51
|
Diggle TA, Seehra CK, Hase S, Redpath NT. Analysis of the domain structure of elongation factor-2 kinase by mutagenesis. FEBS Lett 1999; 457:189-92. [PMID: 10471776 DOI: 10.1016/s0014-5793(99)01034-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A number of elongation factor-2 kinase (eEF-2K) mutants were constructed to investigate features of this kinase that may be important in its activity. Typical protein kinases possess a highly conserved lysine residue in subdomain II which follows the GXGXXG motif of subdomain I. Mutation of two lysine residues, K340 and K346, which follow the GXGXXG motif in eEF-2K had no effect on activity, showing that such a lysine residue is not important in eEF-2K activity. Mutation of a conserved pair of cysteine residues C-terminal to the GXGXXG sequence, however, completely inactivated eEF-2K. The eEF-2K CaM binding domain was localised to residues 77-99 which reside N-terminal to the catalytic domain. Tryptophan 84 is an important residue within this domain as mutation of this residue completely abolishes CaM binding and eEF-2K activity. Removal of approximately 130 residues from the C-terminus of eEF-2K completely abolished autokinase activity; however, removal of only 19 residues inhibited eEF-2 kinase activity but not autokinase activity, suggesting that a short region at the C-terminal end may be important in interacting with eEF-2. Likewise, removal of between 75 and 100 residues from the N-terminal end completely abolished eEF-2K activity.
Collapse
Affiliation(s)
- T A Diggle
- Department of Biochemistry, University of Leicester, University Road, Leicester, UK
| | | | | | | |
Collapse
|
52
|
Collins SP, Uhler MD. Cyclic AMP- and cyclic GMP-dependent protein kinases differ in their regulation of cyclic AMP response element-dependent gene transcription. J Biol Chem 1999; 274:8391-404. [PMID: 10085070 DOI: 10.1074/jbc.274.13.8391] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of cGMP-dependent protein kinases (cGKs) to activate cAMP response element (CRE)-dependent gene transcription was compared with that of cAMP-dependent protein kinases (cAKs). Although both the type Ibeta cGMP-dependent protein kinase (cGKIbeta) and the type II cAMP-dependent protein kinase (cAKII) phosphorylated the cytoplasmic substrate VASP (vasodilator- and A kinase-stimulated phosphoprotein) to a similar extent, cyclic nucleotide regulation of CRE-dependent transcription was at least 10-fold higher in cAKII-transfected cells than in cGKIbeta-transfected cells. Overexpression of each kinase in mammalian cells resulted in a cytoplasmic localization of the unactivated enzyme. As reported previously, the catalytic (C) subunit of cAKII translocated to the nucleus following activation by 8-bromo-cyclic AMP. However, cGKIbeta did not translocate to the nucleus upon activation by 8-bromo-cyclic GMP. Replacement of an autophosphorylated serine (Ser79) of cGKIbeta with an aspartic acid resulted in a mutant kinase with constitutive kinase activity in vitro and in vivo. The cGKIbetaS79D mutant localized to the cytoplasm and was only a weak activator of CRE-dependent gene transcription. However, an amino-terminal deletion mutant of cGKIbeta was found in the nucleus as well as the cytoplasm and was a strong activator of CRE-dependent gene transcription. These data suggest that the inability of cGKs to translocate to the nucleus is responsible for the differential ability of cAKs and cGKs to activate CRE-dependent gene transcription and that nuclear redistribution of cGKs is not required for NO/cGMP regulation of gene transcription.
Collapse
Affiliation(s)
- S P Collins
- Department of Biological Chemistry and the Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
53
|
Arner A, Pfitzer G. Regulation of cross-bridge cycling by Ca2+ in smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:63-146. [PMID: 10087908 DOI: 10.1007/3-540-64753-8_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A Arner
- Department of Physiology and Neuroscience, Lund University, Sweden
| | | |
Collapse
|
54
|
Linn CL, Gafka AC. Activation of metabotropic glutamate receptors modulates the voltage-gated sustained calcium current in a teleost horizontal cell. J Neurophysiol 1999; 81:425-34. [PMID: 10036249 DOI: 10.1152/jn.1999.81.2.425] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the teleost retina, cone horizontal cells contain a voltage-activated sustained calcium current, which has been proposed to be involved in visual processing. Recently, several studies have demonstrated that modulation of voltage-gated channels can occur through activation of metabotropic glutamate receptors (mGluRs). Because glutamate is the excitatory neurotransmitter in the vertebrate retina, we have used whole cell electrophysiological techniques to examine the effect of mGluR activation on the sustained voltage-gated calcium current found in isolated cone horizontal cells in the catfish retina. In pharmacological conditions that blocked voltage-gated sodium and potassium channels, as well as N-methyl-D-aspartate (NMDA) and non-NMDA channels, application of L-glutamate or 1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) to voltage-clamped cone horizontal cells acted to increase the amplitude of the calcium current, expand the activation range of the calcium current by 10 mV into the cell's physiological operating range, and shift the peak calcium current by -5 mV. To identify and characterize the mGluR subtypes found on catfish cone horizontal cells, agonists of group I, group II, or group III mGluRs were applied via perfusion. Group I and group III mGluR agonists mimicked the effect of L-glutamate or 1S,3R-ACPD, whereas group II mGluR agonists had no effect on L-type calcium current activity. Inhibition studies demonstrated that group I mGluR antagonists significantly blocked the modulatory effect of the group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine. Similar results were obtained when the group III mGluR agonist, L-2-amino-4-phosphonobutyric acid, was applied in the presence of a group III mGluR antagonist. These results provide evidence for two groups of mGluR subtypes on catfish cone horizontal cells. Activation of these mGluRs is linked to modulation of the voltage-gated sustained calcium current.
Collapse
Affiliation(s)
- C L Linn
- Louisiana State University Medical Center, Department of Cell Biology and Anatomy, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
55
|
Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 1998; 273:35347-54. [PMID: 9857077 DOI: 10.1074/jbc.273.52.35347] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AMP-activated protein kinase is a heterotrimeric enzyme, important in cellular adaptation to the stress of nutrient starvation, hypoxia, increased ATP utilization, or heat shock. This mammalian enzyme is composed of a catalytic alpha subunit and noncatalytic beta and gamma subunits and is a member of a larger protein kinase family that includes the SNF1 kinase of Saccharomyces cerevisiae. In the present study, we have identified by truncation and site-directed mutagenesis several functional domains of the alpha1 catalytic subunit, which modulate its activity, subunit association, and protein turnover. C-terminal truncation of the 548-amino acid (aa) wild-type alpha1 protein to aa 312 or 392 abolishes the binding of the beta/gamma subunits and dramatically increases protein expression. The full-length wild-type alpha1 subunit is only minimally active in the absence of co-expressed beta/gamma, and alpha1(1-392) likewise has little activity. Further truncation to aa 312, however, is associated with a large increase in enzyme specific activity, thus revealing an autoinhibitory sequence between aa 313 and 392. alpha-1(1-312) still requires the phosphorylation of the activation loop Thr-172 for enzyme activity, yet is now independent of the allosteric activator, AMP. The increased levels of protein expression on transient transfection of either truncated alpha subunit cDNA are because of a decrease in enzyme turnover by pulse-chase analysis. Taken together, these data indicate that the alpha1 subunit of AMP-activated protein kinase contains several features that determine enzyme activity and stability. A constitutively active form of the kinase that does not require participation by the noncatalytic subunits provides a unique reagent for exploring the functions of AMP-activated protein kinase.
