51
|
Chung DJ, Healy TM, McKenzie JL, Chicco AJ, Sparagna GC, Schulte PM. Mitochondria, Temperature, and the Pace of Life. Integr Comp Biol 2018; 58:578-590. [DOI: 10.1093/icb/icy013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dillon J Chung
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy M Healy
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA 92037, USA
| | - Jessica L McKenzie
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Genevieve C Sparagna
- Anschutz Medical Campus, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Patricia M Schulte
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
52
|
de Taffin de Tilques M, Lasserre JP, Godard F, Sardin E, Bouhier M, Le Guedard M, Kucharczyk R, Petit PX, Testet E, di Rago JP, Tribouillard-Tanvier D. Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells. ACTA ACUST UNITED AC 2018; 5:220-232. [PMID: 29796387 PMCID: PMC5961916 DOI: 10.15698/mic2018.05.629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cardiolipin (CL) optimizes diverse mitochondrial processes, including oxidative phosphorylation (OXPHOS). To function properly, CL needs to be unsaturated, which requires the acyltransferase Tafazzin (TAZ). Loss-of-function mutations in the TAZ gene are responsible for the Barth syndrome (BTHS), a rare X-linked cardiomyopathy, presumably because of a diminished OXPHOS capacity. Herein we show that a partial inhibition of cytosolic protein synthesis, either chemically with the use of cycloheximide or by specific genetic mutations, fully restores biogenesis and the activity of the oxidative phosphorylation system in a yeast BTHS model (taz1Δ). Interestingly, the defaults in CL were not suppressed, indicating that they are not primarily responsible for the OXPHOS deficiency in taz1Δ yeast. Low concentrations of cycloheximide in the picomolar range were beneficial to TAZ-deficient HeLa cells, as evidenced by the recovery of a good proliferative capacity. These findings reveal that a diminished capacity of CL remodeling deficient cells to preserve protein homeostasis is likely an important factor contributing to the pathogenesis of BTHS. This in turn, identifies cytosolic translation as a potential therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Maxence de Taffin de Tilques
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Jean-Paul Lasserre
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Elodie Sardin
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Marina Le Guedard
- Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Université de Bordeaux, INRA Bordeaux Aquitaine, Villenave d'Ornon, France.,LEB Aquitaine Transfert-ADERA, FR-33883 Villenave d'Ornon, Cedex, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Patrice X Petit
- CNRS FR3636 Fédération de recherché en Neuroscience, Université Paris-Descartes, 45, rue des Saints-Pères, 75006 Paris, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Université de Bordeaux, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| |
Collapse
|
53
|
Feng HM, Zhao Y, Zhang JP, Zhang JH, Jiang P, Li B, Wang C. Expression and potential mechanism of metabolism-related genes and CRLS1 in non-small cell lung cancer. Oncol Lett 2017; 15:2661-2668. [PMID: 29434989 DOI: 10.3892/ol.2017.7591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023] Open
Abstract
Cardiolipin (CL) is a phospholipid localized in the mitochondria, which is essential for mitochondrial structure and function. Human cardiolipin synthase 1 (CRLS1) is important in regulating phosphatidylglycerol (PG) remodeling and CL biosynthesis. However, the expression and distinct prognostic value of CRLS1 in neoplasms, including non-small cell lung cancer (NSCLC), is not well established. In the present study, the mRNA expression of CRLS1 was investigated using Oncomine analysis and the prognostic value was assessed using the Kaplan-Meier plotter database for patients with NSCLC. The results of the analyses indicated that the expression of CRLS1 in lung cancer was lower, compared with that in normal lung tissues. Notably, a high expression of CRLS1 was found to be associated with improved overall survival (OS) in all patients with NSCLC and lung adenocarcinoma (Ade). However, this was not observed in patients with squamous cell carcinoma (SCC). The results also demonstrated an association between the mRNA expression of CRLS1 and the clinicopathological parameters of patients with NSCLC, including sex, smoking status, tumor grade, clinical stage, lymph node status and chemotherapy. These results indicated that CRLS1 was associated with improved prognosis in patients with NSCLC, particularly at an early stage (T1N1M0). In addition, it was revealed that CRLS1 was co-expressed with well-known genes associated with metabolism using Gene Ontology term enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis also showed that tumor-related metabolism and the mitogen-activated protein kinase (MAPK) signaling pathways were enriched with CRLS1-co-expression genes. The results of the present study suggested that CRLS1 may be a novel tumor suppressor involved in regulating lipid and seleno-amino acid metabolism in the tumor microenvironment, and suppressing the MAPK signaling pathway during tumorigenesis and development. Comprehensive evaluation of the expression, prognosis and potential mechanism of CRLS1 is likely to promote an improved understanding of the complexity of the molecular biology of NSCLC.
Collapse
Affiliation(s)
- Hai-Ming Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Ye Zhao
- The Evidence Based Medicine Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jian-Ping Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Jian-Hua Zhang
- Department of Thoracic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Peng Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Bin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Cheng Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
54
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin. Cell Mol Life Sci 2017; 74:3897-3911. [PMID: 28785806 PMCID: PMC11107727 DOI: 10.1007/s00018-017-2619-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
Aging is a biological process characterized by progressive decline in physiological functions, increased oxidative stress, reduced capacity to respond to stresses, and increased risk of contracting age-associated disorders. Mitochondria are referred to as the powerhouse of the cell through their role in the oxidative phosphorylation to generate ATP. These organelles contribute to the aging process, mainly through impairment of electron transport chain activity, opening of the mitochondrial permeability transition pore and increased oxidative stress. These events lead to damage to proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid of the inner mitochondrial membrane, plays a pivotal role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps of apoptosis and in mitochondrial membrane stability and dynamics. Cardiolipin alterations are associated with mitochondrial bienergetics decline in multiple tissues in a variety of physiopathological conditions, as well as in the aging process. Melatonin, the major product of the pineal gland, is considered an effective protector of mitochondrial bioenergetic function. Melatonin preserves mitochondrial function by preventing cardiolipin oxidation and this may explain, at least in part, the protective role of this compound in mitochondrial physiopathology and aging. Here, mechanisms through which melatonin exerts its protective role against mitochondrial dysfunction associated with aging and age-associated disorders are discussed.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Valeria Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
55
|
Tidwell TR, Søreide K, Hagland HR. Aging, Metabolism, and Cancer Development: from Peto's Paradox to the Warburg Effect. Aging Dis 2017; 8:662-676. [PMID: 28966808 PMCID: PMC5614328 DOI: 10.14336/ad.2017.0713] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Medical advances made over the last century have increased our lifespan, but age-related diseases are a fundamental health burden worldwide. Aging is therefore a major risk factor for cardiovascular disease, cancer, diabetes, obesity, and neurodegenerative diseases, all increasing in prevalence. However, huge inter-individual variations in aging and disease risk exist, which cannot be explained by chronological age, but rather physiological age decline initiated even at young age due to lifestyle. At the heart of this lies the metabolic system and how this is regulated in each individual. Metabolic turnover of food to energy leads to accumulation of co-factors, byproducts, and certain proteins, which all influence gene expression through epigenetic regulation. How these epigenetic markers accumulate over time is now being investigated as the possible link between aging and many diseases, such as cancer. The relationship between metabolism and cancer was described as early as the late 1950s by Dr. Otto Warburg, before the identification of DNA and much earlier than our knowledge of epigenetics. However, when the stepwise gene mutation theory of cancer was presented, Warburg's theories garnered little attention. Only in the last decade, with epigenetic discoveries, have Warburg's data on the metabolic shift in cancers been brought back to life. The stepwise gene mutation theory fails to explain why large animals with more cells, do not have a greater cancer incidence than humans, known as Peto's paradox. The resurgence of research into the Warburg effect has given us insight to what may explain Peto's paradox. In this review, we discuss these connections and how age-related changes in metabolism are tightly linked to cancer development, which is further affected by lifestyle choices modulating the risk of aging and cancer through epigenetic control.
