51
|
Macedo LB, Nogueira-Librelotto DR, Mathes D, Pieta TB, Mainardi Pillat M, da Rosa RM, Rodrigues OED, Vinardell MP, Rolim CMB. Transferrin-Decorated PLGA Nanoparticles Loaded with an Organoselenium Compound as an Innovative Approach to Sensitize MDR Tumor Cells: An In Vitro Study Using 2D and 3D Cell Models. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2306. [PMID: 37630891 PMCID: PMC10458402 DOI: 10.3390/nano13162306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Multidrug resistance (MDR) is the main challenge in cancer treatment. In this sense, we designed transferrin (Tf)-conjugated PLGA nanoparticles (NPs) containing an organoselenium compound as an alternative to enhance the efficacy of cancer therapy and sensitize MDR tumor cells. Cytotoxicity studies were performed on different sensitive tumor cell lines and on an MDR tumor cell line, and the Tf-conjugated NPs presented significantly higher antiproliferative activity than the nontargeted counterparts in all tested cell lines. Due to the promising antitumor activity of the Tf-decorated NPs, further studies were performed using the MDR cells (NCI/ADR-RES cell line) comparatively to one sensitive cell line (HeLa). The cytotoxicity of NPs was evaluated in 3D tumor spheroids and, similarly to the results achieved in the 2D assays, the Tf-conjugated NPs were more effective at reducing the spheroid's growth. The targeted Tf-NPs were also able to inhibit tumor cell migration, presented a higher cell internalization and induced a greater number of apoptotic events in both cell lines. Therefore, these findings evidenced the advantages of Tf-decorated NPs over the nontargeted counterparts, with the Tf-conjugated NPs containing an organoselenium compound representing a promising drug delivery system to overcome MDR and enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Letícia Bueno Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
| | - Daniele Rubert Nogueira-Librelotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Daniela Mathes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
| | - Taís Baldissera Pieta
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Micheli Mainardi Pillat
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil
| | - Raquel Mello da Rosa
- Departamentode Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Oscar Endrigo Dorneles Rodrigues
- Departamentode Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Maria Pilar Vinardell
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Clarice Madalena Bueno Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| |
Collapse
|
52
|
Sangitra SN, Pujala RK. Effect of small amounts of akaganeite (β-FeOOH) nanorods on the gelation, phase behaviour and injectability of thermoresponsive Pluronic F127. SOFT MATTER 2023; 19:5869-5879. [PMID: 37401782 DOI: 10.1039/d3sm00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Pluronic F127 (PF127) is a copolymer with an amphiphilic nature and can self-assemble to form micelles and, beyond 20% (w/v), form a thermoresponsive physical gel state. However, they are mechanically weak and easily dissolve in physiological environments, which limits their use in load-bearing in specific biomedical applications. Therefore, we propose a pluronic-based hydrogel with enhanced stability by incorporating small amounts of paramagnetic nanorods, akaganeite (β-FeOOH) nanorods (NRs) of aspect ratio ∼7, with PF127. Due to their weak magnetic properties, β-FeOOH NRs have been used as a precursor for preparing stable iron-oxide states (e.g., hematite and magnetite), and the studies on β-FeOOH NRs to be used as a primary component in hydrogels are at the nascent stage. Here we report a method to synthesize β-FeOOH NRs on a gram scale using a simple sol-gel process and characterize the NRs with various techniques. A phase diagram and thermoresponsive behaviour based on rheological experiments and visual observations are proposed for 20% (w/v) PF127 with low concentrations (0.1-1.0% (w/v)) of β-FeOOH NRs. We observe a unique non-monotonous behaviour in the gel network represented by various rheological parameters like storage modulus, yield stress, fragility, high-frequency modulus plateau, and characteristic relaxation time as a function of nanorod concentration. A plausible physical mechanism is proposed to fundamentally understand the observed phase behaviour in the composite gels. These gels show thermoresponsiveness and enhanced injectability, and could find applications in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Surya Narayana Sangitra
- Soft and Active Matter group, Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India.
| | - Ravi Kumar Pujala
- Soft and Active Matter group, Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India.