Collapse
Affiliation(s)
- B E Crute
- Endocrine-Metabolism Division, Departments of Medicine and Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3833, USA
| | | | | | | | | |
Collapse
|
56
|
Khan IU, Wallin R, Gupta RS, Kammer GM. Protein kinase A-catalyzed phosphorylation of heat shock protein 60 chaperone regulates its attachment to histone 2B in the T lymphocyte plasma membrane. Proc Natl Acad Sci U S A 1998; 95:10425-30. [PMID: 9724719 PMCID: PMC27910 DOI: 10.1073/pnas.95.18.10425] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1998] [Accepted: 06/26/1998] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence suggests that the mitochondrial molecular chaperone heat shock protein 60 (hsp60) also can localize in extramitochondrial sites. However, direct evidence that hsp60 functions as a chaperone outside of mitochondria is presently lacking. A 60-kDa protein that is present in the plasma membrane of a human leukemic CD4(+) CEM-SS T cell line and is phosphorylated by protein kinase A (PKA) was identified as hsp60. An 18-kDa plasma membrane-associated protein coimmunoprecipitated with hsp60 and was identified as histone 2B (H2B). Hsp60 physically associated with H2B when both molecules were in their dephospho forms. By contrast, PKA-catalyzed phosphorylation of both hsp60 and H2B caused dissociation of H2B from hsp60 and loss of H2B from the plasma membrane of intact T cells. These results suggest that (i) hsp60 and H2B can localize in the T cell plasma membrane; (ii) hsp60 functions as a molecular chaperone for H2B; and (iii) PKA-catalyzed phosphorylation of both hsp60 and H2B appears to regulate the attachment of H2B to hsp60. We propose a model in which phosphorylation/dephosphorylation regulates chaperoning of H2B by hsp60 in the plasma membrane.
Collapse
Affiliation(s)
- I U Khan
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, N. C. 27157, Canada
| | | | | | | |
Collapse
|
57
|
Zhi G, Abdullah SM, Stull JT. Regulatory segments of Ca2+/calmodulin-dependent protein kinases. J Biol Chem 1998; 273:8951-7. [PMID: 9535879 DOI: 10.1074/jbc.273.15.8951] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalytic cores of skeletal and smooth muscle myosin light chain kinases and Ca2+/calmodulin-dependent protein kinase II are regulated intrasterically by different regulatory segments containing autoinhibitory and calmodulin-binding sequences. The functional properties of these regulatory segments were examined in chimeric kinases containing either the catalytic core of skeletal muscle myosin light chain kinase or Ca2+/calmodulin-dependent protein kinase II with different regulatory segments. Recognition of protein substrates by the catalytic core of skeletal muscle myosin light chain kinase was altered with the regulatory segment of protein kinase II but not with smooth muscle myosin light chain kinase. Similarly, the catalytic properties of the protein kinase II were altered with regulatory segments from either myosin light chain kinase. All chimeric kinases were dependent on Ca2+/calmodulin for activity. The apparent Ca2+/calmodulin activation constant was similarly low with all chimeras containing the skeletal muscle catalytic core. The activation constant was greater with chimeric kinases containing the catalytic core of Ca2+/calmodulin-dependent protein kinase II with its endogenous or myosin light chain kinase regulatory segments. Thus, heterologous regulatory segments affect substrate recognition and kinase activity. Furthermore, the sensitivity to calmodulin activation is determined primarily by the respective catalytic cores, not the calmodulin-binding sequences.
Collapse
Affiliation(s)
- G Zhi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
58
|
Zhao ZS, Manser E, Chen XQ, Chong C, Leung T, Lim L. A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 1998; 18:2153-63. [PMID: 9528787 PMCID: PMC121452 DOI: 10.1128/mcb.18.4.2153] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AlphaPAK in a constitutively active form can exert morphological effects (E. Manser, H.-Y. Huang, T.-H. Loo, X.-Q. Chen, J.-M. Dong, T. Leung, and L. Lim, Mol. Cell. Biol. 17:1129-1143, 1997) resembling those of Cdc42G12V. PAK family kinases, conserved from yeasts to humans, are directly activated by Cdc42 or Rac1 through interaction with a conserved N-terminal motif (corresponding to residues 71 to 137 in alphaPAK). alphaPAK mutants with substitutions in this motif that resulted in severely reduced Cdc42 binding can be recruited normally to Cdc42G12V-driven focal complexes. Mutation of residues in the C-terminal portion of the motif (residues 101 to 137), though not affecting Cdc42 binding, produced a constitutively active kinase, suggesting this to be a negative regulatory region. Indeed, a 67-residue polypeptide encoding alphaPAK83-149 potently inhibited GTPgammaS-bound Cdc42-mediated kinase activation of both alphaPAK and betaPAK. Coexpression of this PAK inhibitor with Cdc42G12V prevented the formation of peripheral actin microspikes and associated loss of stress fibers normally induced by the p21. Coexpression of PAK inhibitor with Rac1G12V also prevented loss of stress fibers but not ruffling induced by the p21. Coexpression of alphaPAK83-149 completely blocked the phenotypic effects of hyperactive alphaPAKL107F in promoting dissolution of focal adhesions and actin stress fibers. These results, coupled with previous observations with constitutively active PAK, demonstrate that these kinases play an important role downstream of Cdc42 and Rac1 in cytoskeletal reorganization.
Collapse
Affiliation(s)
- Z S Zhao
- Glaxo-IMCB Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
59
|
van den Heuvel L, Ruitenbeek W, Smeets R, Gelman-Kohan Z, Elpeleg O, Loeffen J, Trijbels F, Mariman E, de Bruijn D, Smeitink J. Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 1998; 62:262-8. [PMID: 9463323 PMCID: PMC1376892 DOI: 10.1086/301716] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the cDNA cloning, chromosomal localization, and a mutation in the human nuclear gene encoding the 18-kD (AQDQ) subunit of the mitochondrial respiratory chain complex I. The cDNA has an open reading frame of 175 amino acids and codes for a protein with a molecular mass of 23.2 kD. Its gene was mapped to chromosome 5. A homozygous 5-bp duplication, destroying a consensus phosphorylation site, in the 18-kD cDNA was found in a complex I-deficient patient. The patient showed normal muscle morphology and a remarkably nonspecific fatal progressive phenotype without increased lactate concentrations in body fluids. The child's parents were heterozygous for the mutation. In 19 other complex I-deficient patients, no mutations were found in the 18-kD gene.