Collapse
Affiliation(s)
- Tia R. Tidwell
- Department of Mathematics and Natural Sciences, Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
| | - Kjetil Søreide
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hanne R. Hagland
- Department of Mathematics and Natural Sciences, Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
56
|
Dudek J. Role of Cardiolipin in Mitochondrial Signaling Pathways. Front Cell Dev Biol 2017; 5:90. [PMID: 29034233 PMCID: PMC5626828 DOI: 10.3389/fcell.2017.00090] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
The phospholipid cardiolipin (CL) is an essential constituent of mitochondrial membranes and plays a role in many mitochondrial processes, including respiration and energy conversion. Pathological changes in CL amount or species composition can have deleterious consequences for mitochondrial function and trigger the production of reactive oxygen species. Signaling networks monitor mitochondrial function and trigger an adequate cellular response. Here, we summarize the role of CL in cellular signaling pathways and focus on tissues with high-energy demand, like the heart. CL itself was recently identified as a precursor for the formation of lipid mediators. We highlight the concept of CL as a signaling platform. CL is exposed to the outer mitochondrial membrane upon mitochondrial stress and CL domains serve as a binding site in many cellular signaling events. During mitophagy, CL interacts with essential players of mitophagy like Beclin 1 and recruits the autophagic machinery by its interaction with LC3. Apoptotic signaling pathways require CL as a binding platform to recruit apoptotic factors such as tBid, Bax, caspase-8. CL required for the activation of the inflammasome and plays a role in inflammatory signaling. As changes in CL species composition has been observed in many diseases, the signaling pathways described here may play a general role in pathology.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
57
|
Rey B, Duchamp C, Roussel D. Uncoupling effect of palmitate is exacerbated in skeletal muscle mitochondria of sea-acclimatized king penguins ( Aptenodytes patagonicus ). Comp Biochem Physiol A Mol Integr Physiol 2017. [DOI: 10.1016/j.cbpa.2017.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
58
|
Musatov A, Sedlák E. Role of cardiolipin in stability of integral membrane proteins. Biochimie 2017; 142:102-111. [PMID: 28842204 DOI: 10.1016/j.biochi.2017.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/21/2017] [Indexed: 01/13/2023]
Abstract
Cardiolipin (CL) is a unique phospholipid with a dimeric structure having four acyl chains and two phosphate groups found almost exclusively in certain membranes of bacteria and of mitochondria of eukaryotes. CL interacts with numerous proteins and has been implicated in function and stabilization of several integral membrane proteins (IMPs). While both functional and stabilization roles of CL in IMPs has been generally acknowledged, there are, in fact, only limited number of quantitative analysis that support this function of CL. This is likely caused by relatively complex determination of parameters characterizing stability of IMPs and particularly intricate assessment of role of specific phospholipids such as CL in IMPs stability. This review aims to summarize quantitative findings regarding stabilization role of CL in IMPs reported up to now.
Collapse
Affiliation(s)
- Andrej Musatov
- Department of Biophysics, Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia.
| | - Erik Sedlák
- Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia.
| |
Collapse
|
59
|
Inuki S, Ohta I, Ishibashi S, Takamatsu M, Fukase K, Fujimoto Y. Total Synthesis of Cardiolipins Containing Chiral Cyclopropane Fatty Acids. J Org Chem 2017; 82:7832-7838. [PMID: 28682614 DOI: 10.1021/acs.joc.7b00945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiolipin (CL) is a phospholipid located in both the eukaryotic mitochondrial inner membrane and the bacterial cell membrane. Some bacterial CLs are known to contain cyclopropane moieties in their acyl chains. Although the CLs are thought to be involved in the innate immune response, there have been few attempts at chemical synthesis of the CLs, and detailed studies of their biological activities are scarce. Thus, we have developed a synthetic route to CLs containing chiral cyclopropane moieties.
Collapse
Affiliation(s)
- Shinsuke Inuki
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ippei Ohta
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shunichi Ishibashi
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Masayuki Takamatsu
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
60
|
Bottje WG, Lassiter K, Dridi S, Hudson N, Kong BW. Enhanced expression of proteins involved in energy production and transfer in breast muscle of pedigree male broilers exhibiting high feed efficiency. Poult Sci 2017; 96:2454-2458. [PMID: 28521058 PMCID: PMC5850273 DOI: 10.3382/ps/pew453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/25/2016] [Indexed: 11/29/2022] Open
Abstract
In cells with fluctuating energy demand (e.g., skeletal muscle), a transfer system of proteins across the inner and outer mitochondrial membranes links mitochondrial oxidative phosphorylation to cytosolic phosphorylated creatine (PCr) that serves as a phosphate reservoir for rapid repletion of cytosolic adenosine triphosphate (ATP). Crucial proteins of this energy transfer system include several creatine kinase (CK) isoforms found in the cytosol and mitochondria. In a recent proteomic study (Kong et al., 2016), several components of this system were up-regulated in high feed efficiency (FE) compared to low FE breast muscle; notably adenine nucleotide translocase (ANT), voltage dependent activated channel (VDAC), the brain isoform of creatine kinase (CK-B), and several proteins of the electron transport chain. Reexamination of the original proteomic dataset revealed that the expression of two mitochondrial CK isoforms (CKMT1A and CKMT2) had been detected but were not recognized by the bioinformatics program used by Kong et al. (2016a). The CKMT1A isoform was up-regulated (7.8-fold, P = 0.05) in the high FE phenotype but there was no difference in CKMT2 expression (1.1-fold, P = 0.59). From these findings, we hypothesize that enhanced expression of the energy production and transfer system in breast muscle of the high FE pedigree broiler male could be fundamentally important in the phenotypic expression of feed efficiency.
Collapse
Affiliation(s)
- W. G. Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Fayetteville, Arkansas 72701, University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, Arkansas 72701
| | - K. Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Fayetteville, Arkansas 72701, University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, Arkansas 72701
| | - S. Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Fayetteville, Arkansas 72701, University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, Arkansas 72701
| | - N. Hudson
- School of Agriculture and Food Science, University of Queensland, Building 8117A, Gatton, Queensland 4343, Australia
| | - B-W. Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Fayetteville, Arkansas 72701, University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, Arkansas 72701
| |
Collapse
|
61
|
Mlayeh L, Krammer EM, Léonetti M, Prévost M, Homblé F. The mitochondrial VDAC of bean seeds recruits phosphatidylethanolamine lipids for its proper functioning. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:786-794. [PMID: 28666835 DOI: 10.1016/j.bbabio.2017.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/28/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022]
Abstract
The voltage-dependent anion-selective channel (VDAC) is the main pathway for inorganic ions and metabolites through the mitochondrial outer membrane. Studies recently demonstrated that membrane lipids regulate its function. It remains, however, unclear how this regulation takes place. In this study, we show that phospholipids are key regulators of Phaseolus VDAC function and, furthermore, that the salt concentration modulates this regulation. Both selectivity and voltage dependence of Phaseolus VDAC are very sensitive to a change in the lipid polar head from PC to PE. Interestingly enough, this dependence is observed only at low salt concentration. Furthermore, significant changes in VDAC functional properties also occur with the gradual methylation of the PE group pointing to the role of subtle chemical variations in the lipid head group. The dependence of PcVDAC gating upon the introduction of a small mole fraction of PE in a PC bilayer has prompted us to propose the existence of a specific interaction site for PE on the outer surface of PcVDAC. Eventually, comparative modeling and molecular dynamics simulations suggest a potential mechanism to get insight into the anion selectivity enhancement of PcVDAC observed in PE relative to PC.
Collapse
Affiliation(s)
- Lamia Mlayeh
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium
| | - Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Marc Léonetti
- I.R.P.H.E., Aix-Marseille Université, CNRS, Technopôle de Château-Gombert, F-13384, Marseille Cedex 13, France.
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| |
Collapse
|
62
|
|
63
|
Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res 2017; 118:1593-611. [PMID: 27174952 DOI: 10.1161/circresaha.116.307505] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Qun Chen
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Charles L Hoppel
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH.
| |
Collapse
|
64
|
Tian H, Sparvero LJ, Amoscato AA, Bloom A, Bayır H, Kagan VE, Winograd N. Gas Cluster Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry High-Resolution Imaging of Cardiolipin Speciation in the Brain: Identification of Molecular Losses after Traumatic Injury. Anal Chem 2017; 89:4611-4619. [PMID: 28306235 PMCID: PMC5856236 DOI: 10.1021/acs.analchem.7b00164] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gas cluster ion beam-secondary ion mass spectrometry (GCIB-SIMS) has shown the full potential of mapping intact lipids in biological systems with better than 10 μm lateral resolution. This study investigated further the capability of GCIB-SIMS in imaging high-mass signals from intact cardiolipin (CL) and gangliosides in normal brain and the effect of a controlled cortical impact model (CCI) of traumatic brain injury (TBI) on their distribution. A combination of enzymatic and chemical treatments was employed to suppress the signals from the most abundant phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)) and enhance the signals from the low-abundance CLs and gangliosides to allow their GCIB-SIMS detection at 8 and 16 μm spatial resolution. Brain CLs have not been observed previously using other contemporary imaging mass spectrometry techniques at better than 50 μm spatial resolution. High-resolution images of naive and injured brain tissue facilitated the comparison of CL species across three multicell layers in the CA1, CA3, and DG regions of the hippocampus. GCIB-SIMS also reliably mapped losses of oxidizable polyunsaturated CL species (but not the oxidation-resistant saturated and monounsaturated gangliosides) to regions including the CA1 and CA3 of the hippocampus after CCI. This work extends the detection range for SIMS measurements of intact lipids to above m/z 2000, bridging the mass range gap compared with MALDI. Further advances in high-resolution SIMS of CLs, with the potential for single cell or supra-cellular imaging, will be essential for the understanding of CL's functional and structural organization in normal and injured brain.
