51
|
Singh AK, Jiang Y, Gupta S. Effects of chronic alcohol drinking on receptor-binding, internalization, and degradation of human immunodeficiency virus 1 envelope protein gp120 in hepatocytes. Alcohol 2007; 41:591-606. [PMID: 17980997 DOI: 10.1016/j.alcohol.2007.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 11/28/2022]
Abstract
Although alcohol drinking increases susceptibility to human immunodeficiency virus (HIV) infection, possible mechanisms underlying the effects of alcohol are not yet known. Since the HIV envelope protein gp120 plays a key role in progression of HIV infection, the aim of the present study was to evaluate the toxicity and degradation of gp120 in hepatocytes isolated from liver of alcohol-preferring rats drinking either 15% ethanol in water or pure water for 70 days. The hypothesis was that alcohol drinking augmented the toxicity, but suppressed degradation of gp120. Hepatocytes from water-drinking rats (C-cells) or ethanol-drinking rats (Et-cells) were treated with laptacystin, anti-CD4 antibodies, CCR5 antagonist, or mannose, followed by [(125)I]gp120 or native gp120. At predetermined intervals, control (C) and ethanol exposed (Et) cells were analyzed for toxicity and degradation of gp120. In C-cells, [(125)I]gp120 binding and internalization peaked within 5-45 min and remained elevated for up to 10h and then decreased gradually. In Et-cells, [(125)I]gp120 binding peaked comparably to C-cells, but the binding remained to the peak level throughout the experimental period. C-cells exhibited the lysosomal/ubiquitin-mediated degradation of intracellular gp120, resulting in released gp120 fragments into the incubation medium that suppressed gp120-CD4 binding, improved cell viability, and inhibited gp120-induced apoptosis. Ethanol drinking suppressed gp120 degradation in and release of gp120 fragments from hepatocytes. The incubation medium of Et-cells did not suppress gp120-CD4 binding or the gp120-mediated apoptosis in hepatocytes. Thus, chronic alcohol drinking augmented the adverse effects of gp120 possibly by suppressing its degradation in hepatocytes. The present observation also suggests that a number of CCR5 or ubiquitin-based therapeutic drugs may not be effective in suppressing HIV infection in alcohol-drinking subjects.
Collapse
Affiliation(s)
- Ashok K Singh
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, St Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
52
|
Kim BJ, Hood BL, Aragon RA, Hardwick JP, Conrads TP, Veenstra TD, Song BJ. Increased oxidation and degradation of cytosolic proteins in alcohol-exposed mouse liver and hepatoma cells. Proteomics 2006; 6:1250-60. [PMID: 16408314 PMCID: PMC1368983 DOI: 10.1002/pmic.200500447] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We recently developed a sensitive method using biotin-N-maleimide (biotin-NM) as a probe to positively identify oxidized mitochondrial proteins. In this study, biotin-NM was used to identify oxidized cytosolic proteins in alcohol-fed mouse livers. Alcohol treatment for 6 wk elevated the levels of CYP2E1 and nitrotyrosine, a marker of oxidative stress. Markedly increased levels of oxidized proteins were detected in alcohol-fed mouse livers compared to pair-fed controls. The biotin-NM-labeled oxidized proteins from alcohol-exposed mouse livers were subsequently purified with streptavidin-agarose and resolved on 2-DE. More than 90 silver-stained protein spots that displayed differential intensities on 2-D gels were identified by MS. Peptide sequence analysis revealed that many enzymes or proteins involved in stress response, chaperone activity, intermediary metabolism, and antioxidant defense systems such as peroxiredoxin were oxidized after alcohol treatment. Smaller fragments of many proteins were repeatedly detected only in alcohol-fed mice, indicating that many oxidized proteins after alcohol exposure were degraded. Immunoblot results showed that the level of oxidized peroxiredoxin (inactivated) was markedly increased in the alcohol-exposed mouse livers and ethanol-sensitive hepatoma cells compared to the corresponding controls. Our results may explain the underlying mechanism for cellular dysfunction and increased susceptibility to other toxic agents following alcohol-mediated oxidative stress.
