51
|
Chen Y, Wang K, Di J, Guan C, Wang S, Li Q, Qu Y. Mutation of the BAG-1 domain decreases its protective effect against hypoxia/reoxygenation by regulating HSP70 and the PI3K/AKT signalling pathway in SY-SH5Y cells. Brain Res 2020; 1751:147192. [PMID: 33152339 DOI: 10.1016/j.brainres.2020.147192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
BCL-2-associated athanogene-1 (BAG-1) is a multifunctional protein that was first identified as a binding partner of BCL-2. Our previous results indicated that BAG-1 large (BAG-1L) overexpression significantly increases cell viability and decreases apoptosis by upregulating HSP70 and p-AKT in response to hypoxia/reoxygenation in SY-SH5Y cells. However, the functional domain of BAG-1L that exerts these protective effects against hypoxic damage has not been identified. In this study, we examined changes in HSP70 and p-AKT protein levels in SH-SY5Y cells with or without BAG-1L domain mutation after six hours of hypoxia/reoxygenation treatment. The BAG-1 domain mutant (BAG-1MUT) attenuated neuronal viability and proliferation while enhancing apoptosis after hypoxia/reoxygenation, which was achieved in part by inhibiting the HSP70 and p-AKT signalling pathways. This evidence illustrates that the BAG-1 domain plays a key role in protecting cells from hypoxia/reoxygenation injury.
Collapse
Affiliation(s)
- Ying Chen
- School of Nursing, Medical College of Qingdao University, Qingdao 26600, Shandong, China; Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Keke Wang
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jie Di
- School of Nursing, Medical College of Qingdao University, Qingdao 26600, Shandong, China; Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Chun Guan
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Sumei Wang
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Qingshu Li
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| | - Yan Qu
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| |
Collapse
|
52
|
Wang J, Nan N, Li N, Liu Y, Wang TJ, Hwang I, Liu B, Xu ZY. A DNA Methylation Reader-Chaperone Regulator-Transcription Factor Complex Activates OsHKT1;5 Expression during Salinity Stress. THE PLANT CELL 2020; 32:3535-3558. [PMID: 32938753 PMCID: PMC7610284 DOI: 10.1105/tpc.20.00301] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Irrigated lands are increasingly salinized, which adversely affects agricultural productivity. To respond to high sodium (Na+) concentrations, plants harbor multiple Na+ transport systems. Rice (Oryza sativa) HIGH-AFFINITY POTASSIUM (K+) TRANSPORTER1;5 (OsHKT1;5), a Na+-selective transporter, maintains K+/Na+ homeostasis under salt stress. However, the mechanism regulating OsHKT1;5 expression remains unknown. Here, we present evidence that a protein complex consisting of rice BCL-2-ASSOCIATED ATHANOGENE4 (OsBAG4), OsMYB106, and OsSUVH7 regulates OsHKT1;5 expression in response to salt stress. We isolated a salt stress-sensitive mutant, osbag4-1, that showed significantly reduced OsHKT1;5 expression and reduced K+ and elevated Na+ levels in shoots. Using comparative interactomics, we isolated two OsBAG4-interacting proteins, OsMYB106 (a MYB transcription factor) and OsSUVH7 (a DNA methylation reader), that were crucial for OsHKT1;5 expression. OsMYB106 and OsSUVH7 bound to the MYB binding cis-element (MYBE) and the miniature inverted-repeat transposable element (MITE) upstream of the MYBE, respectively, in the OsHKT1;5 promoter. OsBAG4 functioned as a bridge between OsSUVH7 and OsMYB106 to facilitate OsMYB106 binding to the consensus MYBE in the OsHKT1;5 promoter, thereby activating the OsHKT1;5 expression. Elimination of the MITE or knockout of OsMYB106 or OsSUVH7 decreased OsHKT1;5 expression and increased salt sensitivity. Our findings reveal a transcriptional complex, consisting of a DNA methylation reader, a chaperone regulator, and a transcription factor, that collaboratively regulate OsHKT1;5 expression during salinity stress.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
53
|
Thanthrige N, Jain S, Bhowmik SD, Ferguson BJ, Kabbage M, Mundree S, Williams B. Centrality of BAGs in Plant PCD, Stress Responses, and Host Defense. TRENDS IN PLANT SCIENCE 2020; 25:1131-1140. [PMID: 32467063 DOI: 10.1016/j.tplants.2020.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 05/02/2023]
Abstract
Programmed cell death (PCD) is a genetically regulated process for the selective demise of unwanted and damaged cells. Although our understanding of plant PCD pathways has advanced significantly, doubts remain on the extent of conservation of animal apoptosis in plants. At least at the primary sequence level, plants do not encode the regulators of animal apoptosis. Structural analyses have enabled the identification of the B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones in plants. This discovery suggests that some aspects of animal PCD are conserved in plants, while the varied subcellular localization of plant BAGs indicates that they may have evolved distinct functions. Here we review plant BAG proteins, with an emphasis on their roles in the regulation of plant PCD.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sachin Jain
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sudipta Das Bhowmik
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett J Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
54
|
Zhang X, Di C, Chen Y, Wang J, Su R, Huang G, Xu C, Chen X, Long F, Yang H, Zhang H. Multilevel regulation and molecular mechanism of poly (rC)-binding protein 1 in cancer. FASEB J 2020; 34:15647-15658. [PMID: 33058239 DOI: 10.1096/fj.202000911r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023]
Abstract
Poly (rC)-binding protein 1 (PCBP1), an RNA- or DNA-binding protein with a relative molecular weight of 38 kDa, which is characterized by downregulation in many cancer types. Numerous cases have indicated that PCBP1 could be considered as a tumor suppressor to inhibit tumorigenesis, development, and metastasis. In the current review, we described the multilevel regulatory roles of PCBP1, including gene transcription, alternative splicing, and translation of many cancer-related genes. Additionally, we also provided a brief overview about the inhibitory effect of PCBP1 on most common tumors. More importantly, we summarized the current research status about PCBP1 in hypoxic microenvironment, autophagy, apoptosis, and chemotherapy of cancer cells, aiming to clarify the molecular mechanisms of PCBP1 in cancer. Taken together, in-depth study of PCBP1 in cancer may provide new ideas for cancer therapy.
Collapse
Affiliation(s)
- Xuetian Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ruowei Su
- The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guomin Huang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Caipeng Xu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Long
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow, Soochow, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
55
|
Wanderoy S, Hees JT, Klesse R, Edlich F, Harbauer AB. Kill one or kill the many: interplay between mitophagy and apoptosis. Biol Chem 2020; 402:73-88. [PMID: 33544491 DOI: 10.1515/hsz-2020-0231] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are key players of cellular metabolism, Ca2+ homeostasis, and apoptosis. The functionality of mitochondria is tightly regulated, and dysfunctional mitochondria are removed via mitophagy, a specialized form of autophagy that is compromised in hereditary forms of Parkinson's disease. Through mitophagy, cells are able to cope with mitochondrial stress until the damage becomes too great, which leads to the activation of pro-apoptotic BCL-2 family proteins located on the outer mitochondrial membrane. Active pro-apoptotic BCL-2 proteins facilitate the release of cytochrome c from the mitochondrial intermembrane space (IMS) into the cytosol, committing the cell to apoptosis by activating a cascade of cysteinyl-aspartate specific proteases (caspases). We are only beginning to understand how the choice between mitophagy and the activation of caspases is determined on the mitochondrial surface. Intriguingly in neurons, caspase activation also plays a non-apoptotic role in synaptic plasticity. Here we review the current knowledge on the interplay between mitophagy and caspase activation with a special focus on the central nervous system.
Collapse
Affiliation(s)
- Simone Wanderoy
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - J Tabitha Hees
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - Ramona Klesse
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Angelika B Harbauer
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
56
|
Wang J, Yeckel G, Kandoth PK, Wasala L, Hussey RS, Davis EL, Baum TJ, Mitchum MG. Targeted suppression of soybean BAG6-induced cell death in yeast by soybean cyst nematode effectors. MOLECULAR PLANT PATHOLOGY 2020; 21:1227-1239. [PMID: 32686295 PMCID: PMC7411569 DOI: 10.1111/mpp.12970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/29/2023]
Abstract
While numerous effectors that suppress plant immunity have been identified from bacteria, fungi, and oomycete pathogens, relatively little is known for nematode effectors. Several dozen effectors have been reported from the soybean cyst nematode (SCN). Previous studies suggest that a hypersensitive response-like programmed cell death is triggered at nematode feeding sites in soybean during an incompatible interaction. However, virulent SCN populations overcome this incompatibility using unknown mechanisms. A soybean BAG6 (Bcl-2 associated anthanogene 6) gene previously reported by us to be highly up-regulated in degenerating feeding sites induced by SCN in a resistant soybean line was attenuated in response to a virulent SCN population. We show that GmBAG6-1 induces cell death in yeast like its Arabidopsis homolog AtBAG6 and also in soybean. This led us to hypothesize that virulent SCN may target GmBAG6-1 as part of their strategy to overcome soybean defence responses during infection. Thus, we used a yeast viability assay to screen SCN effector candidates for their ability to specifically suppress GmBAG6-1-induced cell death. We identified several effectors that strongly suppressed cell death mediated by GmBAG6-1. Two effectors identified as suppressors showed direct interaction with GmBAG6-1 in yeast, suggesting that one mechanism of cell death suppression may occur through an interaction with this host protein.