- Centre for Atomic, Molecular and Optical Sciences & Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
53
|
Sparks N, Vijayan SM, Roy JK, Dorris A, Lambert E, Karunathilaka D, Hammer NI, Leszczynski J, Watkins DL. Synthesis and Characterization of Novel Thienothiadiazole-Based D-π-A-π-D Fluorophores as Potential NIR Imaging Agents. ACS OMEGA 2023; 8:24513-24523. [PMID: 37457472 PMCID: PMC10339328 DOI: 10.1021/acsomega.3c02602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
As fluorescence bioimaging has increased in popularity, there have been numerous reports on designing organic fluorophores with desirable properties amenable to perform this task, specifically fluorophores with emission in the near-infrared II (NIR-II) region. One such strategy is to utilize the donor-π-acceptor-π-donor approach (D-π-A-π-D), as this allows for control of the photophysical properties of the resulting fluorophores through modulation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels. Herein, we illustrate the properties of thienothiadiazole (TTD) as an effective acceptor moiety in the design of NIR emissive fluorophores. TTD is a well-known electron-deficient species, but its use as an acceptor in D-π-A-π-D systems has not been extensively studied. We employed TTD as an acceptor unit in a series of two fluorophores and characterized the photophysical properties through experimental and computational studies. Both fluorophores exhibited emission maxima in the NIR-I that extends into the NIR-II. We also utilized electron paramagnetic resonance (EPR) spectroscopy to rationalize differences in the measured quantum yield values and demonstrated, to our knowledge, the first experimental evidence of radical species on a TTD-based small-molecule fluorophore. Encapsulation of the fluorophores using a surfactant formed polymeric nanoparticles, which were studied by photophysical and morphological techniques. The results of this work illustrate the potential of TTD as an acceptor in the design of NIR-II emissive fluorophores for fluorescence bioimaging applications.
Collapse
Affiliation(s)
- Nicholas
E. Sparks
- Department
of Chemistry and Biochemistry, University
of Mississippi University, Oxford, Mississippi 38677, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Sajith M. Vijayan
- Department
of Chemistry and Biochemistry, University
of Mississippi University, Oxford, Mississippi 38677, United States
| | - Juganta K. Roy
- Interdisciplinary
Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric
Sciences, Jackson-State University, Jackson, Mississippi 39217, United States
| | - Austin Dorris
- Department
of Chemistry and Biochemistry, University
of Mississippi University, Oxford, Mississippi 38677, United States
| | - Ethan Lambert
- Department
of Chemistry and Biochemistry, University
of Mississippi University, Oxford, Mississippi 38677, United States
| | - Dilan Karunathilaka
- Department
of Chemistry and Biochemistry, University
of Mississippi University, Oxford, Mississippi 38677, United States
| | - Nathan I. Hammer
- Department
of Chemistry and Biochemistry, University
of Mississippi University, Oxford, Mississippi 38677, United States
| | - Jerzy Leszczynski
- Interdisciplinary
Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric
Sciences, Jackson-State University, Jackson, Mississippi 39217, United States
| | - Davita L. Watkins
- Department
of Chemistry and Biochemistry, University
of Mississippi University, Oxford, Mississippi 38677, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
54
|
