51
|
Ospina CA, Rodríguez AD, Ortega-Barria E, Capson TL. Briarellins J-P and polyanthellin A: new eunicellin-based diterpenes from the gorgonian coral Briareum polyanthes and their antimalarial activity. JOURNAL OF NATURAL PRODUCTS 2003; 66:357-363. [PMID: 12662092 DOI: 10.1021/np0204500] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new chemical study of the hexane extract of the gorgonian Briareum polyanthes collected in Puerto Rico afforded 10 new diterpenes of the eunicellin class, briarellins 1-9 and polyanthellin A (10), along with the known diterpene briarellin D (11). The structures and relative stereochemistry of metabolites 1-10 were assigned on the basis of NMR studies, chemical methods, and comparisons to the spectral properties of 11. A reassessment of prior structural assignment for briarellin A and two known sclerophytin-type diterpenes, 13 and 14, is proposed. Antimalarial tests on 1-6 and 8-12 indicated that they were active against Plasmodium falciparum.
Collapse
Affiliation(s)
- Claudia A Ospina
- Department of Chemistry, University of Puerto Rico, P.O. Box 23346, San Juan, Puerto Rico 00931-3346, USA
| | | | | | | |
Collapse
|
52
|
Mettey Y, Gompel M, Thomas V, Garnier M, Leost M, Ceballos-Picot I, Noble M, Endicott J, Vierfond JM, Meijer L. Aloisines, a new family of CDK/GSK-3 inhibitors. SAR study, crystal structure in complex with CDK2, enzyme selectivity, and cellular effects. J Med Chem 2003; 46:222-36. [PMID: 12519061 DOI: 10.1021/jm020319p] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinases (CDKs) regulate the cell cycle, apoptosis, neuronal functions, transcription, and exocytosis. The observation of CDK deregulations in various pathological situations suggests that CDK inhibitors may have a therapeutic value. In this article, we report on the identification of 6-phenyl[5H]pyrrolo[2,3-b]pyrazines (aloisines) as a novel potent CDK inhibitory scaffold. A selectivity study performed on 26 kinases shows that aloisine A is highly selective for CDK1/cyclin B, CDK2/cyclin A-E, CDK5/p25, and GSK-3 alpha/beta; the two latter enzymes have been implicated in Alzheimer's disease. Kinetic studies, as well as the resolution of a CDK2-aloisine cocrystal structure, demonstrate that aloisines act by competitive inhibition of ATP binding to the catalytic subunit of the kinase. As observed with all inhibitors reported so far, aloisine interacts with the ATP-binding pocket through two hydrogen bonds with backbone nitrogen and oxygen atoms of Leu 83. Aloisine inhibits cell proliferation by arresting cells in both G1 and G2.
Collapse
Affiliation(s)
- Yvette Mettey
- Faculté de Médecine et de Pharmacie, 34 rue du Jardin des Plantes, B.P. 199, 86005 Poitiers Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Larsen AKR, Møller MTN, Blankson H, Samari HR, Holden L, Seglen PO. Naringin-sensitive phosphorylation of plectin, a cytoskeletal cross-linking protein, in isolated rat hepatocytes. J Biol Chem 2002; 277:34826-35. [PMID: 12095991 DOI: 10.1074/jbc.m205028200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify phosphoproteins that might play a role in naringin-sensitive hepatocellular cytoskeletal disruption and apoptosis induced by algal toxins, hepatocyte extracts were separated by gel electrophoresis and immunostained with a phosphothreonine-directed antibody. Use of dilute (5%) polyacrylamide gels containing 6 m urea allowed the resolution of one very large (approximately 500-kDa) okadaic acid- and naringin-sensitive phosphoprotein, identified by tryptic fingerprinting, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and immunostaining as the cytolinker protein, plectin. The naringin-sensitive phosphorylation induced by okadaic acid and microcystin-LR probably reflected inhibition of a type 2A protein phosphatase, whereas the naringin-resistant phosphorylation induced by calyculin A, tautomycin, and cantharidin probably involved a type 1 phosphatase. Okadaic acid caused a collapse of the plectin-immunostaining bile canalicular sheaths and the general cytoskeletal plectin network into numerous medium-sized plectin aggregates. Inhibitors of protein kinase C, cAMP-dependent protein kinase, or Ca(2+)/calmodulin-dependent kinase II had moderate or no protective effects on plectin network disruption, whereas naringin offered 86% protection. Okadaic acid induced a naringin-sensitive phosphorylation of AMP-activated protein kinase (AMPK), the stress-activated protein kinases SEK1 and JNK, and S6 kinase. The AMPK-activating kinase (AMPKK) is likely to be the target of inhibition by naringin, the other kinases serving as downstream components of an AMPKK-initiated signaling pathway.
Collapse
Affiliation(s)
- Ann-Kristin Ruud Larsen
- Proteomics and Mammalian Cell Biology Section, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
54
|
Rehen SK, Cid M, Fragel-Madeira L, Linden R. Differential effects of cyclin-dependent kinase blockers upon cell death in the developing retina. Brain Res 2002; 947:78-83. [PMID: 12144855 DOI: 10.1016/s0006-8993(02)02909-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pharmacological blockers of cyclin-dependent kinases (CDKs) can inhibit cell cycle progression. Deferoxamine (DFO) and mimosine (MIMO) arrest cells reversibly at the G1/S transition and olomoucine (OLO) inhibits the cell cycle at both G1/S and G2/M. We investigated the effect of these drugs upon cell death in histotypical explants taken from the retina of neonatal rats. Degeneration of retinal ganglions cells (RGC) induced by axotomy was inhibited by OLO (100 microM) but not by DFO (up to 2 mM) or MIMO (up to 1 mM). On the other hand, after 1 day in vitro, all cell cycle inhibitors induced cell death in the neuroblastic layer (NBL) of the explants. DFO and MIMO induced cell death only of proliferating cells, identified either by their incorporation of bromodeoxyuridine or by immunolabeling the proliferating cell nuclear antigen. In turn, OLO induced cell death of both proliferating and post-mitotic cells. However, the post-mitotic cells were unlabeled with markers of retinal differentiation. Our results indicate that cyclin-dependent kinases are involved in the control of sensitivity to cell death in the retina, and that retinal cells present differentiation-dependent responses to modulation of CDK activity.
Collapse
Affiliation(s)
- Stevens K Rehen
- Instituto de Biofisica da UFRJ, Centro de Ciencias da Saude, Bloco G, Cidade Universitaria, 21949-900, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
55
|
Stephens S, Beyer B, Balthazar-Stablein U, Duncan R, Kostacos M, Lukoma M, Green GR, Poccia D. Two kinase activities are sufficient for sea urchin sperm chromatin decondensation in vitro. Mol Reprod Dev 2002; 62:496-503. [PMID: 12112583 DOI: 10.1002/mrd.90005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Decondensation of compact and inactive sperm chromatin by egg cytoplasm at fertilization is necessary to convert the male germ cell chromatin to an active somatic form. We studied decondensation of sea urchin sperm nuclei in a cell-free extract of sea urchin eggs to define conditions promoting decondensation. We find that egg cytosol specifically phosphorylates two sperm-specific (Sp) histones in vitro in the same regions as in vivo. This activity is blocked by olomoucine, an inhibitor of cdc2-like kinases, but not by chelerythrine, an inhibitor of protein kinase C (PKC). PKC phosphorylates and solubilizes the sperm nuclear lamina, one requirement for decondensation. Olomoucine, which does not inhibit lamina removal, blocks sperm nuclear decondensation in the same concentration range over which it is effective in blocking Sp histone phosphorylation. In a system free of other soluble proteins, neither PKC nor cdc2 alone elicit sperm chromatin decondensation, but the two act synergistically to decondense sperm nuclei. We conclude that two kinases activities are sufficient for sea urchin male pronuclear decondensation in vitro, a lamin kinase (PKC) and a cdc2-like Sp histone kinase.
Collapse
Affiliation(s)
- S Stephens
- Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Ortega MA, Montoya ME, Zarranz B, Jaso A, Aldana I, Leclerc S, Meijer L, Monge A. Pyrazolo[3,4-b]quinoxalines. A new class of cyclin-dependent kinases inhibitors. Bioorg Med Chem 2002; 10:2177-84. [PMID: 11983514 DOI: 10.1016/s0968-0896(02)00069-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein kinases are involved in most physiological processes and in numerous diseases. Therefore, inhibitors of protein kinases have therefore a wide therapeutic potential. While screening for inhibitors of cyclin-dependent kinases (CDK's) and glycogen synthase kinase-3 (GSK-3), we identified pyrazolo[3,4-b]quinoxalines as sub-micromolar inhibitors of CDK1/cyclin B. A preliminary structure-activity relationship study suggests that this family of compounds can be optimized to inhibit CDK's and GSK-3. Compounds were tested for their anti-proliferative activity and the results show that several of them displayed a significant inhibitory effect on CDK1/cyclin B. The most active compound (1) was also tested against the brain kinases CDK5/p25 and GSK-3, and proved to be a good inhibitor of both of them. On the contrary, none of the compounds showed any activity in the CDC25 phosphatase assay. As an additional approach, affinity chromatography on immobilized pyrazolo[3,4-b]quinoxalines will be used to identify the intracellular targets of this family of compounds.
