51
|
Oliveira LNDR, Oliveira CLDA, Lopes KDC, Ganança FF. Diagnostic assessment of patients with Meniere's disease through caloric testing and the video-head-impulse test. Braz J Otorhinolaryngol 2019; 87:428-433. [PMID: 31870737 PMCID: PMC9422366 DOI: 10.1016/j.bjorl.2019.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction Meniere's disease is a labyrinth disease that usually presents with episodes of spontaneous vertigo associated with sensorineural hearing loss, tinnitus and ipsi- and unilateral aural fullness in most cases. Vestibular function tests, video-head-impulse test and the caloric test, are not specific for diagnosis of the disease, but may show alterations that help to evaluate the functional impairment. Objective To describe the results obtained at the caloric test and video-head-impulse test in patients with definite Meniere's disease and compare them between symptomatic, asymptomatic ears and those of the control group. Methods Cross-sectional and observational study including patients with definite Meniere's disease diagnosed according to the Bárány Society criteria (2015) and healthy individuals (control group) undergoing caloric test and video-head-impulse test. All subjects were assessed by neurotological anamnesis and audiological evaluation (pure-tone, vocal and immittance audiometry) to characterize the sample. The findings obtained at the caloric test and video-head-impulse test were described and compared between the symptomatic and asymptomatic ears of patients with Meniere's disease and those of the control group. Results Thirty-two patients with definite Meniere's disease were evaluated, with a mean age of 45.7 years, mostly females (68.8%) and unilateral disease. The control group consisted of 20 healthy individuals, with a mean age of 44.7 years, mostly females (70.0%). The groups were homogeneous in relation to age and gender. The patients’ main complaint was vertigo (71.9%), and most patients had more than six episodes in the last six months (71.9%). Moderate sensorineural hearing loss was present in 38.5% of patients. The prevalence of hyporeflexia at the caloric test was higher in symptomatic (56.4%) and asymptomatic (36%) ears of patients with Meniere's disease compared to the ears of control subjects (7.5%), p < 0.001 and p = 0.004, respectively. Video-head-impulse test alterations in the lateral semicircular canals were more frequent in the symptomatic ears of patients with Meniere's disease than in the ears of control subjects (p = 0.026). Conclusion Most patients with definite Meniere's disease showed hyporeflexia at the caloric test and video-head-impulse test with normal function in the symptomatic ear. Vestibular hyporeflexia at the caloric test was more frequent in the symptomatic and asymptomatic ears of patients with Meniere's disease than in the control group. The video-head-impulse test showed more alterations in the lateral semicircular canals.
Collapse
Affiliation(s)
- Lívia Noleto de Rezende Oliveira
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Disciplina de Otologia e Otoneurologia, São Paulo, SP, Brazil.
| | | | - Karen de Carvalho Lopes
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Disciplina de Otologia e Otoneurologia, São Paulo, SP, Brazil
| | - Fernando Freitas Ganança
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Disciplina de Otologia e Otoneurologia, São Paulo, SP, Brazil
| |
Collapse
|
52
|
Curthoys IS. Concepts and Physiological Aspects of the Otolith Organ in Relation to Electrical Stimulation. Audiol Neurootol 2019; 25:25-34. [PMID: 31553977 DOI: 10.1159/000502712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This paper discusses some of the concepts and major physiological issues in developing a means of electrically stimulating the otolithic system, with the final goal being the electrical stimulation of the otoliths in human patients. It contrasts the challenges of electrical stimulation of the otolith organs as compared to stimulation of the semicircular canals. Electrical stimulation may consist of trains of short-duration pulses (e.g., 0.1 ms duration at 400 Hz) by selective electrodes on otolith maculae or otolithic afferents, or unselective maintained DC stimulation by large surface electrodes on the mastoids - surface galvanic stimulation. SUMMARY Recent anatomical and physiological results are summarized in order to introduce some of the unique issues in electrical stimulation of the otoliths. The first challenge is that each otolithic macula contains receptors with opposite polarization (opposing preferred directions of stimulation), unlike the uniform polarization of receptors in each semicircular canal crista. The puzzle is that in response to the one linear acceleration in the one macula, some otolithic afferents have an increased activation whereas others have decreased activation. Key Messages: At the vestibular nucleus this opposite receptor hair cell polarization and consequent opposite afferent input allow enhanced response to the one linear acceleration, via a "push-pull" neural mechanism in a manner analogous to the enhancement of semicircular canal responses to angular acceleration. Within each otolithic macula there is not just one uniform otolithic neural input to the brain - there are very distinctly different channels of otolithic neural inputs transferring the neural data to the brainstem. As a simplification these channels are characterized as the sustained and transient systems. Afferents in each system have different responses to stimulus onset and maintained stimulation and likely different projections, and most importantly different thresholds for activation by electrical stimulation and different adaptation rates to maintained stimulation. The implications of these differences are considered.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney, Sydney, New South Wales, Australia,
| |
Collapse
|
53
|
Peripheral vestibular plasticity vs central compensation: evidence and questions. J Neurol 2019; 266:27-32. [DOI: 10.1007/s00415-019-09388-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022]
|
54
|
Tighilet B, Chabbert C. Adult neurogenesis promotes balance recovery after vestibular loss. Prog Neurobiol 2019; 174:28-35. [DOI: 10.1016/j.pneurobio.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
|
55
|
Sadeghi NG, Sabetazad B, Rassaian N, Sadeghi SG. Rebalancing the Vestibular System by Unidirectional Rotations in Patients With Chronic Vestibular Dysfunction. Front Neurol 2019; 9:1196. [PMID: 30723455 PMCID: PMC6349764 DOI: 10.3389/fneur.2018.01196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/31/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction: Vestibular dysfunction is a common disorder that results in debilitating symptoms. Even after full compensation, the vestibulo-ocular reflex (VOR) could be further improved by using rehabilitation exercises and visual-vestibular adaptation. We hypothesized that in patients with asymmetric vestibular function, the system could be rebalanced by unidirectional rotations toward the weaker side (i.e., a pure vestibular stimulation). Methods: Sixteen subjects (5 female and 11 male, 43.2 ± 17.0 years old) with chronic vestibular dysfunction that was non-responsive to other types of medical treatment were recruited for the study (ClinicalTrials.gov Identifier: NCT01080430). Subjects had VOR asymmetry quantified by an abnormal directional preponderance (DP) with rotation test and no previous history of central vestibular problems or fluctuating peripheral vestibular disorders. They participated either in the short-term study (one session) or the long-term study (7 visits over 5 weeks). Rehabilitation consisted of five trapezoid unidirectional rotations (peak velocity of 320°/s) toward the weaker side. Care was taken to slowly stop the rotation in order to avoid stimulation in the opposite direction during deceleration. To study the short-term effect, VOR responses were measured before and 10, 40, and 70 min after a single unidirectional rotational rehabilitation session. For long-term effects, the VOR gain was measured before and 70min after rehabilitation in each session. Results: We observed a significant decrease in VOR asymmetry even 10 min after one rehabilitation session (short-term study). With consecutive rehabilitation sessions in the long-term study, DP further decreased to reach normal values during the first 2 sessions and only one subjects required further rehabilitation after week 4. This change in DP was due to an increase in responses during rotations toward the weaker side and a decrease in VOR responses during rotations in the other direction. Conclusion: Our results show that unidirectional rotation can reduce the VOR imbalance and asymmetry in patients with previously compensated vestibular dysfunction and could be used as an effective supervised method for vestibular rehabilitation even in patients with longstanding vestibular dysfunction.
Collapse
Affiliation(s)
- Navid G Sadeghi
- Department of Physiology, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Bardia Sabetazad
- Audiology and Dizziness Center, Day General Hospital, Tehran, Iran
| | - Nayer Rassaian
- Department of Physiology, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Soroush G Sadeghi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
56
|
Tighilet B, Leonard J, Mourre C, Chabbert C. Apamin treatment accelerates equilibrium recovery and gaze stabilization in unilateral vestibular neurectomized cats: Cellular and behavioral aspects. Neuropharmacology 2019; 144:133-142. [DOI: 10.1016/j.neuropharm.2018.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
|
57
|
Cassel R, Wiener-Vacher S, El Ahmadi A, Tighilet B, Chabbert C. Reduced Balance Restoration Capacities Following Unilateral Vestibular Insult in Elderly Mice. Front Neurol 2018; 9:462. [PMID: 29988508 PMCID: PMC6026628 DOI: 10.3389/fneur.2018.00462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022] Open
Abstract
Acute vestibular syndrome (AVS) is characterized by severe posturo-locomotor and vestibulo-oculomotor impairment and accompanies several types of peripheral vestibulopathies (PVP). We know very little about its etiology, how its various symptoms are expressed and how it evolves with age. Robust repair capabilities of primary vestibular synapses have recently been shown to restore behavioral functionality. In this study, we used a mouse model of an excitotoxically induced unilateral vestibular lesion to compare the ability to restore balance and posture between old and young adult mice. We compared the temporal evolution of the evoked vestibular syndrome using a battery of behavioral tests to follow the evolution of postural-locomotor alterations and equilibrium. For the first time, we show that young adult (3 months) and elderly (22 months) mice are together able to restore normal postural-locomotor function following transient unilateral excitotoxic vestibular insult, though with different time courses. This animal study paves way for future, more detailed studies of how the early postural and locomotor disturbances following a unilateral insult are compensated for by various plasticity mechanisms, and in particular how age influences these mechanisms.