Collapse
Affiliation(s)
- Hua Tian
- Department of Chemistry, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Louis J. Sparvero
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anna Bloom
- Department of Chemistry, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Departments of Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University, State College, Pennsylvania 16802, United States
| |
Collapse
|
65
|
Lombardi L, Stellato MI, Oliva R, Falanga A, Galdiero M, Petraccone L, D'Errico G, De Santis A, Galdiero S, Del Vecchio P. Antimicrobial peptides at work: interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes. Sci Rep 2017; 7:44425. [PMID: 28294185 PMCID: PMC5353584 DOI: 10.1038/srep44425] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides are promising candidates as future therapeutics in order to face the problem of antibiotic resistance caused by pathogenic bacteria. Myxinidin is a peptide derived from the hagfish mucus displaying activity against a broad range of bacteria. We have focused our studies on the physico-chemical characterization of the interaction of myxinidin and its mutant WMR, which contains a tryptophan residue at the N-terminus and four additional positive charges, with two model biological membranes (DOPE/DOPG 80/20 and DOPE/DOPG/CL 65/23/12), mimicking respectively Escherichia coli and Pseudomonas aeruginosa membrane bilayers. All our results have coherently shown that, although both myxinidin and WMR interact with the two membranes, their effect on membrane microstructure and stability are different. We further have shown that the presence of cardiolipin plays a key role in the WMR-membrane interaction. Particularly, WMR drastically perturbs the DOPE/DOPG/CL membrane stability inducing a segregation of anionic lipids. On the contrary, myxinidin is not able to significantly perturb the DOPE/DOPG/CL bilayer whereas interacts better with the DOPE/DOPG bilayer causing a significant perturbing effect of the lipid acyl chains. These findings are fully consistent with the reported greater antimicrobial activity of WMR against P. aeruginosa compared with myxinidin.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Experimental Medicine, Università della Campania "Luigi Vanvitelli", via De Crecchio, 80134 Naples, Italy
| | - Marco Ignazio Stellato
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Università della Campania "Luigi Vanvitelli", via De Crecchio, 80134 Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Geradino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| |
Collapse
|
66
|
Zhou H, Hu S, Jin Q, Shi C, Zhang Y, Zhu P, Ma Q, Tian F, Chen Y. Mff-Dependent Mitochondrial Fission Contributes to the Pathogenesis of Cardiac Microvasculature Ischemia/Reperfusion Injury via Induction of mROS-Mediated Cardiolipin Oxidation and HK2/VDAC1 Disassociation-Involved mPTP Opening. J Am Heart Assoc 2017; 6:JAHA.116.005328. [PMID: 28288978 PMCID: PMC5524036 DOI: 10.1161/jaha.116.005328] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background The cardiac microvascular system ischemia/reperfusion injury following percutaneous coronary intervention is a clinical thorny problem. This study explores the mechanisms by which ischemia/reperfusion injury induces cardiac microcirculation collapse. Methods and Results In wild‐type mice, mitochondrial fission factor (Mff) expression increased in response to acute microvascular ischemia/reperfusion injury. Compared with wild‐type mice, homozygous Mff‐deficient (Mffgt) mice exhibited a smaller infarcted area, restored cardiac function, improved blood flow, and reduced microcirculation perfusion defects. Histopathology analysis demonstrated that cardiac microcirculation endothelial cells (CMECs) in Mffgt mice had an intact endothelial barrier, recovered phospho‐endothelial nitric oxide synthase production, opened lumen, undivided mitochondrial structures, and less CMEC death. In vitro, Mff‐deficient CMECs (derived from Mffgt mice or Mff small interfering RNA–treated) demonstrated less mitochondrial fission and mitochondrial‐dependent apoptosis compared with cells derived from wild‐type mice. The loss of Mff inhibited mitochondrial permeability transition pore opening via blocking the oligomerization of voltage‐dependent anion channel 1 and subsequent hexokinase 2 separation from mitochondria. Moreover, Mff deficiency reduced the cyt‐c leakage into the cytoplasm by alleviating cardiolipin oxidation resulting from damage to the electron transport chain complexes and mitochondrial reactive oxygen species overproduction. Conclusions This evidence clearly illustrates that microcirculatory ischemia/reperfusion injury can be attributed to Mff‐dependent mitochondrial fission via voltage‐dependent anion channel 1/hexokinase 2–mediated mitochondrial permeability transition pore opening and mitochondrial reactive oxygen species/cardiolipin involved cyt‐c release.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qinhua Jin
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Chen Shi
- Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Feng Tian
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
67
|
Carranza G, Angius F, Ilioaia O, Solgadi A, Miroux B, Arechaga I. Cardiolipin plays an essential role in the formation of intracellular membranes in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1124-1132. [PMID: 28284722 DOI: 10.1016/j.bbamem.2017.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Mitochondria, chloroplasts and photosynthetic bacteria are characterized by the presence of complex and intricate membrane systems. In contrast, non-photosynthetic bacteria lack membrane structures within their cytoplasm. However, large scale over-production of some membrane proteins, such as the fumarate reductase, the mannitol permease MtlA, the glycerol acyl transferase PlsB, the chemotaxis receptor Tsr or the ATP synthase subunit b, can induce the proliferation of intra cellular membranes (ICMs) in the cytoplasm of Escherichia coli. These ICMs are particularly rich in cardiolipin (CL). Here, we have studied the effect of CL in the generation of these membranous structures. We have deleted the three genes (clsA, clsB and clsC) responsible of CL biosynthesis in E. coli and analysed the effect of these mutations by fluorescent and electron microscopy and by lipid mass spectrometry. We have found that CL is essential in the formation of non-lamellar structures in the cytoplasm of E. coli cells. These results could help to understand the structuration of membranes in E. coli and other membrane organelles, such as mitochondria and ER.
Collapse
Affiliation(s)
- Gerardo Carranza
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - CSIC - SODERCAN, Santander, Spain
| | - Federica Angius
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL Research University, Paris, France
| | - Oana Ilioaia
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL Research University, Paris, France
| | - Audrey Solgadi
- Université Paris-Saclay, Institut Paris Saclay d'Innovation Thérapeutique, INSERM, CNRS, - Plateforme SAMM - CHATENAY-MALABRY, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL Research University, Paris, France.
| | - Ignacio Arechaga
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - CSIC - SODERCAN, Santander, Spain.
| |
Collapse
|
68
|
El Gaamouch F, Jing P, Xia J, Cai D. Alzheimer's Disease Risk Genes and Lipid Regulators. J Alzheimers Dis 2017; 53:15-29. [PMID: 27128373 DOI: 10.3233/jad-160169] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain lipid homeostasis plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Aggregation of amyloid-β peptide is one of the major events in AD. The complex interplay between lipids and amyloid-β accumulation has been intensively investigated. The proportions of lipid components including phospholipids, sphingolipids, and cholesterol are roughly similar across different brain regions under physiological conditions. However, disruption of brain lipid homeostasis has been described in AD and implicated in disease pathogenesis. Moreover, studies suggest that analysis of lipid composition in plasma and cerebrospinal fluid could improve our understanding of the disease development and progression, which could potentially serve as disease biomarkers and prognostic indicators for AD therapies. Here, we summarize the functional roles of AD risk genes and lipid regulators that modulate brain lipid homeostasis including different lipid species, lipid complexes, and lipid transporters, particularly their effects on amyloid processing, clearance, and aggregation, as well as neuro-toxicities that contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Farida El Gaamouch
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Jing
- The Central Hospital of Wuhan, China
| | | | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Central Hospital of Wuhan, China
| |
Collapse
|
69
|
de Taffin de Tilques M, Tribouillard-Tanvier D, Tétaud E, Testet E, di Rago JP, Lasserre JP. Overexpression of mitochondrial oxodicarboxylate carrier (ODC1) preserves oxidative phosphorylation in a yeast model of Barth syndrome. Dis Model Mech 2017; 10:439-450. [PMID: 28188263 PMCID: PMC5399564 DOI: 10.1242/dmm.027540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/04/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiolipin (CL) is a diglycerol phospholipid mostly found in mitochondria where it optimizes numerous processes, including oxidative phosphorylation (OXPHOS). To function properly, CL needs to be unsaturated, which requires the acyltransferase tafazzin. Loss-of-function mutations in this protein are responsible for Barth syndrome (BTHS), presumably because of a diminished OXPHOS capacity. Here, we show that overexpressing Odc1p, a conserved oxodicarboxylic acid carrier located in the mitochondrial inner membrane, fully restores oxidative phosphorylation in a yeast model (taz1Δ) of BTHS. The rescuing activity involves the recovery of normal expression of key components that sustain oxidative phosphorylation, including cytochrome c and electron transport chain complexes IV and III, which are strongly downregulated in taz1Δ yeast. Interestingly, overexpression of Odc1p was also shown previously to rescue yeast models of mitochondrial diseases caused by defects in the assembly of ATP synthase and by mutations in the MPV17 protein that result in hepatocerebral mitochondrial DNA depletion syndrome. These findings define the transport of oxodicarboxylic acids across the inner membrane as a potential therapeutic target for a large spectrum of mitochondrial diseases, including BTHS.