Collapse
Affiliation(s)
- Jianying Wang
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
| | - Greg Yeckel
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
Corteva AgriscienceJohnstonIAUSA
| | - Pramod K. Kandoth
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
National Agri‐food Biotechnology InstituteMohaliIndia
| | - Lakmini Wasala
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
Department of Veterinary PathobiologyUniversity of MissouriColumbiaMOUSA
| | | | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
57
|
Friesen EL, Zhang YT, Earnshaw R, De Snoo ML, O'Hara DM, Agapova V, Chau H, Ngana S, Chen KS, Kalia LV, Kalia SK. BAG5 Promotes Alpha-Synuclein Oligomer Formation and Functionally Interacts With the Autophagy Adaptor Protein p62. Front Cell Dev Biol 2020; 8:716. [PMID: 32850835 PMCID: PMC7417480 DOI: 10.3389/fcell.2020.00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones are critical to maintaining intracellular proteostasis and have been shown to have a protective role against alpha-synuclein-mediated toxicity. Co-chaperone proteins regulate the activity of molecular chaperones and connect the chaperone network to protein degradation and cell death pathways. Bcl-2 associated athanogene 5 (BAG5) is a co-chaperone that modulates proteostasis by inhibiting the activity of Heat shock protein 70 (Hsp70) and several E3 ubiquitin ligases, resulting in enhanced neurodegeneration in models of Parkinson's disease (PD). Here we identify a novel interaction between BAG5 and p62/sequestosome-1 (SQSTM1), suggesting that BAG5 may bridge the chaperone network to autophagy-mediated protein degradation. We found that BAG5 enhanced the formation of pathogenic alpha-synuclein oligomers and regulated the levels and subcellular distribution of p62. These results extend the role of BAG5 in alpha-synuclein processing and intracellular proteostasis.
Collapse
Affiliation(s)
- Erik L Friesen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Yu Tong Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Rebecca Earnshaw
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Mitch L De Snoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Darren M O'Hara
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Victoria Agapova
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Hien Chau
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Sophie Ngana
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Kevin S Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Lorraine V Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
58
|
TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity. Cell Death Dis 2020; 11:415. [PMID: 32488063 PMCID: PMC7265562 DOI: 10.1038/s41419-020-2626-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/07/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022]
Abstract
Growing evidences suggest that sustained neuroinflammation, caused by microglia overactivation, is implicated in the development and aggravation of several neurological and psychiatric disorders. In some pathological conditions, microglia produce increased levels of cytotoxic and inflammatory mediators, such as tumor necrosis factor alpha (TNF-α), which can reactivate microglia in a positive feedback mechanism. However, specific molecular mediators that can be effectively targeted to control TNF-α-mediated microglia overactivation, are yet to be uncovered. In this context, we aim to identify novel TNF-α-mediated micro(mi)RNAs and to dissect their roles in microglia activation, as well as to explore their impact on the cellular communication with neurons. A miRNA microarray, followed by RT-qPCR validation, was performed on TNF-α-stimulated primary rat microglia. Gain- and loss-of-function in vitro assays and proteomic analysis were used to dissect the role of miR-342 in microglia activation. Co-cultures of microglia with hippocampal neurons, using a microfluidic system, were performed to understand the impact on neurotoxicity. Stimulation of primary rat microglia with TNF-α led to an upregulation of Nos2, Tnf, and Il1b mRNAs. In addition, ph-NF-kB p65 levels were also increased. miRNA microarray analysis followed by RT-qPCR validation revealed that TNF-α stimulation induced the upregulation of miR-342. Interestingly, miR-342 overexpression in N9 microglia was sufficient to activate the NF-kB pathway by inhibiting BAG-1, leading to increased secretion of TNF-α and IL-1β. Conversely, miR-342 inhibition led to a strong decrease in the levels of these cytokines after TNF-α activation. In fact, both TNF-α-stimulated and miR-342-overexpressing microglia drastically affected neuron viability. Remarkably, increased levels of nitrites were detected in the supernatants of these co-cultures. Globally, our findings show that miR-342 is a crucial mediator of TNF-α-mediated microglia activation and a potential target to tackle microglia-driven neuroinflammation.
Collapse
|
59
|
BAG3 Pro209 mutants associated with myopathy and neuropathy relocate chaperones of the CASA-complex to aggresomes. Sci Rep 2020; 10:8755. [PMID: 32472079 PMCID: PMC7260189 DOI: 10.1038/s41598-020-65664-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
Three missense mutations targeting the same proline 209 (Pro209) codon in the co-chaperone Bcl2-associated athanogene 3 (BAG3) have been reported to cause distal myopathy, dilated cardiomyopathy or Charcot-Marie-Tooth type 2 neuropathy. Yet, it is unclear whether distinct molecular mechanisms underlie the variable clinical spectrum of the rare patients carrying these three heterozygous Pro209 mutations in BAG3. Here, we studied all three variants and compared them to the BAG3_Glu455Lys mutant, which causes dilated cardiomyopathy. We found that all BAG3_Pro209 mutants have acquired a toxic gain-of-function, which causes these variants to accumulate in the form of insoluble HDAC6- and vimentin-positive aggresomes. The aggresomes formed by mutant BAG3 led to a relocation of other chaperones such as HSPB8 and Hsp70, which, together with BAG3, promote the so-called chaperone-assisted selective autophagy (CASA). As a consequence of their increased aggregation-proneness, mutant BAG3 trapped ubiquitinylated client proteins at the aggresome, preventing their efficient clearance. Combined, these data show that all BAG3_Pro209 mutants, irrespective of their different clinical phenotypes, are characterized by a gain-of-function that contributes to the gradual loss of protein homeostasis.
Collapse
|
60
|
Yang Z, Cao X, Ma Y, Cheng J, Song C, Jiang R, Wang X, Huang Y, Buren C, Lan X, Ibrahim EE, Hu L, Chen H. Novel copy number variation of the BAG4 gene is associated with growth traits in three Chinese sheep populations. Anim Biotechnol 2020; 32:461-469. [PMID: 32022644 DOI: 10.1080/10495398.2020.1719124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Copy number variation (CNV) as an important source of genetic phenotypic and variation is related to complex phenotypic traits. The aim of this study was to investigate the potential associations of BAG4 (Bcl-2-associated athanogene 4) copy numbers variations with sheep growth traits in three Chinese sheep breeds (CKS, STHS, and HS). BAG4 is located within the stature and udder attachment quantitative trait loci (QTL) in sheep. Expression profiling revealed that the BAG4 gene was widely expressed in the tissues of sheep. The distribution of BAG4 gene copy number showed that the loss of copy number was more dominant in CKS and HS which was different from that in STHS. Statistical analysis revealed that the BAG4 CNV was significantly associated with body height in CKS (p < 0.05), with body slanting length in HS (p < 0.05), and with body height and hip cross height in STHS (p < 0.05). The χ2 values showed significant differences in the BAG4 CNV distribution frequency between varieties. In conclusion, the results establish the association between BAG4 CNV and sheep traits and suggest that BAG4 CNV may be a promising marker for the molecular breeding of Chinese sheep.
Collapse
Affiliation(s)
- Zhaoxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiukai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yilei Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaogang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaogetu Buren
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Elsaeid Elnour Ibrahim
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
61
|
Mariotto E, Viola G, Zanon C, Aveic S. A BAG's life: Every connection matters in cancer. Pharmacol Ther 2020; 209:107498. [PMID: 32001313 DOI: 10.1016/j.pharmthera.2020.107498] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
The members of the BCL-2 associated athanogene (BAG) family participate in the regulation of a variety of interrelated physiological processes, such as autophagy, apoptosis, and protein homeostasis. Under normal circumstances, the six BAG members described in mammals (BAG1-6) principally assist the 70 kDa heat-shock protein (HSP70) in protein folding; however, their role as oncogenes is becoming increasingly evident. Deregulation of the BAG multigene family has been associated with cell transformation, tumor recurrence, and drug resistance. In addition to BAG overexpression, BAG members are also involved in many oncogenic protein-protein interactions (PPIs). As such, either the inhibition of overloading BAGs or of specific BAG-client protein interactions could have paramount therapeutic value. In this review, we will examine the role of each BAG family member in different malignancies, focusing on their modular structure, which enables interaction with a variety of proteins to exert their pro-tumorigenic role. Lastly, critical remarks on the unmet needs for proposing effective BAG inhibitors will be pointed out.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy.
| | - Giampietro Viola
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| |
Collapse
|
62
|
Jodoin R, Carrier JC, Rivard N, Bisaillon M, Perreault JP. G-quadruplex located in the 5'UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance. Nucleic Acids Res 2019; 47:10247-10266. [PMID: 31504805 PMCID: PMC6821271 DOI: 10.1093/nar/gkz777] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/19/2022] Open
Abstract
The anti-apoptotic BAG-1 protein isoforms are known to be overexpressed in colorectal tumors and are considered to be potential therapeutic targets. The isoforms are derived from alternative translation initiations occuring at four in-frame start codons of a single mRNA transcript. Its 5′UTR also contains an internal ribosome entry site (IRES) regulating the cap-independent translation of the transcript. An RNA G-quadruplex (rG4) is located at the 5′end of the BAG-1 5′UTR, upstream of the known cis-regulatory elements. Herein, we observed that the expression of BAG-1 isoforms is post-transcriptionally regulated in colorectal cancer cells and tumors, and that stabilisation of the rG4 by small molecules ligands reduces the expression of endogenous BAG-1 isoforms. We demonstrated a critical role for the rG4 in the control of both cap-dependent and independent translation of the BAG-1 mRNA in colorectal cancer cells. Additionally, we found an upstream ORF that also represses BAG-1 mRNA translation. The structural probing of the complete 5′UTR showed that the rG4 acts as a steric block which controls the initiation of translation at each start codon of the transcript and also maintains the global 5′UTR secondary structure required for IRES-dependent translation.