Faglie A, Emerine R, Chou SF. Effects of Poloxamers as Excipients on the Physicomechanical Properties, Cellular Biocompatibility, and In Vitro Drug Release of Electrospun Polycaprolactone (PCL) Fibers. Polymers (Basel) 2023; 15:2997. [PMID: 37514386 PMCID: PMC10383550 DOI: 10.3390/polym15142997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Electrospun microfibers are emerging as one of the advanced wound dressing materials for acute and/or chronic wounds, especially with their ability to carry drugs and excipients at a high loading while being able to deliver them in a controlled manner. Various attempts were made to include excipients in electrospun microfibers as wound dressing materials, and one of them is poloxamer, an amphiphilic polymer that exhibits wound debridement characteristics. In this study, we formulated two types of poloxamers (i.e., P188 and P338) at 30% (w/w) loading into electrospun polycaprolactone (PCL) fibers to evaluate their physicomechanical properties, biocompatibility, and in vitro drug release of a model drug. Our findings showed that the incorporation of poloxamers in the PCL solutions during electrospinning resulted in a greater "whipping" process for a larger fiber deposition area. These fibers were mechanically stiffer and stronger, but less ductile as compared to the PCL control fibers. The incorporation of poloxamers into electrospun PCL fibers reduced the surface hydrophobicity of fibers according to our water contact angle studies and in vitro degradation studies. The fibers' mechanical properties returned to those of the PCL control groups after "dumping" the poloxamers. Moreover, poloxamer-loaded PCL fibers accelerated the in vitro release of the model drug due to surface wettability. These poloxamer-loaded PCL fibers were biocompatible, as validated by MTT assays using A549 cells. Overall, we demonstrated the ability to achieve a high loading of poloxamers in electrospun fibers for wound dressing applications. This work provided the basic scientific understanding of materials science and bioengineering with an emphasis on the engineering applications of advanced wound dressings.
Collapse
Affiliation(s)
- Addison Faglie
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Rachel Emerine
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
55
|
Ch S, Padaga SG, Ghosh B, Roy S, Biswas S. Chitosan-poly(lactide-co-glycolide)/poloxamer mixed micelles as a mucoadhesive thermo-responsive moxifloxacin eye drop to improve treatment efficacy in bacterial keratitis. Carbohydr Polym 2023; 312:120822. [PMID: 37059521 DOI: 10.1016/j.carbpol.2023.120822] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
A mucoadhesive self-assembling polymeric system was developed to carry moxifloxacin (M) for treating bacterial keratitis (BK). Chitosan-PLGA (C) conjugate was synthesized, and poloxamers (F68/127) were mixed in different proportions (1: 5/10) to prepare moxifloxacin (M)-encapsulated mixed micelles (M@CF68/127(5/10)Ms), including M@CF68(5)Ms, M@CF68(10)Ms, M@CF127(5)Ms, and M@CF127(10)Ms. The corneal penetration and mucoadhesiveness were determined biochemically, in vitro using human corneal epithelial (HCE) cells in monolayers and spheroids, ex vivo using goat cornea, and in vivo via live-animal imaging. The antibacterial efficacy was studied on planktonic biofilms of P. aeruginosa and S. aureus (in vitro) and Bk-induced mice (in vivo). Both M@CF68(10)Ms and M@CF127(10)Ms demonstrated high cellular uptake, corneal retention, muco-adhesiveness, and antibacterial effect, with M@CF127(10)Ms exhibiting superior therapeutic effects in P. aeruginosa and S. aureus-infected BK mouse model by reducing the corneal bacterial load and preventing corneal damage. Therefore, the newly developed nanomedicine is promising for clinical translation in treating BK.