Collapse
Affiliation(s)
- Maxence de Taffin de Tilques
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| | - Déborah Tribouillard-Tanvier
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| | - Emmanuel Tétaud
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| | - Eric Testet
- Université de Bordeaux, Laboratoire de biogenèse membranaire, CNRS UMR 5200, INRA Bordeaux Aquitaine BP81, 33883 Villenave d'Ornon Cédex, France
| | - Jean-Paul di Rago
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| | - Jean-Paul Lasserre
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| |
Collapse
|
70
|
Dudek J, Maack C. Barth syndrome cardiomyopathy. Cardiovasc Res 2017; 113:399-410. [PMID: 28158532 DOI: 10.1093/cvr/cvx014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023] Open
Abstract
Barth syndrome (BTHS) is an inherited form of cardiomyopathy, caused by a mutation within the gene encoding the mitochondrial transacylase tafazzin. Tafazzin is involved in the biosynthesis of the unique phospholipid cardiolipin (CL), which is almost exclusively found in mitochondrial membranes. CL directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins, involved in shaping mitochondrial morphology. Here we describe, how in BTHS CL deficiency causes changes in the morphology of mitochondria, structural changes in the respiratory chain, decreased respiration, and increased generation of reactive oxygen species. A large number of cellular and animal models for BTHS have been established to elucidate how mitochondrial dysfunction induces sarcomere disorganization and reduced contractility, resulting in dilated cardiomyopathy in vivo.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg/Saar, Germany
| |
Collapse
|
71
|
Félix L, Oliveira M, Videira R, Maciel E, Alves ND, Nunes FM, Alves A, Almeida JM, Domingues MRM, Peixoto FP. Carvedilol exacerbate gentamicin-induced kidney mitochondrial alterations in adult rat. ACTA ACUST UNITED AC 2017; 69:83-92. [DOI: 10.1016/j.etp.2016.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/05/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
72
|
Vos M, Geens A, Böhm C, Deaulmerie L, Swerts J, Rossi M, Craessaerts K, Leites EP, Seibler P, Rakovic A, Lohnau T, De Strooper B, Fendt SM, Morais VA, Klein C, Verstreken P. Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency. J Cell Biol 2017; 216:695-708. [PMID: 28137779 PMCID: PMC5346965 DOI: 10.1083/jcb.201511044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 11/25/2016] [Accepted: 01/05/2017] [Indexed: 02/08/2023] Open
Abstract
Parkinson’s disease–causing mutations in PINK1 yield mitochondrial defects including inefficient electron transport between complex I and ubiquinone. Vos et al. show that genetic and pharmacological inhibition of fatty acid synthase bypass these complex I defects in fly, mouse, and human Parkinson’s disease models. PINK1 is mutated in Parkinson’s disease (PD), and mutations cause mitochondrial defects that include inefficient electron transport between complex I and ubiquinone. Neurodegeneration is also connected to changes in lipid homeostasis, but how these are related to PINK1-induced mitochondrial dysfunction is unknown. Based on an unbiased genetic screen, we found that partial genetic and pharmacological inhibition of fatty acid synthase (FASN) suppresses toxicity induced by PINK1 deficiency in flies, mouse cells, patient-derived fibroblasts, and induced pluripotent stem cell–derived dopaminergic neurons. Lower FASN activity in PINK1 mutants decreases palmitate levels and increases the levels of cardiolipin (CL), a mitochondrial inner membrane–specific lipid. Direct supplementation of CL to isolated mitochondria not only rescues the PINK1-induced complex I defects but also rescues the inefficient electron transfer between complex I and ubiquinone in specific mutants. Our data indicate that genetic or pharmacologic inhibition of FASN to increase CL levels bypasses the enzymatic defects at complex I in a PD model.
Collapse
Affiliation(s)
- Melissa Vos
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Department of Neurosciences and Leuven Research Institute for Neurodegenerative Disease, KU Leuven, 3000 Leuven, Belgium.,Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Ann Geens
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Department of Neurosciences and Leuven Research Institute for Neurodegenerative Disease, KU Leuven, 3000 Leuven, Belgium
| | - Claudia Böhm
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Liesbeth Deaulmerie
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Department of Neurosciences and Leuven Research Institute for Neurodegenerative Disease, KU Leuven, 3000 Leuven, Belgium
| | - Jef Swerts
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Department of Neurosciences and Leuven Research Institute for Neurodegenerative Disease, KU Leuven, 3000 Leuven, Belgium
| | - Matteo Rossi
- VIB Center for Cancer Biology, 3000 Leuven, Belgium.,Department of Oncology and Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Katleen Craessaerts
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Department of Neurosciences and Leuven Research Institute for Neurodegenerative Disease, KU Leuven, 3000 Leuven, Belgium
| | - Elvira P Leites
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649 Lisboa, Portugal
| | - Philip Seibler
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Thora Lohnau
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Department of Neurosciences and Leuven Research Institute for Neurodegenerative Disease, KU Leuven, 3000 Leuven, Belgium
| | - Sarah-Maria Fendt
- VIB Center for Cancer Biology, 3000 Leuven, Belgium.,Department of Oncology and Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Vanessa A Morais
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Department of Neurosciences and Leuven Research Institute for Neurodegenerative Disease, KU Leuven, 3000 Leuven, Belgium.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649 Lisboa, Portugal
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Patrik Verstreken
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium .,Department of Neurosciences and Leuven Research Institute for Neurodegenerative Disease, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
73
|
Mitochondrial Dysfunction in Cardiovascular Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:451-464. [PMID: 28551802 DOI: 10.1007/978-3-319-55330-6_24] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are the prime source of ATP in cardiomyocytes. Impairment of mitochondrial metabolism results in damage to existing proteins and DNA. Such deleterious effects are part and parcel of the aging process, reducing the ability of cardiomyocytes to counter stress, such as myocardial infarction and consequent reperfusion. In such conditions, mitochondria in the heart of aged individuals exhibit decreased oxidative phosphorylation, decreased ATP production, and increased net reactive oxygen species production; all of these effects are independent of the decrease in number of mitochondria that occurs in these situations. Rather than being associated with the mitochondrial population in toto, these defects are almost exclusively confined to those organelles positioned between myofibrils (interfibrillar mitochondria). It is in complex III and IV where these dysfunctional aspects are manifested. In an apparent effort to correct mitochondrial metabolic defects, affected organelles are to some extent eliminated by mitophagy; at the same time, new, unaffected organelles are generated by fission of mitochondria. Because these cardiac health issues are localized to specific mitochondria, these organelles offer potential targets for therapeutic approaches that could favorably affect the aging process in heart.
Collapse
|
74
|
Pennington ER, Fix A, Sullivan EM, Brown DA, Kennedy A, Shaikh SR. Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:257-267. [PMID: 27889304 DOI: 10.1016/j.bbamem.2016.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
Abstract
Cardiolipin (CL) has a critical role in maintaining mitochondrial inner membrane structure. In several conditions such as heart failure and aging, there is loss of CL content and remodeling of CL acyl chains, which are hypothesized to impair mitochondrial inner membrane biophysical organization. Therefore, this study discriminated how CL content and acyl chain composition influenced select properties of simple and complex mitochondrial mimicking model membranes. We focused on monolayer excess area/molecule (a measure of lipid miscibility), bilayer phase transitions, and microdomain organization. In monolayer compression studies, loss of tetralinoleoyl [(18:2)4] CL content decreased the excess area/molecule. Replacement of (18:2)4CL acyl chains with tetraoleoyl [(18:1)4] CL or tetradocosahexaenoyl [(22:6)4] CL generally had little influence on monolayer excess area/molecule; in contrast, replacement of (18:2)4CL acyl chains with tetramyristoyl [(14:0)4] CL increased monolayer excess area/molecule. In bilayers, calorimetric studies showed that substitution of (18:2)4CL with (18:1)4CL or (22:6)4CL lowered the phase transition temperature of phosphatidylcholine vesicles whereas (14:0)4CL had no effect. Finally, quantitative imaging of giant unilamellar vesicles revealed differential effects of CL content and acyl chain composition on microdomain organization, visualized with the fluorescent probe Texas Red DHPE. Notably, microdomain areas were decreased by differing magnitudes upon lowering of (18:2)4CL content and substitution of (18:2)4CL with (14:0)4CL or (22:6)4CL. Conversely, exchanging (18:2)4CL with (18:1)4CL increased microdomain area. Altogether, these data demonstrate that CL content and fatty acyl composition differentially target membrane physical properties, which has implications for understanding how CL regulates mitochondrial activity and the design of CL-specific therapeutics.