Collapse
Affiliation(s)
- Rachel Jodoin
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Julie C Carrier
- Service de Gastro-entérologie, Département de médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nathalie Rivard
- Département d'Anatomie et de Biologie Cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
63
|
Ma X, Tang X, Lin S, Gong Y, Tran NT, Zheng H, Ma H, Aweya JJ, Zhang Y, Li S. SpBAG1 promotes the WSSV infection by inhibiting apoptosis in mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2019; 94:852-860. [PMID: 31600594 DOI: 10.1016/j.fsi.2019.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Bcl-2 associated athanogene-1 (BAG1) is involved in various signalling pathways including apoptosis, cell proliferation, gene transcriptional regulation and signal transduction in animals. However the functions of BAG1 during the antiviral response of mud crab Scylla paramamosain is still unclear. In this study, the mud crab BAG1 (SpBAG1) was characterized to consist of 1761 nucleotides, containing an opening frame of 630bp encoding 209 amino acids with an ubiquitin domain and a BAG1 domain. SpBAG1 was found to be significantly up-regulated at 6 h-24 h, but down-regulated from 48 h-72 h in the hemocytes of mud crab after challenge with white spot syndrome virus (WSSV). RNAi knock-down of SpBAG1 significantly reduced the copies of WSSV and increased the apoptotic rate in mud crabs. The finding from this study suggested that SpBAG1 could promote the WSSV infection by inhibiting apoptosis in mud crab. Therefore, to the best of our knowledge, this is the first study demonstrating the role of SpBAG1 as a novel apoptosis inhibitor to promote virus infection in mud crab.
Collapse
Affiliation(s)
- Xiaomeng Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shanmeng Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
64
|
Lv J, Zhang F, Zhai C, Wang G, Qu Y. Bag-1 Silence Sensitizes Non-Small Cell Lung Cancer Cells To Cisplatin Through Multiple Gene Pathways. Onco Targets Ther 2019; 12:8977-8989. [PMID: 31802907 PMCID: PMC6827518 DOI: 10.2147/ott.s218182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose B-cell lymphoma-2 (Bcl-2) associated athanogene 1 (Bag-1) is a multifunctional protein, and Bag -1 overexpression is associated with progression, metastasis, and drug resistance in lung cancer. This study assessed the effects of Bag-1 siRNA on sensitization of cisplatin on non-small cell lung cancer (NSCLC) cells. Material and methods NSCLC A549 cell line was transfected with Bag-1 or negative control siRNA and then treated with cisplatin for cell viability, CCK-8, LDH, and flow cytometry assays. The Ca2+ levels were analyzed using Fluo-3/AM fluorescence staining, and the protein levels were assessed using Western blot analysis. Results Bag-1 siRNA significantly knocked down Bag-1 expression and inhibited cell invasion versus the negative control siRNA, while Bag-1 silence sensitized cisplatin to induce A549 cells to apoptosis by induction of cell cycle G1 arrest. At protein level, Bag-1 silence reduced the expression ratio of Bcl-2 to Bcl-2 associated X protein (Bax), downregulated activity of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways, and potently upregulated the calcium signaling-mediated pathway. Conclusion This study demonstrated that Bag-1 silencing sensitized A549 to cisplatin to enhance A549 cell apoptosis by modified multiple gene pathways. Further study will evaluate the usefulness of Bag-1 siRNA as a potential targeting therapy for NSCLC.
Collapse
Affiliation(s)
- Jiling Lv
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266071, Shandong, People's Republic of China.,Department of Respiratory Medicine, The First Hospital of Zibo, Zibo 255200, Shandong, People's Republic of China
| | - Fang Zhang
- Department of Radiotherapy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 26400, Shandong, People's Republic of China
| | - Congying Zhai
- Department of Respiratory Medicine, The First Hospital of Zibo, Zibo 255200, Shandong, People's Republic of China
| | - Gejin Wang
- Department of Nursing, Zibo Vocational Institute, Zibo 255314, Shandong, People's Republic of China
| | - Yan Qu
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| |
Collapse
|
65
|
Song Y, Li Z, Wang Y, Qu Y, Li Q, Man X, Wang F, Hu D. Inhibition of BAG‐1 induced SH‐SY5Y cell apoptosis without affecting Hsp70 expression. J Cell Biochem 2019; 121:1728-1735. [PMID: 31609014 DOI: 10.1002/jcb.29408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/28/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Yan‐Kun Song
- Department of Pediatric Emergency The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Zhi Li
- Department of Intensive Care Unit Qingdao Municipal Hospital Affiliated to Qingdao University Qingdao Shandong China
| | - Yun Wang
- Department of Pediatric Emergency The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Yan Qu
- Department of Intensive Care Unit Qingdao Municipal Hospital Affiliated to Qingdao University Qingdao Shandong China
| | - Qing‐Shu Li
- Department of Intensive Care Unit Qingdao Municipal Hospital Affiliated to Qingdao University Qingdao Shandong China
| | - Xiao‐Yun Man
- Department of Intensive Care Unit Qingdao Municipal Hospital Affiliated to Qingdao University Qingdao Shandong China
| | - Feng‐Tao Wang
- Department of Pediatric Emergency The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Dan Hu
- Department of Intensive Care Unit Qingdao Municipal Hospital Affiliated to Qingdao University Qingdao Shandong China
| |
Collapse
|
66
|
Bozdogan O, Atasoy P, Bozdogan N, Erekul S, Batislam E, Yilmaz E, Başar MM. Bag-1 Expression in Hyperplastic and Neoplastic Prostate Tissue: Is There Any Relationship with BCL-Related Proteins and Androgen Receptor Status? TUMORI JOURNAL 2019; 91:539-45. [PMID: 16457154 DOI: 10.1177/030089160509100615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Background To evaluate the function and distribution of BAG-1 protein in hyperplastic and neoplastic prostate tissue and establish the relationship between this protein and BCL-related proteins (BCL-2 and BAX), androgen receptor (AR) expression and chromogranin A. Methods Twenty-eight prostatic adenocarcinomas and 16 prostate hyperplasias were included in this retrospective study. BAG-1, BCL-2, BAX, androgen receptor and chromogranin A immunostaining was performed by means of standard avidin-biotin peroxidase methods. The M30 antibody was used to identify preapoptotic and apoptotic cells. The immunohistochemical histological score (HSCORE) semi-quantative system was used to evaluate immunohistochemical staining. Results Statistical analysis showed a significant difference in HSCOREs of BAX, M30 and AR between the carcinoma and hyperplasia groups. Carcinomas expressed higher HSCOREs of these markers than hyperplasias. There were significant differences in nuclear and cytoplasmic BAG-1 positivity between high and low-grade carcinomas. BAG-1 expression was higher in low-grade carcinomas. In the carcinoma group there was a positive correlation (Pearson) between BCL-2 and cytoplasmic/nuclear BAG-1. In the hyperplasia group there was a negative correlation between BAX and BCL-2, and between AR and M30. We also detected a positive correlation between AR and nuclear/cytoplasmic BAG-1 and between nuclear and cytoplasmic BAG-1 in hyperplasias. BAG-1 showed the same specific basal cell localization as BCL-2 in hyperplastic and normal glands. Conclusions The BAG-1 protein showed a distinct distribution pattern in hyperplastic and neoplastic prostate. BAG-1 in association with BCL-2 inhibits apoptosis and may prolong the life of neoplastic cells and give them a chance to gain new oncogenic features in early carcinogenesis.
Collapse
Affiliation(s)
- Onder Bozdogan
- Department of Pathology, Kirikkale University Medical School, Turkey.
| | | | | | | | | | | | | |
Collapse
|
67
|
Lee II, Kuznik NC, Rottenberg JT, Brown M, Cato ACB. BAG1L: a promising therapeutic target for androgen receptor-dependent prostate cancer. J Mol Endocrinol 2019; 62:R289-R299. [PMID: 30913537 DOI: 10.1530/jme-19-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
Androgens are important determinants of normal and malignant prostate growth. They function by binding to the C-terminal ligand-binding domain (LBD) of the androgen receptor (AR). All clinically approved AR-targeting antiandrogens for prostate cancer therapy function by competing with endogenous androgens. Despite initial robust responses to androgen deprivation therapy, nearly all patients with advanced prostate cancer relapse with lethal castration-resistant prostate cancer (CRPC). Progression to CRPC is associated with ongoing AR signaling, which in part, is due to the expression of constitutively active AR splice variants that contain the N-terminus of the receptor but lack the C-terminus. Currently, there are no approved therapies specifically targeting the AR N-terminus. Current pharmacologic targeting strategies for inhibiting the AR N-terminal region have proven difficult, due to its intrinsically unstructured nature and lack of enzymatic activity. An alternative approach is to target key molecules such as the cochaperone BAG1L that bind to and enhance the activity of the AR AF1. Here, we review recent literature that suggest Bag-1L is a promising target for AR-positive prostate cancer.
Collapse
Affiliation(s)
- Irene I Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nane C Kuznik
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Jaice T Rottenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Andrew C B Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
68
|
Santos C, Nogueira FCS, Domont GB, Fontes W, Prado GS, Habibi P, Santos VO, Oliveira-Neto OB, Grossi-de-Sá MF, Jorrín-Novo JV, Franco OL, Mehta A. Proteomic Analysis and Functional Validation of a Brassica oleracea Endochitinase Involved in Resistance to Xanthomonas campestris. FRONTIERS IN PLANT SCIENCE 2019; 10:414. [PMID: 31031780 PMCID: PMC6473119 DOI: 10.3389/fpls.2019.00414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/19/2019] [Indexed: 05/02/2023]
Abstract
Black rot is a severe disease caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), which can lead to substantial losses in cruciferous vegetable production worldwide. Although the use of resistant cultivars is the main strategy to control this disease, there are limited sources of resistance. In this study, we used the LC-MS/MS technique to analyze young cabbage leaves and chloroplast-enriched samples at 24 h after infection by Xcc, using both susceptible (Veloce) and resistant (Astrus) cultivars. A comparison between susceptible Xcc-inoculated plants and the control condition, as well as between resistant Xcc-inoculated plants with the control was performed and more than 300 differentially abundant proteins were identified in each comparison. The chloroplast enriched samples contributed with the identification of 600 additional protein species in the resistant interaction and 900 in the susceptible one, which were not detected in total leaf sample. We further determined the expression levels for 30 genes encoding the identified differential proteins by qRT-PCR. CHI-B4 like gene, encoding an endochitinase showing a high increased abundance in resistant Xcc-inoculated leaves, was selected for functional validation by overexpression in Arabidopsis thaliana. Compared to the wild type (Col-0), transgenic plants were highly resistant to Xcc indicating that CHI-B4 like gene could be an interesting candidate to be used in genetic breeding programs aiming at black rot resistance.