Collapse
Affiliation(s)
- Miguel A Ortega
- Unidad en Investigación y Desarrollo de Medicamentos, Centro de Investigación en Farmacobiología Aplicada, Universidad de Navarra, E-31080 Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Vitali L, Yakisich JS, Vita MF, Fernandez A, Settembrini L, Siden A, Cruz M, Carminatti H, Casas O, Idoyaga Vargas V. Roscovitine inhibits ongoing DNA synthesis in human cervical cancer. Cancer Lett 2002; 180:7-12. [PMID: 11911964 DOI: 10.1016/s0304-3835(01)00827-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of roscovitine, a purine analogue and cyclin dependent kinase inhibitor, on DNA synthesis rate in tissue mini-units obtained from human cervical cancers was investigated. Roscovitine (100 microM) gave a DNA synthesis rate inhibition by 61% (P<0.0001; range 23-93%) within 30 min of incubation. This inhibitory effect was concentration-dependent. The results suggest that the inhibition of tumor DNA synthesis rate is due to a direct effect on the DNA synthesis machinery via presently unknown mechanisms. In addition, the potential application of CDKs inhibitors as preventive agents is discussed.
Collapse
Affiliation(s)
- Liliana Vitali
- Instituto de Investigaciones Bioquimicas 'Fundacion Campomar', FCEyN, UBA, Patricias Argentinas 435 (C. P. 1405), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Fortunato EA, Sanchez V, Yen JY, Spector DH. Infection of cells with human cytomegalovirus during S phase results in a blockade to immediate-early gene expression that can be overcome by inhibition of the proteasome. J Virol 2002; 76:5369-79. [PMID: 11991965 PMCID: PMC137046 DOI: 10.1128/jvi.76.11.5369-5379.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells infected with human cytomegalovirus (HCMV) after commencing DNA replication do not initiate viral immediate-early (IE) gene expression and divide before arresting. To determine the nature of this blockade, we examined cells that were infected 24 h after release from G(0) using immunofluorescence, laser scanning cytometry, and fluorescence-activated cell sorting (FACS) analysis. Approximately 40 to 50% of the cells had 2N DNA content, became IE(+) in the first 12 h, and arrested. Most but not all of the cells with >2N DNA content did not express IE antigens until after mitosis. To define the small population of IE(+) cells that gradually accumulated within the S and G(2)/M compartments, cells were pulsed with bromodeoxyuridine (BrdU) just prior to S-phase infection and analyzed at 12 h postinfection for IE gene expression, BrdU positivity, and cell cycle position. Most of the BrdU(+) cells were IE(-) and had progressed into G(2)/M or back to G(1). The majority of the IE(+) cells in S and G(2)/M were BrdU(-). Only a few cells were IE(+) BrdU(+), and they resided in G(2)/M. Multipoint BrdU pulse-labeling revealed that, compared to cells actively synthesizing DNA at the beginning of the infection, a greater percentage of the cells that initiated DNA replication 4 h later could express IE antigens and proceed into S. Synchronization of the cells with aphidicolin also indicated that the blockade to the activation of IE gene expression was established in cells soon after initiation of DNA replication. It appears that a short-lived protein in S-phase cells may be required for IE gene expression, as it is partially restored by treatment with the proteasome inhibitor MG132.
Collapse
Affiliation(s)
- Elizabeth A Fortunato
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | |
Collapse
|
59
|
Riedinger HJ, van Betteraey-Nikoleit M, Probst H. Re-oxygenation of hypoxic simian virus 40 (SV40)-infected CV1 cells causes distinct changes of SV40 minichromosome-associated replication proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2383-93. [PMID: 11985622 DOI: 10.1046/j.1432-1033.2002.02902.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxia interrupts the initiation of simian virus 40 (SV40) replication in vivo at a stage situated before unwinding of the origin region. After re-oxygenation, unwinding followed by a synchronous round of viral replication takes place. To further characterize the hypoxia-induced inhibition of unwinding, we analysed the binding of several replication proteins to the viral minichromosome before and after re-oxygenation. T antigen, the 34-kDa subunit of replication protein A (RPA), topoisomerase I, the 48-kDa subunit of primase, the 125-kDa subunit of polymerase delta, and the 37-kDa subunit of replication factor C (RFC) were present at the viral chromatin already under hypoxia. The 70-kDa subunit of RPA, the 180-kDa subunit of polymerase alpha, and proliferating cell nuclear antigen (PCNA) were barely detectable at the SV40 chromatin under hypoxia and significantly increased after re-oxygenation. Immunoprecipitation of minichromosomes with T antigen-specific antibody and subsequent digestion with micrococcus nuclease revealed that most of the minichromosome-bound T antigen was associated with the viral origin in hypoxic and in re-oxygenated cells. T antigen-catalysed unwinding of the SV40 origin occurred, however, only after re-oxygenation as indicated by (a) increased sensitivity of re-oxygenated minichromosomes against digestion with single-stranded DNA-specific nuclease P1; (b) stabilization of RPA-34 binding at the SV40 minichromosome; and (c) additional phosphorylations of RPA-34 after re-oxygenation, probably catalysed by DNA-dependent protein kinase. The results presented suggest that the subunits of the proteins necessary for unwinding, primer synthesis and primer elongation first assemble at the SV40 origin in form of stable, active complexes directly before they start to work.
Collapse
|
60
|
Santori MI, Laría S, Gómez EB, Espinosa I, Galanti N, Téllez-Iñón MT. Evidence for CRK3 participation in the cell division cycle of Trypanosoma cruzi. Mol Biochem Parasitol 2002; 121:225-32. [PMID: 12034456 DOI: 10.1016/s0166-6851(02)00039-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Trypanosoma cruzi CRK3 gene encodes a Cdc2p related protein kinase (CRK). To establish if it has a role in the regulation of the parasite cell cycle we studied CRK3 expression and activity throughout three life cycle stages. CRK3 from epimastigote soluble extracts interacted with p13(suc1)-beads. Endogenous CRK3 phosphorylated histone H1 and this activity was inhibited by specific CDK inhibitors: Olomoucine, Flavopiridol and Roscovitine. Flavopiridol partially inhibited the growth of T. cruzi epimastigotes at 50 nM, the lowest concentration used, but even with the highest (5 microM), cell growth was not completely arrested. CRK3 from Flavopiridol-inhibited epimastigote extracts exhibited a dose dependent inhibition of histone H1 phosphorylation. T. cruzi p13(suc1)-binding CRK displayed the same inhibition profile. This suggests that CRK3 is the enzyme responsible for the majority of the kinase activity associated with p13(suc1). CRK3 activity of hydroxyurea (HU) synchronized epimastigotes peaked in G2/M boundary while the kinase activity associated to p13(suc1)-beads increased at the same time point but remained high until late G2/M. In addition, CRK3 expression was constant during the cell cycle. This is a common pattern of CDK activity regulation. Taken together, these results support the idea that CRK3 is involved in control of the cell cycle in T. cruzi.
Collapse
Affiliation(s)
- María I Santori
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (IGEBI, CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
61
|
De Siervi A, Vazquez ES, Rezaval C, Rossetti MV, del Batlle AM. Delta-aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines. BMC Cancer 2002; 2:6. [PMID: 11914144 PMCID: PMC101407 DOI: 10.1186/1471-2407-2-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2001] [Accepted: 03/22/2002] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, delta-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. RESULTS We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.