Collapse
Affiliation(s)
- Bong-Jo Kim
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Brian L. Hood
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD, USA and
| | - Richard A. Aragon
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - James P. Hardwick
- Department of Biochemistry, Northeastern Ohio University College of Medicine, Rootstown, OH, USA
| | - Thomas P. Conrads
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD, USA and
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD, USA and
| | - Byoung J. Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
- To whom correspondence should be addressed: Dr. B. J. Song, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892-9410, USA. (e-mail); (Fax) 1-301-594-3113
| |
Collapse
|
53
|
Osna NA, Clemens DL, Donohue TM. Ethanol metabolism alters interferon gamma signaling in recombinant HepG2 cells. Hepatology 2005; 42:1109-17. [PMID: 16250053 DOI: 10.1002/hep.20909] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously showed that IFNgamma signal transduction was suppressed by ethanol in recombinant HepG2 cells (VL-17A cells), which express alcohol dehydrogenase (ADH) and CYP2E1. We examined the mechanisms by which STAT1 phosphorylation is blocked by ethanol treatment in VL-17A cells. Cells were exposed to 0 or 100 mmol/L ethanol for 72 hours. STAT1 phosphorylation was determined by Western blot after 1 hour IFNgamma exposure. Reduction of STAT1 phosphorylation by ethanol was prevented in the presence of 4MP, DAS, or uric acid, indicating that the oxidative products from ethanol metabolism were partly responsible for suppression of STAT1 phosphorylation. Ethanol exposure decreased STAT1 tyrosine phosphorylation, whereas serine phosphorylation on the protein was unchanged. These effects of ethanol were mimicked by the peroxynitrite (PN) donor, SIN-1, which also blocked tyrosine, but not serine phosphorylation, on STAT1. When cells expressing either ADH (VA-13 cells) or CYP2E1 (E-47 cells) were exposed to ethanol, both ADH- and CYP2E1-generated products reduced STAT1 phosphorylation. In addition, SOCS1, a negative regulator of IFNgamma signaling and which is degraded by the proteasome, was stabilized by ethanol treatment, presumably because of inhibited proteasome activity. Furthermore, SIN-1 treatment elevated SOCS1 levels in VL-17A cells, indicating that PN has a role in SOCS1 elevation. In conclusion, under conditions of ethanol-elicited oxidative stress, PN prevents STAT1 phosphorylation by stabilization of SOCS1, and possibly by nitration of tyrosine residues in STAT1 protein.
Collapse
Affiliation(s)
- Natalia A Osna
- Liver Study Unit, Research Service, The Omaha Veterans Affairs (VA) Medical Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | | | | |
Collapse
|
54
|
Abstract
Chronic ethanol consumption causes increased oxidative damage in the liver. Induction of CYP2E1 is one pathway involved in how ethanol produces oxidative stress. Ethanol can cause protein accumulation, decreased proteolysis, and decreased proteasome activity. The objective of this study was to investigate the effect of inhibition of the proteasome activity on CYP2E1-dependent toxicity. HepG2 cells over-expressing CYP2E1 (E47 cells) were treated with arachidonic acid (AA) plus iron, agents important in development of alcoholic liver injury and which are toxic to E47 cells by a mechanism dependent on CYP2E1, oxidative stress, and lipid peroxidation. Addition of various proteasome inhibitors was associated with significant potentiation of the loss of cell viability caused by AA plus iron. Potentiation of toxicity was associated with increased oxidative damage as reflected by an increase in lipid peroxidation and accumulation of oxidized and nitrated proteins in E47 cells and an enhanced decline in mitochondrial membrane potential. Antioxidants prevented the loss of viability and the potentiation of this loss of viability by proteasome inhibition. CYP2E1 levels were elevated about 3-fold by the proteasome inhibitors. Inhibition of proteasome activity also potentiated toxicity of AA alone and toxicity after treatment to remove glutathione (GSH). Similar results were found in hepatocytes from pyrazole-treated rats with high levels of CYP2E1. In conclusion, proteasome activity plays an important role in modulating CYP2E1-mediated toxicity in HepG2 cells by regulating CYP2E1 levels and by removal of oxidized proteins. Such interactions may be important in CYP2E1-catalyzed toxicity of hepatotoxins and in alcohol-induced liver injury.