Collapse
Affiliation(s)
- Cristiane Santos
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Fábio C. S. Nogueira
- Proteomics Unit, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B. Domont
- Proteomics Unit, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Fontes
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | | | - Peyman Habibi
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Department of Bioprocess Engineering and Biotechnology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Osmundo B. Oliveira-Neto
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Departamento de Bioquímica e Biologia Molecular, Escola de Medicina, Faculdades Integradas da União Educacional do Planalto Central, Brasília, Brazil
| | - Maria Fatima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Centro de Analises Proteomicas e Bioquimica, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Jesus V. Jorrín-Novo
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Córdoba, Spain
| | - Octavio L. Franco
- Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Centro de Analises Proteomicas e Bioquimica, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| |
Collapse
|
69
|
Zhang H, Li Y, Dickman MB, Wang Z. Cytoprotective Co-chaperone BcBAG1 Is a Component for Fungal Development, Virulence, and Unfolded Protein Response (UPR) of Botrytis cinerea. Front Microbiol 2019; 10:685. [PMID: 31024482 PMCID: PMC6467101 DOI: 10.3389/fmicb.2019.00685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
The Bcl-2 associated athanogene (BAG) family is an evolutionarily conserved group of co-chaperones that confers stress protection against a variety of cellular insults extending from yeasts, plants to humans. Little is known, however, regarding the biological role of BAG proteins in phytopathogenic fungi. Here, we identified the unique BAG gene (BcBAG1) from the necrotrophic fungal pathogen, Botrytis cinerea. BcBAG1 is the homolog of Arabidopsis thaliana AtBAG4, and ectopic expression of BcBAG1 in atbag4 knock-out mutants restores salt tolerance. BcBAG1 deletion mutants (ΔBcbag1) exhibited decreased conidiation, enhanced melanin accumulation and lost the ability to develop sclerotia. Also, BcBAG1 disruption blocked fungal conidial germination and successful penetration, leading to a reduced virulence in host plants. BcBAG1 contains BAG (BD) domain at C-terminus and ubiquitin-like (UBL) domain at N-terminus. Complementation assays indicated that BD can largely restored pathogenicity of ΔBcbag1. Abiotic stress assays showed ΔBcbag1 was more sensitive than the wild-type strain to NaCl, calcofluor white, SDS, tunicamycin, dithiothreitol (DTT), heat and cold stress, suggesting BcBAG1 plays a cytoprotective role during salt stress, cell wall stress, and ER stress. BcBAG1 negatively regulated the expression of BcBIP1, BcIRE1 and the splicing of BcHAC1 mRNA, which are core regulators of unfolded protein response (UPR) during ER stress. Moreover, BcBAG1 interacted with HSP70-type chaperones, BcBIP1 and BcSKS2. In summary, this work demonstrates that BcBAG1 is pleiotropic and not only essential for fungal development, hyphal melanization, and virulence, but also required for response to multiple abiotic stresses and UPR pathway of B. cinerea.
Collapse
Affiliation(s)
- Honghong Zhang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Yurong Li
- Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Martin B Dickman
- Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
70
|
Skibiel AL, Peñagaricano F, Amorín R, Ahmed BM, Dahl GE, Laporta J. In Utero Heat Stress Alters the Offspring Epigenome. Sci Rep 2018; 8:14609. [PMID: 30279561 PMCID: PMC6168509 DOI: 10.1038/s41598-018-32975-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to intrauterine heat stress during late gestation affects offspring performance into adulthood. However, underlying mechanistic links between thermal insult in fetal life and postnatal outcomes are not completely understood. We examined morphology, DNA methylation, and gene expression of liver and mammary gland for bull calves and heifers that were gestated under maternal conditions of heat stress or cooling (i.e. in utero heat stressed vs. in utero cooled calves). Mammary tissue was harvested from dairy heifers during their first lactation and liver from bull calves at birth. The liver of in utero heat stressed bull calves contained more cells and the mammary glands of in utero heat stressed heifers were comprised of smaller alveoli. We identified more than 1,500 CpG sites differently methylated between maternal treatment groups. These CpGs were associated with approximately 400 genes, which play a role in processes, such as development, innate immune defense, cell signaling, and transcription and translation. We also identified over 100 differentially expressed genes in the mammary gland with similar functions. Interestingly, fifty differentially methylated genes were shared by both bull calf liver and heifer mammary gland. Intrauterine heat stress alters the methylation profile of liver and mammary DNA and programs their morphology in postnatal life, which may contribute to the poorer performance of in utero heat stressed calves.
Collapse
Affiliation(s)
- A L Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - F Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - R Amorín
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - B M Ahmed
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
71
|
Wang C, Niu S, Jahejo A, Jia F, Li Z, Zhang N, Ning G, Zhang D, Li H, Ma H, Hao W, Gao W, Gao S, Li J, Li G, Yan F, Gao R, Zhao Y, Chen H, Tian W. Identification of apoptosis-related genes in erythrocytes of broiler chickens and their response to thiram-induced tibial dyschondroplasia and recombinant glutathione-S-transferase A3 protein. Res Vet Sci 2018; 120:11-16. [DOI: 10.1016/j.rvsc.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
|
72
|
Guo J, Jia R. Splicing factor poly(rC)-binding protein 1 is a novel and distinctive tumor suppressor. J Cell Physiol 2018; 234:33-41. [PMID: 30132844 DOI: 10.1002/jcp.26873] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
A lot of evidence has been found on the link between tumorigenesis and the aberrant expression of splicing factors. A number of splicing factors have been reported to be either oncogenic or overexpressed in cancer cells. However, splicing factors can also play negative roles in tumorigenesis. In the current review, we focus on splicing factor poly(rC)-binding protein 1 (PCBP1), a novel tumor suppressor that is characterized by downregulation in many cancer types and shows inhibition of tumor formation and metastasis. Notably, the messenger RNA levels of PCBP1 are not significantly decreased in most cancer types. In fact, PCBP1 protein is often degraded or shows a loss-of-function through phosphorylation in cancer cells. PCBP1 is highly homologous to its family member, PCBP2. Interestingly, PCBP2 appears to be an oncogenic splicing factor. A growing body of evidence has shown that PCBP1 regulates alternative splicing, translation, and RNA stability of many cancer-related genes. Taking together, PCBP1 has distinctive tumor suppressive functions, and increasing PCBP1 expression may represent a new approach for cancer treatment.
Collapse
Affiliation(s)
- Jihua Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
73
|
Hutt DM, Mishra SK, Roth DM, Larsen MB, Angles F, Frizzell RA, Balch WE. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. J Biol Chem 2018; 293:13682-13695. [PMID: 29986884 DOI: 10.1074/jbc.ra118.002607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/05/2018] [Indexed: 01/11/2023] Open
Abstract
The protein chaperones heat shock protein 70 (Hsp70) and Hsp90 are required for de novo folding of proteins and protect against misfolding-related cellular stresses by directing misfolded or slowly folding proteins to the ubiquitin/proteasome system (UPS) or autophagy/lysosomal degradation pathways. Here, we examined the role of the Bcl2-associated athanogene (BAG) family of Hsp70-specific nucleotide-exchange factors in the biogenesis and functional correction of genetic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) whose mutations cause cystic fibrosis (CF). We show that siRNA-mediated silencing of BAG1 and -3, two BAG members linked to the clearance of misfolded proteins via the UPS and autophagy pathways, respectively, leads to functional correction of F508del-CFTR and other disease-associated CFTR variants. BAG3 silencing was the most effective, leading to improved F508del-CFTR stability, trafficking, and restoration of cell-surface function, both alone and in combination with the FDA-approved CFTR corrector, VX-809. We also found that the BAG3 silencing-mediated correction of F508del-CFTR restores the autophagy pathway, which is defective in F508del-CFTR-expressing cells, likely because of the maladaptive stress response in CF pathophysiology. These results highlight the potential therapeutic benefits of targeting the cellular chaperone system to improve the functional folding of CFTR variants contributing to CF and possibly other protein-misfolding-associated diseases.
Collapse
Affiliation(s)
- Darren M Hutt
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Sanjay Kumar Mishra
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Daniela Martino Roth
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Mads Breum Larsen
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Frédéric Angles
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Raymond A Frizzell
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - William E Balch
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| |
Collapse
|
74
|
Semevolos SA, Duesterdieck-Zellmer KF, Larson M, Kinsley MA. Expression of pro-apoptotic markers is increased along the osteochondral junction in naturally occurring osteochondrosis. Bone Rep 2018; 9:19-26. [PMID: 29998174 PMCID: PMC6038796 DOI: 10.1016/j.bonr.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/29/2018] [Accepted: 06/15/2018] [Indexed: 11/28/2022] Open
Abstract
Osteochondrosis (OC) is a naturally occurring disease of the articular-epiphyseal cartilage and subchondral bone layers, leading to pain and decreased mobility. The objective of this study was to characterize gene and protein expression of apoptotic markers in chondrocytes surrounding cartilage canals and along the osteochondral junction of osteochondrosis (OC)-affected and normal cartilage, using naturally occurring disease in horses. Paraffin-embedded osteochondral samples (6 OC, 8 normal controls) and cDNA from chondrocytes captured with laser capture microdissection (4 OC, 6 normal controls) were obtained from the lateral trochlear ridge of femoropatellar joints in 14 immature horses (1–6 months of age). Equine-specific caspase-3, caspase-8, caspase-10, Fas, Bcl-2, BAG-1, TNFα, cytochrome C, thymosin-β10, and 18S mRNA expression levels were evaluated by two-step real-time quantitative PCR. Percentage of cell death was determined using the TUNEL method. Protein expression of caspase-10, Fas, cytochrome C, and thymosin-β10 was determined following immunohistochemistry. Statistical analysis was performed using the Wilcoxon rank sum test or two-sample t-test (p < 0.05). In OC samples, there was significantly increased gene expression of caspase-10, Fas, cytochrome C, and thymosin-β10 in chondrocytes along the osteochondral junction and increased Fas gene expression in chondrocytes adjacent to cartilage canals, compared to controls. In OC samples, higher matrix Fas and cytochrome C protein expression, lower mitochondrial cytochrome C protein expression, and a trend for higher cytoplasmic caspase-10 protein expression were found. Collectively, these results suggest that both extrinsic and intrinsic apoptotic pathways are activated in OC cartilage. Increased apoptosis of osteochondral junction chondrocytes may play a role in OC, based on increased gene expression of several pro-apoptotic markers in this location. Pro-apoptotic marker gene expression increased in osteochondrosis cartilage Extrinsic and intrinsic apoptotic pathways activated along osteochondral junction Higher caspase-10, Fas, cytochrome C, and thymosin-β10 gene expression
Collapse
Affiliation(s)
- Stacy A Semevolos
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Katja F Duesterdieck-Zellmer
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Maureen Larson
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Marc A Kinsley
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
75
|
Dickman M, Williams B, Li Y, de Figueiredo P, Wolpert T. Reassessing apoptosis in plants. NATURE PLANTS 2017; 3:773-779. [PMID: 28947814 DOI: 10.1038/s41477-017-0020-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 05/19/2023]
Abstract
Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.