Collapse
Affiliation(s)
- Raphaelle Cassel
- Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe physiopathologie et Thérapie des Désordres Vestibulaire, Centre National de la Recherche Scientifique, Aix Marseille Université, UMR 7260, Marseille, France
| | - Sylvette Wiener-Vacher
- Laboratoire d'Exploration Fonctionnel de l'Équilibre chez l'Enfant, APHP, Université Paris VII, Paris, France
| | - A El Ahmadi
- Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe physiopathologie et Thérapie des Désordres Vestibulaire, Centre National de la Recherche Scientifique, Aix Marseille Université, UMR 7260, Marseille, France
| | - Brahim Tighilet
- Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe physiopathologie et Thérapie des Désordres Vestibulaire, Centre National de la Recherche Scientifique, Aix Marseille Université, UMR 7260, Marseille, France
| | - Christian Chabbert
- Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe physiopathologie et Thérapie des Désordres Vestibulaire, Centre National de la Recherche Scientifique, Aix Marseille Université, UMR 7260, Marseille, France
| |
Collapse
|
58
|
Aitken P, Zheng Y, Smith PF. Ethovision™ analysis of open field behaviour in rats following bilateral vestibular loss. J Vestib Res 2018; 27:89-101. [PMID: 29064826 DOI: 10.3233/ves-170612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bilateral vestibular loss (BVL) causes a unique behavioural syndrome in rodents, with symptoms such as locomotor hyperactivity and changes in exploratory behaviour. Many of these symptoms appear to be indirect consequences of the loss of vestibular reflex function and are difficult to explain. Although such symptoms have been reported before, there have been few systematic studies of the effects of BVL using automated digital tracking systems in which many behavioural symptoms can be measured simultaneously with high precision. In this study, data were obtained from rats with BVL induced by intratympanic sodium arsanilate injections (n = 7) or sham injections (n = 8) and their behaviour in the open field was measured at 3 days and 23 days post-injection using Ethovision™ tracking software. BVL rats demonstrated reduced thigmotaxis, with more time spent in the central zones. Twenty-three days post-injection, BVL animals showed increased locomotor activity in the open field. The increase in activity was also reflected in the number of transitions between each zone of the field. In addition to increased activity, BVL animals showed increased whole body rotations following lesions. Using linear discriminant analysis (LDA) and random forest classification (RFC), we were able to show that the indirect behavioural effects of BVL, excluding direct measurement of vestibular reflex function, could correctly predict whether animals had received a BVL with a high degree of accuracy at both day 3 and day 23 post-BVL (83% and 100% for LDA, and 100% and 100% for RFC, respectively). RFC has been similarly successful in classifying other hyperactivity syndromes such as attention deficit hyperactivity disorder. These results suggest that BVL results in a unique behavioural signature that can identify vestibular loss in rats even without direct vestibular reflex measurements.
Collapse
Affiliation(s)
- Phillip Aitken
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand Centre of Research Excellence for Hearing and Balance Research, University of Auckland, New Zealand.,The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand Centre of Research Excellence for Hearing and Balance Research, University of Auckland, New Zealand.,The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, New Zealand
| |
Collapse
|
59
|
Tighilet B, Léonard J, Watabe I, Bernard-Demanze L, Lacour M. Betahistine Treatment in a Cat Model of Vestibular Pathology: Pharmacokinetic and Pharmacodynamic Approaches. Front Neurol 2018; 9:431. [PMID: 29942281 PMCID: PMC6005348 DOI: 10.3389/fneur.2018.00431] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
This study is a pharmacokinetic (PK) and pharmacodynamics (PD) approach using betahistine doses levels in unilateral vestibular neurectomized cats (UVN) comparable to those used in humans for treating patients with Menière's disease. The aim is to investigate for the first time oral betahistine administration (0.2 and 2 mg/kg/day) with plasma concentrations of betahistine and its major metabolite 2-pyridylacetic acid (2-PAA) (N = 9 cats), the time course of posture recovery (N = 13 cats), and the regulation of the enzyme synthesizing histamine (histidine decarboxylase: HDC) in the tuberomammillary nuclei (TMN) of UVN treated animals (N = the same 13 cats plus 4 negative control cats). In addition the effect of co-administration of the lower betahistine dose (0.2 mg/kg/day) and selegiline (1 mg/kg/day), an inhibitor of the monamine oxidase B (MAOBi) implicated in betahistine catabolism was investigated. The PK parameters were the peak concentration (Cmax), the time when the maximum concentration is reached (Tmax) for both betahistine and 2-PAA and the area under the curve (AUC). The PD approach consisted at quantifying the surface support area, which is a good estimation of posture recovery. The plasma concentration-time-profiles of betahistine and 2-PAA in cats were characterized by early Cmax-values followed by a phase of rapid decrease of plasma concentrations and a final long lasting low level of plasma concentrations. Co administration of selegiline and betahistine increased values of Cmax and AUC up to 146- and 180-fold, respectively. The lowest dose of betahistine (0.2 mg/kg) has no effects on postural function recovery but induced an acute symptomatic effect characterized by a fast balance improvement (4–6 days). The higher dose (2 mg/kg) and the co-administration treatment induced both this acute effect plus a significant acceleration of the recovery process. The histaminergic activity of the neurons in the TMN was significantly increased under treatment with the 2 mg/kg betahistine daily dose, but not with the lower dose alone or in combination with selegiline. The results show for the first time that faster balance recovery in UVN treated cats is accompanied with high plasma concentrations of betahistine and 2-PAA, and upregulation of HDC immunopositive neurons in the TMN. The higher betahistine dose gives results similar to those obtained with the lower dose when co-administrated with an inhibitor of betahistine metabolism, selegiline. From a clinical point of view, the study provides new perspectives for Menière's disease treatment, regarding the daily betahistine dose that should be necessary for fast and slow metabolizers.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix-Marseille Université - Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Sensorielles et Cognitives, UMR 7260, Physiopathologie et Thérapie des Désordres Vestibulaires, Centre Saint-Charles, Marseille, France
| | - Jacques Léonard
- Aix-Marseille Université - Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Sensorielles et Cognitives, UMR 7260, Physiopathologie et Thérapie des Désordres Vestibulaires, Centre Saint-Charles, Marseille, France
| | - Isabelle Watabe
- Aix-Marseille Université - Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Sensorielles et Cognitives, UMR 7260, Physiopathologie et Thérapie des Désordres Vestibulaires, Centre Saint-Charles, Marseille, France
| | - Laurence Bernard-Demanze
- Aix-Marseille Université - Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Sensorielles et Cognitives, UMR 7260, Physiopathologie et Thérapie des Désordres Vestibulaires, Centre Saint-Charles, Marseille, France.,Service ORL et de Chirurgie Cervico-Faciale Hôpital de la Conception Marseille, Marseille, France
| | - Michel Lacour
- Aix-Marseille Université - Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Sensorielles et Cognitives, UMR 7260, Physiopathologie et Thérapie des Désordres Vestibulaires, Centre Saint-Charles, Marseille, France
| |
Collapse
|
60
|
Chang MY, Park MK, Park SH, Suh MW, Lee JH, Oh SH. Surgical Labyrinthectomy of the Rat to Study the Vestibular System. J Vis Exp 2018. [PMID: 29863682 DOI: 10.3791/57681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To study the vestibular system or the vestibular compensation process, a number of methods have been developed to cause vestibular damage, including surgical or chemical labyrinthectomy and vestibular neurectomy. Surgical labyrinthectomy is a relatively simple, reliable, and rapid method. Here, we describe the surgical technique for rat labyrinthectomy. A postauricular incision is made under general anesthesia to expose the external auditory canal and the tympanic membrane, after which the tympanic membrane and the ossicles are removed without the stapes. The stapes artery, which is located between the stapes and the oval window, is a vulnerable structure and must be preserved to obtain a clear surgical field. A hole to fenestrate the vestibule is made with a 2.1-mm drill bur superior to the stapes. Then, 100% ethanol is injected through this hole and aspirated several times. Meticulous dissection under a microscope and careful bleeding control are essential to obtain reliable results. Symptoms of vestibular loss, such as nystagmus, head tilting, and a rolling motion, are seen immediately after surgery. The rotarod or rotation chair test can be used to objectively and quantitatively evaluate the vestibular function.
Collapse
Affiliation(s)
- Mun Young Chang
- Department of Otolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine
| | - Moo Kyun Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital;
| | - So Hyeon Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital
| | - Myung-Whan Suh
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital
| | - Jun Ho Lee
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital
| | - Seung Ha Oh
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital
| |
Collapse
|
61
|
Bos JE, Lubeck AJA, Vente PEM. Treatment of vestibular disorders with weak asymmetric base-in prisms: An hypothesis with a focus on Ménière's disease. J Vestib Res 2018; 27:251-263. [PMID: 29400688 PMCID: PMC9249307 DOI: 10.3233/ves-170630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Regular treatments of Ménière’s disease (MD) vary largely, and no single satisfactory treatment exists. A complementary treatment popular among Dutch and Belgian patients involves eyeglasses with weak asymmetric base-in prisms, with a perceived high success rate. An explanatory mechanism is, however, lacking. OBJECTIVE: To speculate on a working mechanism explaining an effectiveness of weak asymmetric base-in prims in MD, based on available knowledge. METHODS: After describing the way these prisms are prescribed using a walking test and its effect reported on, we give an explanation of its underlying mechanism, based on the literature. RESULTS: The presumed effect can be explained by considering the typical star-like walking pattern in MD, induced by a drifting after-image comparable to the oculogyral illusion. Weak asymmetric base-in prisms can furthermore eliminate the conflict between a net vestibular angular velocity bias in the efferent signal controlling the VOR, and a net re-afferent ocular signal. CONCLUSIONS: The positive findings with these glasses reported on, the fact that the treatment itself is simple, low-cost, and socially acceptable, and the fact that an explanation is at hand, speak in favour of elaborating further on this treatment.
