 29735729 PMCID: PMC5941170 DOI: 10.1098/rstb.2017.0175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 01/21/2023] Open
Abstract
Allostery is an important regulatory phenomenon enabling precise control of biological function. Initial understanding of allostery was gained from seminal work on conformational changes exhibited by structured proteins. Within the last decade, protein allostery has also been demonstrated to occur within intrinsically disordered proteins. This emerging concept of disorder-mediated allostery can be usefully understood in the context of a thermodynamic ensemble. The advantage of this ensemble allosteric model is that it unifies the explanations of allostery occurring within both structured and disordered proteins. One central finding from this model is that energetic coupling, the transmission of a signal between separate regions (or domains) of a protein, is maximized when one or more domains are disordered. This is due to a disorder-order transition that contributes additional coupling energy to the allosteric system through formation of a molecular interaction surface or interface. A second key finding is that multiple interfaces may constructively or destructively interfere with each other, resulting in a new form of allosteric regulation called 'energetic frustration'. Articulating protein allostery in terms of the thermodynamic ensemble permits formulation of experimentally testable hypotheses which can increase fundamental understanding and direct drug-design efforts. These ideas are illustrated here with the specific case of human glucocorticoid receptor, a medically important multi-domain allosteric protein that contains both structured and disordered regions and exemplifies 'energetic frustration'.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Jordan T White
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jing Li
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Emily Grasso
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - James O Wrabl
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
74
|
Marczell I, Balogh P, Nyiro G, Kiss AL, Kovacs B, Bekesi G, Racz K, Patocs A. Membrane-bound estrogen receptor alpha initiated signaling is dynamin dependent in breast cancer cells. Eur J Med Res 2018; 23:31. [PMID: 29880033 PMCID: PMC5992704 DOI: 10.1186/s40001-018-0328-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/19/2018] [Indexed: 01/22/2023] Open
Abstract
Background Although membrane-associated estrogen receptors (mERs) have been known to play important role in steroid-induced signal transmission, we still know little about their function in the estrogen-induced proliferation of breast cancer cells. Methods In our current work we tried to separate membrane-initiated estrogen receptor signaling from the overall estrogenic effect in MCF-7 breast carcinoma cells. Re-analyzing expression data from multiple microarray experiments, we selected a set of key regulatory genes involved in proliferation regulation and estrogen signaling to monitor estrogen-induced transcription changes. We then compared these expression changes after 17β-estradiol and a membrane receptor selective estrogen–BSA treatment using quantitative real-time PCR. In order to follow receptor trafficking we used light and electron microscopy. Results Our quantitative real-time PCR results confirmed that the selective membrane receptor agonist, estrogen–BSA induces similarly pronounced expression changes regarding these genes as 17β-estradiol. Morphological study revealed that the membrane-bound form of classical estrogen receptor alpha is internalized after ligand binding via dynamin-dependent, caveola-mediated endocytosis. Inhibition of this internalization with dynamin inhibitor, dynasore practically abolished the regulatory effect of E2-BSA, suggesting that interaction and internalization with the scaffold protein is necessary for effective signaling. Conclusions The physiological role of plasma membrane estrogen receptor alpha is intensively studied, yet there are still several aspects of it to be resolved. The dynamin-dependent, ligand-mediated internalization of mERs seems to play an important role in estrogen signaling. Our results may serve as another example of how membrane initiated estrogen signaling and nuclear receptor initiated signaling overlap and form an intertwined system. Electronic supplementary material The online version of this article (10.1186/s40001-018-0328-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Istvan Marczell
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary
| | - Petra Balogh
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Gabor Nyiro
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary.,Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Szentkirályi str. 46., 1088, Hungary
| | - Anna L Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Balazs Kovacs
- Department of Aquaculture, Szent Istvan University, Godollo, Hungary
| | - Gabor Bekesi
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary
| | - Karoly Racz
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary.,Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Attila Patocs
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary. .,HAS-SE 'Lendület' Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, 46. Szentkiralyi str, 1088, Hungary. .,Department of Laboratory Medicine, Semmelweis University, Budapest, Nagyvárad sq 4, 1089, Hungary.
| |
Collapse
|
75
|
Robinson JL, Soria P, Xu M, Vrana M, Luchetti J, Lu HH, Chen J, Wadhwa S. Estrogen Promotes Mandibular Condylar Fibrocartilage Chondrogenesis and Inhibits Degeneration via Estrogen Receptor Alpha in Female Mice. Sci Rep 2018; 8:8527. [PMID: 29867155 PMCID: PMC5986784 DOI: 10.1038/s41598-018-26937-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Temporomandibular joint degenerative disease (TMJ-DD) is a chronic form of TMJ disorder that specifically afflicts people over the age of 40 and targets women at a higher rate than men. Prevalence of TMJ-DD in this population suggests that estrogen loss plays a role in the disease pathogenesis. Thus, the goal of the present study was to determine the role of estrogen on chondrogenesis and homeostasis via estrogen receptor alpha (ERα) during growth and maturity of the joint. Young and mature WT and ERαKO female mice were subjected to ovariectomy procedures and then given placebo or estradiol treatment. The effect of estrogen via ERα on fibrocartilage morphology, matrix production, and protease activity was assessed. In the young mice, estrogen via ERα promoted mandibular condylar fibrocartilage chondrogenesis partly by inhibiting the canonical Wnt signaling pathway through upregulation of sclerostin (Sost). In the mature mice, protease activity was partly inhibited with estrogen treatment via the upregulation and activity of protease inhibitor 15 (Pi15) and alpha-2-macroglobulin (A2m). The results from this work provide a mechanistic understanding of estradiol on TMJ growth and homeostasis and can be utilized for development of therapeutic targets to promote regeneration and inhibit degeneration of the mandibular condylar fibrocartilage.