Collapse
Affiliation(s)
- L van den Heuvel
- Department of Pediatrics, University Hospital, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Guesdon F, Knight CG, Rawlinson LM, Saklatvala J. Dual specificity of the interleukin 1- and tumor necrosis factor-activated beta casein kinase. J Biol Chem 1997; 272:30017-24. [PMID: 9374476 DOI: 10.1074/jbc.272.48.30017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor necrosis factor (TNF) and interleukin 1 (IL1) activate a protein kinase, TIP kinase, which phosphorylates beta casein in vitro. We have now identified its main phosphorylation site on beta casein, Ser124 (Km approximately 28 mu M), and a minor phosphorylation site, Ser142 (Km approximately 0.7 mM). The sequence motif that determined the phosphorylation of Ser124 by the kinase was studied with synthetic peptides bearing deletions or substitutions of the neighboring residues. This allowed synthesis of improved substrates (Km approximately 6 mu M) and showed that efficient phosphorylation of Ser124 was favored by the presence of large hydrophobic residues at positions +1, +9, +11, and +13 (counted relative to the position of the phosphoacceptor amino acid) and of a cysteine at position -2. Peptides in which Ser124 was replaced by tyrosine were also phosphorylated by TIP kinase, showing it to have dual specificity. It is unable to phosphorylate the MAP kinases in vitro and is therefore not directly involved in their activation. Its biochemical characteristics indicate that TIP kinase is a novel dual specificity kinase, perhaps related to the mixed lineage kinases. It copurified with a phosphoprotein of about 95 kDa, which could correspond either to the autophosphorylated kinase or to an associated substrate.
Collapse
Affiliation(s)
- F Guesdon
- Department of Cell Adhesion and Signaling, Strangeways Research Laboratory, Cambridge, CB1 4RN, United Kingdom.
| | | | | | | |
Collapse
|
61
|
Wang JH, Kelly PT. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms. J Neurophysiol 1997; 78:2707-16. [PMID: 9356420 DOI: 10.1152/jn.1997.78.5.2707] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms. J. Neurophysiol. 78: 2707-2716, 1997. The relationship between paired-pulse facilitation (PPF) and synaptic potentiation induced by various protocols and their cellular and molecular mechanisms were examined by extracellular field potential and current- or voltage-clamp recordings at CA1 synapses in rat hippocampal slices. Microelectrodes were used for both intracellular recordings and injections of modulators of calcium (Ca2+) and Ca2+/calmodulin (CaM) signaling pathways into postsynaptic neurons. Basal synaptic transmission was not accompanied by changes in PPF. Tetanic stimulation induced long-term potentiation (LTP) of synaptic transmission and attenuated PPF. Experiments stimulating two independent Schaffer collateral/commisural(S/C) pathways showed that PPF attenuation and tetanus-LTP were pathway specific. Postsynaptic injections of pseudosubstrate inhibitors of CaM-dependent protein kinase II and protein kinase C (CaM-KII/PKC), [Ala286]CaMKII286-302 plus PKC19-31, almost completely attenuated tetanus-LTP and reversed PPF attenuation but did not affect synaptic transmission and PPF under basal conditions. Postsynaptic injections of heparin and dantrolene (inhibitors of IP3 and ryanodine receptors at intracellular Ca2+ stores) prevented tetanus-LTP induction and PPF attenuation. Postsynaptic injections of calcineurin (CaN) inhibitors, CaN autoinhibitory peptide (CaN-AIP) or FK-506, enhanced synaptic transmission and decreased PPF. CaN-inhibited synaptic potentiation and PPF attenuation were unaffected by (-)-a-Amino-5-phosphonopentanoic, but blocked by coinjecting 1, 2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, heparin plus dantrolene, calmodulin-binding peptide, or [Ala286]CaMKII281-302 plus PKC19-31. PPF attenuation associated with tetanus-LTP or CaN-inhibited synaptic potentiation resulted from smaller increases in the potentiation of the second synaptic responses (R2) compared with the potentiation of the first responses (R1). Our results indicate that PPF attenuation is associated with synaptic potentiation mediated by postsynaptic mechanisms, and postsynaptic Ca2+/CaM signaling pathways play a dual role in synaptic plasticity. CaN activity limits synaptic transmission under basal conditions, whereas the activation of Ca2+-dependent protein kinases enhances synaptic transmission and attenuates PPF at central synapses.
Collapse
Affiliation(s)
- J H Wang
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | |
Collapse
|
62
|
Poteet-Smith CE, Corbin JD, Francis SH. The pseudosubstrate sequences alone are not sufficient for potent autoinhibition of cAMP- and cGMP-dependent protein kinases as determined by synthetic peptide analysis. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1997; 31:219-35. [PMID: 9344254 DOI: 10.1016/s1040-7952(97)80021-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C E Poteet-Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
63
|
Law RD, Plaxton WC. Regulatory phosphorylation of banana fruit phosphoenolpyruvate carboxylase by a copurifying phosphoenolpyruvate carboxylase-kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:642-51. [PMID: 9266708 DOI: 10.1111/j.1432-1033.1997.00642.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphoenolpyruvate (P-pyruvate) carboxylase from ripened banana fruit was purified to near homogeneity and a final specific activity of 20-23 U/mg protein; P-pyruvate carboxylase-kinase copurified with P-pyruvate carboxylase throughout the purification. Gel filtration FPLC indicated that the two proteins form a tightly associated 425-kDa complex. Both the 103-kDa and 100-kDa subunits of the P-pyruvate carboxylase alpha2beta2 hetetrotetramer were phosphorylated and subsequently dephosphorylated in vitro in a time-dependent manner when the final preparation was incubated with 0.1 mM [gamma-32P]ATP followed by rabbit muscle protein phosphatase type 2A1. Phosphoamino acid and phosphopeptide map analyses indicated that in vitro phosphorylation of both subunits likely occurs at an identical Ser residue. Maximal stoichiometry of 32P incorporation was 0.2 and 0.4 mol/mol 103-kDa and 100-kDa subunit, respectively. The level of 32P incorporation was correlated with the enzyme's activation state when assayed under suboptimal assay conditions (pH 7.3, 75 microM P-pyruvate, 0.2 mM L-malate). The main kinetic effect of phosphorylation was to decrease the enzyme's Km(P-pyruvate), as well as its sensitivity to inhibition by L-malate and L-glutamate. Banana P-pyruvate carboxylase-kinase: (a) also phosphorylated maize leaf P-pyruvate carboxylase, histone III-S, and dephosphorylated casein; (b) demonstrated Mg2+ dependence and Ca2+ independence, (c) exhibited a broad pH activity optimum of pH 8.0-8.5, and (d) was inhibited by L-malate and activated by Ba2+ and Co2+. Time-course kinetic studies suggested that P-pyruvate carboxylase exists mainly in the dephosphorylated form in preclimacteric, climacteric and postclimacteric fruit, but that its kinase is expressed throughout ripening. In situ 32P-labeling indicated that, while both subunits of ripe banana P-pyruvate carboxylase are phosphorylated in vivo, it is primarily the 100-kDa subunit that is radiolabeled. The results suggest that similar to the enzyme from leaves, root nodules and seeds, a fruit P-pyruvate carboxylase may be subject to regulatory seryl phosphorylation by an endogenous P-pyruvate carboxylase-kinase.