Collapse
Affiliation(s)
- Adriana De Siervi
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Argentine National Research Council (CONICET), Department of Biological Chemistry, FCEN, University of Buenos Aires, Argentina
| | - Elba S Vazquez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Argentine National Research Council (CONICET), Department of Biological Chemistry, FCEN, University of Buenos Aires, Argentina
| | - Carolina Rezaval
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Argentine National Research Council (CONICET), Department of Biological Chemistry, FCEN, University of Buenos Aires, Argentina
| | - María V Rossetti
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Argentine National Research Council (CONICET), Department of Biological Chemistry, FCEN, University of Buenos Aires, Argentina
| | - Alcira M del Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Argentine National Research Council (CONICET), Department of Biological Chemistry, FCEN, University of Buenos Aires, Argentina
| |
Collapse
|
62
|
Vermeulen K, Strnad M, Krystof V, Havlícek L, Van der Aa A, Lenjou M, Nijs G, Rodrigus I, Stockman B, van Onckelen H, Van Bockstaele DR, Berneman ZN. Antiproliferative effect of plant cytokinin analogues with an inhibitory activity on cyclin-dependent kinases. Leukemia 2002; 16:299-305. [PMID: 11896531 DOI: 10.1038/sj.leu.2402378] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2001] [Accepted: 11/14/2001] [Indexed: 11/09/2022]
Abstract
In this study, analogues of olomoucine, a previously described plant cytokinin analogue with cyclin-dependent kinase (CDK) inhibitory activity, were investigated for effect on CDK1 and CDK2 and for effect on cell proliferation. Eight new compounds exhibit stronger inhibitory activity on CDK1 and CDK2 and on cell proliferation than olomoucine. Some active compounds showed low inhibition of proliferation of normal myeloid growth. Improvement of inhibitory activity of known compounds with a C6-benzylamino group was brought about by substitution with one hydroxyl. Also, new C2 substituents associated with inhibitory activity on CDK and on cell proliferation are described. There was a significant correlation between effect on CDK and antiproliferative effect on the KG1 and Molt3 cell lines and on primary human lymphocytes, strongly suggesting that at least part of the antiproliferative effect of cytokinin analogues was due to inhibition of CDK activity. Cytokinin analogues induced apoptosis in a time- and concentration-dependent manner and changes in cell cycle distribution. The antiproliferative and pro-apoptotic effects of plant cytokinin analogues suggest that they are a new class of cytostatic agents and that they may find an application in the chemotherapy of cancer.
Collapse
Affiliation(s)
- K Vermeulen
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Davies TG, Pratt DJ, Endicott JA, Johnson LN, Noble MEM. Structure-based design of cyclin-dependent kinase inhibitors. Pharmacol Ther 2002; 93:125-33. [PMID: 12191605 DOI: 10.1016/s0163-7258(02)00182-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The eukaryotic cell cycle is tightly regulated by the sequential activation and deactivation of the cyclin-dependent kinases (CDKs). Aberrant CDK activity is a common defect in human tumours, and clinically, it often confers a poor prognosis. The strong genetic link between CDKs and the molecular pathology of cancer has provided the rationale for developing small-molecule inhibitors of these kinases. X-ray crystallography recently has revealed the molecular details of CDK regulation by cyclin binding and phosphorylation, and by complex formation with endogenous inhibitors. Knowledge of the structure of CDK2 has been key in driving the design and development of a large number of ATP competitive inhibitors. Crystallography has revealed that the ATP-binding site of CDK2 can accommodate a number of diverse molecular frameworks, exploiting various sites of interaction. In addition, residues outside the main ATP-binding cleft have been identified that could be targeted to increase specificity and potency. These results suggest that it may be possible to design pharmacologically relevant ligands that act as specific and potent inhibitors of CDK activity. We provide a review of the current state of the field, along with an overview of our current inhibitor design studies.
Collapse
Affiliation(s)
- Thomas G Davies
- Laboratory of Molecular Biophysics, University of Oxford, The Rex Richards Building, South Parks Road, OX1 3QU, Oxford, UK.
| | | | | | | | | |
Collapse
|
64
|
Johnson LN, De Moliner E, Brown NR, Song H, Barford D, Endicott JA, Noble MEM. Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2. Pharmacol Ther 2002; 93:113-24. [PMID: 12191604 DOI: 10.1016/s0163-7258(02)00181-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Components of the cell cycle machinery are frequently altered in cancer. Many of these alterations affect the cyclin-dependent kinases (CDKs) and their regulation. Staurosporine and 7-hydroxystaurosporine (UCN-01) are two natural product kinase inhibitors originally identified as potent protein kinase C inhibitors. Staurosporine is non-selective and too toxic for use in therapy, but UCN-01 shows greater selectivity, and is in clinical trials. We have determined the crystal structures of staurosporine bound to monomeric CDK2 and UCN-01 bound to active phospho-CDK2/cyclin A. Both compounds mimic the hydrogen bonds made by the adenine moiety of ATP, and both exploit the non-polar nature of the adenine-binding site. In the complex with UCN-01, a hydrogen-bonded water molecule is incorporated into the non-polar cavity, which provides a partial polar character in the environment of the 7-hydroxyl group. Comparison of the ATP-binding site of CDK2 with that of other kinases reveals that in Chk1 kinase, a major target for UCN-01 in the cell, one of the surrounding residues, Ala144 in CDK2, is a serine in Chk1, thus providing a possible explanation for the effectiveness of UCN-01 against this kinase. For cells to exit mitosis, the CDKs must be completely inactivated, firstly by the ubiquintin-mediated destruction of the cyclins, followed by dephosphorylation of phospho-Thr160 (in CDK2) catalysed by the kinase-associated phosphatase and protein phosphatase 2C. We describe the structure of phospho-CDK2 in complex with kinase-associated phosphatase, and discuss the substrate recognition promoted by interactions that are remote from the catalytic site.
Collapse
Affiliation(s)
- Louise N Johnson
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Rex Richards Building, South Parks Road, OX1 3QU, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
65
|
Tsai CW, Wolniak SM. Cell cycle arrest allows centrin translation but not basal body formation during spermiogenesis inMarsilea. J Cell Sci 2001; 114:4265-72. [PMID: 11739658 DOI: 10.1242/jcs.114.23.4265] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spermiogenesis in the water fern Marsilea vestita is a rapid process that requires the de novo formation of basal bodies in a cytoplasmic particle known as a blepharoplast. Spermiogenesis is activated by placing dry spores into water and is dependent upon the translation of new proteins from stored mRNAs with little, if any, new transcription. We looked at the necessity of cell division cycles in the gametophyte as a prerequisite for the activation of centrin translation and for the consequent formation of blepharoplasts. Cell cycle arrest was induced by treatments of gametophytes with hydroxyurea, with olomoucine, or after RNAi, employing dsRNA derived from Marsilea cyclin A or cyclin B. In all cases, centrin is translated from stored mRNA at the normal time, approximately 4 hours after imbibition, and it accumulates to maximal levels ∼6 hours after imbibition. In spite of the fact that centrin is translated at essentially normal times and accumulates to nearly normal levels, no blepharoplasts form in the gametophytes where division cycles have been disrupted. These results provide a clear demonstration that the new translation of centrin, by itself, is insufficient for blepharoplast formation, the de novo formation of basal bodies, and the assembly of a motile apparatus.
Collapse
Affiliation(s)
- C W Tsai
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
66
|
Frost V, Delikat S, Al-Mehairi S, Sinclair AJ. Regulation of p27KIP1 in Epstein-Barr virus-immortalized lymphoblastoid cell lines involves non-apoptotic caspase cleavage. J Gen Virol 2001; 82:3057-3066. [PMID: 11714984 DOI: 10.1099/0022-1317-82-12-3057] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cyclin-dependent kinase inhibitor p27KIP1 plays a key role in controlling cell proliferation. Here we show that p27KIP1 is commonly down-regulated in B-cells immortalized by Epstein-Barr virus (EBV) (lymphoblastoid cell lines, LCLs). The significance of this event for the immortal phenotype of LCLs is implied by a requirement for active cdk2-containing complexes for continued proliferation, and by the ability of the residual p27KIP1 to associate with cdk2. The mechanism of p27KIP1 attenuation is post-translational, but inhibitor studies reveal that the mechanism does not rely heavily on the proteasome. Instead we find that LCLs contain an activity that cleaves a caspase recognition site present in p27KIP1 (DPSD139). The activity is not associated with apoptosis and closely resembles a proliferation-associated caspase activity we previously described in the EBV-negative B-lymphoma-derived cell line BJAB. Importantly, proliferating LCLs contain a p27KIP1 product that is consistent with cleavage at this site. Inhibition of caspase(s) in vivo modulates p27KIP1 expression and strongly inhibits proliferation of IB4 cells. This inhibitor profile is identical to that displayed by the DPSD-directed caspase present in BJAB cells, suggesting that the caspase may fulfil a general role in controlling p27KIP1 expression in immortal lymphoid cell lines. Thus, apoptosis-independent cleavage appears to contribute to the maintenance of the low basal levels of p27KIP1 in B-cells immortalized by EBV.
Collapse
Affiliation(s)
- Victoria Frost
- School of Biological Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK1
| | - Sylvie Delikat
- School of Biological Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK1
| | - Salama Al-Mehairi
- School of Biological Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK1
| | - Alison J Sinclair
- School of Biological Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK1
| |
Collapse
|
67
|
Johnson LN. Structural basis for substrate recognition and control in protein kinases. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2001:47-69. [PMID: 11394047 DOI: 10.1007/978-3-662-04645-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- L N Johnson
- Laboratory of Molecular Biophysics, University of Oxford, Rex Richards Building, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
68
|
Abstract
Two diterpenes, epipolone (1) and epipolol (3), produced by terpenoid pathways leading to a tricarbocyclic structure with an irregular "head to tail" isoprene configuration, have been isolated from the Caribbean marine sponge Epipolasis reiswigi collected in Puerto Rico. The structures of 1 and 3 were elucidated largely by 1D and 2D NMR methods and chemical conversion.