Collapse
Affiliation(s)
- Jelte E Bos
- Department of Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.,Perceptual and Cognitive Systems, TNO, Soesterberg, The Netherlands
| | - Astrid J A Lubeck
- Department of Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - P Eric M Vente
- Utermöhlen Working Group, Alphen a/d Rijn, The Netherlands
| |
Collapse
|
62
|
Aitken P, Zheng Y, Smith PF. The modulation of hippocampal theta rhythm by the vestibular system. J Neurophysiol 2018; 119:548-562. [DOI: 10.1152/jn.00548.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vestibular system is a sensory system that has evolved over millions of years to detect acceleration of the head, both rotational and translational, in three dimensions. One of its most important functions is to stabilize gaze during unexpected head movement; however, it is also important in the control of posture and autonomic reflexes. Theta rhythm is a 3- to 12-Hz oscillating EEG signal that is intimately linked to self-motion and is also known to be important in learning and memory. Many studies over the last two decades have shown that selective activation of the vestibular system, using either natural rotational or translational stimulation, or electrical stimulation of the peripheral vestibular system, can induce and modulate theta activity. Furthermore, inactivation of the vestibular system has been shown to significantly reduce theta in freely moving animals, which may be linked to its impairment of place cell function as well as spatial learning and memory. The pathways through which vestibular information modulate theta rhythm remain debatable. However, vestibular responses have been found in the pedunculopontine tegmental nucleus (PPTg) and activation of the vestibular system causes an increase in acetylcholine release into the hippocampus, probably from the medial septum. Therefore, a pathway from the vestibular nucleus complex and/or cerebellum to the PPTg, supramammillary nucleus, posterior hypothalamic nucleus, and septum to the hippocampus is likely. The modulation of theta by the vestibular system may have implications for vestibular effects on cognitive function and the contribution of vestibular impairment to the risk of dementia.
Collapse
Affiliation(s)
- Phillip Aitken
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F. Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
63
|
Karmali F, Whitman GT, Lewis RF. Bayesian optimal adaptation explains age-related human sensorimotor changes. J Neurophysiol 2017; 119:509-520. [PMID: 29118202 DOI: 10.1152/jn.00710.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The brain uses information from different sensory systems to guide motor behavior, and aging is associated with simultaneous decline in the quality of sensory information provided to the brain and deterioration in motor control. Correlations between age-dependent decline in sensory anatomical structures and behavior have been demonstrated in many sensorimotor systems, and it has recently been suggested that a Bayesian framework could explain these relationships. Here we show that age-dependent changes in a human sensorimotor reflex, the vestibuloocular reflex, are explained by a Bayesian optimal adaptation in the brain occurring in response to death of motion-sensing hair cells. Specifically, we found that the temporal dynamics of the reflex as a function of age emerge from ( r = 0.93, P < 0.001) a Kalman filter model that determines the optimal behavioral output when the sensory signal-to-noise characteristics are degraded by death of the transducers. These findings demonstrate that the aging brain is capable of generating the ideal and statistically optimal behavioral response when provided with deteriorating sensory information. While the Bayesian framework has been shown to be a general neural principle for multimodal sensory integration and dynamic sensory estimation, these findings provide evidence of longitudinal Bayesian processing over the human life span. These results illuminate how the aging brain strives to optimize motor behavior when faced with deterioration in the peripheral and central nervous systems and have implications in the field of vestibular and balance disorders, as they will likely provide guidance for physical therapy and for prosthetic aids that aim to reduce falls in the elderly. NEW & NOTEWORTHY We showed that age-dependent changes in the vestibuloocular reflex are explained by a Bayesian optimal adaptation in the brain that occurs in response to age-dependent sensory anatomical changes. This demonstrates that the brain can longitudinally respond to age-related sensory loss in an ideal and statistically optimal way. This has implications for understanding and treating vestibular disorders caused by aging and provides insight into the structure-function relationship during aging.
Collapse
Affiliation(s)
- Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts
| | - Gregory T Whitman
- Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts.,Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Richard F Lewis
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
64
|
Colnaghi S, Rezzani C, Gnesi M, Manfrin M, Quaglieri S, Nuti D, Mandalà M, Monti MC, Versino M. Validation of the Italian Version of the Dizziness Handicap Inventory, the Situational Vertigo Questionnaire, and the Activity-Specific Balance Confidence Scale for Peripheral and Central Vestibular Symptoms. Front Neurol 2017; 8:528. [PMID: 29066999 PMCID: PMC5641311 DOI: 10.3389/fneur.2017.00528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
Neurophysiological measurements of the vestibular function for diagnosis and follow-up evaluations provide an objective assessment, which, unfortunately, does not necessarily correlate with the patients' self-feeling. The literature provides many questionnaires to assess the outcome of rehabilitation programs for disequilibrium, but only for the Dizziness Handicap Inventory (DHI) is an Italian translation available, validated on a small group of patients suffering from a peripheral acute vertigo. We translated and validated the reliability and validity of the DHI, the Situational Vertigo Questionnaire (SVQ), and the Activities-Specific Balance Confidence Scale (ABC) in 316 Italian patients complaining of dizziness due either to a peripheral or to a central vestibular deficit, or in whom vestibular signs were undetectable by means of instrumental testing or clinical evaluation. Cronbach's coefficient alpha, the homogeneity index, and test-retest reproducibility, confirmed reliability of the Italian version of the three questionnaires. Validity was confirmed by correlation test between questionnaire scores. Correlations with clinical variables suggested that they can be used as a complementary tool for the assessment of vestibular symptoms. In conclusion, the Italian versions of DHI, SVQ, and ABC are reliable and valid questionnaires for assessing the impact of dizziness on the quality of life of Italian patients with peripheral or central vestibular deficit.
Collapse
Affiliation(s)
- Silvia Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Laboratory of Neuro-otology and Neuro-ophthalmology, C. Mondino National Neurological Institute, Pavia, Italy
| | - Cristiana Rezzani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Marco Gnesi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Marco Manfrin
- ENT Unit, Policlinico San Matteo Fondazione (IRCCS), Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Silvia Quaglieri
- ENT Unit, Policlinico San Matteo Fondazione (IRCCS), Pavia, Italy
| | - Daniele Nuti
- Department of Otology and Skull Base, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Marco Mandalà
- Department of Otology and Skull Base, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Maurizio Versino
- Laboratory of Neuro-otology and Neuro-ophthalmology, C. Mondino National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
65
|
Cassel R, Bordiga P, Pericat D, Hautefort C, Tighilet B, Chabbert C. New mouse model for inducing and evaluating unilateral vestibular deafferentation syndrome. J Neurosci Methods 2017; 293:128-135. [PMID: 28911857 DOI: 10.1016/j.jneumeth.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Unilateral vestibular deafferentation syndrome (uVDS) holds a particular place in the vestibular pathology domain. Due to its suddenness, the violence of its symptoms that often result in emergency hospitalization, and its associated original neurophysiological properties, this syndrome is a major source of questioning for the otoneurology community. Also, its putative pathogenic causes remain to be determined. There is currently a strong medical need for the development of targeted and effective countermeasures to improve the therapeutic management of uVDS. NEW METHODS The present study reports the development of a new mouse model for inducing and evaluating uVDS. Both the method for generating controlled excitotoxic-type peripheral vestibular damages, through transtympanic administration of the glutamate receptors agonist kainate (TTK), and the procedure for evaluating the ensuing clinical signs are detailed. COMPARISON WITH EXISTING METHODS Through extensive analysis of the clinical symptoms characteristics, this new animal model provides the opportunity to better follow the temporal evolution of various uVDS specific symptoms, while better appreciating the different phases that composed this syndrome. RESULTS The uVDS evoked in the TTK mouse model displays two main phases distinguishable by their kinetics and amplitudes. Several parameters of the altered vestibular behaviour mimic those observed in the human syndrome. CONCLUSION This new murine model brings concrete information about how uVDS develops and how it affects global behaviour. In addition, it opens new opportunity to decipher the etiopathological substrate of this pathology by authorizing the use of genetically modified mouse models.