Collapse
Affiliation(s)
- María José Pérez
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
55
|
Abstract
Some of the most fundamental yet important cellular activities such as cell division and gene expression are controlled by short-lived regulatory proteins. The levels of these proteins are controlled by their rates of degradation. Similarly, protein catabolism plays a crucial role in prolonging cellular life by destroying damaged proteins that are potentially cytotoxic. A major player in these catabolic reactions is the ubiquitin-proteasome system, a novel proteolytic system that has become the primary proteolytic pathway in eukaryotic cells. Ubiquitin-mediated proteolysis is now regarded as the major pathway by which most intracellular proteins are destroyed. Equally important, from a toxicological standpoint, is that the ubiquitin-proteasome system is also widely considered to be a cellular defense mechanism, since it is involved in the removal of damaged proteins generated by adduct formation and oxidative stress. This review describes the history and the components of the ubiquitin-proteasome system, its regulation and its role in pathological states, with the major emphasis on ethanol-induced organ injury. The available literature cited here deals mainly with the effects of ethanol consumption on the ubiquitin-proteasome pathway in the liver. However, since this proteolytic system is an essential pathway in all cells it is an attractive experimental model and therapeutic target in extrahepatic organs such as the brain and heart that are also affected by excessive alcohol consumption.
Collapse
Affiliation(s)
- Terrence M Donohue
- Liver Study Unit, Department of Veterans Affairs Medical Center and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68105, USA.
| |
Collapse
|
56
|
Bailey SM, Patel VB, Young TA, Asayama K, Cunningham CC. Chronic Ethanol Consumption Alters the Glutathione/Glutathione Peroxidase-1 System and Protein Oxidation Status in Rat Liver. Alcohol Clin Exp Res 2001. [PMID: 11371722 DOI: 10.1111/j.1530-0277.2001.tb02273.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
57
|
Reilly ME, Mantle D, Salisbury J, Peters TJ, Preedy VR. Comparative effects of acute ethanol dosage on liver and muscle protein metabolism. Biochem Pharmacol 2000; 60:1773-85. [PMID: 11108792 DOI: 10.1016/s0006-2952(00)00504-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Experiments were performed to address some outstanding issues and investigate possible mechanisms relating to the acute comparative effects of ethanol on liver and skeletal muscle protein metabolism. Ethanol (EtOH)-treated rats were injected (i.p.) with a bolus of EtOH (75 mmol/kg body weight) and sacrificed at 20 min, 1-, 2.5-, 6-, and 24-hr time points. Control rats were injected with saline (Con-Sal; 0.15 mmol/L NaCl). All 24-hr ethanol-treated animals were compared with saline-injected rats subjected to controlled feeding (i.e. pair-fed controls for 24 hr EtOH). At 24 hr, there was no measurable alcohol in the plasma, whereas high levels were seen from 20 min to 6 hr (up to 448 mg/dL). Plasma levels of albumin were reduced at initial time points, and activities of aspartate aminotransferase increased, but there was no histological evidence of overt tissue damage either in muscle or liver. Hepatic protein and RNA contents and indices of tissue (C(s) and k(s)) and whole-body (V(s)) protein synthesis were significantly increased in ethanol-dosed rats relative to saline-injected pair-fed controls at 24 hr. In the liver, four of the seven cytoplasmic proteases investigated (alanyl-, arginyl-, and pyroglutamyl-aminopeptidases and proline-endopeptidase) showed significant increases in activity at 24 hr relative to pair-fed controls; four of the six lysosomal proteases showed significant decreases in activity (dipeptidyl-aminopeptidase II and cathepsins B, L, and H). In skeletal muscle, k(s) fell progressively between 1 and 24 hr (-25 to -69%; P < 0.001), but no significant changes in skeletal muscle protease activities were seen at 24 hr. At 24 hr after ethanol dosage in vivo, there were no significant increases in protein carbonyl content in liver or skeletal muscle compared to pair-fed controls (muscle levels actually decreased slightly). However, using either rat or human tissue, both liver and muscle carbonyl increased in vitro in response to superoxide and hydroxyl radicals: muscle was more susceptible to carbonyl formation than liver and both tissues were more sensitive to hydroxyl compared to superoxide radicals. These results show divergent effects of acute ethanol treatment on liver and skeletal muscle protein metabolism, which may not be linked to in vivo free radical-mediated protein damage (as indicated by carbonyl formation), at least in the short term.