Collapse
Affiliation(s)
- Edward Ross Pennington
- Department of Biochemistry & Molecular Biology, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Mail Stop 743, Greenville, NC 27834, USA
| | - Amy Fix
- Department of Biochemistry & Molecular Biology, USA
| | - E Madison Sullivan
- Department of Biochemistry & Molecular Biology, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Mail Stop 743, Greenville, NC 27834, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, 1035 ILSB, 1981 Kraft Drive, Blacksburg, VA 24060, USA
| | - Anthony Kennedy
- Department of Chemistry, East 10th Street, Mail Stop 552, East Carolina University, Greenville, NC 27854, USA
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Mail Stop 743, Greenville, NC 27834, USA.
| |
Collapse
|
75
|
The total and mitochondrial lipidome of Artemia franciscana encysted embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1727-1735. [DOI: 10.1016/j.bbalip.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/22/2016] [Accepted: 08/15/2016] [Indexed: 01/12/2023]
|
76
|
Sparvero LJ, Amoscato AA, Fink AB, Anthonymuthu T, New L, Kochanek P, Watkins S, Kagan V, Bayır H. Imaging mass spectrometry reveals loss of polyunsaturated cardiolipins in the cortical contusion, hippocampus, and thalamus after traumatic brain injury. J Neurochem 2016; 139:659-675. [PMID: 27591733 PMCID: PMC5323070 DOI: 10.1111/jnc.13840] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) leads to changes in ion fluxes, alterations in mitochondrial function, and increased generation of reactive oxygen species, resulting in secondary tissue damage. Mitochondria play important signaling roles in coordination of multiple metabolic platforms in addition to their well-known role in bioenergetics. Mitochondrial signaling strongly depends on cardiolipin (CL), a mitochondria-specific structurally unusual anionic phospholipid containing four fatty acyl chains. While our previous reports indicated that CL is selectively oxidized and presents itself as a target for the redox therapy following TBI, the topography of changes of CL in the injured brain remained to be defined. Here, we present a matrix-assisted laser desorption/ionization imaging study which reports regio-specific changes in CL, in a controlled cortical impact model of TBI in rats. Matrix-assisted laser desorption/ionization imaging revealed that TBI caused early decreases in CL in the contusional cortex, ipsilateral hippocampus, and thalamus with the most highly unsaturated CL species being most susceptible to loss. Phosphatidylinositol was the only other lipid species that exhibited a significant decrease, albeit to a lesser extent than CL. Signals for other lipids remained unchanged. This is the first study evaluating the spatial distribution of CL loss after acute brain injury. We propose that the CL loss may constitute an upstream mechanism for CL-driven signaling in different brain regions as an early response mechanism and may also underlie the bioenergetic changes that occur in hippocampal, cortical, and thalamic mitochondria after TBI.
Collapse
Affiliation(s)
- L. J. Sparvero
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. B. Fink
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - T. Anthonymuthu
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - L.E. New
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - P.M. Kochanek
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - V.E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H. Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
77
|
Cheng ML, Chi LM, Wu PR, Ho HY. Dehydroepiandrosterone-induced changes in mitochondrial proteins contribute to phenotypic alterations in hepatoma cells. Biochem Pharmacol 2016; 117:20-34. [DOI: 10.1016/j.bcp.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
78
|
Stearoyl-CoA Desaturase 1 Is a Key Determinant of Membrane Lipid Composition in 3T3-L1 Adipocytes. PLoS One 2016; 11:e0162047. [PMID: 27632198 PMCID: PMC5025088 DOI: 10.1371/journal.pone.0162047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is a lipogenic enzyme important for the regulation of membrane lipid homeostasis; dysregulation likely contributes to obesity associated metabolic disturbances. SCD1 catalyses the Δ9 desaturation of 12-19 carbon saturated fatty acids to monounsaturated fatty acids. To understand its influence in cellular lipid composition we investigated the effect of genetic ablation of SCD1 in 3T3-L1 adipocytes on membrane microdomain lipid composition at the species-specific level. Using liquid chromatography/electrospray ionisation-tandem mass spectrometry, we quantified 70 species of ceramide, mono-, di- and trihexosylceramide, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, bis(monoacylglycero)phosphate, phosphatidylinositol and cholesterol in 3T3-L1 adipocytes in which a 90% reduction in scd1 mRNA expression was achieved with siRNA. Cholesterol content was unchanged although decreases in other lipids resulted in cholesterol accounting for a higher proportion of lipid in the membranes. This was associated with decreased membrane lateral diffusion. An increased ratio of 24:0 to 24:1 in ceramide, mono- and dihexosylceramide, and sphingomyelin likely also contributed to this decrease in lateral diffusion. Of particular interest, we observed a decrease in phospholipids containing arachidonic acid. Given the high degree of structural flexibility of this acyl chain this will influence membrane lateral diffusion, and is likely responsible for the transcriptional activation of Lands' cycle enzymes lpcat3 and mboat7. Of relevance these profound changes in the lipidome were not accompanied by dramatic changes in gene expression in mature differentiated adipocytes, suggesting that adaptive homeostatic mechanisms to ensure partial maintenance of the biophysical properties of membranes likely occur at a post-transcriptional level.
Collapse
|
79
|
Efimova SS, Medvedev RY, Schagina LV, Ostroumova OS. An increase in model lipid membrane fluidity as a result of local anesthetic action. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1990519x16040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Evaluation of the mitochondrial system in the gonad-digestive gland complex of Biomphalaria glabrata (Mollusca, Gastropoda) after infection by Echinostoma paraensei (Trematoda, Echinostomatidae). J Invertebr Pathol 2016; 136:136-41. [DOI: 10.1016/j.jip.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/24/2016] [Accepted: 04/10/2016] [Indexed: 11/21/2022]
|
81
|
Sandlers Y, Mercier K, Pathmasiri W, Carlson J, McRitchie S, Sumner S, Vernon HJ. Metabolomics Reveals New Mechanisms for Pathogenesis in Barth Syndrome and Introduces Novel Roles for Cardiolipin in Cellular Function. PLoS One 2016; 11:e0151802. [PMID: 27015085 PMCID: PMC4807847 DOI: 10.1371/journal.pone.0151802] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/04/2016] [Indexed: 02/07/2023] Open
Abstract
Barth Syndrome is the only known Mendelian disorder of cardiolipin remodeling, with characteristic clinical features of cardiomyopathy, skeletal myopathy, and neutropenia. While the primary biochemical defects of reduced mature cardiolipin and increased monolysocardiolipin are well-described, much of the downstream biochemical dysregulation has not been uncovered, and biomarkers are limited. In order to further expand upon the knowledge of the biochemical abnormalities in Barth Syndrome, we analyzed metabolite profiles in plasma from a cohort of individuals with Barth Syndrome compared to age-matched controls via 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. A clear distinction between metabolite profiles of individuals with Barth Syndrome and controls was observed, and was defined by an array of metabolite classes including amino acids and lipids. Pathway analysis of these discriminating metabolites revealed involvement of mitochondrial and extra-mitochondrial biochemical pathways including: insulin regulation of fatty acid metabolism, lipid metabolism, biogenic amine metabolism, amino acid metabolism, endothelial nitric oxide synthase signaling, and tRNA biosynthesis. Taken together, this data indicates broad metabolic dysregulation in Barth Syndrome with wide cellular effects.