Collapse
Affiliation(s)
- A D Rodríguez
- Department of Chemistry, University of Puerto Rico, P.O. Box 23346, San Juan, Puerto Rico 00931-3346.
| | | |
Collapse
|
69
|
David-Pfeuty T, Nouvian-Dooghe Y, Sirri V, Roussel P, Hernandez-Verdun D. Common and reversible regulation of wild-type p53 function and of ribosomal biogenesis by protein kinases in human cells. Oncogene 2001; 20:5951-63. [PMID: 11593402 DOI: 10.1038/sj.onc.1204741] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Revised: 05/30/2001] [Accepted: 06/18/2001] [Indexed: 11/08/2022]
Abstract
Two specific inhibitors of cyclin-dependent kinase 2 (Cdk2), roscovitine and olomoucine, have been shown recently to induce nuclear accumulation of wt p53 and nucleolar unravelling in interphase human untransformed IMR-90 and breast tumor-derived MCF-7 cells. Here, we show that the early response of MCF-7 cells to roscovitine is fully reversible since a rapid restoration of nucleolar organization followed by an induction of p21(WAF1/CIP1), a downregulation of nuclear wt p53 and normal cell cycle resumption occurs if the compound is removed after 4 h. Interestingly, similar reversible effects are also induced by the casein kinase II (CKII) inhibitor, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Upon short-term treatment also, both compounds significantly, but reversibly, reduce the level of 45S precursor ribosomal RNA. Cells exposed to the two types of protein kinase inhibitors for longer times keep exhibiting altered nucleolar and wt p53 features, yet they strikingly differentiate in that most roscovitine-treated cells fail to ever accumulate high levels of p21(WAF1/CIP1) in contrast with DRB-treated ones. In both cases, however, the cells eventually fall into an irreversible state and die. Moreover, we found that constitutive overexpression of p21(WAF1/CIP1) alters the nucleolar unravelling process in the presence of DRB, but not of roscovitine, suggesting a role for this physiological Cdk inhibitor in the regulation of nucleolar function. Our data also support the notion that both roscovitine- and DRB-sensitive protein kinases, probably including Cdk2 and CKII, via their dual implication in the p53-Rb pathway and in ribosomal biogenesis, would participate in coupling cell growth with cell division.
Collapse
Affiliation(s)
- T David-Pfeuty
- UMR 146 du CNRS, Institut Curie-Recherche, Bâtiment 110, Centre Universitaire, 91405 Orsay Cédex, France.
| | | | | | | | | |
Collapse
|
70
|
Gotoh T, Ohsumi K, Matsui T, Takisawa H, Kishimoto T. Inactivation of the checkpoint kinase Cds1 is dependent on cyclin B-Cdc2 kinase activation at the meiotic G2/M-phase transition in Xenopus oocytes. J Cell Sci 2001; 114:3397-406. [PMID: 11591827 DOI: 10.1242/jcs.114.18.3397] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Checkpoint controls ensure chromosomal integrity through the cell cycle. Chk1 and Cds1/Chk2 are effector kinases in the G2-phase checkpoint activated by damaged or unreplicated DNA, and they prevent entry into M-phase through inhibition of cyclin B-Cdc2 kinase activation. However, little is known about how the effector kinases are regulated when the checkpoint is attenuated. Recent studies indicate that Chk1 is also involved in the physiological G2-phase arrest of immature Xenopus oocytes via direct phosphorylation and inhibition of Cdc25C, the activator of cyclin B-Cdc2 kinase. Bearing in mind the overlapping functions of Chk1 and Cds1, here we have studied the involvement of Xenopus Cds1 (XCds1) in the G2/M-phase transition of immature oocytes and the regulation of its activity during this period. Protein levels of XCds1 remained constant throughout oocyte maturation and early embryonic development. The levels of XCds1 kinase activity were high in immature oocytes and decreased at the meiotic G2/M-phase transition. Consistently, when overexpressed in immature oocytes, wild-type, but not kinase-deficient, XCds1 significantly delayed entry into M-phase after progesterone treatment. The inactivation of XCds1 depended on the activation of cyclin B-Cdc2 kinase, but not MAP kinase. Although XCds1 was not directly inactivated by cyclin B-Cdc2 kinase in vitro, XCds1 was inactivated by overexpression of cyclin B, which induces the activation of cyclin B-Cdc2 kinase without progesterone. Thus, the present study is the first indication of Cds1 activity in cells that are physiologically arrested at G2-phase, and of its downregulation at entry into M-phase.
Collapse
Affiliation(s)
- T Gotoh
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
71
|
Leighfield TA, Van Dolah FM. Cell cycle regulation in a dinoflagellate, Amphidinium operculatum: identification of the diel entraining cue and a possible role for cyclic AMP. JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2001; 262:177-197. [PMID: 11445086 DOI: 10.1016/s0022-0981(01)00279-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This research describes the diel phasing of the cell cycle in the dinoflagellate, Amphidinium operculatum Claparéde and Lachmann, and investigates the mechanisms that serve to link the cell cycle to the diel cycle. Unlike many dinoflagellates, A. operculatum has a naturally high division rate of approximately 1 division day(-1), which yields a nearly synchronous population, making it useful for population studies. When grown on a 16:8 h light/dark cycle, S-phase begins 10 h and mitosis 14-16 h after the onset of light, as determined by flow cytometry. Alterations in the timing of the dark/light and light/dark transitions showed that the cell cycle is entrained by the dark/light transition, with the light/dark cue being uninvolved. Cells in logarithmic phase growth also undergo diel changes in cell size (9-14 &mgr;m), reaching a maximum size late in the light phase, concurrent with mitosis. Stationary phase cells or cells blocked in G1 of the cell cycle with a cell cycle inhibitor, olomoucine, showed no size changes or reduced size changes over the diel cycle, suggesting a coupling of cell size to the cell division cycle. In Euglena, cAMP-dependent signaling appears to mediate diel phasing of the cell cycle. Therefore, the role of cAMP in cell cycle control in A. operculatum was investigated. Measurement of intracellular cAMP by radioimmunoassay (RIA) revealed that cAMP concentrations varied on a diel basis, but increases observed appeared to correlate with cell size increases, and did not correlate with light cues at the dark/light or light/dark transition. However, when cells were treated with the cAMP phosphodiesterase inhibitor, IBMX, cell cycle progression was inhibited at both the G1/S and the G2/M phase transitions. This supports a role for cAMP-dependent signaling in the dinoflagellate cell cycle and is in agreement with the documented role of cAMP in the cell cycle control of higher eukaryotes.
Collapse
Affiliation(s)
- T A. Leighfield
- Marine Biotoxins Program, NOAA, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, 29412, Charleston, SC, USA
| | | |
Collapse
|
72
|
Lee AD, Ren S, Lien EJ. Purine analogs as CDK enzyme inhibitory agents: a survey and QSAR analysis. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; 56:155-93. [PMID: 11417113 DOI: 10.1007/978-3-0348-8319-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Characterization of the cell cycle has introduced CDKs and other proteins as possible targets for inhibition of cell proliferation, such as, CDK1 and CDK2, whose inhibition may be useful in the treatment of proliferative disorders. Structure-activity analyses have been instrumental in the design and discovery of potent CDK inhibitors, such as purine analogs, which have increased in potency from the micromolar to the nanomolar level. X-ray crystallography and molecular modeling have provided evidence that these compounds act on the CDK target enzyme. Selected CDK inhibitors have successfully entered clinical trials. Further characterization of the cell cycle to identify molecular targets to inhibit cell proliferation, QSAR and SAR studies, and clinical trials may expedite the development of CDK inhibitors for therapeutic use. The ultimate goal of these studies is to determine whether specific CDKs, CDK1 or CDK2, are enzymes essential to cell proliferation that can be targeted for treatment of proliferative disorders. CDK1 and CDK2 are viable molecular targets for cancer therapies based on isolated-enzyme inhibition by CDK inhibitors, successful clinical trials of CDK1 and CDK2 inhibitors, and x-ray crystallographic confirmation of CDK inhibitors binding to the putative target enzyme active site. It is now reported that CDK1 inhibitory activities of purine analogs correlate with the physiochemical parameters of purine analogs. Enzyme inhibition [1-5], clinical trials (see Tab. 1), x-ray crystallographic [4, 6, 7] and QSAR correlation studies are evidence that specific CDK1 and/or CDK2 inhibitors are potentially useful agents for various cell-proliferation disorders. A brief overview of the cell cycle precedes a literature review of clinical applications of CDK inhibitors, followed by a new QSAR study, and a SAR and molecular modeling discussion.