Collapse
|
56
|
Avram Ș, Bora L, Vlaia LL, Muț AM, Olteanu GE, Olariu I, Magyari-Pavel IZ, Minda D, Diaconeasa Z, Sfirloaga P, Adnan M, Dehelean CA, Danciu C. Cutaneous Polymeric-Micelles-Based Hydrogel Containing Origanum vulgare L. Essential Oil: In Vitro Release and Permeation, Angiogenesis, and Safety Profile In Ovo. Pharmaceuticals (Basel) 2023; 16:940. [PMID: 37513852 PMCID: PMC10383657 DOI: 10.3390/ph16070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Origanum vulgare var. vulgare essential oil (OEO) is known as a natural product with multiple beneficial effects with application in dermatology. Oregano essential oil represents a potential natural therapeutic alternative for fibroepithelial polyps (FPs), commonly known as skin tags. Innovative formulations have been developed to improve the bioavailability and stability of essential oils. In this study, we aimed to evaluate the morphology of a polymeric-micelles-based hydrogel (OEO-PbH), the release and permeation profile of oregano essential oil, as well as to assess in vivo the potential effects on the degree of biocompatibility and the impact on angiogenesis in ovo, using a chick chorioallantoic membrane (CAM). Scanning electron microscopy (SEM) analysis indicated a regular aspect after the encapsulation process, while in vitro release studies showed a sustained release of the essential oil. None of the tested samples induced any irritation on the CAM and the limitation of the angiogenic process was noted. OEO-PbH, with a sustained release of OEO, potentially enhances the anti-angiogenic effect while being well tolerated and non-irritative by the vascularized CAM, especially on the blood vessels (BVs) in the presence of leptin treatment. This is the first evidence of in vivo antiangiogenic effects of a polymeric-micelle-loaded oregano essential oil, with further mechanistic insights for OEO-PbH formulation, involving leptin as a possible target. The findings suggest that the OEO-containing polymeric micelle hydrogel represents a potential future approach in the pathology of cutaneous FP and other angiogenesis-related conditions.
Collapse
Affiliation(s)
- Ștefana Avram
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Larisa Bora
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Lavinia Lia Vlaia
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ana Maria Muț
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Gheorghe-Emilian Olteanu
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Olariu
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Daliana Minda
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Zorița Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania
| | - Paula Sfirloaga
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
57
|
Sun X, Zhao P, Lin J, Chen K, Shen J. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:390-415. [PMID: 37457134 PMCID: PMC10344729 DOI: 10.20517/cdr.2023.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Cancer is currently one of the most intractable diseases causing human death. Although the prognosis of tumor patients has been improved to a certain extent through various modern treatment methods, multidrug resistance (MDR) of tumor cells is still a major problem leading to clinical treatment failure. Chemotherapy resistance refers to the resistance of tumor cells and/or tissues to a drug, usually inherent or developed during treatment. Therefore, an urgent need to research the ideal drug delivery system to overcome the shortcoming of traditional chemotherapy. The rapid development of nanotechnology has brought us new enlightenments to solve this problem. The novel nanocarrier provides a considerably effective treatment to overcome the limitations of chemotherapy or other drugs resulting from systemic side effects such as resistance, high toxicity, lack of targeting, and off-target. Herein, we introduce several tumor MDR mechanisms and discuss novel nanoparticle technology applied to surmount cancer drug resistance. Nanomaterials contain liposomes, polymer conjugates, micelles, dendrimers, carbon-based, metal nanoparticles, and nucleotides which can be used to deliver chemotherapeutic drugs, photosensitizers, and small interfering RNA (siRNA). This review aims to elucidate the advantages of nanomedicine in overcoming cancer drug resistance and discuss the latest developments.