Collapse
Affiliation(s)
- Martin Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, 77843, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843, USA.
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, 4001, QLD, Australia.
| | - Yurong Li
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Paul de Figueiredo
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M University, Bryan, Texas, 77807, USA
| | - Thomas Wolpert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
76
|
Sun J, Pan LM, Chen LB, Wang Y. LncRNA XIST promotes human lung adenocarcinoma cells to cisplatin resistance via let-7i/BAG-1 axis. Cell Cycle 2017; 16:2100-2107. [PMID: 28961027 PMCID: PMC5731406 DOI: 10.1080/15384101.2017.1361071] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified as oncogenes or tumor suppressors that are involved in tumorigenesis and chemoresistance. LncRNA XIST expression is upregulated in several cancers, however, its biologic role in the development of the chemotherapy of human lung adenocarcinoma (LAD) has not been elucidated. This study aimed to observe the expression of LncRNA XIST in LAD and to evaluate its biologic role and clinical significance in the resistance of LAD cells to cisplatin. LncRNA XIST expression was markedly increased in cisplatin-resistant A549/DDP cells compared with parental A549 cells as shown by qRT-PCR. LncRNA XIST overexpression in A549 cells increased their chemosensitivity to cisplatin both in vitro and in vivo by protecting cells from apoptosis and promoting cell proliferation. By contrast, LncRNA XIST knockdown in A549/DDP cells decreased the chemoresistance. We revealed that XIST functioned as competing endogenous RNA to repress let-7i, which controlled its down-stream target BAG-1. We proposed that XIST was responsible for cisplatin resistance of LAD cells and XIST exerted its function through the let-7i/BAG-1 axis. Our findings suggested that lncRNA XIST may be a new marker of poor response to cisplatin and could be a potential therapeutic target for LAD chemotherapy.
Collapse
Affiliation(s)
- Jing Sun
- Health Examination Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Ming Pan
- The First Hospital of Jilin University, Changchun, China
| | - Li-Bo Chen
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
77
|
You Q, Zhai K, Yang D, Yang W, Wu J, Liu J, Pan W, Wang J, Zhu X, Jian Y, Liu J, Zhang Y, Deng Y, Li Q, Lou Y, Xie Q, He Z. An E3 Ubiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance. Cell Host Microbe 2017; 20:758-769. [PMID: 27978435 DOI: 10.1016/j.chom.2016.10.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
Programmed cell death (PCD) and immunity in plants are tightly controlled to promote antimicrobial defense while preventing autoimmunity. However, the mechanisms contributing to this immune homeostasis are poorly understood. Here, we isolated a rice mutant ebr1 (enhanced blight and blast resistance 1) that shows enhanced broad-spectrum bacterial and fungal disease resistance, but displays spontaneous PCD, autoimmunity, and stunted growth. EBR1 encodes an E3 ubiquitin ligase that interacts with OsBAG4, which belongs to the BAG (Bcl-2-associated athanogene) family that functions in cell death, growth arrest, and immune responses in mammals. EBR1 directly targets OsBAG4 for ubiquitination-mediated degradation. Elevated levels of OsBAG4 in rice are necessary and sufficient to trigger PCD and enhanced disease resistance to pathogenic infection, most likely by activating pathogen-associated molecular patterns-triggered immunity (PTI). Together, our study suggests that an E3-BAG module orchestrates innate immune homeostasis and coordinates the trade-off between defense and growth in plants.
Collapse
Affiliation(s)
- Quanyuan You
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Donglei Yang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingni Wu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junzhong Liu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Pan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xudong Zhu
- China National Rice Research Institute, Hangzhou 310006, China
| | - Yikun Jian
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingying Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yonggen Lou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Collaborative Innovation Center of Genetics and Development, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
78
|
Liu S, Ren B, Gao H, Liao S, Zhai YX, Li S, Su XJ, Jin P, Stroncek D, Xu Z, Zeng Q, Li Y. Over-expression of BAG-1 in head and neck squamous cell carcinomas (HNSCC) is associated with cisplatin-resistance. J Transl Med 2017; 15:189. [PMID: 28877725 PMCID: PMC5588726 DOI: 10.1186/s12967-017-1289-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 01/31/2023] Open
Abstract
Background In order to improve therapy for head and neck squamous cell carcinoma (HNSCC), biomarkers associated with local and/or distant tumor relapses and cancer drug resistance are urgently needed. This study identified a potential biomarker, Bcl-2 associated athanogene-1 (BAG-1), that is implicated in HNSCC insensitive to cisplatin and tumor progression. Methods Primary and advanced (relapsed from parental) University of Michigan squamous cell carcinoma cell lines were tested for sensitivity to cisplatin and gene expression profiles were compared between primary (cisplatin sensitive) and the relapsed (cisplatin resistant) cell lines by using Agilent microarrays. Additionally, differentially expressed genes phosphorylated AKT, and BAG-1, and BCL-xL were evaluated for expression using HNSCC tissue arrays. Results Advanced HNSCC cells revealed resistant to cisplatin accompanied by increased expression of BAG-1 protein. siRNA knockdown of BAG-1 expression resulted in significant improvement of HNSCC sensitivity to cisplatin. BAG-1 expression enhanced stability of BCL-xL and conferred cisplatin resistant to the HNSCC cells. In addition, high levels of expression of phosphorylated AKT, BAG-1, and BCL-xL were observed in advanced HNSCC compared to in that of primary HNSCC. Conclusion Increased expression of BAG-1 was associated with cisplatin resistance and tumor progression in HNSCC patients and warrants further validation in larger independent studies. Over expression of BAG-1 may be a biomarker for cisplatin resistance in patients with primary or recurrent HNSCCs and targeting BAG-1 could be helpful in overcoming cisplatin resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shutong Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China.,Cell Processing Section, Department of Transfusion, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bo Ren
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Hang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Suchan Liao
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China.,Department of Physiology, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ying-Xian Zhai
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Shirong Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Xue-Jin Su
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Ping Jin
- Cell Processing Section, Department of Transfusion, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Stroncek
- Cell Processing Section, Department of Transfusion, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhixiang Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China.,Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Qinghua Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China. .,Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
79
|
Yi L, Lv Z, Wang J, Zhong X. Bcl‑2 associated athanogene 4 promotes proliferation, migration and invasion of gastric cancer cells. Mol Med Rep 2017; 16:3753-3760. [PMID: 29067445 PMCID: PMC5646952 DOI: 10.3892/mmr.2017.7073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 04/04/2017] [Indexed: 11/29/2022] Open
Abstract
Currently, with the increase of morbidity and mortality rate, gastric cancer (GC) is attracting increasing attention in China. Bcl-2-associated athanogene 4 (BAG4) has been identified as a tumor promoter in several tumors, but its role in GC remains unknown. The present study aimed to detect the expression of BAG4 and determine its function in the progression of GC. The results from reverse transcription-quantitative polymerase chain reaction and western blotting revealed that BAG4 was markedly upregulated in highly metastatic cell lines (SGC7901 and MGC803), compared with the lower-metastatic cell lines (AGS and BGC823). Through Cell Counting Kit-8, cell cycle, apoptosis, Transwell and colony formation assays, BAG4 was demonstrated to promote the proliferation, migration and invasion of GC cells in vitro. Additionally, in vivo assays further certified that BAG4 can increase the proliferation and invasion of GC cells. In conclusion, these findings implicate BAG4 as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Lizhi Yi
- Department of Gastroenterology, Leshan People's Hospital, Leshan, Sichuan 614000, P.R. China
| | - Zhenbing Lv
- Department of General Surgery Two, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xianfei Zhong
- Department of Gastroenterology, Leshan People's Hospital, Leshan, Sichuan 614000, P.R. China
| |
Collapse
|
80
|
Coskun E, Ercin M, Gezginci‐Oktayoglu S. The Role of Epigenetic Regulation and Pluripotency‐Related MicroRNAs in Differentiation of Pancreatic Stem Cells to Beta Cells. J Cell Biochem 2017; 119:455-467. [DOI: 10.1002/jcb.26203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Ediz Coskun
- Faculty of ScienceBiology DepartmentMolecular Biology Section, Istanbul UniversityVezneciler 34134IstanbulTurkey
| | - Merve Ercin
- Faculty of ScienceBiology DepartmentMolecular Biology Section, Istanbul UniversityVezneciler 34134IstanbulTurkey
| | - Selda Gezginci‐Oktayoglu
- Faculty of ScienceBiology DepartmentMolecular Biology Section, Istanbul UniversityVezneciler 34134IstanbulTurkey
| |
Collapse
|
81
|
BAG-1L Protects SH-SY5Y Neuroblastoma Cells Against Hypoxia/Re-oxygenation Through Up-Regulating HSP70 and Activating PI3K/AKT Signaling Pathway. Neurochem Res 2017; 42:2861-2868. [PMID: 28523530 DOI: 10.1007/s11064-017-2304-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 01/01/2023]
Abstract
BCL-2-associated athanogene-1(BAG-1) is a multifunctional and anti-apoptotic protein that was first identified as a binding partner of BCL-2. But the effects and mechanisms for BAG-1 against hypoxic damage is unclear up to now. Whether BAG-1 could protect the human brain against hypoxic damage through up-regulating 70 kDa heat shock proteins (HSP70) and PI3K/AKT pathway activation? In present study, we examined the changes of HSP70 and AKT and p-AKT protein level in SH-SY5Y cells with BAG-1L gene over-expression subjected to hypoxia/re-oxygenation injury. BAG-1L over-expression increased neuronal viability, and it reduced apoptosis of neurons after hypoxia/re-oxygenation for 8 h. BAG-1L over-expression enhanced the HSP70 protein levels and increased p-AKT/total AKT ratio after hypoxia/re-oxygenation for 8 h. These results suggest that BAG-1L over-expression protects against hypoxia/re-oxygenation injury, at least in part, by interacting with HSP70, and by accelerating the activation of PI3K/AKT pathways.