Collapse
Affiliation(s)
- A D Lee
- School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | | | | |
Collapse
|
73
|
Hassan P, Fergusson D, Grant KM, Mottram JC. The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol Biochem Parasitol 2001; 113:189-98. [PMID: 11295173 DOI: 10.1016/s0166-6851(01)00220-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Leishmania mexicana CRK3 gene encodes a cdc2-related protein kinase with activity towards histone H1. Attempts to disrupt both alleles of CRK3 in the promastigote life-cycle stage resulted in changes in cell ploidy, which were avoided only when an extra copy of CRK3 was expressed from an episome. This provides strong evidence that CRK3 is essential to L. mexicana. The cyclin-dependent kinase specific inhibitor flavopiridol inhibited affinity purified histidine tagged CRK3 (CRK3his) with an IC(50) value of 100 nM and inhibited in vitro growth of L. mexicana promastigotes. Incubation of promastigotes with 2.5 microM flavopiridol for 24 h led to cell cycle arrest with an accumulation of 95% of cells in G2 or early mitosis (G2/M). Release from cell cycle arrest resulted in a semi-synchronous re-entry into the cell cycle; samples taken at 2, 4, and 6 h after release from the block were enriched for cells in G1 (68%), S-phase (70%), and G2/M phase (61%), respectively. This method of synchronisation was used to show that the majority of CRK3his activity towards the substrate histone H1 was present at G2/M. These data suggest that CRK3 has an essential role in controlling cell cycle progression at the G2/M-phase transition in L. mexicana promastigotes.
Collapse
Affiliation(s)
- P Hassan
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, G11 6NU, Scotland, Glasgow, UK
| | | | | | | |
Collapse
|
74
|
Chang ZF, Huang DY. Regulation of thymidine kinase expression during cellular senescence. J Biomed Sci 2001. [DOI: 10.1007/bf02256410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
75
|
Gómez EB, Santori MI, Laría S, Engel JC, Swindle J, Eisen H, Szankasi P, Téllez-Iñón MT. Characterization of the Trypanosoma cruzi Cdc2p-related protein kinase 1 and identification of three novel associating cyclins. Mol Biochem Parasitol 2001; 113:97-108. [PMID: 11254958 DOI: 10.1016/s0166-6851(00)00382-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several Cdc2p-related protein kinases (CRKs) have been described in trypanosomatids but their role in the control of the cell cycle nor their biological functions have been addressed. In Trypanosoma cruzi two CRKs have been identified, TzCRK1 and TzCRK3. In this work we further characterize T. cruzi CRK1 and report the identification of three novel associating cyclins. We demonstrate that CRK1 levels and localization do not vary during the cell cycle, and show that it is localized in the cytoplasm, discrete regions of the nucleus, and is highly concentrated in the mitochondrion DNA (kinetoplast), suggesting a putative control function in this organelle. Using purified anti-CRK1 IgGs, we immunoprecipitated from the soluble fraction of T. cruzi epimastigote forms a protein kinase activity which is not inhibited by CDK inhibitors. In addition, we co-precipitated with p13Suc1p beads a kinase activity that was inhibited by the CDK inhibitor flavopiridol and olomoucine. Lastly, using the yeast two-hybrid system we identified three novel cyclin-like proteins able to associate with TzCRK1, and demonstrate that two of these cyclins also bind the T. cruzi CRK3 protein, indicating that these two CRKs are cyclin-dependent kinases.
Collapse
Affiliation(s)
- E B Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI, CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Vuelta de Obligado 2490, 2do. piso, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Fueyo J, Gomez-Manzano C, Liu TJ, Yung WK. Delivery of cell cycle genes to block astrocytoma growth. J Neurooncol 2001; 51:277-87. [PMID: 11407598 DOI: 10.1023/a:1010661131403] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Current therapies for glioblastoma multiforme are ineffective. Therefore, novel therapies that target specific differences between normal and malignant cells are urgently needed. Abnormalities of cell-cycle related genes are a common feature of cancer in general and astrocytic tumors in particular. The role of these proteins is to help to regulate cell proliferation, differentiation and apoptosis. Restoring wild-type activity of critical regulators of the cell cycle to astrocytic tumors generally results in modification of the growth properties, and often the viability, of the cancer cells. Transfer of p53 induces growth arrest and, more importantly, apoptosis. Restoration of the Rb pathway results in either reversible growth arrest or senescence. Expression of E2F-1 induces transient increase of proliferation followed by massive apoptosis. Overexpression of MMAC/PTEN arrests cell cycle progression in G1 and promotes anoikis. Current knowledge of the functions of these cell-cycle controllers can be used to design small peptides and drugs to induce cell-cycle related anti-cancer effect. Inactivation of the p53 and Rb pathways in cancer cells is also being used to engineer mutant viruses that are able to replicate exclusively in cancer cells.
Collapse
Affiliation(s)
- J Fueyo
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
77
|
Kelland LR. Flavopiridol, the first cyclin-dependent kinase inhibitor to enter the clinic: current status. Expert Opin Investig Drugs 2000; 9:2903-11. [PMID: 11093360 DOI: 10.1517/13543784.9.12.2903] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review focuses on the clinical development of the prototype broad spectrum inhibitor of cyclin-dependent kinases (CDKs), flavopiridol, now undergoing Phase II single-agent trials and Phase I combination trials (with paclitaxel and cisplatin). Preclinically, flavopiridol is a potent inhibitor of CDKs 1, 2 and 4 in cell-free assays (IC(50)in the region of 100 nM) and tumour cell growth in vitro (typical IC(50)in the region of 100 nM). The drug showed in vivo antitumour activity (using iv., ip. or oral dosing) against a variety of human tumour xenografts, especially when administered on a regular daily, rather than weekly, schedule and most notably against prostate carcinoma, head and neck cancer, non-Hodgkin's lymphoma and leukaemia. The major toxicities observed in rodents were on the bone marrow and gastrointestinal tract. Pharmacokinetics were linear with dose and with a bi-exponential decline both in rodents and man. Oral bioavailability in rodents is in the region of 20%. Glucuronidation appears to be the major route of metabolism. Single-agent clinical trials have mainly used a 72 h continuous infusion schedule. Dose-limiting toxicities were diarrhoea and hypotension. Plasma concentrations in excess of those required for in vitro enzyme or cell growth inhibition are achievable. While there has been some evidence of single-agent antitumour activity (partial responses in a patient with renal cancer and another with gastric cancer), ongoing combination studies, especially with paclitaxel, where preclinical synergistic antitumour effects are observed, are promising. Doubt as to whether CDKs are the sole target responsible for the drug's antitumour effects have been raised by preclinical observations of apoptosis of non-cycling cells, effects on endothelial cells and non-CDK proteins, such as aldehyde dehydrogenase and glycogen phosphorylase, potent effects on PTEFb and transcription and its ability to directly interact with DNA.
Collapse
Affiliation(s)
- L R Kelland
- CRC Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK.
| |
Collapse
|
78
|
Jeong HW, Kim MR, Son KH, Han MY, Ha JH, Garnier M, Meijer L, Kwon BM. Cinnamaldehydes inhibit cyclin dependent kinase 4/cyclin D1. Bioorg Med Chem Lett 2000; 10:1819-22. [PMID: 10969976 DOI: 10.1016/s0960-894x(00)00357-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of cinnamaldehydes was synthesized for the study of inhibitory activity against cyclin dependent kinases (CDKs). A couple of compounds selectively inhibited cyclin D1-CDK4 with an IC50 value of 7-18 microM.
Collapse
Affiliation(s)
- H W Jeong
- Korea Research Institute of Bioscience and Biotechnology, KIST, Taejon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Copp BR, Wassvik CM, Lambert G, Page MJ. Isolation and characterization of the new purine 1,3, 7-trimethylisoguanine from the New Zealand ascidian Pseudodistoma cereum. JOURNAL OF NATURAL PRODUCTS 2000; 63:1168-1169. [PMID: 10978221 DOI: 10.1021/np000172+] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The new purine 1,3,7-trimethylisoguanine (1) has been isolated from the ascidian Pseudodistoma cereum. The structure of 1 was elucidated by analysis of NMR spectroscopic and mass spectrometric data and by comparison with the regioisomeric purine 1,3,7-trimethylguanine (2).