Collapse
Affiliation(s)
- Xiangyu Sun
- Medicines and Equipment Department, Beijing Chaoyang Emergency Medical Rescuing Center, Chaoyang District, Beijing 100026, China
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Meg Centre, Guangzhou 510006, Guangdong, China
| | - Jierou Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Meg Centre, Guangzhou 510006, Guangdong, China
| | - Kun Chen
- Beijing Chaoyang Emergency Medical Rescuing Center, Chaoyang District, Beijing 100026, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China
| |
Collapse
|
58
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
59
|
Li S, Wang Y, Wang S, Xie J, Fu T, Li S. In situ gelling hydrogel loaded with berberine liposome for the treatment of biofilm-infected wounds. Front Bioeng Biotechnol 2023; 11:1189010. [PMID: 37324421 PMCID: PMC10266532 DOI: 10.3389/fbioe.2023.1189010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Background: In recent years, the impact of bacterial biofilms on traumatic wounds and the means to combat them have become a major research topic in the field of medicine. The eradication of biofilms formed by bacterial infections in wounds has always been a huge challenge. Herein, we developed a hydrogel with the active ingredient berberine hydrochloride liposomes to disrupt the biofilm and thereby accelerate the healing of infected wounds in mice. Methods: We determined the ability of berberine hydrochloride liposomes to eradicate the biofilm by means of studies such as crystalline violet staining, measuring the inhibition circle, and dilution coating plate method. Encouraged by the in vitro efficacy, we chose to coat the berberine hydrochloride liposomes on the Poloxamer range of in-situ thermosensitive hydrogels to allow fuller contact with the wound surface and sustained efficacy. Eventually, relevant pathological and immunological analyses were carried out on wound tissue from mice treated for 14 days. Results: The final results show that the number of wound tissue biofilms decreases abruptly after treatment and that the various inflammatory factors in them are significantly reduced within a short period. In the meantime, the number of collagen fibers in the treated wound tissue, as well as the proteins involved in healing in the wound tissue, showed significant differences compared to the model group. Conclusion: From the results, we found that berberine liposome gel can accelerate wound healing in Staphylococcus aureus infections by inhibiting the inflammatory response and promoting re-epithelialization as well as vascular regeneration. Our work exemplifies the efficacy of liposomal isolation of toxins. This innovative antimicrobial strategy opens up new perspectives for tackling drug resistance and fighting wound infections.
Collapse
Affiliation(s)
- Sipan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siting Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjun Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaoguang Li
- Microsurgery Department of Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
60
|
de Freitas CF, de Araújo Santos J, Pellosi DS, Caetano W, Batistela VR, Muniz EC. Recent advances of Pluronic-based copolymers functionalization in biomedical applications. BIOMATERIALS ADVANCES 2023; 151:213484. [PMID: 37276691 DOI: 10.1016/j.bioadv.2023.213484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
The design of polymeric biocompatible nanomaterials for biological and medical applications has received special attention in recent years. Among different polymers, the triblock type copolymers (EO)x(PO)y(EO)x or Pluronics® stand out due its favorable characteristics such as biocompatibility, low tissue adhesion, thermosensitivity, and structural capacity to produce different types of macro and nanostructures, e.g. micelles, vesicles, nanocapsules, nanospheres, and hydrogels. However, Pluronic itself is not the "magic bullet" and its functionalization via chemical synthesis following biologically oriented design rules is usually required aiming to improve its properties. Therefore, this paper presents some of the main publications on new methodologies for synthetic modifications and applications of Pluronic-based nanoconstructs in the biomedical field in the last 15 years. In general, the polymer modifications aim to improve physical-chemical properties related to the micellization process or physical entrapment of drug cargo, responsive stimuli, active targeting, thermosensitivity, gelling ability, and hydrogel formation. Among these applications, it can be highlighted the treatment of malignant neoplasms, infectious diseases, wound healing, cellular regeneration, and tissue engineering. Functionalized Pluronic has also been used for various purposes, including medical diagnosis, medical imaging, and even miniaturization, such as the creation of lab-on-a-chip devices. In this context, this review discusses the main scientific contributions to the designing, optimization, and improvement of covalently functionalized Pluronics aiming at new strategies focused on the multiple areas of the biomedical field.
Collapse
Affiliation(s)
- Camila Fabiano de Freitas
- Department of Chemistry, Federal University of Santa Catarina - UFSC, Eng. Agronômico Andrei Cristian Ferreira, s/n, Trindade, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Jailson de Araújo Santos
- PhD Program in Materials Science and Engineering, Federal University of Piauí, Campus Petrônio Portela, Ininga, Teresina CEP 64049-550, Piauí, Brazil
| | - Diogo Silva Pellosi
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Vagner Roberto Batistela
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Edvani Curti Muniz
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil; Department of Chemistry, Federal University of Piauí, Campus Petronio Portella, Ininga, Teresina CEP 64049-550, Piauí, Brazil.