Collapse
Affiliation(s)
- M E Reilly
- Department of Clinical Biochemistry, King's College School of Medicine, SE5 9PJ, London, UK
| | | | | | | | | |
Collapse
|
58
|
Bokkala S, Rubin E, Joseph SK. Effect of Chronic Ethanol Exposure on Inositol Trisphosphate Receptors in WB Rat Liver Epithelial Cells. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04086.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
59
|
Fataccioli V, Andraud E, Gentil M, French SW, Rouach H. Effects of chronic ethanol administration on rat liver proteasome activities: relationship with oxidative stress. Hepatology 1999; 29:14-20. [PMID: 9862843 DOI: 10.1002/hep.510290106] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We previously reported that ethanol elicits an increased protein oxidation in the liver of rats receiving chronic ethanol by continuous intragastric infusion (Tsukamoto-French method). This accumulation of oxidized proteins could result from a decrease in the cytosolic proteolysis, related specifically to alkaline protease and its major components, the proteasomes. Because several studies suggest that intracellular proteolysis depends on the severity of oxidative stress, we investigated the cytosolic proteolytic activity under two chronic ethanol treatment paradigms associated with varying degrees of oxidative stress. For 4 weeks, male rats received chronic ethanol by continuous intragastric infusion or by oral administration (10% ethanol ad libitum as sole drinking fluid). A significant decrease was evident for alkaline protease activity as well as for sodium dodecyl sulfate (SDS)-activated latent 20S proteasome (chymotrypsine-like [ChT-L] and peptidylglutamyl peptide hydrolase [PGPH] activities) in the liver of rats receiving ethanol by continuous intragastric infusion. Free radical production and related processes appeared to be contributing events in proteolysis inhibition, because phenethyl isothiocyanate (PIC), an inhibitor of cytochrome P4502E1 (CYP2E1), reduced the inhibition of the ethanol-related ChT-L activity. Moreover, the lipid peroxidation level was inversely correlated with ChT-L activity. In contrast, no such changes were observed in ChT-L and PGPH activities or in cellular free radical targets following the oral ad libitum consumption of 10% ethanol. It appears, thus, that only the alcohol treatment paradigm associated with an overt oxidative stress produced a significant inhibition of the proteasome activity. The mechanisms of proteasome inhibition could involve the formation of an endogenous inhibitor such as protein aggregates or aldehyde-derivative peptides. Whatever the mechanism, the inhibition of cytosolic proteolysis and the subsequent accumulation of damaged proteins may be involved in the oxidatively challenged alcoholic livers and play a pathogenic role in experimental alcoholic liver disease.