Collapse
Affiliation(s)
- R Cassel
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Intégratives et Adaptatives - Equipe physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| | - P Bordiga
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Intégratives et Adaptatives - Equipe physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| | - D Pericat
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Intégratives et Adaptatives - Equipe physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| | | | - B Tighilet
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Intégratives et Adaptatives - Equipe physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| | - C Chabbert
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Intégratives et Adaptatives - Equipe physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France.
| |
Collapse
|
66
|
Panichi R, Faralli M, Bruni R, Kiriakarely A, Occhigrossi C, Ferraresi A, Bronstein AM, Pettorossi VE. Asymmetric vestibular stimulation reveals persistent disruption of motion perception in unilateral vestibular lesions. J Neurophysiol 2017; 118:2819-2832. [PMID: 28814637 PMCID: PMC5680356 DOI: 10.1152/jn.00674.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
Self-motion perception was studied in patients with unilateral vestibular lesions (UVL) due to acute vestibular neuritis at 1 wk and 4, 8, and 12 mo after the acute episode. We assessed vestibularly mediated self-motion perception by measuring the error in reproducing the position of a remembered visual target at the end of four cycles of asymmetric whole-body rotation. The oscillatory stimulus consists of a slow (0.09 Hz) and a fast (0.38 Hz) half cycle. A large error was present in UVL patients when the slow half cycle was delivered toward the lesion side, but minimal toward the healthy side. This asymmetry diminished over time, but it remained abnormally large at 12 mo. In contrast, vestibulo-ocular reflex responses showed a large direction-dependent error only initially, then they normalized. Normalization also occurred for conventional reflex vestibular measures (caloric tests, subjective visual vertical, and head shaking nystagmus) and for perceptual function during symmetric rotation. Vestibular-related handicap, measured with the Dizziness Handicap Inventory (DHI) at 12 mo correlated with self-motion perception asymmetry but not with abnormalities in vestibulo-ocular function. We conclude that 1) a persistent self-motion perceptual bias is revealed by asymmetric rotation in UVLs despite vestibulo-ocular function becoming symmetric over time, 2) this dissociation is caused by differential perceptual-reflex adaptation to high- and low-frequency rotations when these are combined as with our asymmetric stimulus, 3) the findings imply differential central compensation for vestibuloperceptual and vestibulo-ocular reflex functions, and 4) self-motion perception disruption may mediate long-term vestibular-related handicap in UVL patients. NEW & NOTEWORTHY A novel vestibular stimulus, combining asymmetric slow and fast sinusoidal half cycles, revealed persistent vestibuloperceptual dysfunction in unilateral vestibular lesion (UVL) patients. The compensation of motion perception after UVL was slower than that of vestibulo-ocular reflex. Perceptual but not vestibulo-ocular reflex deficits correlated with dizziness-related handicap.
Collapse
Affiliation(s)
- R Panichi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - M Faralli
- Dipartimento di Specialità Medico-Chirurgiche e Sanità Pubblica, Sezione di Otorinolaringoiatria, Università di Perugia, Perugia, Italy; and
| | - R Bruni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - A Kiriakarely
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - C Occhigrossi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - A Ferraresi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - A M Bronstein
- Academic Neuro-Otology, Centre for Neuroscience, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - V E Pettorossi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| |
Collapse
|
67
|
Lee GW, Kim JH, Kim MS. Reduction of long-term potentiation at Schaffer collateral-CA1 synapses in the rat hippocampus at the acute stage of vestibular compensation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:423-428. [PMID: 28706456 PMCID: PMC5507781 DOI: 10.4196/kjpp.2017.21.4.423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/06/2017] [Accepted: 06/12/2017] [Indexed: 11/15/2022]
Abstract
Vestibular compensation is a recovery process from vestibular symptoms over time after unilateral loss of peripheral vestibular end organs. The aim of the present study was to observe time-dependent changes in long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in the CA1 area of the hippocampus during vestibular compensation. The input-output (I/O) relationships of fEPSP amplitudes and LTP induced by theta burst stimulation to Schaffer's collateral commissural fibers were evaluated from the CA1 area of hippocampal slices at 1 day, 1 week, and 1 month after unilateral labyrinthectomy (UL). The I/O relationships of fEPSPs in the CA1 area was significantly reduced within 1 week post-op and then showed a non-significant reduction at 1 month after UL. Compared with sham-operated animals, there was a significant reduction of LTP induction in the hippocampus at 1 day and 1 week after UL. However, LTP induction levels in the CA1 area of the hippocampus also returned to those of sham-operated animals 1 month following UL. These data suggest that unilateral injury of the peripheral vestibular end organs results in a transient deficit in synaptic plasticity in the CA1 hippocampal area at acute stages of vestibular compensation.
Collapse
Affiliation(s)
- Gyoung Wan Lee
- Department of Nursing, Wonkwang Health Science University, Iksan 54538, Korea
| | - Jae Hyo Kim
- Department of Meridian & Acupoint, College of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Min Sun Kim
- Department of Physiology, School of Medicine, Wonkwang University, Iksan 54538, Korea
| |
Collapse
|
68
|
Péricat D, Farina A, Agavnian-Couquiaud E, Chabbert C, Tighilet B. Complete and irreversible unilateral vestibular loss: A novel rat model of vestibular pathology. J Neurosci Methods 2017; 283:83-91. [DOI: 10.1016/j.jneumeth.2017.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/26/2017] [Accepted: 04/01/2017] [Indexed: 01/10/2023]
|
69
|
Plasticity within excitatory and inhibitory pathways of the vestibulo-spinal circuitry guides changes in motor performance. Sci Rep 2017; 7:853. [PMID: 28405011 PMCID: PMC5429812 DOI: 10.1038/s41598-017-00956-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Abstract
Investigations of behaviors with well-characterized circuitry are required to understand how the brain learns new motor skills and ensures existing behaviors remain appropriately calibrated over time. Accordingly, here we recorded from neurons within different sites of the vestibulo-spinal circuitry of behaving macaque monkeys during temporally precise activation of vestibular afferents. Behaviorally relevant patterns of vestibular nerve activation generated a rapid and substantial decrease in the monosynaptic responses recorded at the first central stage of processing from neurons receiving direct input from vestibular afferents within minutes, as well as a decrease in the compensatory reflex response that lasted up to 8 hours. In contrast, afferent responses to this same stimulation remained constant, indicating that plasticity was not induced at the level of the periphery but rather at the afferent-central neuron synapse. Strikingly, the responses of neurons within indirect brainstem pathways also remained constant, even though the efficacy of their central input was significantly reduced. Taken together, our results show that rapid plasticity at the first central stage of vestibulo-spinal pathways can guide changes in motor performance, and that complementary plasticity on the same millisecond time scale within inhibitory vestibular nuclei networks contributes to ensuring a relatively robust behavioral output.
Collapse
|
70
|
Effects of bilateral vestibular deafferentation in rat on hippocampal theta response to somatosensory stimulation, acetylcholine release, and cholinergic neurons in the pedunculopontine tegmental nucleus. Brain Struct Funct 2017; 222:3319-3332. [PMID: 28349227 DOI: 10.1007/s00429-017-1407-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022]
Abstract
Vestibular dysfunction has been shown to cause spatial memory impairment. Neurophysiological studies indicate that bilateral vestibular loss (BVL), in particular, is associated with an impairment of the response of hippocampal place cells and theta rhythm. However, the specific neural pathways through which vestibular information reaches the hippocampus are yet to be fully elucidated. The aim of the present study was to further investigate the hypothesised 'theta-generating pathway' from the brainstem vestibular nucleus to the hippocampus. BVL, and in some cases, unilateral vestibular loss (UVL), induced by intratympanic sodium arsanilate injections in rats, were used to investigate the effects of vestibular loss on somatosensory-induced type 2 theta rhythm, acetylcholine (ACh) release in the hippocampus, and the number of cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg), an important part of the theta-generating pathway. Under urethane anaesthesia, BVL was found to cause a significant increase in the maximum power of the type 2 theta (3-6 Hz) frequency band compared to UVL and sham animals. Rats with BVL generally exhibited a lower basal level of ACh release than sham rats; however, this difference was not statistically significant. The PPTg of BVL rats exhibited significantly more choline-acetyltransferase (ChAT)-positive neurons than that of sham animals, as did the contralateral PPTg of UVL animals; however, the number of ChAT-positive neurons on the ipsilateral side of UVL animals was not significantly different from sham animals. The results of these studies indicate that parts of the theta-generating pathway undergo a significant reorganisation following vestibular loss, which suggests that this pathway is important for the interaction between the vestibular system and the hippocampus.
Collapse
|
71
|
BK Channels Are Required for Multisensory Plasticity in the Oculomotor System. Neuron 2016; 93:211-220. [PMID: 27989457 DOI: 10.1016/j.neuron.2016.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/29/2016] [Accepted: 11/03/2016] [Indexed: 02/04/2023]
Abstract
Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium-activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually evoked eye movements rapidly restore oculomotor function in wild-type mice but are profoundly impaired in BK channel-null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits.
Collapse
|
72
|
Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 2016; 6:37575. [PMID: 27869225 PMCID: PMC5116631 DOI: 10.1038/srep37575] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/31/2016] [Indexed: 11/09/2022] Open
Abstract
Vestibular dysfunction causes postural instability, which is prevalent in the elderly. We previously showed that an imperceptible level of noisy galvanic vestibular stimulation (nGVS) can improve postural stability in patients with bilateral vestibulopathy during the stimulus, presumably by enhancing vestibular information processing. In this study, we investigated the after-effects of an imperceptible long-duration nGVS on body balance in elderly adults. Thirty elderly participants underwent two nGVS sessions in a randomised order. In Session 1, participants received nGVS for 30 min twice with a 4-h interval. In Session 2, participants received nGVS for 3 h. Two-legged stance tasks were performed with eyes closed while participants stood on a foam rubber surface, with and without nGVS, and parameters related to postural stability were measured using posturography. In both sessions, the postural stability was markedly improved for more than 2 h after the cessation of the stimulus and tended to decrease thereafter. The second stimulation in Session 1 caused a moderate additional improvement in body balance and promoted the sustainability of the improvement. These results suggest that nGVS can lead to a postural stability improvement in elderly adults that lasts for several hours after the cessation of the stimulus, probably via vestibular neuroplasticity.