Collapse
Affiliation(s)
- Jennifer L Robinson
- Columbia University College of Dental Medicine, 622 West 168th Street, New York, NY, 10032, USA. .,Columbia University Department of Biomedical Engineering, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| | - Paola Soria
- Columbia University Division of Orthodontics, 622 West 168th Street, New York, NY, 10032, USA
| | - Manshan Xu
- Columbia University Division of Orthodontics, 622 West 168th Street, New York, NY, 10032, USA
| | - Mark Vrana
- Columbia University College of Dental Medicine, 622 West 168th Street, New York, NY, 10032, USA
| | - Jeffrey Luchetti
- Columbia University College of Dental Medicine, 622 West 168th Street, New York, NY, 10032, USA
| | - Helen H Lu
- Columbia University Department of Biomedical Engineering, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Jing Chen
- Columbia University Division of Orthodontics, 622 West 168th Street, New York, NY, 10032, USA
| | - Sunil Wadhwa
- Columbia University Division of Orthodontics, 622 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
76
|
Seki T, Miyamoto A, Ohshima S, Ohno Y, Yasuda A, Tokuda Y, Ando K, Kametani Y. Expression of glucocorticoid receptor shows negative correlation with human B-cell engraftment in PBMC-transplanted NOGhIL-4-Tg mice. Biosci Trends 2018; 12:247-256. [PMID: 29806632 DOI: 10.5582/bst.2018.01083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The humanized mouse system is a promising tool for analyzing human immune responses in vivo. Recently, we developed a new humanized mouse system using the severely immunodeficient NOD/Shi-scid-IL2rγnull (NOG)-hIL-4-Tg mouse, which enabled us to evaluate the human humoral immune response after peripheral blood mononuclear cell (PBMC) transplantation. However, the mechanism by which hIL-4 enhances antigen-specific IgG production in these mice is not clear. In this study, we analyzed the relationship between human lymphocyte subsets and the expression level of the glucocorticoid receptor (GR) to clarify the humoral immune condition in human PBMC-transplanted NOG-hIL-4 mice. The results showed that the human GR mRNA level was significantly lower in NOG-hIL-4-Tg splenocytes than in conventional NOG splenocytes after immunization. Whereas no obvious difference of the proportion of T helper-cell subsets was observed between the NOG and NOG-hIL-4-Tg mouse strains, the B-cell proportion and antigen-specific IgG concentration in plasma showed strong negative correlations with the GR mRNA level. These results suggest that the GR expression level was changed in PBMCs in the humanized NOG-hIL-4-Tg mice, which may support B-cell survival and function in the mouse system.
Collapse
Affiliation(s)
- Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine.,Department of Breast and Endocrine Surgery, Tokai University School of Medicine
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine
| | - Yusuke Ohno
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine
| | - Atsushi Yasuda
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine
| | - Yutaka Tokuda
- Department of Breast and Endocrine Surgery, Tokai University School of Medicine
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine.,Institute of Advanced Biosciences, Tokai University
| |
Collapse
|
77
|
The Flavonoid Apigenin Is a Progesterone Receptor Modulator with In Vivo Activity in the Uterus. Discov Oncol 2018; 9:265-277. [PMID: 29736565 DOI: 10.1007/s12672-018-0333-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Apigenin is a flavonoid with well-documented anti-cancer properties; however, its mechanisms of action are still unclear. We previously identified apigenin as a potential phytoprogestin, a natural product with a chemical scaffold that interacts with the progesterone receptor (PR). Our objective was to characterize the ability of apigenin to interact with PR through molecular docking studies, in vitro activity assays, and the ability of apigenin to elicit progestin-like effects in vivo. Molecular docking confirmed that apigenin could interact with PR, though with lower affinity than progesterone due to fewer van der Waals interactions. In Ishikawa cells stably expressing PR-B, apigenin significantly increased progesterone response element/luciferase (PRE/Luc) activity at 5 and 10 μM, but not in the parental Ishikawa cells that lack PR expression. In the presence of 100 nM of progesterone, 10 μM apigenin reduced PRE/Luc activity, indicative of mixed agonist activity. Apigenin also triggered degradation of PR in Ishikawa PR-B cells as measured by western blot. Apigenin reduced proliferation of Ishikawa cells, but through a PR-independent mechanism. In contrast, apigenin and progesterone both stimulated proliferation of T47D cells, an effect blocked by RU486. Apigenin activated other nuclear receptors evidenced by increased luciferase activity in MDA-MB-231 cells, which are PR negative. In vivo, apigenin blocked the genistein-stimulated increase in uterine epithelial cell height; stimulated endometrial expression of Hand2, a transcription factor stimulated by PR, and significantly reduced genistein-induced proliferation. In summary, apigenin is a phytoprogestin, with mixed agonist activity that demonstrates activity in vivo by hindering estrogen receptor-mediated uterine proliferation.