Collapse
Affiliation(s)
- B R Copp
- Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
80
|
Furet P, Zimmermann J, Capraro HG, Meyer T, Imbach P. Structure-based design of potent CDK1 inhibitors derived from olomoucine. J Comput Aided Mol Des 2000; 14:403-9. [PMID: 10896313 DOI: 10.1023/a:1008115004986] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cyclin-dependent kinase 1 (CDK1), an enzyme participating in the regulation of the cell cycle, constitutes a possible target in the search for new antitumor agents. Starting from the purine derivative olomoucine and following a structure-based approach, potent inhibitors of this enzyme were rapidly identified. The molecular modeling aspects of this work are described.
Collapse
Affiliation(s)
- P Furet
- Novartis Pharma Inc., Oncology Research Department, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
81
|
Southern SA, Herrington CS. Disruption of cell cycle control by human papillomaviruses with special reference to cervical carcinoma. Int J Gynecol Cancer 2000; 10:263-274. [PMID: 11240685 DOI: 10.1046/j.1525-1438.2000.010004263.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human papillomaviruses (HPVs) play a major role in neoplastic transformation of squamous epithelial cells. The viral genome is small in size and only encodes a limited number of proteins, so one of the major functions of the viral proteins is to modulate the function of key cellular proteins involved in cell cycle control and DNA replication. During this process important host cell cycle checkpoints are lost which may lead to the accumulation of genetic abnormalities and eventual malignant transformation. This review briefly describes the normal cell cycle and also the mechanisms by which HPVs interfere with cell cycle control both as part of their productive life cycle and in the process of neoplastic transformation.
Collapse
Affiliation(s)
- S. A. Southern
- Department of Pathology, University of Liverpool, Royal Liverpool University Hospital, Liverpool, England, United Kingdom
| | | |
Collapse
|
82
|
Abstract
Synchrony provides a large number of cells at defined points of the cell cycle. Highly synchronised cells are powerful and effective tools for molecular analyses and for studying the biochemical events of the cell cycle in plants. Usually, plant cell suspensions can be synchronised by chemical agents, which arrest the cell cycle by acting on the driving forces of the cell cycle engine such as cyclin-dependent kinase activity, enzymes involved in DNA synthesis or proteolysis of cell cycle regulators or by acting on the cell cycle apparatus (mitotic spindle). The specificity, reversibility and efficiency of each type of cell cycle inhibitor are described and related to their mode of action.
Collapse
Affiliation(s)
- S Planchais
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1ZT, UK.
| | | | | | | |
Collapse
|
83
|
Damiens E. Molecular events that regulate cell proliferation: an approach for the development of new anticancer drugs. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:219-33. [PMID: 10740828 DOI: 10.1007/978-1-4615-4253-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer chemotherapy is the object of many fundamental and clinical researches. The development in molecular techniques and structural studies at the molecular level have led to the discovery of key proteins involved in the regulation of cell proliferation. This opened perspectives to characterize new anticancer drugs in order to reduce the limitations found with conventional drugs such as the lack of selectivity for cancer cells and resistance phenomena. This review presents the anticancer drugs in clinical investigations that target molecules involved in the signal transduction impairment, the cell cycle deregulation and the differentiation with comments on their mechanisms of action.
Collapse
Affiliation(s)
- E Damiens
- Laboratoire de Chimie Biologique, UMR n(o)111 du CNRS, Villeneuve d'Ascq, France
| |
Collapse
|
84
|
Knockaert M, Gray N, Damiens E, Chang YT, Grellier P, Grant K, Fergusson D, Mottram J, Soete M, Dubremetz JF, Le Roch K, Doerig C, Schultz P, Meijer L. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. CHEMISTRY & BIOLOGY 2000; 7:411-22. [PMID: 10873834 DOI: 10.1016/s1074-5521(00)00124-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chemical inhibitors of cyclin-dependent kinases (CDKs) have great therapeutic potential against various proliferative and neurodegenerative disorders. Olomoucine, a 2,6,9-trisubstituted purine, has been optimized for activity against CDK1/cyclin B by combinatorial and medicinal chemistry efforts to yield the purvalanol inhibitors. Although many studies support the action of purvalanols against CDKs, the actual intracellular targets of 2,6, 9-trisubstituted purines remain unverified. RESULTS To address this issue, purvalanol B (95. ) and an N6-methylated, CDK-inactive derivative (95M. ) were immobilized on an agarose matrix. Extracts from a diverse collection of cell types and organisms were screened for proteins binding purvalanol B. In addition to validating CDKs as intracellular targets, a variety of unexpected protein kinases were recovered from the 95. matrix. Casein kinase 1 (CK1) was identified as a principal 95. matrix binding protein in Plasmodium falciparum, Leishmania mexicana, Toxoplasma gondii and Trypanosoma cruzi. Purvalanol compounds also inhibit the proliferation of these parasites, suggesting that CK1 is a valuable target for further screening with 2,6,9-trisubstituted purine libraries. CONCLUSIONS That a simple batchwise affinity chromatography approach using two purine derivatives facilitated isolation of a small set of highly purified kinases suggests that this could be a general method for identifying intracellular targets relevant to a particular class of ligands. This method allows a close correlation to be established between the pattern of proteins bound to a small family of related compounds and the pattern of cellular responses to these compounds.
Collapse
Affiliation(s)
- M Knockaert
- Station Biologique de Roscoff, CNRS, Roscoff cedex, 29682, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Meijer L. Cyclin-dependent kinases inhibitors as potential anticancer, antineurodegenerative, antiviral and antiparasitic agents. Drug Resist Updat 2000; 3:83-88. [PMID: 11498372 DOI: 10.1054/drup.2000.0129] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyclin-dependent kinases (CDKs) play a key role in the cell division cycle, in neuronal functions, in transcription and in apoptosis. Intensive screening with these kinases as targets has lead to the identification of highly selective and potent small - molecule inhibitors. Co-crystallization with CDK2 shows that these flat heterocyclic hydrophobic compounds bind through two or three hydrogen bonds with the side chains of two amino acids located in the ATP-binding pocket of the kinase. These inhibitors are anti-proliferative; they arrest cells in G1 and in G2/M phase. Furthermore they facilitate or even trigger apoptosis in proliferating cells while they protect neuronal cells and thymocytes from apoptosis. The potential use of these inhibitors is being extensively evaluated for cancer chemotherapy and also in other therapeutic areas: neurology (Alzheimer's disease), cardiovascular (restenosis, angiogenesis), nephrology (glomerulonephritis), parasitology (Plasmodium, Trypanosoma, Toxoplasma, etc.) and virology (cytomegalovirus, HIV, herpes virus). Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Laurent Meijer
- Station Biologique de Roscoff, CNRS UPR, Roscoff cedex, Bretagne, France
| |
Collapse
|
86
|
Sielecki TM, Boylan JF, Benfield PA, Trainor GL. Cyclin-Dependent Kinase Inhibitors: Useful Targets in Cell Cycle Regulation. J Med Chem 2000. [DOI: 10.1021/jm990256j] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Thais M. Sielecki
- The DuPont Pharmaceuticals Company, P.O. Box 80500, Wilmington, Delaware 19880-0500
| | - John F. Boylan
- The DuPont Pharmaceuticals Company, P.O. Box 80500, Wilmington, Delaware 19880-0500
| | - Pamela A. Benfield
- The DuPont Pharmaceuticals Company, P.O. Box 80500, Wilmington, Delaware 19880-0500
| | - George L. Trainor
- The DuPont Pharmaceuticals Company, P.O. Box 80500, Wilmington, Delaware 19880-0500
| |
Collapse
|
87
|
Mermillod P, Tomanek M, Marchal R, Meijer L. High developmental competence of cattle oocytes maintained at the germinal vesicle stage for 24 hours in culture by specific inhibition of MPF kinase activity. Mol Reprod Dev 2000; 55:89-95. [PMID: 10602278 DOI: 10.1002/(sici)1098-2795(200001)55:1<89::aid-mrd12>3.0.co;2-m] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Roscovitine, a potent inhibitor of M-phase Promoting Factor (MPF) kinase activity, was used to maintain cattle oocytes at the germinal vesicle stage for a 24-hr culture period. A concentration of 25 microM of roscovitine was sufficient to reach the maximum level of meiotic resumption inhibition with 83 +/- 6% of the oocytes remaining at the germinal vesicle stage after the 24 hr of culture. The histone H1 kinase activity was maintained at a basal level after culture under roscovitine inhibition at any of the concentrations tested (12.5, 25, 50, and 100 microM). This inhibitory effect of roscovitine was fully reversible since 89 +/- 4% of the oocytes cultured for 24 hr in the presence of 25 microM of roscovitine reached the metaphase II stage after a further culture of 24 hr in permissive medium (TCM199 supplemented with 10 ng/ml EGF). The cleavage rate as well as the development to the blastocyst stage was not different for oocytes cultured for 24 hr under roscovitine (25 microM) inhibition and then matured for 24 hr in the presence of EGF as compared to oocytes not submitted to prematuration culture (82 +/- 8% cleavage and 41 +/- 4% blastocysts at 8 days post insemination for control oocytes compared to 90 +/- 7% and 36 +/- 7% respectively for roscovitine-treated oocytes). Roscovitine meiotic inhibition was also effective in the presence of EGF, and the final developmental potential as well as the kinetics of blastocyst formation were not affected after such prematuration treatment. The EGF induced cumulus expansion was also inhibited by roscovitine. These results indicate for the first time the feasibility of culturing cattle oocytes under meiotic inhibition without decreasing their resulting developmental potential.