Collapse
Affiliation(s)
- R D Law
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
64
|
Kawagishi-Kobayashi M, Silverman JB, Ung TL, Dever TE. Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha. Mol Cell Biol 1997; 17:4146-58. [PMID: 9199350 PMCID: PMC232268 DOI: 10.1128/mcb.17.7.4146] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mammalian double-stranded RNA-activated protein kinase PKR is a component of the cellular antiviral defense mechanism and phosphorylates Ser-51 on the alpha subunit of the translation factor eIF2 to inhibit protein synthesis. To identify the molecular determinants that specify substrate recognition by PKR, we performed a mutational analysis on the vaccinia virus K3L protein, a pseudosubstrate inhibitor of PKR. High-level expression of PKR is lethal in the yeast Saccharomyces cerevisiae because PKR phosphorylates eIF2alpha and inhibits protein synthesis. We show that coexpression of vaccinia virus K3L can suppress the growth-inhibitory effects of PKR in yeast, and using this system, we identified both loss-of-function and hyperactivating mutations in K3L. Truncation of, or point mutations within, the C-terminal portion of the K3L protein, homologous to residues 79 to 83 in eIF2alpha, abolished PKR inhibitory activity, whereas the hyperactivating mutation, K3L-H47R, increased the homology between the K3L protein and eIF2alpha adjacent to the phosphorylation site at Ser-51. Biochemical and yeast two-hybrid analyses revealed that the suppressor phenotype of the K3L mutations correlated with the affinity of the K3L protein for PKR and was inversely related to the level of eIF2alpha phosphorylation in the cell. These results support the idea that residues conserved between the pseudosubstrate K3L protein and the authentic substrate eIF2alpha play an important role in substrate recognition, and they suggest that PKR utilizes sequences both near and over 30 residues from the site of phosphorylation for substrate recognition. Finally, by reconstituting part of the mammalian antiviral defense mechanism in yeast, we have established a genetically useful system to study viral regulators of PKR.
Collapse
Affiliation(s)
- M Kawagishi-Kobayashi
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
65
|
Krueger JK, Olah GA, Rokop SE, Zhi G, Stull JT, Trewhella J. Structures of calmodulin and a functional myosin light chain kinase in the activated complex: a neutron scattering study. Biochemistry 1997; 36:6017-23. [PMID: 9166772 DOI: 10.1021/bi9702703] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calmodulin (CaM) is the major intracellular receptor for Ca2+ and is responsible for the Ca2+-dependent regulation of a wide variety of cellular processes via interactions with a diverse array of target enzymes. Our current view of the structural basis for CaM enzyme activation is based on biophysical studies of CaM complexed with small peptides that model CaM-binding domains. A major concern with interpreting data from these structures in terms of target enzyme activation mechanisms is that the larger enzyme structure might be expected to impose constraints on CaM binding. Full understanding of the molecular mechanism for CaM-dependent enzyme activation requires additional structural information on the interaction of CaM with functional enzymes. We have utilized small-angle X-ray scattering and neutron scattering with contrast variation to obtain the first structural view of CaM complexed with a functional enzyme, an enzymatically active truncation mutant of skeletal muscle myosin light chain kinase (MLCK). Our data show that CaM undergoes an unhindered conformational collapse upon binding MLCK and activates the enzyme by inducing a significant movement of the kinase's CaM binding and autoinhibitory sequences away from the surface of the catalytic core.
Collapse
Affiliation(s)
- J K Krueger
- Chemical Science and Technology Division, Los Alamos National Laboratory, New Mexico 87545, USA
| | | | | | | | | | | |
Collapse
|
66
|
Dekker LV, Parker PJ. Regulated binding of the protein kinase C substrate GAP-43 to the V0/C2 region of protein kinase C-delta. J Biol Chem 1997; 272:12747-53. [PMID: 9139733 DOI: 10.1074/jbc.272.19.12747] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The interaction between protein kinase C-delta and its neuronal substrate, GAP-43, was studied. Two forms of protein kinase C-delta were isolated from COS cells and characterized by differences in gel mobility, GAP-43 binding, and specific GAP-43 and histone kinase activities. A slow migrating, low specific activity form of protein kinase C-delta bound directly to immobilized GAP-43. Binding was abolished in the presence of EGTA, suggesting Ca2+ dependence of the interaction. The free catalytic domain of protein kinase C-delta did not bind GAP-43, suggesting the existence of a binding site in the regulatory domain. Glutathione S-transferase-protein kinase C-delta regulatory domain fusion proteins were generated and tested for binding to GAP-43. The V0/C2-like amino-terminal domain was defined as the GAP-43-binding site. GAP-43 binding to this region is inhibited by EGTA and regulated at Ca2+ levels between 10(-7) and 10(-6) M. The interaction between protein kinase C-delta and GAP-43 was studied in intact cells by coexpression of the two proteins in human embryonic kidney cells followed by immunoprecipitation. Complex formation occurred only after treatment of the cells with the Ca2+ ionophore ionomycin, indicating that elevation of intracellular Ca2+ is required for interaction in vivo. It is concluded that protein kinase C-delta interacts with GAP-43 through the V0/C2-like domain, outside the catalytic site, and that this interaction is modulated by intracellular Ca2+.
Collapse
Affiliation(s)
- L V Dekker
- Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
67
|
Gho BC, Eskildsen-Helmond YE, de Zeeuw S, Lamers JM, Verdouw PD. Does protein kinase C play a pivotal role in the mechanisms of ischemic preconditioning? Cardiovasc Drugs Ther 1997; 10:775-86. [PMID: 9110122 DOI: 10.1007/bf00053036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This communication reviews the evidence for the pivotal role of protein kinase C in ischemic myocardial preconditioning. It is believed that several intracellular signalling pathways via receptor-coupled phospholipase C and its "cross-talk" with phospholipase D converge to activation of protein kinase C isotypes which is followed by phosphorylation of until now (a number of) unknown target proteins which produce the protective state of ischemic preconditioning. After briefly introducing the general biochemical properties of protein kinase C, its isotypes and the limitations of the methodology used to investigate the role of protein kinase C, studies are discussed in which pharmacological inhibition and activation and (immunore) activity and/or isotypes measurements of protein kinase C isotypes were applied to assess the role of activation of protein kinase C in ischemic myocardial preconditioning. It is concluded that definitive proof for the involvement of protein kinase C in preconditioning requires future studies which must focus on the isotype(s) of protein kinase C that are activated, the duration of action, cellular translocation sites and the identity and stability (of covalently bound phosphate) of phosphorylated substrate proteins.