Collapse
|
78
|
Salkho NM, Paul V, Kawak P, Vitor RF, Martins AM, Al Sayah M, Husseini GA. Ultrasonically controlled estrone-modified liposomes for estrogen-positive breast cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:462-472. [DOI: 10.1080/21691401.2018.1459634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Najla M. Salkho
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Pierre Kawak
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Rute F. Vitor
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ana M. Martins
- California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Mohammad Al Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
79
|
Zhang W, Hamouri F, Feng Z, Aujard I, Ducos B, Ye S, Weiss S, Volovitch M, Vriz S, Jullien L, Bensimon D. Control of Protein Activity and Gene Expression by Cyclofen-OH Uncaging. Chembiochem 2018; 19:1232-1238. [PMID: 29341391 DOI: 10.1002/cbic.201700630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 11/06/2022]
Abstract
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. Whereas many of these approaches use fusion between a light-activable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly, and locally in a live organism. We present that approach and its uses in a variety of physiological contexts.
Collapse
Affiliation(s)
- Weiting Zhang
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Fatima Hamouri
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Isabelle Aujard
- PASTEUR, Département de Chimie, École Normale Supérieure, UPMC Univ Paris 06, CNRS, PSL Research University, 75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, École Normale Supérieure, CNRS, PASTEUR, 75005, Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Shixin Ye
- Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR 7241, INSERM U1050, 11 place Marcellin Berthelot, 75005, Paris, France.,Department of Biology, Ecole Normale Supérieure, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR 7241, INSERM U1050, 11 place Marcellin Berthelot, 75005, Paris, France.,Department of Life Sciences, Paris-Diderot University, Sorbonne-Paris-Cité, 5 rue Thomas Mann, 75013, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure, UPMC Univ Paris 06, CNRS, PSL Research University, 75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, École Normale Supérieure, CNRS, PASTEUR, 75005, Paris, France
| | - David Bensimon
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France.,Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
80
|
Tam KJ, Dalal K, Hsing M, Cheng CW, Khosravi S, Yenki P, Tse C, Peacock JW, Sharma A, Chiang YT, Wang Y, Cherkasov A, Rennie PS, Gleave ME, Ong CJ. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget 2018; 8:9617-9633. [PMID: 28038451 PMCID: PMC5354758 DOI: 10.18632/oncotarget.14168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily of transcription factors and is central to prostate cancer (PCa) progression. Ligand-activated AR engages androgen response elements (AREs) at androgen-responsive genes to drive the expression of gene batteries involved in cell proliferation and cell fate. Understanding the transcriptional targets of the AR has become critical in apprehending the mechanisms driving treatment-resistant stages of PCa. Although AR transcription regulation has been extensively studied, the signaling networks downstream of AR are incompletely described. Semaphorin 3C (SEMA3C) is a secreted signaling protein with roles in nervous system and cardiac development but can also drive cellular growth and invasive characteristics in multiple cancers including PCa. Despite numerous findings that implicate SEMA3C in cancer progression, regulatory mechanisms governing its expression remain largely unknown. Here we identify and characterize an androgen response element within the SEMA3C locus. Using the AR-positive LNCaP PCa cell line, we show that SEMA3C expression is driven by AR through this element and that AR-mediated expression of SEMA3C is dependent on the transcription factor GATA2. SEMA3C has been shown to promote cellular growth in certain cell types so implicit to our findings is the discovery of direct regulation of a growth factor by AR. We also show that FOXA1 is a negative regulator of SEMA3C. These findings identify SEMA3C as a novel target of AR, GATA2, and FOXA1 and expand our understanding of semaphorin signaling and cancer biology.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Kush Dalal
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael Hsing
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Chi Wing Cheng
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Parvin Yenki
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Charan Tse
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Aishwariya Sharma
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Yan Ting Chiang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
81
|
Sánchez-García L, Wilkins-Rodriguez A, Salaiza-Suazo N, Morales-Montor J, Becker I. Dihydrotestosterone enhances growth and infectivity of Leishmania Mexicana. Parasite Immunol 2018; 40. [PMID: 29272044 DOI: 10.1111/pim.12512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022]
Abstract
A strong sex-associated susceptibility towards Leishmania has been reported in males, yet little is known on the effect of hormones in Leishmania physiopathogenicity. Due to the enhanced susceptibility of males to Leishmania mexicana infections, we were interested in analysing the effect exerted by the main androgen produced in males (DHT) on L. mexicana promastigotes. Thus, the aim of this study was to assess the regulation exerted by dihydrotestosterone (DHT) on L. mexicana replication, infectivity, survival and development of tissue lesions. Experiments included growth curves of L. mexicana promastigotes incubated with different doses of DHT, their infection rate, intracellular survival and lesion development in BALB/c mice. Our data show that DHT significantly enhances parasite replication, infection rate and survival in bone marrow-derived macrophages (BMMФ). Promastigotes in the presence of DHT produced significantly larger lesions in BALB/c earlobes. These results suggest that DHT probably plays a critical role during L. mexicana infections, and the higher susceptibility of males possibly relates to benefits gained by the parasite from host-derived hormones. Our data shed new light on the physiopathology of Leishmania infections and are the first attempt to understand the direct interaction between Leishmania and androgens, particularly DHT. Understanding this trans-regulation process employed by parasites to exploit host molecules sheds new light on L. mexicana physiopathogenesis and opens a possible field for studies on drug development.