Collapse
Affiliation(s)
- P Mermillod
- INRA, Station de Physiologie de la Reproduction, Nouzilly, France.
| | | | | | | |
Collapse
|
88
|
Abstract
Several tyrosine and serine/threonine protein kinases have emerged in the last few years as attractive targets in the search for new therapeutic agents being applicable in many different disease indications. Initially, inhibition of these protein kinases by ATP site-directed inhibitors was considered less prone to success, but medicinal chemists from both academia and industry have been able to impart potency and selectivity to a limited number of scaffolds by modulating and fine-tuning the interactions of the modified template with the ATP binding site of the selected kinase. The chemical templates that have been used in the synthesis of ATP site-directed protein kinase inhibitors are reviewed with emphasis on the kinase inhibitors that have entered or are about to enter clinical trials. Examples have been selected to illustrate how structure-based design approaches and new methods to increase compound diversity have had an impact on this area of research.
Collapse
|
89
|
Shapiro GI, Harper JW. Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 1999; 104:1645-53. [PMID: 10606615 PMCID: PMC409893 DOI: 10.1172/jci9054] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- G I Shapiro
- Department of Adult Oncology and Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
90
|
David-Pfeuty T. Potent inhibitors of cyclin-dependent kinase 2 induce nuclear accumulation of wild-type p53 and nucleolar fragmentation in human untransformed and tumor-derived cells. Oncogene 1999; 18:7409-22. [PMID: 10602500 DOI: 10.1038/sj.onc.1203103] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1999] [Revised: 07/18/1999] [Accepted: 07/21/1999] [Indexed: 11/10/2022]
Abstract
The cdk2 gene has been identified as a human cdc2/CDC28-related gene that encodes a protein kinase essential for the G1/S transition in mammalian cells, but not for the G2/M transition, which requires Cdk1, another p34cdc2/CDC28 homolog. Novel potential functions of Cdk2 have been uncovered by using two potent and specific inhibitors of its kinase activity, roscovitine and olomoucine, on human wt p53-expresser untransformed and tumor-derived cells. At concentrations equal or superior to respectively 30- and 20-fold their in vitro IC50 values for cyclin B/Cdk1, cyclin A/Cdk2 and cyclin E/Cdk2, the Cdk inhibitors precipitately induce a dramatic nuclear accumulation of wt p53 and a delocalization of nucleolin from the nucleolus in all interphase cells, whatever their cell cycle status, acting in this way like the DNA-damaging drug, mitomycin C (7 microg/ml). These early events are soon followed by a nucleolar fragmentation in both normal and tumor cells in the presence of the Cdk inhibitors but not in the presence of the DNA-damaging drug. Yet, treatment with either type of compounds eventually triggers rapidly the death of the tumor cells and, much more slowly, that of the normal cells. The Cdk inhibitors, however, stimulate cell death from any stage of the cell cycle, whereas the DNA-damaging drug kills more efficaciously S phase cells. These observations provide a hint that the Cdk2 kinase might be involved in controlling the nuclear levels of the tumor suppressor wt p53 protein and in maintaining the nucleolar integrity and function, linking in this way the cell division cycle machinery to survival functions and overall cell metabolism via the control of nucleocytoplasmic transport and of ribosome production.
Collapse
Affiliation(s)
- T David-Pfeuty
- UMR 146 du CNRS, Institut Curie-Recherche, Bâtiment 110, Centre Universitaire, 91405 Orsay Cédex, France
| |
Collapse
|
91
|
Abstract
There is enormous potential for the discovery of innovative cancer drugs with improved efficacy and selectivity for the third millennium. In this review we show how novel mechanism-based agents are being discovered by focusing on the molecular targets and pathways that are causally involved in cancer formation, maintenance and progression. We also show how new technologies, from genomics through high through-put bioscience, combinatorial chemistry, rational drug design and molecular pharmacodynamic and imaging techniques, are accelerating the pace of cancer drug discovery. The process of contemporary small molecule drug discovery is described and progress and current issues are reviewed. New and potential targets and pathways for therapeutic intervention are illustrated. The first examples of a new generation of molecular therapeutics are now entering hypothesis-testing clinical trials and showing activity. The early years of the new millennium will see a range of exciting new agents moving from bench to bedside and beginning to impact on the management and cure of cancer.
Collapse
Affiliation(s)
- M D Garrett
- CRC Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, U.K
| | | |
Collapse
|
92
|
Chen X, Lowe M, Keyomarsi K. UCN-01-mediated G1 arrest in normal but not tumor breast cells is pRb-dependent and p53-independent. Oncogene 1999; 18:5691-702. [PMID: 10577141 DOI: 10.1038/sj.onc.1202948] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study we investigated the growth inhibitory effects of UCN-01 in several normal and tumor-derived human breast epithelial cells. We found that while normal mammary epithelial cells w were very sensitive to UCN-01 with an IC(50) of 10nM tumor cells displayed little to no inhibition of growth with any measurable IC(50) at low UCN-01 concentrations (i.e. 0-80 nM). The UCN-01 treated normal cells arrested in G1 phase and displayed decreased expression of most key cell cycle regulators examined, resulting in inhibition of CDK2 activity due to increased binding of p27 to CDK2. Tumor cells on the other hand displayed no change in any cell cycle distribution or expression of cell cycle regulators. Examination of E6- and E7-derived strains of normal cells revealed that pRb and not p53 function is essential for UCN-01-mediated G1 arrest. Lastly, treatment of normal and tumor cells with high doses of UCN-01 (i.e. 300 nM) revealed a necessary role for a functional G1 checkpoint in mediating growth arrest. Normal cells, which have a functional G1 checkpoint, always arrest in G1 even at very high concentrations of UCN-01. Tumor cells on the other hand have a defective G1 checkpoint and only arrest in S phase with high concentrations of UCN-01. The effect of UCN-01 on the cell cycle is thus quite different from staurosporine, a structural analogue of UCN-01, which arrests normal cells in both G1 and G2, while tumor cells arrest only in the G2 phase of the cell cycle. Our results show the different sensitivity to UCN-01 of normal compared to tumor cells is dependent on a functional pRb and a regulated G1 checkpoint.
Collapse
Affiliation(s)
- X Chen
- Division of Molecular Medicine, Wadsworth Center, Albany, New York, NY 12201-0509, USA
| | | | | |
Collapse
|
93
|
Abstract
Evidence is accumulating that directly responsible for the rate of progression of glomerular disease are specific positive (cyclins and cyclin-dependent kinases) and negative (cyclin-kinase inhibitors) cell cycle regulatory proteins. The challenge for nephrologists is to determine which ones are expressed in renal disease and their precise role in glomerular cell proliferation, hypertrophy and differentiation. Ultimately the goal is to find ever more appropriate therapeutic strategies to arrest or prevent progressive renal disease.
Collapse
Affiliation(s)
- S J Shankland
- Division of Nephrology, University of Washington, Seattle 98195, USA.
| |
Collapse
|
94
|
Yakisich JS, Sidén A, Vargas VI, Eneroth P, Cruz M. Early effects of protein kinase modulators on DNA synthesis in rat cerebral cortex. Exp Neurol 1999; 159:164-76. [PMID: 10486185 DOI: 10.1006/exnr.1999.7121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By using tissue miniunits, protein kinase modulators, and topoisomerase inhibitors in short-term incubation (0-90 min) we studied (1) the role of protein phosphorylation in the immediate control of DNA replication in the developing rat cerebral cortex and (2) the mechanism of action for genistein-mediated DNA synthesis inhibition. Genistein decreased the DNA synthesis within less than 30 min. None of the other protein kinase inhibitors examined (herbimycin A, staurosporine, calphostin-C) or the protein phosphatase inhibitor sodium orthovanadate inhibited DNA synthesis and they did not affect the genistein-mediated inhibition. The selective topoisomerase inhibitors camptothecin and etoposide decreased the DNA synthesis to an extent similar to that of genistein and within less than 30 min. In addition, the effects of these substances on topoisomerase I and II were studied. Etoposide and genistein but not herbimycin A, staurosporine, or calphostin-C strongly inhibited the activity of topoisomerase II. Our results (1) strongly suggest that the net rate of DNA replication during the S phase of the cell cycle is independent of protein phosphorylation and (2) indicate that the early inhibitory effect of genistein on DNA synthesis is mediated by topoisomerase II inhibition rather than protein tyrosine kinase inhibition.