Collapse
Affiliation(s)
- Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH, United States of America
| | - Kelly Mercier
- Research Triangle International, Durham, NC, United States of America
| | - Wimal Pathmasiri
- Research Triangle International, Durham, NC, United States of America
| | - Jim Carlson
- Research Triangle International, Durham, NC, United States of America
| | - Susan McRitchie
- Research Triangle International, Durham, NC, United States of America
| | - Susan Sumner
- Research Triangle International, Durham, NC, United States of America
| | - Hilary J. Vernon
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
82
|
Adebayo OL, Adenuga GA, Sandhir R. Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition. Life Sci 2016; 152:145-55. [PMID: 26965089 DOI: 10.1016/j.lfs.2016.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 03/04/2016] [Indexed: 01/24/2023]
Abstract
AIMS Selenium (Se) and zinc (Zn) are trace elements required for optimal brain functions. Thus, the role of Se and Zn against protein malnutrition induced oxidative stress on mitochondrial antioxidants and electron transport chain (ETC) enzymes from rats' brain were investigated. MAIN METHODS Normal protein (NP) and low protein (LP) rats were fed with diets containing 16% and 5% casein respectively for a period of 10weeks. Then the rats were supplemented with Se and Zn at a concentration of 0.15mgL(-1) and 227mgL(-1) in drinking water for 3weeks after which the rats were sacrificed. KEY FINDINGS The results obtained from the study showed significant (p<0.05) increase in lipid peroxidation (LPO), ROS production, oxidized glutathione (GSSG) levels and mitochondrial swelling and significant (p<0.05) reductions in catalase (CAT) and Mn-superoxide dismutase (Mn-SOD) activities, glutathione (GSH) levels, GSH/GSSG ratio and MTT reduction as a result of LP ingestion. The activities of mitochondrial ETC enzymes were also significantly inhibited in both the cortex and cerebellum of LP-fed rats. Supplementation with either Se or Zn restored the alterations in all the parameters. SIGNIFICANCE The study showed that Se and Zn might be beneficial in protecting mitochondrial antioxidants and ETC enzymes against protein malnutrition induced oxidative stress.
Collapse
Affiliation(s)
- Olusegun L Adebayo
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Sector 25, 160014, Chandigarh, India; Department of Chemical Sciences, College of Natural Sciences, Redeemer's University, P.M.B. 230, Ede, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, P.M.B. 2005, Remo Campus, Ikenne, Ogun State, Nigeria
| | - Gbenga A Adenuga
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, P.M.B. 2005, Remo Campus, Ikenne, Ogun State, Nigeria
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Sector 25, 160014, Chandigarh, India.
| |
Collapse
|
83
|
Dudek J, Cheng IF, Chowdhury A, Wozny K, Balleininger M, Reinhold R, Grunau S, Callegari S, Toischer K, Wanders RJ, Hasenfuß G, Brügger B, Guan K, Rehling P. Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome. EMBO Mol Med 2016; 8:139-54. [PMID: 26697888 PMCID: PMC4734842 DOI: 10.15252/emmm.201505644] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 01/29/2023] Open
Abstract
Barth syndrome (BTHS) is a cardiomyopathy caused by the loss of tafazzin, a mitochondrial acyltransferase involved in the maturation of the glycerophospholipid cardiolipin. It has remained enigmatic as to why a systemic loss of cardiolipin leads to cardiomyopathy. Using a genetic ablation of tafazzin function in the BTHS mouse model, we identified severe structural changes in respiratory chain supercomplexes at a pre-onset stage of the disease. This reorganization of supercomplexes was specific to cardiac tissue and could be recapitulated in cardiomyocytes derived from BTHS patients. Moreover, our analyses demonstrate a cardiac-specific loss of succinate dehydrogenase (SDH), an enzyme linking the respiratory chain with the tricarboxylic acid cycle. As a similar defect of SDH is apparent in patient cell-derived cardiomyocytes, we conclude that these defects represent a molecular basis for the cardiac pathology in Barth syndrome.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - I-Fen Cheng
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Wozny
- Heidelberg University Biochemistry Center, University Heidelberg, Heidelberg, Germany
| | - Martina Balleininger
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Reinhold
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Grunau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Ronald Ja Wanders
- Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany German Center for Cardiovascular Research (DZHK), Göttingen, Germany Heart Research Center Göttingen, Göttingen, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, University Heidelberg, Heidelberg, Germany
| | - Kaomei Guan
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany German Center for Cardiovascular Research (DZHK), Göttingen, Germany Heart Research Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany Heart Research Center Göttingen, Göttingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
84
|
Acquired deficiency of tafazzin in the adult heart: Impact on mitochondrial function and response to cardiac injury. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:294-300. [PMID: 26692032 DOI: 10.1016/j.bbalip.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 12/22/2022]
Abstract
The content and composition of cardiolipin (CL) is critical for preservation of mitochondrial oxidative phosphorylation (OXPHOS) and inner membrane integrity. Tafazzin (Taz) is an enzyme responsible for remodeling of immature CL containing mixed acyl groups into the mature tetralinoleyl form (C18:2)4-CL. We hypothesized that acquired defects in Taz in the mature heart would impact remodeling of CL and augment cardiac injury. The role of acquired Taz deficiency was studied using the inducible Taz knockdown (TazKD) mouse. Taz-specific shRNA is induced by doxycycline (DOX). One day of DOX intake decreased Taz mRNA in the heart to 20% vs. DOX-treated WT. Knockdown was initiated at an adult age and was stable during long term feeding. CL phenotype was assessed by (C18:2)4-CL content and was reduced 40% vs. WT at two months of DOX. TazKD showed increased production of reactive oxygen species and increased susceptibility to permeability transition pore opening at baseline. However, OXPHOS measured using the rate of oxygen consumption was unchanged in the setting of acquired Taz deficiency. Infarct size, measured in isolated buffer-perfused Langendorff hearts following 25min. Stop flow ischemia and 60min. Reperfusion was not altered in TazKD hearts. Thus, impaired Taz-function with onset at adult age does not enhance susceptibility to ischemia-reperfusion injury.
Collapse
|
85
|
Betancor MB, Almaida-Pagán PF, Hernández A, Tocher DR. Effects of dietary fatty acids on mitochondrial phospholipid compositions, oxidative status and mitochondrial gene expression of zebrafish at different ages. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1187-204. [PMID: 26156499 DOI: 10.1007/s10695-015-0079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/16/2015] [Indexed: 05/25/2023]
Abstract
Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL) and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, mitochondrial membrane PL compositions, oxidative status (TBARS content and SOD activity) and mtDNA gene expression of muscle and liver were analyzed in zebrafish fed two diets with lipid supplied either by rapeseed oil (RO) or a blend 60:40 of RO and DHA500 TG oil (DHA). Two feeding trials were performed using zebrafish from the same population of two ages (8 and 21 months). Dietary FA composition affected fish growth in 8-month-old animals, which could be related to an increase in stress promoted by diet composition. Lipid peroxidation was considerably higher in mitochondria of 8-month-old zebrafish fed the DHA diet than in animals fed the RO diet. This could indicate higher oxidative damage to mitochondrial lipids, very likely due to increased incorporation of DHA in PL of mitochondrial membranes. Lipids would be among the first molecules affected by mitochondrial reactive oxygen species, and lipid peroxidation could propagate oxidative reactions that would damage other molecules, including mtDNA. Mitochondrial lipid peroxidation and gene expression of 21-month-old fish showed lower responsiveness to diet composition than those of younger fish. Differences found in the effect of diet composition on mitochondrial lipids between the two age groups could be indicating age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes.
Collapse
Affiliation(s)
- M B Betancor
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - P F Almaida-Pagán
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - A Hernández
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - D R Tocher
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| |
Collapse
|
86
|
de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM. The effects of baicalein and baicalin on mitochondrial function and dynamics: A review. Pharmacol Res 2015; 100:296-308. [PMID: 26318266 DOI: 10.1016/j.phrs.2015.08.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria play an essential role in cell survival by providing energy, calcium buffering, and regulating apoptosis. A growing body of evidence shows that mitochondrial dysfunction and its consequences, including impairment of the mitochondrial respiratory chain, excessive generation of reactive oxygen species, and excitotoxicity, play a pivotal role in the pathogenesis of different diseases such as neurodegenerative diseases, neuropsychiatric disorders, and cancer. The therapeutical role of flavonoids on these diseases is gaining increasing acceptance. Numerous studies on experimental models have revealed the favorable role of flavonoids on mitochondrial function and structure. This review highlights the promising role of baicalin and its aglycone form, baicalein, on mitochondrial function and structure with a focus on its therapeutic effects. We also discuss their chemistry, sources and bioavailability.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
87
|
Perspectives on the membrane fatty acid unsaturation/pacemaker hypotheses of metabolism and aging. Chem Phys Lipids 2015; 191:48-60. [PMID: 26291495 DOI: 10.1016/j.chemphyslip.2015.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
Abstract
The membrane pacemaker hypotheses of metabolism and aging are distinct, but interrelated hypotheses positing that increases in unsaturation of lipids within membranes are correlated with increasing basal metabolic rate and decreasing longevity, respectively. The two hypotheses each have evidence that either supports or contradicts them, but consensus has failed to emerge. In this review, we identify sources of weakness of previous studies supporting and contradicting these hypotheses and suggest different methods and lines of inquiry. The link between fatty acyl composition of membranes and membrane-bound protein activity is a central tenet of the membrane pacemaker hypothesis of metabolism, but the mechanism by which unsaturation would change protein activity is not well defined and, whereas fatty acid desaturases have been put forward by some as the mechanism behind evolutionary differences in fatty acyl composition of phospholipids among organisms, there have been no studies to differentiate whether desaturases have been more affected by natural selection on aging and metabolic rate than have elongases or acyltransferases. Past analyses have been hampered by potentially incorrect estimates of the peroxidizability of lipids and longevity of study animals, and by the confounding effect of phylogeny. According to some authors, body mass may also be a confounding effect that should be taken into account, though this is not universally accepted. Further research on this subject should focus more on mechanisms and take weaknesses of past studies into account.