Collapse
Affiliation(s)
- L Sánchez-García
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A Wilkins-Rodriguez
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - N Salaiza-Suazo
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J Morales-Montor
- Departamento de Inmunologìa, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - I Becker
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
82
|
Álvarez LD, Presman DM, Pecci A. Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain suggest a role of the lever-arm mobility in transcriptional output. PLoS One 2017; 12:e0189588. [PMID: 29244866 PMCID: PMC5731742 DOI: 10.1371/journal.pone.0189588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/29/2017] [Indexed: 11/19/2022] Open
Abstract
One of the first and essential steps in gene expression regulation involves the recruitment of transcription factors (TFs) to specific response elements located at enhancers and/or promoters of targeted genes. These DNA elements have a certain variability in both sequence and length, which may affect the final transcriptional output. The molecular mechanisms in which TFs integrate the subtle differences within specific recognition sequences to offer different transcriptional responses is still largely unknown. Here we used molecular dynamics simulations to study the DNA binding behavior of the glucocorticoid receptor (GR), a ligand-regulated TF with pleiotropic effects in almost all cells. By comparing the behavior of the wild type receptor and a well characterized Ala477Thr substitution within the rat GR DNA binding domain, we found that the region that connects the two-zinc fingers (i.e. the lever arm) would likely play a key role in GR transcriptional output.
Collapse
Affiliation(s)
- Lautaro Damián Álvarez
- Universidad de Buenos Aires, CONICET, UMYMFOR and Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- * E-mail:
| | - Diego Martín Presman
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, Unitec States of America
| | - Adalí Pecci
- Universidad de Buenos Aires, CONICET, IFIBYNE and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
83
|
Di Donato M, Cernera G, Giovannelli P, Galasso G, Bilancio A, Migliaccio A, Castoria G. Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol Cell Endocrinol 2017; 457:35-42. [PMID: 28257827 DOI: 10.1016/j.mce.2017.02.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are man-made substances widespread in the environment that include, among many others, bisphenol A (BPA), organochlorinated pesticides and hormone derivatives detectable in meat from animals raised in concentrated animal feeding operations. Increasing evidence indicates that EDCs have a negative impact on human health as well as on male and female fertility. They may also be associated with some endocrine diseases and increased incidence of breast and prostate cancer. This review aims to summarize available data on the (potential) impact of some common EDCs, focusing particularly on BPA, prostate cancer and their mechanisms of action. These compounds interfere with normal hormone signal pathway transduction, resulting in prolonged exposure of receptors to stimuli or interference with cellular hormone signaling in target cells. Understanding the effects of BPA and other EDCs as well as their molecular mechanism(s) may be useful in sensitizing the scientific community and the manufacturing industry to the importance of finding alternatives to their indiscriminate use.
Collapse
Affiliation(s)
- Marzia Di Donato
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Gustavo Cernera
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Pia Giovannelli
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Giovanni Galasso
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Antonio Bilancio
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Antimo Migliaccio
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy.
| | - Gabriella Castoria
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
84
|
Kot A, Zhong ZA, Zhang H, Lay YAE, Lane NE, Yao W. Sex dimorphic regulation of osteoprogenitor progesterone in bone stromal cells. J Mol Endocrinol 2017; 59:351-363. [PMID: 28871061 PMCID: PMC5633481 DOI: 10.1530/jme-17-0076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
Increasing peak bone mass is a promising strategy to prevent osteoporosis. A mouse model of global progesterone receptor (PR) ablation showed increased bone mass through a sex-dependent mechanism. Cre-Lox recombination was used to generate a mouse model of osteoprogenitor-specific PR inactivation, which recapitulated the high bone mass phenotype seen in the PR global knockout mouse mode. In this work, we employed RNA sequencing analysis to evaluate sex-independent and sex-dependent differences in gene transcription of osteoprogenitors of wild-type and PR conditional knockout mice. PR deletion caused marked sex hormone-dependent changes in gene transcription in male mice as compared to wild-type controls. These transcriptional differences revealed dysregulation in pathways involving immunomodulation, osteoclasts, bone anabolism, extracellular matrix interaction and matrix interaction. These results identified many potential mechanisms that may explain our observed high bone mass phenotype with sex differences when PR was selectively deleted in the MSCs.