Collapse
|
82
|
Shi Z, Hong Y, Zhang K, Wang J, Zheng L, Zhang Z, Hu Z, Han X, Han Y, Chen T, Yao Q, Cui H, Hong W. BAG-1M co-activates BACE1 transcription through NF-κB and accelerates Aβ production and memory deficit in Alzheimer's disease mouse model. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2398-2407. [PMID: 28502705 DOI: 10.1016/j.bbadis.2017.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Accumulation of amyloid β protein (Aβ)-containing neuritic plaques in the brain is a neuropathological feature of Alzheimer's disease (AD). The β-site APP-cleaving enzyme 1 (BACE1) is essential for Aβ generation and dysregulation of BACE1 expression may lead to AD pathogenesis. Bcl-2-associated athanogen 1M (BAG-1M), initially identified as an anti-apoptotic protein, has also been found to be highly expressed in the same neurons that contain intracellular amyloid in the hippocampus of AD patient. In this report, we found that over-expression of BAG-1M enhances BACE1-mediated cleavage of amyloid precursor protein (APP) and Aβ production by up-regulating BACE1 gene transcription. The regulation of BACE1 transcription by BAG-1M was dependent on NF-κB, as BAG-1M complexes NF-κB at the promoter of BACE1 gene and co-activates NF-κB-facilitated BACE1 transcription. Moreover, expression of BAG-1M by lentiviral vector in the hippocampus of AD transgenic model mice promotes Aβ generation and formation of neuritic plaque, and subsequently accelerates memory deficits of the mice. These results provide evidence for an emerging role of BAG-1M in the regulation of BACE1 expression and AD pathogenesis and that targeting the BAG-1M-NF-κB complex may provide a mechanism for inhibiting Aβ production and plaque formation.
Collapse
Affiliation(s)
- Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuheng Hong
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhimei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yawei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qingbin Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hongmei Cui
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
83
|
Kabbage M, Kessens R, Bartholomay LC, Williams B. The Life and Death of a Plant Cell. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:375-404. [PMID: 28125285 DOI: 10.1146/annurev-arplant-043015-111655] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.
Collapse
Affiliation(s)
- Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Ryan Kessens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland 4001, Australia;
| |
Collapse
|
84
|
Liu T, Wang L, Chen H, Huang Y, Yang P, Ahmed N, Wang T, Liu Y, Chen Q. Molecular and Cellular Mechanisms of Apoptosis during Dissociated Spermatogenesis. Front Physiol 2017; 8:188. [PMID: 28424629 PMCID: PMC5372796 DOI: 10.3389/fphys.2017.00188] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is a tightly controlled process by which tissues eliminate unwanted cells. Spontaneous germ cell apoptosis in testis has been broadly investigated in mammals that have an associated spermatogenesis pattern. However, the mechanism of germ cell apoptosis in seasonally breeding reptiles following a dissociated spermatogenesis has remained enigmatic. In the present study, morphological evidence has clearly confirmed the dissociated spermatogenesis pattern in Pelodiscus sinensis. TUNEL and TEM analyses presented dynamic changes and ultrastructural characteristics of apoptotic germ cells during seasonal spermatogenesis, implying that apoptosis might be one of the key mechanisms to clear degraded germ cells. Furthermore, using RNA-Seq and digital gene expression (DGE) profiling, a large number of apoptosis-related differentially expressed genes (DEGs) at different phases of spermatogenesis were identified and characterized in the testis. DGE and RT-qPCR analysis revealed that the critical anti-apoptosis genes, such as Bcl-2, BAG1, and BAG5, showed up-regulated patterns during intermediate and late spermatogenesis. Moreover, the increases in mitochondrial transmembrane potential in July and October were detected by JC-1 staining. Notably, the low protein levels of pro-apoptotic cleaved caspase-3 and CytC in cytoplasm were detected by immunohistochemistry and western blot analyses, indicating that the CytC-Caspase model might be responsible for the effects of germ cell apoptosis on seasonal spermatogenesis. These results facilitate understanding the regulatory mechanisms of apoptosis during spermatogenesis and uncovering the biological process of the dissociated spermatogenesis system in reptiles.
Collapse
Affiliation(s)
- Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Taozhi Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
85
|
Bryant AE, Aldape MJ, Bayer CR, Katahira EJ, Bond L, Nicora CD, Fillmore TL, Clauss TRW, Metz TO, Webb-Robertson BJ, Stevens DL. Effects of delayed NSAID administration after experimental eccentric contraction injury - A cellular and proteomics study. PLoS One 2017; 12:e0172486. [PMID: 28245256 PMCID: PMC5330483 DOI: 10.1371/journal.pone.0172486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute muscle injuries are exceedingly common and non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed to reduce the associated inflammation, swelling and pain that peak 1-2 days post-injury. While prophylactic use or early administration of NSAIDs has been shown to delay muscle regeneration and contribute to loss of muscle strength after healing, little is known about the effects of delayed NSAID use. Further, NSAID use following non-penetrating injury has been associated with increased risk and severity of infection, including that due to group A streptococcus, though the mechanisms remain to be elucidated. The present study investigated the effects of delayed NSAID administration on muscle repair and sought mechanisms supporting an injury/NSAID/infection axis. METHODS A murine model of eccentric contraction (EC)-induced injury of the tibialis anterior muscle was used to profile the cellular and molecular changes induced by ketorolac tromethamine administered 47 hr post injury. RESULTS NSAID administration inhibited several important muscle regeneration processes and down-regulated multiple cytoprotective proteins known to inhibit the intrinsic pathway of programmed cell death. These activities were associated with increased caspase activity in injured muscles but were independent of any NSAID effect on macrophage influx or phenotype switching. CONCLUSIONS These findings provide new molecular evidence supporting the notion that NSAIDs have a direct negative influence on muscle repair after acute strain injury in mice and thus add to renewed concern about the safety and benefits of NSAIDS in both children and adults, in those with progressive loss of muscle mass such as the elderly or patients with cancer or AIDS, and those at risk of secondary infection after trauma or surgery.
Collapse
Affiliation(s)
- Amy E. Bryant
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- University of Washington School of Medicine, Seattle, WA, United States of America
| | - Michael J. Aldape
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- Northwest Nazarene University, Nampa, ID, United States of America
| | - Clifford R. Bayer
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
| | - Eva J. Katahira
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
| | - Laura Bond
- Boise State University, Boise, ID, United States of America
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Thomas L. Fillmore
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Thomas O. Metz
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Dennis L. Stevens
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
86
|
A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells. Oncotarget 2017; 7:18851-64. [PMID: 26958811 PMCID: PMC4951334 DOI: 10.18632/oncotarget.7944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/13/2016] [Indexed: 01/16/2023] Open
Abstract
Treatment of HER2+ breast cancer with trastuzumab is effective and combination anti-HER2 therapies have demonstrated benefit over monotherapy in the neoadjuvant and metastatic settings. This study investigated the therapeutic potential of targeting the BAG-1 protein co-chaperone in trastuzumab-responsive or -resistant cells. In the METABRIC dataset, BAG-1 mRNA was significantly elevated in HER2+ breast tumors and predicted overall survival in a multivariate analysis (HR = 0.81; p = 0.022). In a breast cell line panel, BAG-1 protein was increased in HER2+ cells and was required for optimal growth as shown by siRNA knockdown. Overexpression of BAG-1S in HER2+ SKBR3 cells blocked growth inhibition by trastuzumab, whereas overexpression of a mutant BAG-1S protein (BAG-1S H3AB), defective in binding HSC70, potentiated the effect of trastuzumab. Injection of a Tet-On SKBR3 clone, induced to overexpress myc-BAG-1S into the mammary fat pads of immunocompromised mice, resulted in 2-fold larger tumors compared to uninduced controls. Induction of myc-BAG-1S expression in two Tet-On SKBR3 clones attenuated growth inhibition by trastuzumab in vitro. Targeting endogenous BAG-1 by siRNA enhanced growth inhibition of SKBR3 and BT474 cells by trastuzumab, while BAG-1 protein-protein interaction inhibitor (Thio-S or Thio-2) plus trastuzumab combination treatment synergistically attenuated growth. In BT474 cells this reduced protein synthesis, caused G1/S cell cycle arrest and targeted the ERK and AKT signaling pathways. In a SKBR3 subpopulation with acquired resistance to trastuzumab BAG-1 targeting remained effective and either Thio-2 or BAG-1 siRNA reduced growth more compared to trastuzumab-responsive parental cells. In summary, targeting BAG-1 function in combination with anti-HER2 therapy might prove beneficial.