Collapse
|
73
|
Newlands SD, Wei M, Morgan D, Luan H. Responses of non-eye-movement central vestibular neurons to sinusoidal yaw rotation in compensated macaques after unilateral semicircular canal plugging. J Neurophysiol 2016; 116:1871-1884. [PMID: 27489364 DOI: 10.1152/jn.00212.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/27/2016] [Indexed: 01/24/2023] Open
Abstract
After vestibular labyrinth injury, behavioral measures of vestibular performance recover to variable degrees (vestibular compensation). Central neuronal responses after unilateral labyrinthectomy (UL), which eliminates both afferent resting activity and sensitivity to movement, have been well-studied. However, unilateral semicircular canal plugging (UCP), which attenuates angular-velocity detection while leaving afferent resting activity intact, has not been extensively studied. The current study reports response properties of yaw-sensitive non-eye-movement rhesus macaque vestibular neurons after compensation from UCP. The responses at a series of frequencies (0.1-2 Hz) and peak velocities (15-210°/s) were compared between neurons recorded before and at least 6 wk after UCP. The gain (sp/s/°/s) of central type I neurons (responding to ipsilateral yaw rotation) on the side of UCP was reduced relative to normal controls at 0.5 Hz, ±60°/s [0.48 ± 0.30 (SD) normal, 0.32 ± 0.15 ipsilesion; 0.44 ± 0.2 contralesion]. Type II neurons (responding to contralateral yaw rotation) after UCP have reduced gain (0.40 ± 0.27 normal, 0.35 ± 0.25 ipsilesion; 0.25 ± 0.18 contralesion). The difference between responses after UCP and after UL is primarily the distribution of type I and type II neurons in the vestibular nuclei (type I neurons comprise 66% in vestibular nuclei normally; 51% ipsilesion UCP; 59% contralesion UCP; 38% ipsilesion UL; 65% contralesion UL) and the magnitude of the responses of type II neurons ipsilateral to the lesion. These differences suggest that the need to compensate for unilateral loss of resting vestibular nerve activity after UL necessitates a different strategy for recovery of dynamic vestibular responses compared to after UCP.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| | - Min Wei
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| | - David Morgan
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| | - Hongge Luan
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
74
|
Zhou W, Zhou LQ, Shi H, Leng YM, Liu B, Zhang SL, Kong WJ. Expression of glycine receptors and gephyrin in rat medial vestibular nuclei and flocculi following unilateral labyrinthectomy. Int J Mol Med 2016; 38:1481-1489. [PMID: 28026001 PMCID: PMC5065303 DOI: 10.3892/ijmm.2016.2753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
The medial vestibular nucleus (MVN) and the cerebellar flocculus have been known to be the key areas involved in vestibular compensation (VC) following unilateral labyrinthectomy (UL). In this study, we examined the role of gephyrin and glycine receptor (GlyR) in VC using Sprague-Dawley rats, in an aim to gain deeper insight into the mechanisms responsible for VC. The expression of the α1 and β subunits of GlyR and gephyrin was immunohistochemically localized in rat MVN and flocculi. The mRNA and protein expression of GlyR (α1 and β subunits) and gephyrin was quantitatively determined by RT-qPCR and western blot analysis at 8 h, and at 1, 3 and 7 days following UL. It was found that in the ipsilateral MVN, the mRNA and protein expression of the β subunit of GlyR was significantly increased in comparison to the sham-operated (P<0.01) rats, and in comparison to the contralateral side (P<0.01) at 8 h following UL. In the ipsilateral flocculi, GlyR β protein expression was significantly elevated (P<0.01 for all), as compared to the sham-operated rats at 8 h, and at 1 and 3 days and to the contralateral side 8 h, 1 and 3 days following UL. No significant differences were observed in the mRNA and protein expression of GlyR α1 and gephyrin in the MVN or flocculi between the two sides (ipsilateral and contralateral) in the UL group, and between the sham-operated group and the UL group at any time point. The findings of our study thus suggest that GlyR plays a major role in the recovery of the resting discharge of the deafferented MVN neurons in the central vestibular system.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Liu-Qing Zhou
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong Shi
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yang-Ming Leng
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bo Liu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Su-Lin Zhang
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
75
|
Longitudinal Cognitive and Neurobehavioral Functional Outcomes Before and After Repairing Otic Capsule Dehiscence. Otol Neurotol 2016; 37:70-82. [PMID: 26649608 PMCID: PMC4674143 DOI: 10.1097/mao.0000000000000928] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Patients with peripheral vestibular dysfunction because of gravitational receptor asymmetries display signs of cognitive dysfunction and are assumed to have neurobehavioral sequelae. This was tested with pre- and postoperatively quantitative measurements in three cohort groups with superior semicircular canal dehiscence syndrome (SSCDS) symptoms with: 1) superior canal dehiscence (SCD) repaired via a middle cranial fossa craniotomy and canal plugging only; 2) otic capsule defects not visualized with imaging (no-iOCD) repaired with round window reinforcement (RWR) only; or 3) both SCD plugging and subsequent development of no-iOCD followed by RWR.
Collapse
|
76
|
Shaabani M, Lotfi Y, Karimian SM, Rahgozar M, Hooshmandi M. Short-term galvanic vestibular stimulation promotes functional recovery and neurogenesis in unilaterally labyrinthectomized rats. Brain Res 2016; 1648:152-162. [PMID: 27444558 DOI: 10.1016/j.brainres.2016.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/11/2016] [Accepted: 07/17/2016] [Indexed: 12/15/2022]
Abstract
Current experimental research on the therapeutic effects of galvanic vestibular stimulation (GVS) has mainly focused on neurodegenerative disorders. However, it primarily stimulates the vestibular nuclei and could be potentially effective in modulating imbalance between them in the case of unilateral labyrinthectomy (UL). Fifty male Wistar rats (180-220g) were used in 5 groups of 10: intact, sham, right-UL (RUL; without intervention), and two other right-UL groups with GVS intervention [one group treated with low rate GVS (GVS.LF; 6-7Hz), and the other treated with high rate GVS (GVS.HF; 17-18Hz)]. The UL models were prepared by intratympanic injection of sodium arsanilate. GVS protocols were implemented 30min/day and continued for 14 days via ring-shaped copper electrodes inserted subcutaneously over each mastoid. Functional recovery was assessed by several postural tests including support surface area, landing and air-righting reflexes, and rotarod procedure. Immunohistochemical investigations were performed on ipsi- and contra-lesional medial vestibular nuclei (MVN) using bromodeoxyuridine (BrdU) and Ki67, as markers of cell proliferation. Behavioral evaluations showed significant functional recovery of GVS-treated groups compared to RUL group. The percent of marked cells with BrdU and Ki67 were significantly higher in the ipsilesional MVN of both GVS-treated groups compared with other groups. Our findings confirmed the effectiveness of GVS-intervention in accelerating static and dynamic vestibular compensation. This could be explained by the cell proliferation in ipsilesional MVN cells and rapid rebalancing of the VNs and the modulation of their motor outputs. Therefore, GVS could be promising for rehabilitating patients with unilateral vestibular weakness.
Collapse
Affiliation(s)
- Moslem Shaabani
- Audiology Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Yones Lotfi
- Audiology Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahgozar
- Biostatistics Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mehdi Hooshmandi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
77
|
Straka H, Zwergal A, Cullen KE. Vestibular animal models: contributions to understanding physiology and disease. J Neurol 2016; 263 Suppl 1:S10-23. [PMID: 27083880 PMCID: PMC4833800 DOI: 10.1007/s00415-015-7909-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 12/20/2022]
Abstract
Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more “exotic” species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.
Collapse
Affiliation(s)
- Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, 82152, Planegg, Germany. .,German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, QC, H3A 0G4, Canada
| |
Collapse
|
78
|
Lacour M, Helmchen C, Vidal PP. Vestibular compensation: the neuro-otologist's best friend. J Neurol 2016; 263 Suppl 1:S54-64. [PMID: 27083885 PMCID: PMC4833803 DOI: 10.1007/s00415-015-7903-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/05/2023]
Abstract
Why vestibular compensation (VC) after an acute unilateral vestibular loss is the neuro-otologist’s best friend is the question at the heart of this paper. The different plasticity mechanisms underlying VC are first reviewed, and the authors present thereafter the dual concept of vestibulo-centric versus distributed learning processes to explain the compensation of deficits resulting from the static versus dynamic vestibular imbalance. The main challenges for the plastic events occurring in the vestibular nuclei (VN) during a post-lesion critical period are neural protection, structural reorganization and rebalance of VN activity on both sides. Data from animal models show that modulation of the ipsilesional VN activity by the contralateral drive substitutes for the normal push–pull mechanism. On the other hand, sensory and behavioural substitutions are the main mechanisms implicated in the recovery of the dynamic functions. These newly elaborated sensorimotor reorganizations are vicarious idiosyncratic strategies implicating the VN and multisensory brain regions. Imaging studies in unilateral vestibular loss patients show the implication of a large neuronal network (VN, commissural pathways, vestibulo-cerebellum, thalamus, temporoparietal cortex, hippocampus, somatosensory and visual cortical areas). Changes in gray matter volume in these multisensory brain regions are structural changes supporting the sensory substitution mechanisms of VC. Finally, the authors summarize the two ways to improve VC in humans (neuropharmacology and vestibular rehabilitation therapy), and they conclude that VC would follow a “top-down” strategy in patients with acute vestibular lesions. Future challenges to understand VC are proposed.