Collapse
Affiliation(s)
- Alexander Kot
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Zhendong A Zhong
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Center for Cancer and Cell BiologyProgram in Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Hongliang Zhang
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Department of Emergency MedicineCenter for Difficult Diagnoses and Rare Diseases, Second Xiangya Hospital of the Central-South University, Changsha, Hunan, China
| | - Yu-An Evan Lay
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Nancy E Lane
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Wei Yao
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
85
|
Schanton M, Maymó JL, Pérez-Pérez A, Sánchez-Margalet V, Varone CL. Involvement of leptin in the molecular physiology of the placenta. Reproduction 2017; 155:R1-R12. [PMID: 29018059 DOI: 10.1530/rep-17-0512] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022]
Abstract
Leptin is a homeostatic regulator in the placenta where it promotes proliferation, protein synthesis and the expression of tolerogenic maternal response molecules such as HLA-G. Leptin also exerts an anti-apoptotic action in placenta controlling the expression of p53 master cell cycle regulator under different stress conditions. On the other hand, leptin is an integrative target of different placental stimuli. The expression of leptin in placenta is regulated by hCG, insulin, steroids, hypoxia and many other growth hormones, suggesting that it might have an important endocrine function in the trophoblastic cells. The leptin expression is induced involving the cAMP/PKA or cAMP/Epac pathways which have profound actions upon human trophoblast function. The activation of PI3K and MAPK pathways also participates in the leptin expression. Estrogens play a central role during pregnancy, particularly 17β-estradiol upregulates the leptin expression in placental cells through genomic and non-genomic actions. The leptin promoter analysis reveals specific elements that are active in placental cells. The transcription factors CREB, AP1, Sp1, NFκB and the coactivator CBP are involved in the placental leptin expression. Moreover, placental leptin promoter is a target of epigenetic marks such as DNA methylation and histone acetylation that regulates not only the leptin expression in placenta during pregnancy but also determines the predisposition of acquiring adult metabolism diseases. Taken together, all these results allow a better understanding of leptin function and regulatory mechanisms of leptin expression in human placental trophoblasts, and support the importance of leptin during pregnancy and in programming adult health.
Collapse
Affiliation(s)
- Malena Schanton
- Departamento de Química BiológicaUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Universidad de Buenos AiresCONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Julieta L Maymó
- Departamento de Química BiológicaUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Universidad de Buenos AiresCONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología MolecularHospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Víctor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología MolecularHospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Cecilia L Varone
- Departamento de Química BiológicaUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina .,Universidad de Buenos AiresCONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
86
|
Rohira AD, Lonard DM. Steroid receptor coactivators present a unique opportunity for drug development in hormone-dependent cancers. Biochem Pharmacol 2017; 140:1-7. [DOI: 10.1016/j.bcp.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/04/2017] [Indexed: 01/17/2023]
|
87
|
Lucafò M, Di Silvestre A, Romano M, Avian A, Antonelli R, Martelossi S, Naviglio S, Tommasini A, Stocco G, Ventura A, Decorti G, De Iudicibus S. Role of the Long Non-Coding RNA Growth Arrest-Specific 5 in Glucocorticoid Response in Children with Inflammatory Bowel Disease. Basic Clin Pharmacol Toxicol 2017; 122:87-93. [PMID: 28722800 DOI: 10.1111/bcpt.12851] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022]
Abstract
Glucocorticoids (GCs) are widely employed in inflammatory, autoimmune and neoplastic diseases, and, despite the introduction of novel therapies, remain the first-line treatment for inducing remission in inflammatory bowel disease (IBD). Given the high incidence of suboptimal response, associated with a significant number of side-effects, that are particularly severe in paediatric patients, the identification of subjects that are most likely to respond poorly to GCs is extremely important. Recent evidence suggests that the long non-coding RNA (lncRNA) GAS5 could be a potential marker of GC resistance. To address this issue, we evaluated the association between the lncRNA GAS5 and the efficacy of steroids, in terms of inhibition of proliferation, in two cell lines derived from colon and ovarian cancers, to confirm the sensitivity and specificity of these lncRNAs. These cells showed a different sensitivity to GCs and revealed differential expression of GAS5 after treatment. GAS5 was up-regulated in GC-resistant cells and accumulated more in the cytoplasm compared to the nucleus in response to the drug. The functions of GAS5 were assessed by silencing, and we found that GAS5 knock-down reduced the proliferation during GC treatment. Furthermore, for the first time, we measured GAS5 levels in 19 paediatric IBD patients at diagnosis and after the first cycle of GCs, and we demonstrated an up-regulation of the lncRNA in patients with unfavourable steroid response. Our preliminary results indicate that GAS5 could be considered a novel pharmacogenomic marker useful for the personalization of GC therapy.