Collapse
|
87
|
Marra NJ, Richards VP, Early A, Bogdanowicz SM, Pavinski Bitar PD, Stanhope MJ, Shivji MS. Comparative transcriptomics of elasmobranchs and teleosts highlight important processes in adaptive immunity and regional endothermy. BMC Genomics 2017; 18:87. [PMID: 28132643 PMCID: PMC5278576 DOI: 10.1186/s12864-016-3411-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 12/12/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Comparative genomic and/or transcriptomic analyses involving elasmobranchs remain limited, with genome level comparisons of the elasmobranch immune system to that of higher vertebrates, non-existent. This paper reports a comparative RNA-seq analysis of heart tissue from seven species, including four elasmobranchs and three teleosts, focusing on immunity, but concomitantly seeking to identify genetic similarities shared by the two lamnid sharks and the single billfish in our study, which could be linked to convergent evolution of regional endothermy. RESULTS Across seven species, we identified an average of 10,877 Swiss-Prot annotated genes from an average of 32,474 open reading frames within each species' heart transcriptome. About half of these genes were shared between all species while the remainder included functional differences between our groups of interest (elasmobranch vs. teleost and endotherms vs. ectotherms) as revealed by Gene Ontology (GO) and selection analyses. A repeatedly represented functional category, in both the uniquely expressed elasmobranch genes (total of 259) and the elasmobranch GO enrichment results, involved antibody-mediated immunity, either in the recruitment of immune cells (Fc receptors) or in antigen presentation, including such terms as "antigen processing and presentation of exogenous peptide antigen via MHC class II", and such genes as MHC class II, HLA-DPB1. Molecular adaptation analyses identified three genes in elasmobranchs with a history of positive selection, including legumain (LGMN), a gene with roles in both innate and adaptive immunity including producing antigens for presentation by MHC class II. Comparisons between the endothermic and ectothermic species revealed an enrichment of GO terms associated with cardiac muscle contraction in endotherms, with 19 genes expressed solely in endotherms, several of which have significant roles in lipid and fat metabolism. CONCLUSIONS This collective comparative evidence provides the first multi-taxa transcriptomic-based perspective on differences between elasmobranchs and teleosts, and suggests various unique features associated with the adaptive immune system of elasmobranchs, pointing in particular to the potential importance of MHC Class II. This in turn suggests that expanded comparative work involving additional tissues, as well as genome sequencing of multiple elasmobranch species would be productive in elucidating the regulatory and genome architectural hallmarks of elasmobranchs.
Collapse
Affiliation(s)
- Nicholas J Marra
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.,Save Our Seas Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL, 33004, USA
| | - Vincent P Richards
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Angela Early
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steve M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Mahmood S Shivji
- Save Our Seas Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL, 33004, USA.
| |
Collapse
|
88
|
Bansal Y, Kuhad A. Mitochondrial Dysfunction in Depression. Curr Neuropharmacol 2017; 14:610-8. [PMID: 26923778 PMCID: PMC4981740 DOI: 10.2174/1570159x14666160229114755] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/02/2015] [Accepted: 02/27/2016] [Indexed: 02/06/2023] Open
Abstract
Abstract: Background Depression is the most debilitating neuropsychiatric disorder with significant impact on socio-occupational and well being of individual. The exact pathophysiology of depression is still enigmatic though various theories have been put forwarded. There are evidences showing that mitochondrial dysfunction in various brain regions is associated with depression. Recent findings have sparked renewed appreciation for the role of mitochondria in many intracellular processes coupled to synaptic plasticity and cellular resilience. New insights in depression pathophysiology are revolving around the impairment of neuroplasticity. Mitochondria have potential role in ATP production, intracellular Ca2+ signalling to establish membrane stability, reactive oxygen species (ROS) balance and to execute the complex processes of neurotransmission and plasticity. So understanding the various concepts of mitochondrial dysfunction in pathogenesis of depression indubitably helps to generate novel and more targeted therapeutic approaches for depression treatment. Objective The review was aimed to give a comprehensive insight on role of mitochondrial dysfunction in depression. Result Targeting mitochondrial dysfunction and enhancing the mitochondrial functions might act as potential target for the treatment of depression. Conclusion Literature cited in this review highly supports the role of mitochondrial dysfunction in depression. As impairment in the mitochondrial functions lead to the generation of various insults that exaggerate the pathogenesis of depression. So, it is useful to study mitochondrial dysfunction in relation to mood disorders, synaptic plasticity, neurogenesis and enhancing the functions of mitochondria might show promiscuous effects in the treatment of depressed patients.
Collapse
Affiliation(s)
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh - 160 014 India.
| |
Collapse
|
89
|
Nawkar GM, Maibam P, Park JH, Woo SG, Kim CY, Lee SY, Kang CH. In silico study on Arabidopsis BAG gene expression in response to environmental stresses. PROTOPLASMA 2017; 254:409-421. [PMID: 27002965 PMCID: PMC5216074 DOI: 10.1007/s00709-016-0961-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/10/2016] [Indexed: 05/13/2023]
Abstract
BAG (Bcl-2 athanogene) family proteins are conserved in a wide range of eukaryotes, and they have been proposed to play a crucial role in plant programmed cell death (PCD). During the past decade, with the help of advanced bioinformatics tools, seven homologs of BAG genes have been identified in the Arabidopsis genome; these genes are involved in pathogen attack and abiotic stress conditions. In this study, gene expression of Arabidopsis BAG family members under environmental stresses was analyzed using the Botany Array Resource (BAR) expression browser tool and the in silico data were partially confirmed by qRT-PCR analysis for the selected stress- and hormone-treated conditions related to environmental stresses. Particularly, the induction of AtBAG6 gene in response to heat shock was confirmed by using GUS reporter lines. The loss of the AtBAG6 gene resulted into impairment in basal thermotolerance of plant and showed enhanced cell death in response to heat stress. To elucidate the regulatory mechanisms of BAG genes, we analyzed ∼1-kbp promoter regions for the presence of stress-responsive elements. Our transcription profiling finally revealed that the Arabidopsis BAG genes differentially respond to environmental stresses under the control of specifically organized upstream regulatory elements.
Collapse
Affiliation(s)
- Ganesh M Nawkar
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Punyakishore Maibam
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Joung Hun Park
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Su Gyeong Woo
- Eco-friendly Bio-Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Cha Young Kim
- Eco-friendly Bio-Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| | - Chang Ho Kang
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
90
|
Schönbühler B, Schmitt V, Huesmann H, Kern A, Gamerdinger M, Behl C. BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72. Int J Mol Sci 2016; 18:ijms18010069. [PMID: 28042827 PMCID: PMC5297704 DOI: 10.3390/ijms18010069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022] Open
Abstract
The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts. We showed that HSP72 is a substrate of CHIP and that BAG2 efficiently prevented the ubiquitination of HSP72 in young cells as well as aged cells. Aging is associated with a decline in proteostasis and we observed increased protein levels of CHIP as well as BAG2 in senescent cells. Interestingly, the ubiquitination of HSP72 was strongly reduced during aging, which revealed that BAG2 functionally counteracted the increased levels of CHIP. Interestingly, HSPBP1 protein levels were down-regulated during aging. The data presented here demonstrates that the co-chaperone BAG2 influences HSP72 protein levels and is an important modulator of the ubiquitination activity of CHIP in young as well as aged cells.
Collapse
Affiliation(s)
- Bianca Schönbühler
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Verena Schmitt
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Heike Huesmann
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Andreas Kern
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Martin Gamerdinger
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| |
Collapse
|
91
|
Mezzelani M, Gorbi S, Fattorini D, d'Errico G, Benedetti M, Milan M, Bargelloni L, Regoli F. Transcriptional and cellular effects of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in experimentally exposed mussels, Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:306-319. [PMID: 27776296 DOI: 10.1016/j.aquatox.2016.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/24/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present investigation was to provide new insights on accumulation and possible adverse effects of various non-steroidal anti-inflammatory drugs (NSAIDs) in mussels, Mytilus galloprovincialis, exposed to an environmentally realistic concentration (0.5μg/L) of individual compounds, Acetaminophen (AMP), Diclofenac (DIC), Ibuprofen (IBU), Ketoprofen (KET) or Nimesulide (NIM). The measurement of drugs in mussel tissues was integrated with both functional alterations at cellular level and transcriptomic responses. Results indicated the capability of mussels to accumulate DIC and NIM, while AMP, IBU and KET were always below detection limit. A large panel of ecotoxicological biomarkers revealed the early onset of alterations induced by tested NSAIDs on immunological responses, lipid metabolism and DNA integrity. The gene transcription analysis through DNA microarrays, supported cellular biomarker results, with clear modulation of a large number of genes involved in the arachidonic acid and lipid metabolism, immune responses, cell cycle and DNA repair. The overall results indicated an ecotoxicological concern for pharmaceuticals in M. galloprovincialis, with transcriptional responses appearing as sensitive exposure biomarkers at low levels of exposure: such changes, however, are not always paralleled by corresponding functional effects, suggesting caution when interpreting observed effects in terms of perturbed cellular pathways. Fascinating similarities can also be proposed in the mode of action of NSAIDs between bivalves and vertebrate species.
Collapse
Affiliation(s)
- M Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - S Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - D Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - G d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - M Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - M Milan
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Italy
| | - L Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Italy
| | - F Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; CoNISMa, Consorzio Interuniversitario per le Scienze del Mare, Roma, Italy.
| |
Collapse
|
92
|
Qin L, Guo J, Zheng Q, Zhang H. BAG2 structure, function and involvement in disease. Cell Mol Biol Lett 2016; 21:18. [PMID: 28536620 PMCID: PMC5415834 DOI: 10.1186/s11658-016-0020-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/10/2016] [Indexed: 12/30/2022] Open
Abstract
Bcl2-associated athanogene 2 (BAG2) shares a similar molecular structure and function with other BAG family members. Functioning as a co-chaperone, it interacts with the ATPase domain of the heat shock protein 70 (dHsp70) through its BAG domain. It also interacts with many other molecules and regulates various cellular functions. An increasing number of studies have indicated that BAG2 is involved in the pathogenesis of various diseases, including cancers and neurodegenerative diseases. This paper is a comprehensive review of the structure, functions, and protein interactions of BAG2. We also discuss its roles in diseases, including cancer, Alzheimer's disease, Parkinson's disease and spinocerebellar ataxia type-3. Further research on BAG2 could lead to an understanding of the pathogenesis of these disorders or even to novel therapeutic approaches.