Collapse
Affiliation(s)
- Michel Lacour
- Université Aix-Marseille/CNRS, UMR 7260, Fédération de Recherche 3C, Centre de St Charles, 3 Place Victor Hugo, 13331, Marseille Cedex 03, France. .,, 21 Impasse des Vertus, 13710, Fuveau, France.
| | - Christoph Helmchen
- Department of Neurology, University Hospitals Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Pierre-Paul Vidal
- Université Paris Descartes/CNRS, UMR-MD-SSA, COGNAC-G (COGNition and Action Group), 45 Rue des Saints Pères, 75270, Paris Cedex 06, France
| |
Collapse
|
79
|
Abstract
The relative simplicity of the neural circuits that mediate vestibular reflexes is well suited for linking systems and cellular levels of analyses. Notably, a distinctive feature of the vestibular system is that neurons at the first central stage of sensory processing in the vestibular nuclei are premotor neurons; the same neurons that receive vestibular-nerve input also send direct projections to motor pathways. For example, the simplicity of the three-neuron pathway that mediates the vestibulo-ocular reflex leads to the generation of compensatory eye movements within ~5ms of a head movement. Similarly, relatively direct pathways between the labyrinth and spinal cord control vestibulospinal reflexes. A second distinctive feature of the vestibular system is that the first stage of central processing is strongly multimodal. This is because the vestibular nuclei receive inputs from a wide range of cortical, cerebellar, and other brainstem structures in addition to direct inputs from the vestibular nerve. Recent studies in alert animals have established how extravestibular signals shape these "simple" reflexes to meet the needs of current behavioral goal. Moreover, multimodal interactions at higher levels, such as the vestibular cerebellum, thalamus, and cortex, play a vital role in ensuring accurate self-motion and spatial orientation perception.
Collapse
Affiliation(s)
- K E Cullen
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
80
|
Abstract
Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders.
Collapse
Affiliation(s)
- C D Balaban
- Departments of Otolaryngology, Neurobiology, Communication Sciences and Disorders, and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
81
|
Tighilet B, Leonard J, Bernard-Demanze L, Lacour M. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat. Eur J Pharmacol 2015; 769:342-9. [PMID: 26607469 DOI: 10.1016/j.ejphar.2015.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France.
| | - Jacques Leonard
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France
| | - Laurence Bernard-Demanze
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France; Service ORL et de Chirurgie cervico-faciale Hôpital de la Conception Marseille, 147 Boulevard Baille, 13005 Marseille, France
| | - Michel Lacour
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France
| |
Collapse
|
82
|
Eron JN, Davidovics N, Della Santina CC. Contribution of vestibular efferent system alpha-9 nicotinic receptors to vestibulo-oculomotor interaction and short-term vestibular compensation after unilateral labyrinthectomy in mice. Neurosci Lett 2015; 602:156-61. [PMID: 26163461 DOI: 10.1016/j.neulet.2015.06.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/25/2015] [Accepted: 06/30/2015] [Indexed: 11/20/2022]
Abstract
Sudden unilateral loss of vestibular afferent input causes nystagmus, ocular misalignment, postural instability and vertigo, all of which improve significantly over the first few days after injury through a process called vestibular compensation (VC). Efferent neuronal signals to the labyrinth are thought to be required for VC. To better understand efferent contributions to VC, we compared the time course of VC in wild-type (WT) mice and α9 knockout (α9(-/-)) mice, the latter lacking the α9 subunit of nicotinic acetylcholine receptors (nAChRs), which is thought to represent one signaling arm activated by the efferent vestibular system (EVS). Specifically, we investigated the time course of changes in the fast/direct and slow/indirect components of the angular vestibulo-ocular reflex (VOR) before and after unilateral labyrinthectomy (UL). Eye movements were recorded using infrared video oculography in darkness with the animal stationary and during sinusoidal (50 and 100°/s, 0.5-5 Hz) and velocity step (150°/s for 7-10s, peak acceleration 3000°/s(2)) passive whole-body rotations about an Earth-vertical axis. Eye movements were measured before and 0.5, 2, 4, 6 and 9 days after UL. Before UL, we found frequency- and velocity-dependent differences between WT and α9(-/-) mice in generation of VOR quick phases. The VOR slow phase time constant (TC) during velocity steps, which quantifies contributions of the indirect component of the VOR, was longer in α9(-/-) mutants relative to WT mice. After UL, spontaneous nystagmus (SN) was suppressed significantly earlier in WT mice than in α9(-/-) mice, but mutants achieved greater recovery of TC symmetry and VOR quick phases. These data suggest (1) there are significant differences in vestibular and oculomotor functions between these two types of mice, and (2) efferent signals mediated by α9 nicotinic AChRs play a role during VC after UL.
Collapse
Affiliation(s)
- Julia N Eron
- Department Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia.
| | - Natan Davidovics
- Department Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Charles C Della Santina
- Department Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
83
|
Modifications of perineuronal nets and remodelling of excitatory and inhibitory afferents during vestibular compensation in the adult mouse. Brain Struct Funct 2015; 221:3193-209. [PMID: 26264050 DOI: 10.1007/s00429-015-1095-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022]
Abstract
Perineuronal nets (PNNs) are aggregates of extracellular matrix molecules surrounding several types of neurons in the adult CNS, which contribute to stabilising neuronal connections. Interestingly, a reduction of PNN number and staining intensity has been observed in conditions associated with plasticity in the adult brain. However, it is not known whether spontaneous PNN changes are functional to plasticity and repair after injury. To address this issue, we investigated PNN expression in the vestibular nuclei of the adult mouse during vestibular compensation, namely the resolution of motor deficits resulting from a unilateral peripheral vestibular lesion. After unilateral labyrinthectomy, we found that PNN number and staining intensity were strongly attenuated in the lateral vestibular nucleus on both sides, in parallel with remodelling of excitatory and inhibitory afferents. Moreover, PNNs were completely restored when vestibular deficits of the mice were abated. Interestingly, in mice with genetically reduced PNNs, vestibular compensation was accelerated. Overall, these results strongly suggest that temporal tuning of PNN expression may be crucial for vestibular compensation.
Collapse
|
84
|
Hitier M, Hamon M, Denise P, Lacoudre J, Thenint MA, Mallet JF, Moreau S, Quarck G. Lateral Semicircular Canal Asymmetry in Idiopathic Scoliosis: An Early Link between Biomechanical, Hormonal and Neurosensory Theories? PLoS One 2015; 10:e0131120. [PMID: 26186348 PMCID: PMC4506017 DOI: 10.1371/journal.pone.0131120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Despite its high incidence and severe morbidity, the physiopathogenesis of adolescent idiopathic scoliosis (AIS) is still unknown. Here, we looked for early anomalies in AIS which are likely to be the cause of spinal deformity and could also be targeted by early treatments. We focused on the vestibular system, which is suspected of acting in AIS pathogenesis and which exhibits an end organ with size and shape fixed before birth. We hypothesize that, in adolescents with idiopathic scoliosis, vestibular morphological anomalies were already present at birth and could possibly have caused other abnormalities. MATERIALS AND METHODS The vestibular organ of 18 adolescents with AIS and 9 controls were evaluated with MRI in a prospective case controlled study. We studied lateral semicircular canal orientation and the three semicircular canal positions relative to the midline. Lateral semicircular canal function was also evaluated by vestibulonystagmography after bithermal caloric stimulation. RESULTS The left lateral semicircular canal was more vertical and further from the midline in AIS (p = 0.01) and these two parameters were highly correlated (r = -0.6; p = 0.02). These morphological anomalies were associated with functional anomalies in AIS (lower excitability, higher canal paresis), but were not significantly different from controls (p>0.05). CONCLUSION Adolescents with idiopathic scoliosis exhibit morphological vestibular asymmetry, probably determined well before birth. Since the vestibular system influences the vestibulospinal pathway, the hypothalamus, and the cerebellum, this indicates that the vestibular system is a possible cause of later morphological, hormonal and neurosensory anomalies observed in AIS. Moreover, the simple lateral SCC MRI measurement demonstrated here could be used for early detection of AIS, selection of children for close follow-up, and initiation of preventive treatment before spinal deformity occurs.