Collapse
Affiliation(s)
- Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Alessia Di Silvestre
- PhD School in Science of Reproduction and Development, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alice Avian
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberta Antonelli
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Stefano Martelossi
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Samuele Naviglio
- PhD School in Science of Reproduction and Development, University of Trieste, Trieste, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Ventura
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Sara De Iudicibus
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| |
Collapse
|
88
|
Mapping the Dynamics of the Glucocorticoid Receptor within the Nuclear Landscape. Sci Rep 2017; 7:6219. [PMID: 28740156 PMCID: PMC5524710 DOI: 10.1038/s41598-017-06676-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/15/2017] [Indexed: 12/28/2022] Open
Abstract
The distribution of the transcription machinery among different sub-nuclear domains raises the question on how the architecture of the nucleus modulates the transcriptional response. Here, we used fluorescence fluctuation analyses to quantitatively explore the organization of the glucocorticoid receptor (GR) in the interphase nucleus of living cells. We found that this ligand-activated transcription factor diffuses within the nucleus and dynamically interacts with bodies enriched in the coregulator NCoA-2, DNA-dependent foci and chromatin targets. The distribution of the receptor among the nuclear compartments depends on NCoA-2 and the conformation of the receptor as assessed with synthetic ligands and GR mutants with impaired transcriptional abilities. Our results suggest that the partition of the receptor in different nuclear reservoirs ultimately regulates the concentration of receptor available for the interaction with specific targets, and thus has an impact on transcription regulation.
Collapse
|
89
|
Abstract
Neural stem cells (NSCs) have been proposed as a promising cellular source for the treatment of diseases in nervous systems. NSCs can self-renew and generate major cell types of the mammalian central nervous system throughout adulthood. NSCs exist not only in the embryo, but also in the adult brain neurogenic region: the subventricular zone (SVZ) of the lateral ventricle. Embryonic stem (ES) cells acquire NSC identity with a default mechanism. Under the regulations of leukemia inhibitory factor (LIF) and fibroblast growth factors, the NSCs then become neural progenitors. Neurotrophic and differentiation factors that regulate gene expression for controlling neural cell fate and function determine the differentiation of neural progenitors in the developing mammalian brain. For clinical application of NSCs in neurodegenerative disorders and damaged neurons, there are several critical problems that remain to be resolved: 1) how to obtain enough NSCs from reliable sources for autologous transplantation; 2) how to regulate neural plasticity of different adult stem cells; 3) how to control differentiation of NSCs in the adult nervous system. In order to understand the mechanisms that control NSC differentiation and behavior, we review the ontogeny of NSCs and other stem cell plasticity of neuronal differentiation. The role of NSCs and their regulation by neurotrophic factors in CNS development are also reviewed.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
| | - Don-Ching Lee
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
| | - Ing-Ming Chiu
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
- Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Institute of Medical Technology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
90
|
Campos-Parra AD, Mitznahuatl GC, Pedroza-Torres A, Romo RV, Reyes FIP, López-Urrutia E, Pérez-Plasencia C. Micro-RNAs as Potential Predictors of Response to Breast Cancer Systemic Therapy: Future Clinical Implications. Int J Mol Sci 2017; 18:E1182. [PMID: 28574440 PMCID: PMC5486005 DOI: 10.3390/ijms18061182] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 12/11/2022] Open
Abstract
Despite advances in diagnosis and new treatments such as targeted therapies, breast cancer (BC) is still the most prevalent tumor in women worldwide and the leading cause of death. The principal obstacle for successful BC treatment is the acquired or de novo resistance of the tumors to the systemic therapy (chemotherapy, endocrine, and targeted therapies) that patients receive. In the era of personalized treatment, several studies have focused on the search for biomarkers capable of predicting the response to this therapy; microRNAs (miRNAs) stand out among these markers due to their broad spectrum or potential clinical applications. miRNAs are conserved small non-coding RNAs that act as negative regulators of gene expression playing an important role in several cellular processes, such as cell proliferation, autophagy, genomic stability, and apoptosis. We reviewed recent data that describe the role of miRNAs as potential predictors of response to systemic treatments in BC. Furthermore, upon analyzing the collected published information, we noticed that the overexpression of miR-155, miR-222, miR-125b, and miR-21 predicts the resistance to the most common systemic treatments; nonetheless, the function of these particular miRNAs must be carefully studied and further analyses are still necessary to increase knowledge about their role and future potential clinical uses in BC.
Collapse
Affiliation(s)
- Alma D Campos-Parra
- Laboratorio de Genomica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Gerardo Cuamani Mitznahuatl
- Laboratorio de Genomica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Abraham Pedroza-Torres
- Laboratorio de Genomica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
- CATEDRA-CONACyT, Av. De los Insurgente Sur 1582, Col. Crédito Constructor., C.P. 03940 Benito Juárez, Ciudad de México, Mexico.
| | - Rafael Vázquez Romo
- Departamento de Cirugia de Tumores mamarios, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Fany Iris Porras Reyes
- Servicio de Anatomia Patologica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Eduardo López-Urrutia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de Mexico (UNAM), Av. De Los Barrios 1, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, C.P. 54090 Tlalnepantla, México, Mexico.