| |
Collapse
|
61
|
Lang P, Liu T, Huang S, Zhou Z, Zhang M, Lin Y, He Q, Yao Y, Liu Z, Zhang L. Degradable Temperature-Sensitive Hydrogel Loaded with Heparin Effectively Prevents Post-Operative Tissue Adhesions. ACS Biomater Sci Eng 2023. [PMID: 37179492 DOI: 10.1021/acsbiomaterials.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tissue adhesions could occur following surgeries, and severe tissue adhesions can lead to serious complications. Medical hydrogels could be applied at surgical sites as a physical barrier to prevent tissue adhesion. For practical reasons, spreadable, degradable, and self-healable gels are highly demanded. To meet these requirements, we applied carboxymethyl chitosan (CMCS) to poloxamer-based hydrogels to generate low Poloxamer338 (P338) content gels displaying low viscosity at refrigerator temperature and improved mechanical strength at body temperature. Heparin, an effective adhesion inhibitor, was also added to construct P338/CMCS-heparin composite hydrogel (PCHgel). PCHgel presents as a flowable liquid below 20 °C and could rapidly transform into gel when spread on the surface of damaged tissue due to temperature change. The introduction of CMCS enabled hydrogels to form a stable self-healable barrier at injured positions and slowly release heparin during the wound healing period before being degraded after ∼14 days. Ultimately, PCHgel significantly reduced tissue adhesion in model rats and displayed higher efficiency than P338/CMCS gel without heparin. Its adhesion suppression mechanism was verified, and it also displayed good biosafety. Therefore, PCHgel showed good clinical transformation potential with high efficacy, good safety, and ease of use.
Collapse
Affiliation(s)
- Puxin Lang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Tiantian Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Shiqi Huang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Zhaojie Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Mengxing Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Yunzhu Lin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610000, China
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610000, P. R. China
| | - Qin He
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610000, China
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610000, P. R. China
| | - Yuqin Yao
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610000, China
| | - Zhenmi Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610000, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| |
Collapse
|
62
|
Crabtree A, Boehnke N, Bates F, Hackel B. Consequences of poly(ethylene oxide) and poloxamer P188 on transcription in healthy and stressed myoblasts. Proc Natl Acad Sci U S A 2023; 120:e2219885120. [PMID: 37094151 PMCID: PMC10161009 DOI: 10.1073/pnas.2219885120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/26/2023] [Indexed: 04/26/2023] Open
Abstract
Poly(ethylene oxide) (PEO) and poloxamers, a class of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers, have many personal and medical care applications, including the stabilization of stressed cellular membranes. Despite the widespread use, the cellular transcriptional response to these molecules is relatively unknown. C2C12 myoblasts, a model muscle cell, were subjected to short-term Poloxamer 188 (P188) and PEO181 (8,000 g/mol) treatment in culture. RNA was extracted and sequenced to quantify transcriptomic impact. The addition of moderate concentrations (14 µM) of either polymer to unstressed cells caused substantial differential gene expression, including at least twofold modulation of 357 and 588 genes, respectively. In addition, evaluation of the transcriptome response to osmotic stress without polymer treatment revealed dramatic change in RNA expression. Interestingly, the addition of polymer to stressed cells-at concentrations that provide physiological protection-did not yield a significant difference in expression of any gene relative to stress alone. Genome-scale expression analysis was corroborated by single-gene quantitative real-time PCR. Changes in protein expression were measured via western blot, which revealed partial alignment with the RNA results. Collectively, the significant changes to expression of multiple genes and resultant protein translation demonstrates an unexpectedly broad biochemical response to these polymers in healthy myoblasts in vitro. Meanwhile, the lack of substantial transcriptional response to polymer treatment in stressed cells highlights the physical nature of that protective mechanism.