Collapse
Affiliation(s)
- Martin Hitier
- Department of Otolaryngology—Head and Neck Surgery, CHU de Caen, Caen, F-14000, France
- Department of Anatomy, UNICAEN, Caen, 14032, France
- Department of Pharmacology and Toxicology; School of Medical Sciences and Brain Health Research Center, University of Otago, Dunedin, New Zealand
- U 1075 COMETE, INSERM, Caen, 14032, France
- * E-mail:
| | - Michèle Hamon
- Department of Neuroradiology, CHU de Caen, Caen, 14000, France
| | | | - Julien Lacoudre
- Department of Otolaryngology—Head and Neck Surgery, CHU de Caen, Caen, F-14000, France
| | | | | | - Sylvain Moreau
- Department of Otolaryngology—Head and Neck Surgery, CHU de Caen, Caen, F-14000, France
- Department of Anatomy, UNICAEN, Caen, 14032, France
| | | |
Collapse
|
85
|
Meredith FL, Kirk ME, Rennie KJ. Kv1 channels and neural processing in vestibular calyx afferents. Front Syst Neurosci 2015; 9:85. [PMID: 26082693 PMCID: PMC4451359 DOI: 10.3389/fnsys.2015.00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/18/2015] [Indexed: 11/13/2022] Open
Abstract
Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine Aurora, Colorado, USA
| | - Matthew E Kirk
- Department of Otolaryngology, University of Colorado School of Medicine Aurora, Colorado, USA
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine Aurora, Colorado, USA ; Department of Physiology and Biophysics, University of Colorado School of Medicine Aurora, Colorado, USA
| |
Collapse
|
86
|
Goodson NB, Brockhoff BL, Huston JP, Spieler RE. Time-dependent bidirectional effects of chronic caffeine on functional recovery of the dorsal light reflex after hemilabyrinthectomy in the goldfish Carassius auratus. Neuroscience 2015; 292:112-7. [PMID: 25727640 DOI: 10.1016/j.neuroscience.2015.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 11/26/2022]
Abstract
Caffeine works through a variety of complex mechanisms to exert an often bidirectional set of functional and structural neurological changes in vertebrates. We investigated the effects of chronic caffeine exposure on functional recovery of the dorsal light reflex (DLR) in hemilabyrinthectomized common goldfish, Carassius auratus. In this lesion model, the unilateral removal of the vestibular organs results in a temporary loss of gravitationally modulated postural control which is quantifiable via the DLR. We compared the functional recovery over 24 days of post-surgery goldfish continuously held in a caffeine solution of 2.5mg/L (n=10), 5.0mg/L (n=10), 10.0mg/L (n=11), or 0.0mg/L control (n=9). Comparison to a sham surgery group (n=11) indicated statistically significant changes in the DLR of all hemilabyrinthectomized fish on day 1. The control group recovered over the study period and approached, but did not reach sham surgery DLR. Although the caffeine-treated fishes appeared to initiate some postural recovery within the first 2 weeks, beginning on day 10, all caffeine groups diverged from the control group with a deterioration of postural control. All three caffeine groups were significantly deficient in comparison with the control on days 10-24. These results suggest that caffeine exposure can at first be benign, but that high dosage or prolonged exposure hinders functional recovery.
Collapse
Affiliation(s)
- N B Goodson
- Oceanographic Center, Nova Southeastern University, Dania, FL, USA
| | - B L Brockhoff
- Oceanographic Center, Nova Southeastern University, Dania, FL, USA
| | - J P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Duesseldorf, Duesseldorf, Germany
| | - R E Spieler
- Oceanographic Center, Nova Southeastern University, Dania, FL, USA.
| |
Collapse
|
87
|
Carriot J, Jamali M, Cullen KE. Rapid adaptation of multisensory integration in vestibular pathways. Front Syst Neurosci 2015; 9:59. [PMID: 25932009 PMCID: PMC4399207 DOI: 10.3389/fnsys.2015.00059] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/29/2015] [Indexed: 12/02/2022] Open
Abstract
Sensing gravity is vital for our perception of spatial orientation, the control of upright posture, and generation of our everyday activities. When an astronaut transitions to microgravity or returns to earth, the vestibular input arising from self-motion will not match the brain's expectation. Our recent neurophysiological studies have provided insight into how the nervous system rapidly reorganizes when vestibular input becomes unreliable by both (1) updating its internal model of the sensory consequences of motion and (2) up-weighting more reliable extra-vestibular information. These neural strategies, in turn, are linked to improvements in sensorimotor performance (e.g., gaze and postural stability, locomotion, orienting) and perception characterized by similar time courses. We suggest that furthering our understanding of the neural mechanisms that underlie sensorimotor adaptation will have important implications for optimizing training programs for astronauts before and after space exploration missions and for the design of goal-oriented rehabilitation for patients.
Collapse
Affiliation(s)
- Jerome Carriot
- Department of Physiology, McGill University Montreal, QC, Canada
| | - Mohsen Jamali
- Department of Physiology, McGill University Montreal, QC, Canada
| | | |
Collapse
|
88
|
Lacour M, Bernard-Demanze L. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery. Front Neurol 2015; 5:285. [PMID: 25610424 PMCID: PMC4285093 DOI: 10.3389/fneur.2014.00285] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/15/2014] [Indexed: 12/30/2022] Open
Abstract
This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or "à la carte" VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life.
Collapse
Affiliation(s)
- Michel Lacour
- Laboratoire de Neurobiologie Intégrative et Adaptative, UMR 7260 CNRS/Université Aix-Marseille, Fédération de Recherche 3C, Centre de St Charles, Marseille, France
| | - Laurence Bernard-Demanze
- Laboratoire de Neurobiologie Intégrative et Adaptative, UMR 7260 CNRS/Université Aix-Marseille, Fédération de Recherche 3C, Centre de St Charles, Marseille, France
- Service d’otorhinolaryngologie et d’otoneurologie, CHU Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
89
|
Kaliuzhna M, Vibert D, Grivaz P, Blanke O. Out-of-Body Experiences and Other Complex Dissociation Experiences in a Patient with Unilateral Peripheral Vestibular Damage and Deficient Multisensory Integration. Multisens Res 2015; 28:613-35. [DOI: 10.1163/22134808-00002506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Out-of-body experiences (OBEs) are illusory perceptions of one’s body from an elevated disembodied perspective. Recent theories postulate a double disintegration process in the personal (visual, proprioceptive and tactile disintegration) and extrapersonal (visual and vestibular disintegration) space as the basis of OBEs. Here we describe a case which corroborates and extends this hypothesis. The patient suffered from peripheral vestibular damage and presented with OBEs and lucid dreams. Analysis of the patient’s behaviour revealed a failure of visuo-vestibular integration and abnormal sensitivity to visuo-tactile conflicts that have previously been shown to experimentally induce out-of-body illusions (in healthy subjects). In light of these experimental findings and the patient’s symptomatology we extend an earlier model of the role of vestibular signals in OBEs. Our results advocate the involvement of subcortical bodily mechanisms in the occurrence of OBEs.
Collapse
Affiliation(s)
- Mariia Kaliuzhna
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dominique Vibert
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital (Inselspital) of Bern, Switzerland
| | - Petr Grivaz
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olaf Blanke
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Neurology, University Hospital, Geneva, Switzerland
| |
Collapse
|
90
|
Beck R, Günther L, Xiong G, Potschka H, Böning G, Bartenstein P, Brandt T, Jahn K, Dieterich M, Strupp M, la Fougère C, Zwergal A. The mixed blessing of treating symptoms in acute vestibular failure — Evidence from a 4-aminopyridine experiment. Exp Neurol 2014; 261:638-45. [DOI: 10.1016/j.expneurol.2014.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/07/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
91
|
Deliagina TG, Beloozerova IN, Orlovsky GN, Zelenin PV. Contribution of supraspinal systems to generation of automatic postural responses. Front Integr Neurosci 2014; 8:76. [PMID: 25324741 PMCID: PMC4181245 DOI: 10.3389/fnint.2014.00076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/14/2014] [Indexed: 11/13/2022] Open
Abstract
Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms - spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed.
Collapse
Affiliation(s)
| | | | | | - Pavel V. Zelenin
- Department of Neuroscience, Karolinska InstituteStockholm, Sweden
| |
Collapse
|
92
|
Early adaptation and compensation of clinical vestibular responses after unilateral vestibular deafferentation surgery. Otol Neurotol 2014; 35:148-54. [PMID: 23965525 DOI: 10.1097/mao.0b013e3182956196] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe vestibulo-ocular function in the immediate postoperative period after unilateral vestibular deafferentation from vestibular schwannoma resection. STUDY DESIGN Prospective longitudinal study. SETTING Tertiary medical center. PATIENTS Five patients who underwent vestibular schwannoma resection via retrosigmoid approach. INTERVENTIONS Bedside video-oculography and video head impulse testing (HIT). MAIN OUTCOME MEASURES Static and dynamic measures of vestibulo-ocular reflex (VOR) function including spontaneous nystagmus, skew deviation, VOR gain during HIT, and presence of saccades related to HIT. RESULTS Mean ipsilesional horizontal VOR gain decreased from 0.88 ± 0.09 preoperatively to 0.27 ± 0.20 on POD 2 (p = 0.004). Mean contralesional VOR gain declined from 0.95 ± 0.1 preoperatively to 0.79 ± 0.17 on POD 2 (p = 0.032). By POD 4, ipsilesional VOR gain remained low, whereas contralesional VOR gain returned to baseline. Initially on POD 1 to 3, compensatory saccades occurred exclusively after the head stopped moving (overt) with latency of 192.8 ± 36.1 ms; by POD 5, saccade latency decreased to 134.5 ± 23.5 ms (p = 0.026), and saccades were occurring during the head rotation. Skew deviation was present and remained abnormal through POD 5 in 3 of the 5 patients. CONCLUSION In the postoperative period, gaze stability seems to improve from contralesional VOR gain restoration and reduced latency of compensatory saccades.