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de Mexico (UNAM), Av. De Los Barrios 1, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, C.P. 54090 Tlalnepantla, México, Mexico.
| |
Collapse
|
91
|
Barton VN, Christenson JL, Gordon MA, Greene LI, Rogers TJ, Butterfield K, Babbs B, Spoelstra NS, D'Amato NC, Elias A, Richer JK. Androgen Receptor Supports an Anchorage-Independent, Cancer Stem Cell-like Population in Triple-Negative Breast Cancer. Cancer Res 2017; 77:3455-3466. [PMID: 28512248 DOI: 10.1158/0008-5472.can-16-3240] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/17/2017] [Accepted: 05/10/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Valerie N Barton
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Michael A Gordon
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lisa I Greene
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Thomas J Rogers
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Kiel Butterfield
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Beatrice Babbs
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Nicholas C D'Amato
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Anthony Elias
- Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado.
| |
Collapse
|
92
|
Grbesa I, Hakim O. Genomic effects of glucocorticoids. PROTOPLASMA 2017; 254:1175-1185. [PMID: 28013411 DOI: 10.1007/s00709-016-1063-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Glucocorticoids and their receptor (GR) have been an important area of research because of their pleiotropic physiological functions and extensive use in the clinic. In addition, the association between GR and glucocorticoids, which is highly specific, leads to rapid nuclear translocation where GR associates with chromatin to regulate gene transcription. This simplified model system has been instrumental for studying the complexity of transcription regulation processes occurring at chromatin. In this review we discuss our current understanding of GR action that has been enhanced by recent developments in genome wide measurements of chromatin accessibility, histone marks, chromatin remodeling and 3D chromatin structure in various cell types responding to glucocorticoids.
Collapse
Affiliation(s)
- Ivana Grbesa
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, 5290002, Ramat-Gan, Israel
| | - Ofir Hakim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
93
|
Genotypes and Haplotypes of the Estrogen Receptor α Gene ( ESR1 ) Are Associated With Female-to-Male Gender Dysphoria. J Sex Med 2017; 14:464-472. [DOI: 10.1016/j.jsxm.2016.12.234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022]
|
94
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
95
|
Saeed A, Hoekstra M, Hoeke MO, Heegsma J, Faber KN. The interrelationship between bile acid and vitamin A homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:496-512. [PMID: 28111285 DOI: 10.1016/j.bbalip.2017.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A is a fat-soluble vitamin important for vision, reproduction, embryonic development, cell differentiation, epithelial barrier function and adequate immune responses. Efficient absorption of dietary vitamin A depends on the fat-solubilizing properties of bile acids. Bile acids are synthesized in the liver and maintained in an enterohepatic circulation. The liver is also the main storage site for vitamin A in the mammalian body, where an intimate collaboration between hepatocytes and hepatic stellate cells leads to the accumulation of retinyl esters in large cytoplasmic lipid droplet hepatic stellate cells. Chronic liver diseases are often characterized by disturbed bile acid and vitamin A homeostasis, where bile production is impaired and hepatic stellate cells lose their vitamin A in a transdifferentiation process to myofibroblasts, cells that produce excessive extracellular matrix proteins leading to fibrosis. Chronic liver diseases thus may lead to vitamin A deficiency. Recent data reveal an intricate crosstalk between vitamin A metabolites and bile acids, in part via the Retinoic Acid Receptor (RAR), Retinoid X Receptor (RXR) and the Farnesoid X Receptor (FXR), in maintaining vitamin A and bile acid homeostasis. Here, we provide an overview of the various levels of "communication" between vitamin A metabolites and bile acids and its relevance for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Institute of Molecular biology & Bio-technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Mark Hoekstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Martijn Oscar Hoeke
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
96
|
Castoria G, Auricchio F, Migliaccio A. Extranuclear partners of androgen receptor: at the crossroads of proliferation, migration, and neuritogenesis. FASEB J 2016; 31:1289-1300. [PMID: 28031322 DOI: 10.1096/fj.201601047r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023]
Abstract
In this review, we focus on the role played by the protein partners of ligand-activated extranuclear androgen receptor (AR) in the final effects of hormone action, such as proliferation, migration, and neuritogenesis. The choice of AR partner, at least in part, depends on cell type. Androgen-activated receptor directly associates with cytoplasmic Src tyrosine kinase in epithelial cells, whereas in mesenchymal and neuronal cells, it prevalently interacts with filamin A. In the former, proliferation represents the final hormonal outcome, whereas in the latter, either migration or neuritogenesis, respectively, occurs. Furthermore, AR partner filamin A is replaced with Src when mesenchymal cells are stimulated with very low androgen concentrations. Consequently, the migratory effect is replaced by mitogenesis. Use of peptides that prevent receptor/partner assembly abolishes the effects that are dependent on their association and offers new therapeutic approaches to AR-related diseases. Perturbation of migration is often associated with metastatic spreading in cancer. In turn, cell cycle aberration causes tumors to grow faster, whereas toxic signaling triggers neurodegenerative events in the CNS. Here, we provide examples of new tools that interfere in rapid androgen effects, including migration, proliferation, and neuronal differentiation, together with their potential therapeutic applications in AR-dependent diseases-mainly prostate cancer and neurodegenerative disorders.-Castoria, G., Auricchio, F., Migliaccio, A. Extranuclear partners of androgen receptor: at the crossroads of proliferation, migration, and neuritogenesis.