Collapse
Affiliation(s)
- V Fataccioli
- Laboratory of Biomedical Research on Alcoholism, Univ. René Descartes, Paris, France
| | | | | | | | | |
Collapse
|
60
|
Donohue TM, Zetterman RK, Zhang-Gouillon ZQ, French SW. Peptidase activities of the multicatalytic protease in rat liver after voluntary and intragastric ethanol administration. Hepatology 1998; 28:486-91. [PMID: 9696015 DOI: 10.1002/hep.510280228] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ethanol consumption slows down the rate of hepatic protein catabolism. The present study was conducted to determine whether ethanol consumption, given by voluntary (pair) feeding or by intragastric administration, affected the peptidase activities of the proteasome in rat liver. Rats were pair-fed liquid diets containing either ethanol or isocaloric maltose-dextrin. A separate group of animals was intragastrically infused continuously with similar liquid diets containing either ethanol or isocaloric dextrose. Crude liver homogenates and their cytosolic fractions were assayed for their chymotrypsin-like (Cht-L), trypsin-like (T-L), and peptidyl-glutamyl-peptide hydrolase (PGPH) activities, using specific fluorogenic peptides as substrates. Voluntary ethanol feeding did not affect the three peptidase activities of the proteasome. However, intragastric ethanol administration caused a 35% to 40% decline in the Cht-L and the T-L activities, but did not significantly change the PGPH activity. The lower peptidase activities in cytosol samples from intragastrically ethanol-fed rats were not restored to control levels by overnight dialysis, nor by the inclusion of low levels of sodium dodecyl sulfate (SDS) or of 0.5 mmol/L adenosine triphosphate (ATP) in the proteasome assay mixture. Immunoblot analyses using anti-rat liver proteaseome exhibited equal levels of immunoreactive proteasome subunits in livers of control and ethanol-fed rats. Similar results were obtained when blots were probed with antibody made specifically against the proteasome subunit, LMP-7. The results indicate that intragastric, but not voluntary, ethanol consumption differentially affects the separate catalytic activities of the proteasome without affecting its steady-state levels. Such changes may be related to the degree of ethanol-induced oxidative stress.
Collapse
Affiliation(s)
- T M Donohue
- The Veterans Affairs Medical Center and the Department of Internal Medicine, University of Nebraska College of Medicine, Omaha 68105, USA
| | | | | | | |
Collapse
|
61
|
Kharbanda KK, McVicker DL, Zetterman RK, Donohue TM. Ethanol consumption alters trafficking of lysosomal enzymes and affects the processing of procathepsin L in rat liver. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1291:45-52. [PMID: 8781524 DOI: 10.1016/0304-4165(96)00043-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to determine whether ethanol consumption alters the targeting of hepatic lysosomal enzymes to their organelles, we examined the sedimentation properties of lysosomal hydrolases in ethanol-fed rats and their pair-fed controls. Rats were fed a liquid diet containing either ethanol (36% of calories) or isocaloric maltose dextrin for one to five wk. Liver extracts were fractionated by Percoll density gradient centrifugation and fractions obtained were analyzed for the distribution of lysosomal marker enzymes. Heavy lysosomes were further purified from these gradients and the activity of specific hydrolases was determined. Compared with those from controls, isolated lysosomes from ethanol-fed rats showed a 20-50% reduction in the activity of lysosomal acid phosphatase and beta-galactosidase. Decreased intralysosomal hydrolase activity in ethanol-fed rats was associated with a significant redistribution of these enzymes as well as those of cathepsins B and L to lighter fractions of Percoll density gradients. This indicated an ethanol-elicited shift of these enzymes to lower density cellular compartments. In order to determine whether ethanol administration affects the synthesis and proteolytic maturation of hepatic procathepsin L, we conducted immunoblot analyses to quantify the steady-state levels of precursor and mature forms of cathepsin L in hepatic post-nuclear fractions. Ethanol administration caused a significant elevation in the steady-state level of the 39 kDa cathepsin L precursor relative to its 30 kDa intermediate and 25 kDa mature product. These results were confirmed by pulse-chase experiments using isolated hepatocytes exposed to [35S]methionine. Hepatocytes from both control and ethanol-fed rats incorporated equal levels of radioactivity into procathepsin L. However, during the chase period, the ratios of the 39 kDa procathepsin L to its 30 kDa intermediate and 25 kDa mature product in cells from ethanol-fed rats were 1.5-3-fold higher than those in controls. These results demonstrate that ethanol consumption caused a marked impairment in the processing of procathepsin L to mature enzyme, without affecting its synthesis. Taken together, our findings suggest that chronic ethanol consumption caused a deficiency in intralysosomal enzyme content by altering the trafficking and processing of these hydrolases into lysosomes.
Collapse
Affiliation(s)
- K K Kharbanda
- Liver Study Unit, Department of Veterans Affairs (VA) Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|