Collapse
|
88
|
Benesch MGK, Lewis RNAH, McElhaney RN. On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylglycerol and tetramyristoylcardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2878-88. [PMID: 26275589 DOI: 10.1016/j.bbamem.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/28/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
Abstract
The thermotropic phase behavior and organization of model membranes composed of binary mixtures of the quadruple-chained, nominally dianionic phospholipid tetramyristoylcardiolipin (TMCL) with the double-chained, monoanionic phospholipid dimyristoylphosphatidylglycerol (DMPG) were examined by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The gel/liquid-crystalline phase transitions observed in these mixtures by DSC are generally rather broad and exhibit complex endotherms over a range of compositions. However, the phase transition temperatures and enthalpies exhibit nearly ideal behavior. Also, FTIR spectroscopic detection of the formation of stable and metastable DMPG-like lamellar crystalline (Lc) phases only at high DMPG levels upon low temperature annealing, and stable TMCL-like Lc phases at all higher TMCL concentrations, indicates that at low temperatures, laterally segregated domains of these two phospholipids must form, from which these different Lc phases nucleate and grow. Comparison of these results with those of a previous study of DMPE/TMCL mixtures (Frias et al., 2011) indicates that DMPG mixes slightly less well with TMCL than DMPE, perhaps because of the negative charge of the latter. However, in both binary mixtures, TMCL inhibits the formation of the Lc phase by DMPE even more strongly than for DMPG. Overall, our data suggest that TMCL and DMPG actually mix well across a broad temperature and composition range when the fatty acid chains of the two components are identical and only a modest (~17°C) difference between their Lβ/Lα phase transition temperatures exists. A recent DSC and X-ray diffraction study of DPPG/TMCL mixtures report similar results (Prossnigg et al., 2010).
Collapse
Affiliation(s)
- Matthew G K Benesch
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ruthven N A H Lewis
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ronald N McElhaney
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
89
|
Gorczyca M, Korchowiec B, Korchowiec J, Trojan S, Rubio-Magnieto J, Luis SV, Rogalska E. A Study of the Interaction between a Family of Gemini Amphiphilic Pseudopeptides and Model Monomolecular Film Membranes Formed with a Cardiolipin. J Phys Chem B 2015; 119:6668-79. [PMID: 25959677 DOI: 10.1021/acs.jpcb.5b02575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interaction between five gemini amphiphilic pseudopeptides (GAPs) differing by the length of the central spacer and a model membrane lipid, 1,3-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-sn-glycerol (cardiolipin) were studied with the aim to evaluate their possible antimicrobial properties. To this end, monomolecular films were formed at the air/water interface with pure cardiolipin or cardiolipin/GAPs mixtures; film properties were determined using surface pressure and surface potential measurements, as well as polarization-modulation infrared reflection-absorption spectroscopy. Moreover, to better understand the GAPs-phospholipid interaction at the molecular level, molecular dynamics simulations were performed. The results obtained indicate that the length of the central spacer has an effect on the interaction of GAPs with cardiolipin and on the properties of the lipid film. The GAPs with the longer linkers can be expected to be useful for biological membrane modification and for possible antimicrobial applications.
Collapse
Affiliation(s)
- Marcelina Gorczyca
- †Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Beata Korchowiec
- ‡Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Jacek Korchowiec
- †Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Sonia Trojan
- †Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Jenifer Rubio-Magnieto
- §Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat, s/n, 12071 Castellón, Spain
| | - Santiago V Luis
- §Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat, s/n, 12071 Castellón, Spain
| | - Ewa Rogalska
- ∥Structure et Réactivité des Systèmes Moléculaires Complexes, BP 239, CNRS/Université de Lorraine, 54506 Vandoeuvre-lès-Nancy cedex, France
| |
Collapse
|
90
|
Andreyev AY, Tsui HS, Milne GL, Shmanai VV, Bekish AV, Fomich MA, Pham MN, Nong Y, Murphy AN, Clarke CF, Shchepinov MS. Isotope-reinforced polyunsaturated fatty acids protect mitochondria from oxidative stress. Free Radic Biol Med 2015; 82:63-72. [PMID: 25578654 DOI: 10.1016/j.freeradbiomed.2014.12.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/11/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Polyunsaturated fatty acid (PUFA) peroxidation is initiated by hydrogen atom abstraction at bis-allylic sites and sets in motion a chain reaction that generates multiple toxic products associated with numerous disorders. Replacement of bis-allylic hydrogens of PUFAs with deuterium atoms (D-PUFAs), termed site-specific isotope reinforcement, inhibits PUFA peroxidation and confers cell protection against oxidative stress. We demonstrate that structurally diverse deuterated PUFAs similarly protect against oxidative stress-induced injury in both yeast and mammalian (myoblast H9C2) cells. Cell protection occurs specifically at the lipid peroxidation step, as the formation of isoprostanes, immediate products of lipid peroxidation, is drastically suppressed by D-PUFAs. Mitochondrial bioenergetics function is a likely downstream target of oxidative stress and a subject of protection by D-PUFAs. Pretreatment of cells with D-PUFAs is shown to prevent inhibition of maximal uncoupler-stimulated respiration as well as increased mitochondrial uncoupling, in response to oxidative stress induced by agents with diverse mechanisms of action, including t-butylhydroperoxide, ethacrynic acid, or ferrous iron. Analysis of structure-activity relationships of PUFAs harboring deuterium at distinct sites suggests that there may be a mechanism supplementary to the kinetic isotope effect of deuterium abstraction off the bis-allylic sites that accounts for the protection rendered by deuteration of PUFAs. Paradoxically, PUFAs with partially deuterated bis-allylic positions that retain vulnerable hydrogen atoms (e.g., monodeuterated 11-D1-Lin) protect in a manner similar to that of PUFAs with completely deuterated bis-allylic positions (e.g., 11,11-D2-Lin). Moreover, inclusion of just a fraction of deuterated PUFAs (20-50%) in the total pool of PUFAs preserves mitochondrial respiratory function and confers cell protection. The results indicate that the therapeutic potential of D-PUFAs may derive from the preservation of mitochondrial function.
Collapse
Affiliation(s)
- Alexander Y Andreyev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA
| | - Hui S Tsui
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk 220072, Belarus
| | - Andrei V Bekish
- Department of Chemistry, Belarusian State University, Minsk 220020, Belarus
| | - Maksim A Fomich
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk 220072, Belarus
| | - Minhhan N Pham
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Yvonne Nong
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0636, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
91
|
Sidiq S, Verma I, Pal SK. pH-Driven Ordering Transitions in Liquid Crystal Induced by Conformational Changes of Cardiolipin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4741-4751. [PMID: 25856793 DOI: 10.1021/acs.langmuir.5b00798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report an investigation of interfacial phenomena occurring at aqueous-liquid crystal (LC) interfaces that triggers an orientational ordering transition of the LC in the presence of cardiolipin (CL) by varying pH, salt concentration and valence. In particular, the effects of three different conformational isomeric forms of the CL are observed to cause the response of the LC ordering to vary significantly from one to another at those interfaces. An ordering transition of the LC was observed when the CL is mostly in undissociated (at pH 2) and/or in bicyclic (at pH 4) conformation in which LC shows changes in the optical appearance from bright to dark. By contrast, no change in the optical appearance of the LC was observed when the pH of the system increases to 8 or higher in which the CL mostly exists in the open conformation. Fluorescence microscopy measurements further suggest that pH-dependent conformational forms of the CL have different ability to self-assemble (thus different packing efficiency) at aqueous-LC interfaces leading to dissimilar orientational behavior of the LC. Specifically, we found that change in headgroup-headgroup repulsion of the central phosphatidyl groups of the CL plays a key role in tuning the lipid packing efficiency and thus responses to interfacial phenomena. Orientational ordering transition of the LC was also observed as a function of increasing the ionic strength (buffer capacity) and strongly influenced in the presence of mono and divalent cations. Langmuir-Blodgett (LB) and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements provide further insight in modulation of the lipid packing efficiency and alkyl chain conformation of the CL at different pH and ionic conditions. Overall, the results presented in this paper establish that LCs offer a promising approach to differentiate different conformations (label free detection) of the CL through ordering transition of the LC at aqueous-LC interfaces.