Collapse
Affiliation(s)
- Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zheng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
93
|
Greenhough J, Papadakis ES, Cutress RI, Townsend PA, Oreffo ROC, Tare RS. Regulation of osteoblast development by Bcl-2-associated athanogene-1 (BAG-1). Sci Rep 2016; 6:33504. [PMID: 27633857 PMCID: PMC5025845 DOI: 10.1038/srep33504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/25/2016] [Indexed: 12/25/2022] Open
Abstract
BCL-2-associated athanogene-1 (BAG-1) is expressed by osteoblast-lineage cells; early embryonic lethality in Bag-1 null mice, however, has limited the investigation of BAG-1 function in osteoblast development. In the present study, bone morphogenetic protein-2/BMP-2-directed osteogenic differentiation of bone marrow stromal cells (BMSCs) of Bag-1+/− (heterozygous) female mice was decreased significantly. Genes crucial for osteogenic differentiation, bone matrix formation and mineralisation were expressed at significantly lower levels in cultures of Bag-1+/− BMSCs supplemented with BMP-2, while genes with roles in inhibition of BMP-2-directed osteoblastogenesis were significantly upregulated. 17-β-estradiol (E2) enhanced responsiveness of BMSCs of wild-type and Bag-1+/− mice to BMP-2, and promoted robust BMP-2-stimulated osteogenic differentiation of BMSCs. BAG-1 can modulate cellular responses to E2 by regulating the establishment of functional estrogen receptors (ERs), crucially, via its interaction with heat shock proteins (HSC70/HSP70). Inhibition of BAG-1 binding to HSC70 by the small-molecule chemical inhibitor, Thioflavin-S, and a short peptide derived from the C-terminal BAG domain, which mediates binding with the ATPase domain of HSC70, resulted in significant downregulation of E2/ER-facilitated BMP-2-directed osteogenic differentiation of BMSCs. These studies demonstrate for the first time the significance of BAG-1-mediated protein-protein interactions, specifically, BAG-1-regulated activation of ER by HSC70, in modulation of E2-facilitated BMP-2-directed osteoblast development.
Collapse
Affiliation(s)
- Joanna Greenhough
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Emmanouil S Papadakis
- Cancer Research UK Centre Cancer Sciences Unit, Somers Building, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Ramsey I Cutress
- Cancer Research UK Centre Cancer Sciences Unit, Somers Building, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Paul A Townsend
- Institute of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
94
|
|
95
|
Singh K, Briggs JM. Functional Implications of the spectrum of BCL2 mutations in Lymphoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:1-18. [PMID: 27543313 DOI: 10.1016/j.mrrev.2016.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022]
Abstract
Mutations in the translocated BCL2 gene are often detected in diffuse large B-cell lymphomas (DLBCLs), indicating both their significance and pervasiveness. Large series genome sequencing of more than 200 DLBCLs has identified frequent BCL2 mutations clustered in the exons coding for the BH4 domain and the folded loop domain (FLD) of the protein. However, BCL2 mutations are mostly contemplated to represent bystander events with negligible functional impact on the pathogenesis of DLBCL. BCL2 arbitrates apoptosis through a classic interaction between its hydrophobic groove forming BH1-3 domains and the BH3 domain of pro-apoptotic members of the BCL2 family. The effects of mutations are mainly determined by the ability of the mutated BCL2 to mediate apoptosis by this inter-member protein binding. Nevertheless, BCL2 regulates diverse non-canonical pathways that are unlikely to be explained by canonical interactions. In this review, first, we identify recurrent missense mutations in the BH4 domain and the FLD reported in independent lymphoma sequencing studies. Second, we discuss the probable consequences of mutations on the binding ability of BCL2 to non-BCL2 family member proteins crucial for 1) maintaining mitochondrial energetics and calcium hemostasis such as VDAC, IP3R, and RyR and 2) oncogenic pathways implicated in the acquisition of the 'hallmarks of cancer' such as SOD, Raf-1, NFAT, p53, HIF-1α, and gelsolin. The study also highlights the likely ramifications of mutations on binding of BCL2 antagonists and BH3 profiling. Based on our analysis, we believe that an in-depth focus on BCL2 interactions mediated by these domains is warranted to elucidate the functional significance of missense mutations in DLBCL. In summary, we provide an extensive overview of the pleiotropic functions of BCL2 mediated by its physical binding interaction with other proteins and the various ways BCL2 mutations would affect the normal function of the cell leading to the development of DLBCL.
Collapse
Affiliation(s)
- Khushboo Singh
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - James M Briggs
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA.
| |
Collapse
|
96
|
Li HP, Yuan CL, Zho YC. Human cytomegalovirus inhibits apoptosis involving upregulation of the antiapoptotic protein Bag-1. J Med Virol 2016; 87:1953-9. [PMID: 26087710 DOI: 10.1002/jmv.24259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) is an important opportunistic pathogen in immunocompromised individuals and is recognized as a major viral cause of birth defects. HCMV has the ability to establish lifelong persistence and latent infection following primary exposure. Apoptosis is an innate cellular defense response to viral infection. HCMV can block apoptosis in various cell types. Here we show that HCMV promotes survival of human embryonic lung fibroblasts by activating of MAPK/ERK signaling pathway. Bag-1 is up-regulated in a MAPK/ERK-dependent fashion in infected cells. Depletion of Bag-1 suppresses the antiapoptotic effect of HCMV. Taken together, these data indicate that Bag-1 up-regulation is required to maintain apoptosis resistance in HCMV infected cells.
Collapse
Affiliation(s)
- Hai Ping Li
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou, Jingzhou, HuBei, 434000, China
| | - Cong Ling Yuan
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou, Jingzhou, HuBei, 434000, China
| | - Ying Chun Zho
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou, Jingzhou, HuBei, 434000, China
| |
Collapse
|
97
|
Behl C. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease. Trends Pharmacol Sci 2016; 37:672-688. [PMID: 27162137 DOI: 10.1016/j.tips.2016.04.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Human BAG (Bcl-2-associated athanogene) proteins form a family of antiapoptotic proteins that currently consists of six members (BAG1-6) all sharing the BAG protein domain from which the name arises. Via this domain, BAG proteins bind to the heat shock protein 70 (Hsp70), thereby acting as a co-chaperone regulating the activity of Hsp70. In addition to their antiapoptotic activity, all human BAG proteins have distinct functions in health and disease, and BAG3 in particular is the focus of many investigations. BAG3 has a modular protein domain composition offering the possibility for manifold interactions with other proteins. Various BAG3 functions are implicated in disorders including cancer, myopathies, and neurodegeneration. The discovery of its role in selective autophagy and the description of BAG3-mediated selective macroautophagy as an adaptive mechanism to maintain cellular homeostasis, under stress as well as during aging, make BAG3 a highly interesting target for future pharmacological interventions.
Collapse
Affiliation(s)
- Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
98
|
Knezevic T, Myers VD, Gordon J, Tilley DG, Sharp TE, Wang J, Khalili K, Cheung JY, Feldman AM. BAG3: a new player in the heart failure paradigm. Heart Fail Rev 2016; 20:423-34. [PMID: 25925243 PMCID: PMC4463985 DOI: 10.1007/s10741-015-9487-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BAG3 is a cellular protein that is expressed predominantly in skeletal and cardiac muscle but can also be found in the brain and in the peripheral nervous system. BAG3 functions in the cell include: serving as a co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins, inhibiting apoptosis by interacting with Bcl2 and maintaining the structural integrity of the Z-disk in muscle by binding with CapZ. The importance of BAG3 in the homeostasis of myocytes and its role in the development of heart failure was evidenced by the finding that single allelic mutations in BAG3 were associated with familial dilated cardiomyopathy. Furthermore, significant decreases in the level of BAG3 have been found in end-stage failing human heart and in animal models of heart failure including mice with heart failure secondary to trans-aortic banding and in pigs after myocardial infarction. Thus, it becomes relevant to understand the cellular biology and molecular regulation of BAG3 expression in order to design new therapies for the treatment of patients with both hereditary and non-hereditary forms of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Tijana Knezevic
- />Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Valerie D. Myers
- />Department of Physiology, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Jennifer Gordon
- />Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Douglas G. Tilley
- />Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Thomas E. Sharp
- />Department of Physiology, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - JuFang Wang
- />Department of Medicine, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Kamel Khalili
- />Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Joseph Y. Cheung
- />Department of Medicine, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| | - Arthur M. Feldman
- />Department of Physiology, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
- />Department of Medicine, Temple University School of Medicine, 3500 N. Broad Street, Suite 1150, Philadelphia, PA 19140 USA
| |
Collapse
|
99
|
Krajewski SS, Tsukamoto MM, Huang X, Krajewski SB. Nonstripping "Rainbow" and Multiple Antigen Detection (MAD) Western Blotting. Methods Mol Biol 2016; 1314:287-301. [PMID: 26139277 DOI: 10.1007/978-1-4939-2718-0_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
A variation of immunoblotting method (the "Rainbow Western"), permits sequential detection of multiple antigens (MAD) on a single protein blot without stripping off prior antibodies. Because no stripping is involved, immobilized proteins are not lost from the membrane, thus allowing for multiple reprobings of the same membrane with different primary antibodies (≥12), retaining strong signal intensities for all sequential antibody probings. The procedure utilizes horseradish peroxidase (HRPase)-based detection with both a chemiluminescent and colorimetric substrate. Initial incubation of the blot with secondary antibody followed by colorimetric development prior to probing the blot with primary antibodies markedly reduces background in ECL-based detection procedures and permits sequential use of antibodies derived from a single species. In the "Rainbow Western," four different HRPase-colorimetric substrates that produce black, brown, red, and green colors are employed sequentially for detection and simultaneous display of four different antigens on the same membrane. By allowing large amounts of data to be obtained from a single blot, the MAD-immunoblotting and Rainbow Western methods have the potential for researchers to compare the expression of several proteins within a single biological sample. Both techniques could be particularly valuable for analysis of cellular populations that are difficult to isolate in large numbers or of clinical specimens where the amounts of protein samples is minute or only available on a one-time basis.
Collapse
|
100
|
|