Collapse
Affiliation(s)
- J S Yakisich
- Applied Biochemistry, Clinical Research Center, Karolinska Institute, Novum, Huddinge University Hospital, Huddinge, S-141 86, Sweden
| | | | | | | | | |
Collapse
|
95
|
Yakisich JS, Boethius J, Lindblom IO, Wallstedt L, Vargas VI, Sidén A, Cruz MH. Inhibition of DNA synthesis in human gliomas by roscovitine. Neuroreport 1999; 10:2563-7. [PMID: 10574370 DOI: 10.1097/00001756-199908200-00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The early effect of 1-100 microM roscovitine, a purine analogue and cyclin-dependent kinase inhibitor, was studied on tissue specimens from eight human malignant gliomas. The tissue was incubated immediately after resection with DMEM containing [3H]methylthymidine plus vehicle alone or the proper concentration of roscovitine for 30-90 min. The DNA synthesis rate was assessed by measurement of [3H]methylthymidine incorporation into trichloroacetic acid insoluble material/mg protein/min. In all gliomas, 100 microM roscovitine inhibited DNA synthesis by 71-97% (average 89 +/- 8%, p<0.0001). This inhibitory effect of roscovitine appeared within 30 min of incubation and was concentration dependent.
Collapse
Affiliation(s)
- J S Yakisich
- Applied Biochemistry, Clinical Research Center, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
96
|
Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 1999; 20:501-34. [PMID: 10453356 DOI: 10.1210/edrv.20.4.0373] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- R G Pestell
- Albert Einstein Cancer Center, Department of Developmental and Molecular Biology, Morris Park, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Schultz C, Link A, Leost M, Zaharevitz DW, Gussio R, Sausville EA, Meijer L, Kunick C. Paullones, a series of cyclin-dependent kinase inhibitors: synthesis, evaluation of CDK1/cyclin B inhibition, and in vitro antitumor activity. J Med Chem 1999; 42:2909-19. [PMID: 10425100 DOI: 10.1021/jm9900570] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The paullones represent a novel class of small molecule cyclin-dependent kinase (CDK) inhibitors. To investigate structure-activity relationships and to develop paullones with antitumor activity, derivatives of the lead structure kenpaullone (9-bromo-7,12-dihydroindolo[3,2-d][1]benzazepin-6(5H)-one, 4a) were synthesized. Paullones with different substituents in the 2-, 3-, 4-, 9-, and 11-positions were prepared by a Fischer indole reaction starting from 1H-[1]benzazepine-2,5(3H,4H)-diones 5. Selective substitutions at either the lactam or the indole nitrogen atom were accomplished by treating kenpaullone with alkyl halides in the presence of sodium hydride/THF or potassium hydroxide/acetone, respectively. S-Methylation of the kenpaullone-derived thiolactam 18 yielded the methylthioimidate 19, which gave the hydroxyamidine 20 upon reaction with hydroxylamine. The new paullones were tested both in a CDK1/cyclin B inhibition assay and in the in vitro antitumor cell line-screening program of the National Cancer Institute (NCI). With respect to the CDK1/cyclin B inhibition, electron-withdrawing substituents in the 9-position as well as a 2,3-dimethoxy substitution on the paullone basic scaffold turned out to be favorable. A 9-trifluoromethyl substituent was found to be equivalent to the 9-bromo substituent of kenpaullone. Replacement of the 9-bromo substituent of kenpaullone by a 9-cyano or 9-nitro group produced a substantial increase in enzyme-inhibiting potency. Substitutions in other positions or the replacement of the lactam moiety led to decreased CDK1 inhibition. Noteworthy in vitro antitumor activities (GI(50) values between 1 and 10 microM) were found with the 9-bromo-2,3-dimethoxy-7,12-dihydroindolo[3, 2-d][1]benzazepin-6(5H)-one (4t), its 9-trifluoromethyl analogue 4u, the 12-Boc-substituted paullone15, and the methylthioimidate 19, respectively. The 9-nitro-7,12-dihydroindolo[3, 2-d][1]benzazepin-6(5H)-one (4j, named alsterpaullone) showed a high CDK1/cyclin B inhibitory activity (IC(50) = 0.035 microM) and exceeded the in vitro antitumor potency of the other paullones by 1 order of magnitude (log GI(50) mean graph midpoint = -6.4 M).
Collapse
Affiliation(s)
- C Schultz
- Institut für Pharmazie, Abteilung für Pharmazeutische Chemie, Universität Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Neuroblastoma cells are used as a model system to study neuronal differentiation. Here we describe the induction of morphological differentiation of mouse neuroblastoma Neuro 2a (N2a) cells by treatments with either chemical inhibitors of cyclin-dependent kinases or lithium, which inhibits glycogen synthase kinase-3. Cyclin-dependent kinase inhibitors cause a rapid cell cycle block as well as the extension of multiple neurites per cell. These multipolar differentiated cells then undergo a massive death. However, lithium promotes a delayed mitotic arrest and the extension of one or two long neurites per cell. This differentiation is maximal after 48 hours of lithium treatment and the differentiated cells remain viable for long periods of time. Neuronal differentiation in lithium-treated cells is preceded by the accumulation of beta-catenin, a protein which is efficiently proteolyzed when it is phosphorylated by glycogen synthase kinase-3. Both neuronal differentiation and beta-catenin accumulation are observed in lithium-treated cells either in the absence or in the presence of supraphysiological concentrations of inositol. The results are consistent with the hypothesis that inhibition of glycogen synthase kinase-3 by lithium triggers the differentiation of neuroblastoma N2a cells.
Collapse
Affiliation(s)
- J García-Pérez
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | | |
Collapse
|
99
|
Peterson MF, Martin WH, Spencer RW, Tate BF. The use of beta, gamma-methyleneadenosine 5'-triphosphate to determine ATP competition in a scintillation proximity kinase assay. Anal Biochem 1999; 271:131-6. [PMID: 10419627 DOI: 10.1006/abio.1999.4126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel method for characterizing the kinetics of protein kinase inhibitors is described. This method uses glycogen synthase kinase beta as the model protein kinase and looks at the shift in IC50 of inhibitors using the nonhydrolyzable ATP analog, beta, gamma-methyleneadenosine 5'-triphosphate, also known as AMP-PCP. Due to its inability to be hydrolyzed, AMP-PCP is being used to characterize known glycogen synthase kinase inhibitors by determining the shift in IC50 at concentrations above its calculated Ki of 490 microM. The assay format for the detection of inhibition is a scintillation proximity assay which is robust and reproducible at very low levels of [gamma-33P]ATP. The use of AMP-PCP coupled with the use of the scintillation proximity assay allows this characterization of inhibition without increasing [gamma-33P]ATP and without significantly diluting the overall assay signal. We have used this method in kinetic analyses to demonstrate that we can detect a significant shift in IC50 with the known ATP competitive inhibitors, staurosporine, Ro 31-8220, and olomoucine. The IC50 for glycogen synthase peptide and lithium chloride, which has been reported to be uncompetitive, remains unchanged.
Collapse
Affiliation(s)
- M F Peterson
- Pfizer Central Research, Groton, Connecticut 06340, USA
| | | | | | | |
Collapse
|
100
|
Ruffner H, Jiang W, Craig AG, Hunter T, Verma IM. BRCA1 is phosphorylated at serine 1497 in vivo at a cyclin-dependent kinase 2 phosphorylation site. Mol Cell Biol 1999; 19:4843-54. [PMID: 10373534 PMCID: PMC84283 DOI: 10.1128/mcb.19.7.4843] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BRCA1 is a cell cycle-regulated nuclear protein that is phosphorylated mainly on serine and to a lesser extent on threonine residues. Changes in phosphorylation occur in response to cell cycle progression and DNA damage. Specifically, BRCA1 undergoes hyperphosphorylation during late G1 and S phases of the cell cycle. Here we report that BRCA1 is phosphorylated in vivo at serine 1497 (S1497), which is part of a cyclin-dependent kinase (CDK) consensus site. S1497 can be phosphorylated in vitro by CDK2-cyclin A or E. BRCA1 coimmunoprecipitates with an endogenous serine-threonine protein kinase activity that phosphorylates S1497 in vitro. This cellular kinase activity is sensitive to transfection of a dominant negative form of CDK2 as well as the application of the CDK inhibitors p21 and butyrolactone I but not p16. Furthermore, BRCA1 coimmunoprecipitates with CDK2 and cyclin A. These results suggest that the endogenous kinase activity is composed of CDK2-cyclin complexes, at least in part, concordant with the G1/S-specific increase in BRCA1 phosphorylation.
Collapse
Affiliation(s)
- H Ruffner
- The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|