Collapse
Affiliation(s)
- Sumyra Sidiq
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India
| | - Indu Verma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India
| |
Collapse
|
92
|
Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.09.004] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
93
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Protective role of melatonin in mitochondrial dysfunction and related disorders. Arch Toxicol 2015; 89:923-39. [DOI: 10.1007/s00204-015-1475-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
|
94
|
C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization. Mol Cell Biol 2015; 35:1139-56. [PMID: 25605331 DOI: 10.1128/mcb.01047-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian mitochondria may contain up to 1,500 different proteins, and many of them have neither been confidently identified nor characterized. In this study, we demonstrated that C11orf83, which was lacking experimental characterization, is a mitochondrial inner membrane protein facing the intermembrane space. This protein is specifically associated with the bc1 complex of the electron transport chain and involved in the early stages of its assembly by stabilizing the bc1 core complex. C11orf83 displays some overlapping functions with Cbp4p, a yeast bc1 complex assembly factor. Therefore, we suggest that C11orf83, now called UQCC3, is the functional human equivalent of Cbp4p. In addition, C11orf83 depletion in HeLa cells caused abnormal crista morphology, higher sensitivity to apoptosis, a decreased ATP level due to impaired respiration and subtle, but significant, changes in cardiolipin composition. We showed that C11orf83 binds to cardiolipin by its α-helices 2 and 3 and is involved in the stabilization of bc1 complex-containing supercomplexes, especially the III2/IV supercomplex. We also demonstrated that the OMA1 metalloprotease cleaves C11orf83 in response to mitochondrial depolarization, suggesting a role in the selection of cells with damaged mitochondria for their subsequent elimination by apoptosis, as previously described for OPA1.
Collapse
|
95
|
Wang ZP, Ding XZ, Wang J, Li YM. Double-edged sword in cells: chemical biology studies of the vital role of cytochrome c in the intrinsic pre-apoptotic mitochondria leakage pathway. RSC Adv 2015. [DOI: 10.1039/c4ra16856a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Besides functioning as an electron transporter in the mitochondrial electron transport chain, cytochrome c (cyt c) is also one of the determinants in the execution of cell death.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- China
- Department of Chemistry
| | - Xiao-Zhe Ding
- Department of Chemistry
- School of Life Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Jun Wang
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Yi-Ming Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- China
| |
Collapse
|
96
|
Almaida-Pagán PF, De Santis C, Rubio-Mejía OL, Tocher DR. Dietary fatty acids affect mitochondrial phospholipid compositions and mitochondrial gene expression of rainbow trout liver at different ages. J Comp Physiol B 2014; 185:73-86. [PMID: 25398637 DOI: 10.1007/s00360-014-0870-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/12/2014] [Accepted: 10/21/2014] [Indexed: 11/28/2022]
Abstract
Mitochondria are among the first responders to various stressors that challenge the homeostasis of cells and organisms. Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL), particularly cardiolipin (CL), and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, liver mitochondrial membrane PL compositions, lipid peroxidation, and mtDNA gene expression were analyzed in rainbow trout fed three diets with the same base formulation but with lipid supplied either by fish oil (FO), rapeseed oil (RO), or high DHA oil (DHA) during 6 weeks. Specifically, two feeding trials were performed using fish from the same population of two ages (1 and 3 years), and PL class compositions of liver mitochondria, fatty acid composition of individual PL classes, TBARS content, and mtDNA expression were determined. Dietary fatty acid composition strongly affected mitochondrial membrane composition from trout liver but observed changes did not fully reflect the diet, particularly when it contained high DHA. The changes were PL specific, CL being particularly resistant to changes in DHA. Some significant differences observed in expression of mtDNA with diet may suggest long-term dietary effects in mitochondrial gene expression which could affect electron transport chain function. All the changes were influenced by fish age, which could be related to the different growth rates observed between 1- and 3-year-old trout but that could also indicate age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes.
Collapse
Affiliation(s)
- P F Almaida-Pagán
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK,
| | | | | | | |
Collapse
|
97
|
Yu L, Fink BD, Herlein JA, Oltman CL, Lamping KG, Sivitz WI. Dietary fat, fatty acid saturation and mitochondrial bioenergetics. J Bioenerg Biomembr 2014; 46:33-44. [PMID: 24121995 DOI: 10.1007/s10863-013-9530-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/20/2013] [Indexed: 12/15/2022]
Abstract
Fat intake alters mitochondrial lipid composition which can affect function. We used novel methodology to assess bioenergetics, including simultaneous ATP and reactive oxygen species (ROS) production, in liver and heart mitochondria of C57BL/6 mice fed diets of variant fatty acid content and saturation. Our methodology allowed us to clamp ADP concentration and membrane potential (ΔΨ) at fixed levels. Mice received a control diet for 17–19 weeks, a high-fat (HF) diet (60% lard) for 17–19 weeks, or HF for 12 weeks followed by 6–7 weeks of HF with 50% of fat as menhaden oil (MO) which is rich in n-3 fatty acids. ATP production was determined as conversion of 2-deoxyglucose to 2-deoxyglucose phosphate by NMR spectroscopy. Respiration and ATP production were significantly reduced at all levels of ADP and resultant clamped ΔΨ in liver mitochondria from mice fed HF compared to controls. At given ΔΨ, ROS production per mg mitochondrial protein, per unit respiration, or per ATP generated were greater for liver mitochondria of HF-fed mice compared to control or MO-fed mice. Moreover, these ROS metrics began to increase at a lower ΔΨ threshold. Similar, but less marked, changes were observed in heart mitochondria of HF-fed mice compared to controls. No changes in mitochondrial bioenergetics were observed in studies of separate mice fed HF versus control for only 12 weeks. In summary, HF feeding of sufficient duration impairs mitochondrial bioenergetics and is associated with a greater ROS “cost” of ATP production compared to controls. These effects are, in part, mitigated by MO.
Collapse
|
98
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20:14205-18. [PMID: 25339807 PMCID: PMC4202349 DOI: 10.3748/wjg.v20.i39.14205] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/13/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is today considered the most common form of chronic liver disease, affecting a high proportion of the population worldwide. NAFLD encompasses a large spectrum of liver damage, ranging from simple steatosis to steatohepatitis, advanced fibrosis and cirrhosis. Obesity, hyperglycemia, type 2 diabetes and hypertriglyceridemia are the most important risk factors. The pathogenesis of NAFLD and its progression to fibrosis and chronic liver disease is still unknown. Accumulating evidence indicates that mitochondrial dysfunction plays a key role in the physiopathology of NAFLD, although the mechanisms underlying this dysfunction are still unclear. Oxidative stress is considered an important factor in producing lethal hepatocyte injury associated with NAFLD. Mitochondrial respiratory chain is the main subcellular source of reactive oxygen species (ROS), which may damage mitochondrial proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid located at the level of the inner mitochondrial membrane, plays an important role in several reactions and processes involved in mitochondrial bioenergetics as well as in mitochondrial dependent steps of apoptosis. This phospholipid is particularly susceptible to ROS attack. Cardiolipin peroxidation has been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions, including NAFLD. In this review, we focus on the potential roles played by oxidative stress and cardiolipin alterations in mitochondrial dysfunction associated with NAFLD.
Collapse
|
99
|
Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 2014; 35:1997-2004. [PMID: 25130509 DOI: 10.1002/jcc.23702] [Citation(s) in RCA: 1625] [Impact Index Per Article: 162.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/12/2023]
Abstract
CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments.
Collapse
Affiliation(s)
- Emilia L Wu
- Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Lucas-Sánchez A, Almaida-Pagán PF, Mendiola P, de Costa J. Nothobranchius as a model for aging studies. A review. Aging Dis 2014; 5:281-91. [PMID: 25110612 PMCID: PMC4113518 DOI: 10.14336/ad.2014.0500281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 12/25/2022] Open
Abstract
In recent decades, the increase in human longevity has made it increasingly important to expand our knowledge on aging. To accomplish this, the use of animal models is essential, with the most common being mouse (phylogenetically similar to humans, and a model with a long life expectancy) and Caenorhabditis elegans (an invertebrate with a short life span, but quite removed from us in evolutionary terms). However, some sort of model is needed to bridge the differences between those mentioned above, achieving a balance between phylogenetic distance and life span. Fish of the genus Nothobranchius were suggested 10 years ago as a possible alternative for the study of the aging process. In the meantime, numerous studies have been conducted at different levels: behavioral (including the study of the rest-activity rhythm), populational, histochemical, biochemical and genetic, among others, with very positive results. This review compiles what we know about Nothobranchius to date, and examines its future prospects as a true alternative to the classic models for studies on aging.
Collapse
Affiliation(s)
| | | | - Pilar Mendiola
- Department of Physiology. Faculty of Biology. University of Murcia. 30100 Murcia, Spain
| | - Jorge de Costa
- Department of Physiology. Faculty of Biology. University of Murcia. 30100 Murcia, Spain
| |
Collapse
|