Collapse
Affiliation(s)
- B C Gho
- Department of Biochemistry (Cardiovascular Research Institute COEUR), Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
68
|
Neumann GM, Condron R, Polya GM. Purification and sequencing of napin-like protein small and large chains from Momordica charantia and Ricinus communis seeds and determination of sites phosphorylated by plant Ca(2+)-dependent protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1298:223-40. [PMID: 8980648 DOI: 10.1016/s0167-4838(96)00133-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The basic protein fraction from seeds of castor bean (Ricinus communis L.) contains 4732 Da and 4603 Da proteins phosphorylated in vitro by plant Ca(2+)-dependent protein kinase (CDPK). These proteins, RS1A and RS1B respectively, were purified by cation-exchange HPLC (SP5PW column) and reverse-phase HPLC (C18 column) and identified as napin-like protein small chains by Edman sequencing and electrospray ionization mass spectrometry (ESMS). The other R. communis 4 kDa small chains (RS2A, RS2B, RS2C and RS2D) are not phosphorylated by CDPK and neither is the corresponding 7332 Da large chain (RL) that forms 1:1 disulfide-linked complexes with RS2(A-D). RS1A/B is one of the best substrates found for plant CDPK (K(m) = 1.8 +/- 0.8 microM). RS2(A-D) (but not RL or RS1A/B) strongly inhibit calmodulin (CaM)-dependent myosin light chain protein kinase (MLCK) (IC50 = 0.25 microM) and inhibit the Ca(2+)-dependent enhancement of dansyl-CaM fluorescence. The basic protein fraction from seeds of bitter melon (Momordica charantia) also contains napin-like proteins that are 1:1 disulfide-linked complexes of a small chain (MS1, MS2, MS3 or MS4) and a large chain (ML). The M. charantia small chains were purified and completely sequenced by Edman degradation and ESMS. M. charantia small chains MS1, MS2, and MS4 (but not MS3) are phosphorylated by CDPK to unit stoichiometry on S21 within the sequence R17SCES21FLR. The R. communis small chain RS1A is phosphorylated on S34 within the sequence R31QSS34SRR. Both of these phosphorylation site motifs are consistent with those found for other plant CDPK substrates.
Collapse
Affiliation(s)
- G M Neumann
- School of Biochemistry, Trobe University, Bundoora, Vic, Australia
| | | | | |
Collapse
|
69
|
Zhu J, Shore SK. c-ABL tyrosine kinase activity is regulated by association with a novel SH3-domain-binding protein. Mol Cell Biol 1996; 16:7054-62. [PMID: 8943360 PMCID: PMC231708 DOI: 10.1128/mcb.16.12.7054] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The c-ABL tyrosine kinase is activated following either the loss or mutation of its Src homology domain 3 (SH3), resulting in both increased autophosphorylation and phosphorylation of cellular substrates and cellular transformation. This suggests that the SH3 domain negatively regulates c-ABL kinase activity. For several reasons this regulation is thought to involve a cellular protein that binds to the SH3 domain. Hyperexpression of c-ABL results in an activation of its kinase, the kinase activity of purified c-ABL protein in the absence of cellular proteins is independent of either the presence or absence of a SH3 domain, and point mutations and deletions within the SH3 domain are sufficient to activate c-ABL transforming ability. To identify proteins that interact with the c-ABL SH3 domain, we screened a cDNA library by the yeast two-hybrid system, using the c-ABL SH3SH2 domains as bait. We identified a novel protein, AAP1 (ABL-associated protein 1), that associates with these c-ABL domains and fails to bind to the SH3 domain in the activated oncoprotein BCRABL. Kinase experiments demonstrated that in the presence of AAP1, the ability of c-ABL to phosphorylate either glutathione S-transferase-CRK or enolase was inhibited. In contrast, AAP1 had little effect on the phosphorylation of glutathione S-transferase-CRK by the activated ABL oncoproteins v-ABL and BCRABL. We conclude that AAP1 inhibits c-ABL tyrosine kinase activity but has little effect on the tyrosine kinase activities of oncogenic BCRABL or v-ABL protein and propose that AAP1 functions as a trans regulator of c-ABL kinase. Our data also indicate that loss of susceptibility to AAP1 regulation correlates with oncogenicity of the activated forms of c-ABL.
Collapse
Affiliation(s)
- J Zhu
- Department of Biochemistry, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
70
|
Shih HM, Goldman PS, DeMaggio AJ, Hollenberg SM, Goodman RH, Hoekstra MF. A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc Natl Acad Sci U S A 1996; 93:13896-901. [PMID: 8943032 PMCID: PMC19461 DOI: 10.1073/pnas.93.24.13896] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1996] [Accepted: 09/23/1996] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli tet-repressor (TetR) operator system was used to develop a variation of the yeast two-hybrid assay in which disruptions of protein-protein interactions can be identified by a positive selection. This assay, designated the "split-hybrid system," contains a two-component reporter. The first component contains LexA binding sites upstream of the TetR gene and the second contains TetR operator binding sites upstream of HIS3. Interaction of one protein fused to the LexA DNA binding domain with a second protein fused to the VP16 activation domain results in TetR expression. TetR subsequently binds to the tet operators, blocking the expression of HIS3 and preventing yeast growth in media lacking histidine. The utility of the split-hybrid system was analyzed by examining the phosphorylation-dependent interaction of CREB and its coactivator CREB binding protein (CBP). CREB and CBP associate through an interaction that depends upon CREB phosphorylation at Ser-133. Mutation of this phosphorylation site prevents yeast growth in the standard two-hybrid assay but allows growth in the split-hybrid strains. The split-hybrid system was used to identify other CREB mutations that disrupt its association with CBP. These mutations localized around the site of CREB phosphorylation, indicating that only a small portion of the CREB activation domain is required for CBP interaction. The yeast split-hybrid system should be useful in identifying mutations, proteins, peptides, and drugs that disrupt protein-protein interactions.
Collapse
Affiliation(s)
- H M Shih
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | |
Collapse
|
71
|
Francis SH, Smith JA, Colbran JL, Grimes K, Walsh KA, Kumar S, Corbin JD. Arginine 75 in the Pseudosubstrate Sequence of Type Iβ cGMPdependent Protein Kinase Is Critical for Autoinhibition, Although Autophosphorylated Serine 63 Is Outside This Sequence. J Biol Chem 1996. [DOI: 10.1074/jbc.271.34.20748] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
72
|
Carlson GL, Nelson DL. The 44-kDa regulatory subunit of the Paramecium cAMP-dependent protein kinase lacks a dimerization domain and may have a unique autophosphorylation site sequence. J Eukaryot Microbiol 1996; 43:347-56. [PMID: 8768440 DOI: 10.1111/j.1550-7408.1996.tb03999.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 44-kDa regulatory subunit (R44) of one form of cAMP-dependent protein kinase of Paramecium was purified, and two partial internal amino acid sequences from it were used to clone the corresponding cDNA. This R44 cDNA clone was 1022-bp long, including 978 bp of coding sequence and 7 bp and 37 bp of 5' and 3' untranslated sequences, respectively. A 1.1-kb mRNA was labeled on a Northern blot. The deduced R44 amino acid sequence had 31%-38% positional identity to the sequences of other cloned cAMP-dependent protein kinase regulatory subunits. R44 sequence showed equal sequence similarity to mammalian types I and II regulatory subunits. The N-terminal sequence encoding the regulatory subunit dimerization domain found in most regulatory subunits is not present in the R44 clone, confirming the lack of regulatory subunit dimer formation previously reported for the Paramecium cAMP-dependent protein kinase. The putative autophosphorylation site of R44 contains the amino acid sequence TRTS, distinct from the consensus sequence RRXS, where X is any residue, found in other autophosphorylated cAMP-dependent protein kinase regulatory subunits and many cAMP-dependent protein kinase substrates.