Collapse
|
93
|
Newlands SD, Lin N, Wei M. Responses of non-eye movement central vestibular neurons to sinusoidal horizontal translation in compensated macaques after unilateral labyrinthectomy. J Neurophysiol 2014; 112:9-21. [PMID: 24717349 DOI: 10.1152/jn.00748.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
After vestibular labyrinth injury, behavioral deficits partially recover through the process of vestibular compensation. The present study was performed to improve our understanding of the physiology of the macaque vestibular system in the compensated state (>7 wk) after unilateral labyrinthectomy (UL). Three groups of vestibular nucleus neurons were included: pre-UL control neurons, neurons ipsilateral to the lesion, and neurons contralateral to the lesion. The firing responses of neurons sensitive to linear acceleration in the horizontal plane were recorded during sinusoidal horizontal translation directed along six different orientations (30° apart) at 0.5 Hz and 0.2 g peak acceleration (196 cm/s(2)). This data defined the vector of best response for each neuron in the horizontal plane, along which sensitivity, symmetry, detection threshold, and variability of firing were determined. Additionally, the responses of the same cells to translation over a series of frequencies (0.25-5.0 Hz) either in the interaural or naso-occipital orientation were obtained to define the frequency response characteristics in each group. We found a decrease in sensitivity, increase in threshold, and alteration in orientation of best responses in the vestibular nuclei after UL. Additionally, the phase relationship of the best neural response to translational stimulation changed with UL. The symmetry of individual neuron responses in the excitatory and inhibitory directions was unchanged by UL. Bilateral central utricular neurons still demonstrated two-dimension tuning after UL, consistent with spatio-temporal convergence from a single vestibular end-organ. These neuronal data correlate with known behavioral deficits after unilateral vestibular compromise.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
| | - Nan Lin
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
| | - Min Wei
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
94
|
Yu XJ, Thomassen JS, Dickman JD, Newlands SD, Angelaki DE. Long-term deficits in motion detection thresholds and spike count variability after unilateral vestibular lesion. J Neurophysiol 2014; 112:870-89. [PMID: 24848470 DOI: 10.1152/jn.00280.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The vestibular system operates in a push-pull fashion using signals from both labyrinths and an intricate bilateral organization. Unilateral vestibular lesions cause well-characterized motor deficits that are partially compensated over time and whose neural correlates have been traced in the mean response modulation of vestibular nuclei cells. Here we compare both response gains and neural detection thresholds of vestibular nuclei and semicircular canal afferent neurons in intact vs. unilateral-lesioned macaques using three-dimensional rotation and translation stimuli. We found increased stimulus-driven spike count variability and detection thresholds in semicircular canal afferents, although mean responses were unchanged, after contralateral labyrinth lesion. Analysis of trial-by-trial spike count correlations of a limited number of simultaneously recorded pairs of canal afferents suggests increased noise correlations after lesion. In addition, we also found persistent, chronic deficits in rotation detection thresholds of vestibular nuclei neurons, which were larger in the ipsilesional than the contralesional brain stem. These deficits, which persisted several months after lesion, were due to lower rotational response gains, whereas spike count variability was similar in intact and lesioned animals. In contrast to persistent deficits in rotation threshold, translation detection thresholds were not different from those in intact animals. These findings suggest that, after compensation, a single labyrinth is sufficient to recover motion sensitivity and normal thresholds for the otolith, but not the semicircular canal, system.
Collapse
Affiliation(s)
- Xiong-Jie Yu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Anatomy & Neurobiology, Washington University, St. Louis, Missouri; and
| | - Jakob S Thomassen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Anatomy & Neurobiology, Washington University, St. Louis, Missouri; and
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Anatomy & Neurobiology, Washington University, St. Louis, Missouri; and
| | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Anatomy & Neurobiology, Washington University, St. Louis, Missouri; and
| |
Collapse
|
95
|
Kim SC, Kim JY, Lee HN, Lee HH, Kwon JH, Kim NB, Kim MJ, Hwang JH, Han GC. A quantitative analysis of gait patterns in vestibular neuritis patients using gyroscope sensor and a continuous walking protocol. J Neuroeng Rehabil 2014; 11:58. [PMID: 24725764 PMCID: PMC3991869 DOI: 10.1186/1743-0003-11-58] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 04/07/2014] [Indexed: 11/27/2022] Open
Abstract
Background Locomotion involves an integration of vision, proprioception, and vestibular information. The parieto-insular vestibular cortex is known to affect the supra-spinal rhythm generators, and the vestibular system regulates anti-gravity muscle tone of the lower leg in the same side to maintain an upright posture through the extra-pyramidal track. To demonstrate the relationship between locomotion and vestibular function, we evaluated the differences in gait patterns between vestibular neuritis (VN) patients and normal subjects using a gyroscope sensor and long-way walking protocol. Methods Gyroscope sensors were attached to both shanks of healthy controls (n=10) and age-matched VN patients (n = 10). We then asked the participants to walk 88.8 m along a corridor. Through the summation of gait cycle data, we measured gait frequency (Hz), normalized angular velocity (NAV) of each axis for legs, maximum and minimum NAV, up-slope and down-slope of NAV in swing phase, stride-swing-stance time (s), and stance to stride ratio (%). Results The most dominant walking frequency in the VN group was not different compared to normal control. The NAVs of z-axis (pitch motion) were significantly larger than the others (x-, y-axis) and the values in VN patients tended to decrease in both legs and the difference of NAV between both group was significant in the ipsi-lesion side in the VN group only (p=0.03). Additionally, the gait velocity of these individuals was decreased relatively to controls (1.11 ± 0.120 and 0.84 ± 0.061 m/s in control and VN group respectively, p<0.01), which seems to be related to the significantly increased stance and stride time of the ipsi-lesion side. Moreover, in the VN group, the maximum NAV of the lesion side was less, and the minimum one was higher than control group. Furthermore, the down-slope and up-slope of NAV decreased on the impaired side. Conclusion The walking pattern of VN patients was highly phase-dependent, and NAV of pitch motion was significantly decreased in the ipsi-lesion side. The change of gait rhythm, stance and stride time, and maximum/minimum NAV of the ipsi-lesion side were characteristics of individuals with VN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gyu Cheol Han
- Department of Otolaryngology-Head and Neck Surgery, Gachon University of Medicine and Science, Graduate School of Medicine, Incheon, South Korea.
| |
Collapse
|
96
|
Tighilet B, Mourre C, Lacour M. Plasticity of the histamine H3 receptors after acute vestibular lesion in the adult cat. Front Integr Neurosci 2014; 7:87. [PMID: 24427120 PMCID: PMC3879797 DOI: 10.3389/fnint.2013.00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/16/2013] [Indexed: 11/13/2022] Open
Abstract
After unilateral vestibular neurectomy (UVN) many molecular and neurochemical mechanisms underlie the neurophysiological reorganizations occurring in the vestibular nuclei (VN) complex, as well as the behavioral recovery process. As a key regulator, the histaminergic system appears to be a likely candidate because drugs interfering with histamine (HA) neurotransmission facilitate behavioral recovery after vestibular lesion. This study aimed at analyzing the post-lesion changes of the histaminergic system by quantifying binding to histamine H3 receptors (H3R; mediating namely histamine autoinhibition) using a histamine H3 receptor agonist ([3H]N-α-methylhistamine). Experiments were done in brain sections of control cats (N = 6) and cats submitted to UVN and killed 1 (N = 6) or 3 (N = 6) weeks after the lesion. UVN induced a bilateral decrease in binding density of the agonist [3H]N-α-methylhistamine to H3R in the tuberomammillary nuclei (TMN) at 1 week post-lesion, with a predominant down-regulation in the ipsilateral TMN. The bilateral decrease remained at the 3 weeks survival time and became symmetric. Concerning brainstem structures, binding density in the VN, the prepositus hypoglossi, the subdivisions of the inferior olive decreased unilaterally on the ipsilateral side at 1 week and bilaterally 3 weeks after UVN. Similar changes were observed in the subdivisions of the solitary nucleus only 1 week after the lesion. These findings indicate vestibular lesion induces plasticity of the histamine H3R, which could contribute to vestibular function recovery.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Christiane Mourre
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre Saint-Charles, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Michel Lacour
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|
97
|
Yanagihara D. Role of the cerebellum in postural control. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
98
|
Jamali M, Mitchell DE, Dale A, Carriot J, Sadeghi SG, Cullen KE. Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution. J Physiol 2013; 592:1565-80. [PMID: 24366259 DOI: 10.1113/jphysiol.2013.267534] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ∼20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues.
Collapse
Affiliation(s)
- Mohsen Jamali
- McGill University, Aerospace Medical Research Unit, MacIntyre Medical Sciences Bldg, 3655 Prom Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6.
| | | | | | | | | | | |
Collapse
|
99
|
Zaidel A, Ma WJ, Angelaki DE. Supervised calibration relies on the multisensory percept. Neuron 2013; 80:1544-57. [PMID: 24290205 DOI: 10.1016/j.neuron.2013.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 11/19/2022]
Abstract
Multisensory plasticity enables us to dynamically adapt sensory cues to one another and to the environment. Without external feedback, "unsupervised" multisensory calibration reduces cue conflict in a manner largely independent of cue reliability. But environmental feedback regarding cue accuracy ("supervised") also affects calibration. Here we measured the combined influence of cue accuracy and cue reliability on supervised multisensory calibration, using discrepant visual and vestibular motion stimuli. When the less reliable cue was inaccurate, it alone got calibrated. However, when the more reliable cue was inaccurate, cues were yoked and calibrated together in the same direction. Strikingly, the less reliable cue shifted away from external feedback, becoming less accurate. A computational model in which supervised and unsupervised calibration work in parallel, where the former only relies on the multisensory percept, but the latter can calibrate cues individually, accounts for the observed behavior. In combination, they could ultimately achieve the optimal solution of both external accuracy and internal consistency.
Collapse
Affiliation(s)
- Adam Zaidel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Wei Ji Ma
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
100
|
Smith PF, Zheng Y. From ear to uncertainty: vestibular contributions to cognitive function. Front Integr Neurosci 2013; 7:84. [PMID: 24324413 PMCID: PMC3840327 DOI: 10.3389/fnint.2013.00084] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/07/2013] [Indexed: 12/31/2022] Open
Abstract
In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation (GVS), can modulate cognitive function.
Collapse
Affiliation(s)
- Paul F. Smith
- Department Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | | |
Collapse
|