Collapse
Affiliation(s)
- Gabriella Castoria
- Department of Biochemistry, Biophysics, and General Pathology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Ferdinando Auricchio
- Department of Biochemistry, Biophysics, and General Pathology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics, and General Pathology, University of Campania "Luigi Vanvitelli," Naples, Italy
| |
Collapse
|
97
|
Kwakowsky A, Milne MR, Waldvogel HJ, Faull RL. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease. Int J Mol Sci 2016; 17:E2122. [PMID: 27999310 PMCID: PMC5187922 DOI: 10.3390/ijms17122122] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Michael R Milne
- School of Biomedical Sciences, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
98
|
Di Zazzo E, Galasso G, Giovannelli P, Di Donato M, Di Santi A, Cernera G, Rossi V, Abbondanza C, Moncharmont B, Sinisi AA, Castoria G, Migliaccio A. Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget 2016; 7:193-208. [PMID: 26506594 PMCID: PMC4807992 DOI: 10.18632/oncotarget.6220] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men, and androgen deprivation therapy still represents the primary treatment for prostate cancer patients. This approach, however, frequently fails and patients develop castration-resistant prostate cancer, which is almost untreatable. Cancer cells are characterized by a hierarchical organization, and stem/progenitor cells are endowed with tumor-initiating activity. Accumulating evidence indicates that prostate cancer stem cells lack the androgen receptor and are, indeed, resistant to androgen deprivation therapy. In contrast, these cells express classical (α and/or β) and novel (GPR30) estrogen receptors, which may represent new putative targets in prostate cancer treatment. In the present review, we discuss the still-debated mechanisms, both genomic and non-genomic, by which androgen and estradiol receptors (classical and novel) mediate the hormonal control of prostate cell stemness, transformation, and the continued growth of prostate cancer. Recent preclinical and clinical findings obtained using new androgen receptor antagonists, anti-estrogens, or compounds such as enhancers of androgen receptor degradation and peptides inhibiting non-genomic androgen functions are also presented. These new drugs will likely lead to significant advances in prostate cancer therapy.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Giovanni Galasso
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Pia Giovannelli
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Marzia Di Donato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Annalisa Di Santi
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Gustavo Cernera
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Valentina Rossi
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Ciro Abbondanza
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | | | - Antonio Agostino Sinisi
- Endocrinology Section, Department of Cardio-Thoracic and Respiratory Diseases, II University of Naples, Naples, Italy
| | - Gabriella Castoria
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| |
Collapse
|
99
|
Presman DM, Hager GL. More than meets the dimer: What is the quaternary structure of the glucocorticoid receptor? Transcription 2016; 8:32-39. [PMID: 27764575 PMCID: PMC5279712 DOI: 10.1080/21541264.2016.1249045] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is widely accepted that the glucocorticoid receptor (GR), a ligand-regulated transcription factor that triggers anti-inflammatory responses, binds specific response elements as a homodimer. Here, we will discuss the original primary data that established this model and contrast it with a recent report characterizing the GR-DNA complex as a tetramer.
Collapse
Affiliation(s)
- Diego M Presman
- a Laboratory of Receptor Biology and Gene Expression , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Gordon L Hager
- a Laboratory of Receptor Biology and Gene Expression , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
100
|
Nugent BM, Stiver KA, Alonzo SH, Hofmann HA. Neuroendocrine profiles associated with discrete behavioural variation in
Symphodus ocellatus
, a species with male alternative reproductive tactics. Mol Ecol 2016; 25:5212-5227. [DOI: 10.1111/mec.13828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Affiliation(s)
- B. M. Nugent
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect St. New Haven CT 06520 USA
- Department of Integrative Biology Center for Computational Biology and Bioinformatics The University of Texas at Austin 2415 Speedway Austin TX 78712 USA
| | - K. A. Stiver
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect St. New Haven CT 06520 USA
- Department of Psychology Southern Connecticut State University 501 Crescent St. New Haven CT 06515 USA
| | - S. H. Alonzo
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect St. New Haven CT 06520 USA
- Department of Ecology and Evolutionary Biology University of California Santa Cruz 1156 High St. Santa Cruz CA 95064 USA
| | - H. A. Hofmann
- Department of Integrative Biology Center for Computational Biology and Bioinformatics The University of Texas at Austin 2415 Speedway Austin TX 78712 USA
| |
Collapse
|