Collapse
Affiliation(s)
- G L Carlson
- Department of Biochemistry, University of Wisconsin-Madison 53706-1569, USA
| | | |
Collapse
|
73
|
Bardwell L, Cook JG, Chang EC, Cairns BR, Thorner J. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7. Mol Cell Biol 1996; 16:3637-50. [PMID: 8668180 PMCID: PMC231359 DOI: 10.1128/mcb.16.7.3637] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Kss1 and Fus3 are mitogen-activated protein kinases (MAPKs or ERKs), and Ste7 is their activating MAPK/ERK kinase (MEK), in the pheromone response pathway of Saccharomyces cerevisiae. To investigate the potential role of specific interactions between these enzymes during signaling, their ability to associate with each other was examined both in solution and in vivo. When synthesized by in vitro translation, Kss1 and Fus3 could each form a tight complex (Kd of approximately 5 nM) with Ste7 in the absence of any additional yeast proteins. These complexes were specific because neither Hog1 nor Mpk1 (two other yeast MAPKs), nor mammalian Erk2, was able to associate detectably with Ste7. Neither the kinase catalytic core of Ste7 nor the phosphoacceptor regions of Ste7 and Kss1 were necessary for complex formation. Ste7-Kss1 (and Ste7-Fus3) complexes were present in yeast cell extracts and were undiminished in extracts prepared from a ste5delta-ste11delta double mutant strain. In Ste7-Kss1 (or Ste7-Fus3) complexes isolated from naive or pheromone-treated cells, Ste7 phosphorylated Kss1 (or Fus3), and Kss1 (or Fus3) phosphorylated Ste7, in a pheromone-stimulated manner; dissociation of the high-affinity complex was shown to be required for either phosphorylation event. Deletions of Ste7 in the region required for its stable association with Kss1 and Fus3 in vitro significantly decreased (but did not eliminate) signaling in vivo. These findings suggest that the high-affinity and active site-independent binding observed in vitro facilitates signal transduction in vivo and suggest further that MEK-MAPK interactions may utilize a double-selection mechanism to ensure fidelity in signal transmission and to insulate one signaling pathway from another.
Collapse
Affiliation(s)
- L Bardwell
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, 94720-3202, USA
| | | | | | | | | |
Collapse
|
74
|
Dietrich J, Hou X, Wegener AM, Pedersen LO, Odum N, Geisler C. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor. J Biol Chem 1996; 271:11441-8. [PMID: 8626701 DOI: 10.1074/jbc.271.19.11441] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinases. We have recently shown that both phosphorylation of Ser-126 and the presence of the di-leucine sequence Leu-131 and Leu-132 in CD3 gamma are required for protein kinase C (PKC)-mediated TCR down-regulation. To identify additional residues required for PKC-mediated phosphorylation of CD3 gamma and for TCR down-regulation, an alanine scanning of CD3 gamma was done. Mutations of Arg-124, Ser-126, Lys-128, and Gln-129 inhibited both phosphorylation and TCR down-regulation, whereas mutation of Asp-127 only inhibited down-regulation. Further analyses demonstrated a discrepancy between the ability to be phosphorylated on CD3 gamma and to down-regulate the TCR in several transfectants. Phosphorylation was not as strictly dependent on the nature and position of the phosphoacceptor group and basic residues as were the subsequent steps involved in TCR down-regulation. Our results suggest that PKC-mediated TCR down-regulation may be regarded as a two-step process. 1) Recognition and phosphorylation of CD3 gamma by PKC. In this process Arg-124, Ser-126, Lys-128, and Gln-129 are important. 2) Recognition of phosphorylated CD3 gamma by molecules involved in receptor internalization. In this process Ser(P)-126, Asp-127, Leu-131, and Leu-132 are important.
Collapse
Affiliation(s)
- J Dietrich
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
75
|
Sarno S, Vaglio P, Meggio F, Issinger OG, Pinna LA. Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. J Biol Chem 1996; 271:10595-601. [PMID: 8631861 DOI: 10.1074/jbc.271.18.10595] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Five mutants of protein kinase CK2 alpha subunit in which altogether 14 basic residues were singly to quadruply replaced by alanines (K74A,K75A,K76A,K77A; K79A, R80A,K83A; R191A,R195A,K198A; R228A; and R278A, K279A,R280A) have been purified to near homogeneity either as such or after addition of the recombinant beta subunit. By this latter procedure five mutated tetrameric holoenzymes were obtained as judged from their subunit composition, sedimentation coefficient on sucrose gradient ultracentrifugation, and increased activity toward a specific peptide substrate as compared with the isolated alpha subunits. The kinetic constants and the phosphorylation efficiencies (V(max)/Km) of all the mutants with the parent peptide RRRADDSDDDDD and a series of derivatives, in which individual aspartic acids were replaced by alanines, have been determined. Three mutants, namely K74A,K75A,K76A,K77A; K79A, R80A,K83A; and R191A,R195A, K198A, display dramatically lower phosphorylation efficiency and 8-50-fold higher Km values with the parent peptide, symptomatic of reduced attitude to bind the peptide substrate as compared with CK2 wild type. Such differences either disappear or are attentuated if the mutants R191A,R195A, K198A; K79A,R80A,K83A; and K74A,K75A, K76A,K77A are assayed with the peptides RRRADDSADDDD, RRRADDSDDADD, and RRRADDSDDDAA, respectively. In contrast, the phosphorylation efficiencies of the other substituted peptides decrease more markedly with these mutants than with CK2 wild type. These data show that one or more of the basic residues clustered in the 191-198, 79-83, and 74-77 sequences are implicated in the recognition of the acidic determinants at positions +1, +3, and +4/+5, respectively, and that if these residues are mutated, the relevance of the other acidic residues surrounding serine is increased. In contrast the other two mutants, namely R228A and R278A,K279A, R280A, display with all the peptides V(max) values higher than CK2 wild type, counterbalanced however by somewhat higher Km values. It can be concluded from these data that all five mutations performed are compatible with the reconstitution of tetrameric holoenzyme, but all of them influence the enzymatic efficiency of CK2 to different extents. Although the basic residues mutated in the 74-77, 79-83, and 191-198 sequences are clearly implicated in substrate recognition by interacting with acidic determinants at variable positions downstream from serine, the other basic residues seem to play a more elusive and/or indirect role in catalysis.
Collapse
Affiliation(s)
- S Sarno
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
76
|
Abstract
Protein phosphorylation is one of the major signal transduction mechanisms for controlling and regulating intracellular processes. Phosphorylation of specific hydroxylated amino acid side chains (Ser, Thr, Tyr) by protein kinases can activate numerous enzymes; this effect can be reversed by the action of protein phosphatases. Here we report ab initio (HF/6-31G and Becke3LYP/6-31G) and semiempirical (PM3) molecular orbital calculations pertinent to the ion pair formation of the phosphorylated amino acids with the basic side chains of Lys and Arg. Methyl-, ethyl-, and phenylphosphate, as well as methylamine and methylguanidinium were used as model compounds for the phosphorylated and basic amino acids, respectively. Phosphorylated amino acids were calculated as mono- and divalent anions. Our results indicate that the PSer/PThr ion pair interaction energies are stronger than those with PTyr. Moreover, the interaction energies with the amino group of Lys are generally more favorable than with the guanidinium group of Arg. The Lys amino groups form stable bifurcated hydrogen bonded structures; while the Arg guanidinium group can form a bidentate hydrogen bonded structure. Reasonable values for the interaction free energies in aqueous solution were obtained for some complexes by the inclusion of a solvent reaction field in the computation (PM3-SM3).
Collapse
Affiliation(s)
- J Mavri
- BIOSON Research Institute, Department of Biophysical Chemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
77
|
Papa S, Sardanelli AM, Cocco T, Speranza F, Scacco SC, Technikova-Dobrova Z. The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett 1996; 379:299-301. [PMID: 8603710 DOI: 10.1016/0014-5793(95)01532-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In bovine heart mitochondria a protein of M(r) 18 kDa, phosphorylated by mtPKA, is associated to the NADH-ubiquinone oxidoreductase in the inner membrane and is present in purified preparation of this complex. The 18 kDa phosphoprotein has now been isolated and sequenced. It is identified as the 18 kDa (IP) AQDQ subunit of complex I, a protein of 133 amino acids with a phosphorylation consensus site RVS at position 129-131.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, CNR, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
78
|
Waud JP, Sala-Newby GB, Matthews SB, Campbell AK. Engineering the C-terminus of firefly luciferase as an indicator of covalent modification of proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1292:89-98. [PMID: 8547353 DOI: 10.1016/0167-4838(95)00199-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein kinase recognition sequences and proteinase sites were engineered into the cDNA encoding firefly luciferase from Photinus pyralis in order to establish whether these modified proteins could be developed as bioluminescent indicators of covalent modification of proteins. Two key domains of the luciferase were modified in order to identify regions of the protein in which peptide sequences may be engineered whilst retaining bioluminescent activity; one between amino acids 209 and 227 and the other at the C-terminus, between amino acids 537 and 550. Mutation of amino acids between residues 209 and 227 reduced bioluminescent activity to less than 1% of wild-type recombinant. In contrast engineering peptide sequences at the C-terminus resulted in specific activities ranging from 0.06-120% of the wild-type recombinant. Addition of cyclic AMP dependent protein kinase catalytic subunit, to a variant luciferase incorporating the kinase recognition sequence, LRRASLG, with a serine at amino-acid position 543 resulted in a 30% reduction in activity. Alkaline phosphatase treatment restored activity. The bioluminescent activity of a variant luciferase containing a thrombin recognition sequence, LVPRES, with the cleavage site positioned between amino acid 542 and 543, decreased by 50% when incubated in the presence of thrombin. The results indicate regions within luciferase where peptide sequences may be engineered while retaining bioluminescent activity and have shown changes in bioluminescent activity when these sites are subjected to covalent modification. Changes in secondary structure, charge and length at the C-terminus of luciferase disrupt the microenvironment of the active site, leading to alterations in light emission. This has important implications both in understanding the evolution of beetle bioluminescence and also in development of bioluminescent indicators of the covalent modification of proteins.
Collapse
Affiliation(s)
- J P Waud
- Department of Medical Biochemistry, Llandough Hospital, Llandough, Penarth, Cardiff, UK
| | | | | | | |
Collapse
|
79
|
Reuther GW, Pendergast AM. The roles of 14-3-3 proteins in signal transduction. VITAMINS AND HORMONES 1996; 52:149-75. [PMID: 8909160 DOI: 10.1016/s0083-6729(08)60410-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G W Reuther
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
80
|
Benner GE, Dennis PB, Masaracchia RA. Activation of an S6/H4 kinase (PAK 65) from human placenta by intramolecular and intermolecular autophosphorylation. J Biol Chem 1995; 270:21121-8. [PMID: 7673144 DOI: 10.1074/jbc.270.36.21121] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The S6/H4 kinase purified from human placenta catalyzes phosphorylation of the S6 ribosomal protein, histone H4, and myelin basic protein. In vitro activation of the p60 S6/H4 kinase requires removal of an autoinhibitory domain by mild trypsin digestion and autophosphorylation of the catalytic domain (p40 S6/H4 kinase). The two autophosphorylation/autoactivation sites contain the sequences SSMVGTPY (site 1) and SVIDPVPAPVGDSHVDGAAK (site 2). These sequences identify S6H4 kinase as the rac-activated PAK65 (Martin, G. A., Bollag, G., McCormick, F. and Abo, A. (1995) EMBO J. 14, 1971-1978). Site 1 phosphorylation is most rapid, but activation does not occur until site 2 is autophosphorylated. The site 1 phosphorylation occurs by an intramolecular mechanism whereas site 2 autophosphorylation occurs by an intermolecular mechanism. A model is proposed in which phosphorylation of sites 1 and 2 occurs sequentially. The model proposes that trypsin treatment of the inactive holoenzyme removes an inhibitory rac-binding domain which blocks MgATP access to the catalytic site. The pseudosubstrate domain at site 1 is autophosphorylated and subsequent bimolecular autophosphorylation at site 2 fully opens the catalytic site. Phosphorylation by a regulatory protein kinase may occur at site 2 in vivo.
Collapse
Affiliation(s)
- G E Benner
- Department of Biological Sciences, University of North Texas, Denton 76203-5018, USA
| | | | | |
Collapse
|
81
|
Abstract
Ca2+/calmodulin activates myosin light chain kinase by reversal of an autoinhibited state. The effects of substitution mutations on calmodulin activation properties implicate 4 of the 8 basic residues between the catalytic core and the calmodulin-binding domain in maintaining autoinhibition. These residues are further amino-terminal to the basic residues comprising the previously proposed pseudosubstrate sequence and suggest involvement of the connecting region in intrasteric autoinhibition. The pseudosubstrate model for autoinhibition proposes that basic residues within the autoinhibitory region mimic basic residues in the substrate and bind to defined acidic residues within the catalytic core. Charge reversal mutations of these specific acidic residues, however, had little or no effect on the Km value for regulatory light chain. From a total of 20 acidic residues on the surface of the substrate binding lobe of the catalytic core, 7 are implicated in binding directly or indirectly to the autoinhibitory domain but not to the light chain. Only 2 acidic residues near the catalytic site may bind to the autoinhibitory domain and the arginine at P-3 in the light chain. Exposure of these 2 residues upon calmodulin binding may be necessary and sufficient for light chain phosphorylation.
Collapse
Affiliation(s)
- J K Krueger
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235-9040, USA
| | | | | |
Collapse
|
82
|
Zhang G, Kazanietz MG, Blumberg PM, Hurley JH. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell 1995; 81:917-24. [PMID: 7781068 DOI: 10.1016/0092-8674(95)90011-x] [Citation(s) in RCA: 536] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein kinase Cs (PKCs) are a ubiquitous family of regulatory enzymes that associate with membranes and are activated by diacylglycerol or tumor-promoting agonists such as phorbol esters. The structure of the second activator-binding domain of PKC delta has been determined in complex with phorbol 13-acetate, which binds in a groove between two pulled-apart beta strands at the tip of the domain. The C3, C4, and C20 phorbol oxygens form hydrogen bonds with main-chain groups whose orientation is controlled by a set of highly conserved residues. Phorbol binding caps the groove and forms a contiguous hydrophobic surface covering one-third of the domain, explaining how the activator promotes insertion of PKC into membranes.
Collapse
Affiliation(s)
- G Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0580, USA
| | | | | | | |
Collapse
|
83
|
Kurland IJ, Pilkis SJ. Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme. Protein Sci 1995; 4:1023-37. [PMID: 7549867 PMCID: PMC2143155 DOI: 10.1002/pro.5560040601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hepatic bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P2ase), E.C. 2.7-1-105/E.C. 3-1-3-46, is one member of a family of unique bifunctional proteins that catalyze the synthesis and degradation of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 is a potent activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, and provides a switching mechanism between these two opposing pathways of hepatic carbohydrate metabolism. The activities of the hepatic 6PF-2-K/Fru-2,6-P2ase isoform are reciprocally regulated by a cyclic AMP-dependent protein kinase (cAPK)-catalyzed phosphorylation at a single NH2-terminal residue, Ser-32. Phosphorylation at Ser-32 inhibits the kinase and activates the bisphosphatase, in part through an electrostatic mechanism. Substitution of Asp for Ser-32 mimics the effects of cAPK-catalyzed phosphorylation. In the dephosphorylated homodimer, the NH2- and COOH-terminal tail regions also have an interaction with their respective active sites on the same subunit to produce an autoregulatory inhibition of the bisphosphatase and activation of the kinase. In support of this hypothesis, deletion of either the NH2- or COOH-terminal tail region, or both regions, leads to a disruption of these interactions with a maximal activation of the bisphosphatase. Inhibition of the kinase is observed with the NH2-truncated forms, in which there is also a diminution of cAPK phosphorylation to decrease the Km for Fru-6-P. Phosphorylation of the bifunctional enzyme by cAPK disrupts these autoregulatory interactions, resulting in inhibition of the kinase and activation of the bisphosphatase. Therefore, effects of cyclic AMP-dependent phosphorylation are mediated by a combination of electrostatic and autoregulatory control mechanisms.
Collapse
Affiliation(s)
- I J Kurland
- Department of Physiology, State University of New York at Stony Brook 11794-8661, USA
| | | |
Collapse
|
84
|
Shiue L, Zoller MJ, Brugge JS. Syk is activated by phosphotyrosine-containing peptides representing the tyrosine-based activation motifs of the high affinity receptor for IgE. J Biol Chem 1995; 270:10498-502. [PMID: 7537732 DOI: 10.1074/jbc.270.18.10498] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Engagement of the high affinity receptor for immunoglobulin E (Fc epsilon RI) on the surface of mast cells induces tyrosine phosphorylation of numerous cellular proteins. Syk, one of several non-receptor protein tyrosine kinases implicated in Fc epsilon RI signaling, is activated following receptor cross-linking and associates with phosphorylated gamma subunits of Fc epsilon RI. We previously showed that the Src homology 2 (SH2) domains of Syk bind with high affinity to the conserved tyrosine-based activation motif (TAM) of the gamma subunit in vitro. In this report, we show that a tyrosine-phosphorylated gamma TAM peptide induced tyrosine phosphorylation of Syk in RBL-2H3 cell lysates and stimulated Syk kinase activity 10-fold in vitro, with half-maximal activation at 1-2 microM. A similar beta subunit TAM peptide showed much lower stimulation of Syk tyrosine phosphorylation and kinase activity. Phosphopeptide-induced activation was inhibited by an antiserum to the carboxyl-terminal tail of Syk, suggesting that those amino acids are also involved in Syk activation. These results indicate that the catalytic domain of Syk may be regulated by intramolecular interactions with adjacent domains and suggest that Syk binding to phosphorylated gamma subunits following Fc epsilon RI engagement in vivo stimulates Syk kinase activity.
Collapse
Affiliation(s)
- L Shiue
- ARIAD Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
85
|
Gao ZH, Zhi G, Herring BP, Moomaw C, Deogny L, Slaughter CA, Stull JT. Photoaffinity labeling of a peptide substrate to myosin light chain kinase. J Biol Chem 1995; 270:10125-35. [PMID: 7730316 DOI: 10.1074/jbc.270.17.10125] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The substrate binding properties of skeletal muscle myosin light chain kinase were investigated with a synthetic peptide containing the photoreactive amino acid p-benzoylphenylalanine (Bpa) incorporated amino-terminal of the phosphoacceptor serine (BpaKKRAARATSNVFA). When photolyzed at 350 nm, the peptide was cross-linked stoichiometrically to myosin light chain kinase in a Ca2+/calmodulin-dependent manner. Peptide incorporation into kinase inhibited light chain phosphorylation, and the loss of kinase activity was proportional to the extent of peptide incorporated. After peptide I was incorporated into myosin light chain kinase, it was partially phosphorylated in the absence of Ca2+/calmodulin. The extent of phosphorylation increased in the presence of Ca2+/calmodulin. The cross-linked photoadduct was digested, labeled peptides were purified by high performance liquid chromatography, and sites of covalent modification were determined by amino acid sequencing and analysis. The covalent modification in the catalytic core occurred on Ile-373 (66%) and in a peptide containing residues Asn-422 to Met-437 (14%), respectively. Lys-572 in the autoinhibitory region accounted for 20% of the incorporated label. The coincident covalent modification of the autoinhibitory domain suggests that it is located near the catalytic site. Based upon a model of the catalytic core, the substrate peptide is predicted to bind in the cleft between the two lobes of the kinase. The orientation of the substrate peptide on myosin light chain kinase is similar to the orientation of the substrate recognition fragment, but not the high affinity binding fragment, of inhibitor peptide of cAMP-dependent protein kinase in the catalytic subunit of the cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- Z H Gao
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
McDonald NQ, Murray-Rust J, Blundell TL. The first structure of a receptor tyrosine kinase domain: a further step in understanding the molecular basis of insulin action. Structure 1995; 3:1-6. [PMID: 7743124 DOI: 10.1016/s0969-2126(01)00129-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Both the observed cis-inhibition and the proposed trans-activation of the insulin receptor tyrosine kinase help explain insulin signalling through its receptor.
Collapse
Affiliation(s)
- N Q McDonald
- Department of Crystallography, Birkbeck College, London, UK
| | | | | |
Collapse
|