Collapse
Affiliation(s)
- Adelyn A. Crabtree
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
63
|
Le TP, Yu Y, Cho IS, Suh EY, Kwon HC, Shin SA, Park YH, Huh KM. Injectable Poloxamer Hydrogel Formulations for Intratympanic Delivery of Dexamethasone. J Korean Med Sci 2023; 38:e135. [PMID: 37128878 PMCID: PMC10151621 DOI: 10.3346/jkms.2023.38.e135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND In this study, we prepared and evaluated an injectable poloxamer (P407) hydrogel formulation for intratympanic (IT) delivery of dexamethasone (DEX). METHODS DEX-loaded P407 hydrogels were characterized in terms of thermogelation, drug loading capacities, particle size, and drug release. The in vivo toxicity and drug absorption of the DEX-loaded P407 formulation after IT injection were evaluated using an animal model by performing histopathological analysis and drug concentration measurements. RESULTS The P407 hydrogel effectively solubilized hydrophobic DEX and demonstrated a sustained release compared to the hydrophilic DEX formulation. The in vivo study showed that the hydrogel formulation delivered considerable drug concentrations to the inner ear and displayed a favorable safety profile without apparent cytotoxicity or inflammation. CONCLUSION P407 hydrogel can be useful as an injectable inner ear delivery formulation for hydrophobic drugs due to their biocompatibility, drug-solubilizing capacity, thermogelation, and controlled release.
Collapse
Affiliation(s)
- Thi Phuc Le
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea
| | - Yang Yu
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Ik Sung Cho
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea
| | - Eun Yeong Suh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea
| | - Hyuk Chan Kwon
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Sun-Ae Shin
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
64
|
Li F, Yang F, Guan C, Wei P, He D, Li Q, Wang L, Yuan M. Preparation and Cytotoxicity Evaluation of Folic Acid-Modified YF8-OA Self-Assembled Lipid Prodrug Nanoparticles. Pharm Dev Technol 2023; 28:452-459. [PMID: 37104639 DOI: 10.1080/10837450.2023.2206487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
This study aimed to improve the use of YF8, a matrine derivative obtained through chemical transformation of matrine extracted from Sophora alopecuroides. YF8 has demonstrated improved cytotoxicity compared to matrine, but its hydrophobic nature hinders its application. To overcome this, the lipid prodrug YF8-OA was synthesized by linking oleic acid (OA) to YF8 through an ester bond. Although YF8-OA could self-assemble into unique nanostructures in water, it was not sufficiently stable. To enhance the stability of YF8-OA lipid prodrug nanoparticles (LPs), we employed the strategy of PEGylation using DSPE-mPEG2000 or DSPE-mPEG2000 conjugated with folic acid (FA). This resulted in the formation of uniform spherical nanoparticles with greatly improved stability and a maximum drug load capacity upto 58.63%. Cytotoxicity was evaluated in A549, HeLa, and HepG2 cell lines. The results showed that in HeLa cells, the IC50 value of YF8-OA/LPs with FA-modified PEGylation was significantly lower than that of YF8-OA/LPs modified by PEGylation alone. However, no significant enhancement was observed in A549 and HepG2 cells. In conclusion, the lipid prodrug YF8-OA can form nanoparticles in aqueous solution to address its poor water solubility. Modification with FA resulted in further enhanced cytotoxicity, providing a potential avenue for exerting the antitumor activity of matrine analogs.
Collapse
Affiliation(s)
- Fu Li
- School of Medicine, Guangxi University, Nanning, China
| | - Fangfang Yang
- Guangxi - ASEAN Food Inspection and Testing Center, Nanning, China
| | - Chenxi Guan
- School of Medicine, Guangxi University, Nanning, China
| | - Pengcheng Wei
- School of Medicine, Guangxi University, Nanning, China
| | - Dongqiong He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Qingwen Li
- Zhejiang Jingxin Pharmaceutical Co., Ltd., Xinchang, China
| | - Lisheng Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Mingqing Yuan
- School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
65
|
Zhou T, Mao X, Xu L, Jin H, Cen L, Dong C, Xin L, Wu J, Lin W, Lv B, Ji F, Yu C, Shen Z. A new protective gel to facilitate ulcer healing in artificial ulcers following oesophageal endoscopic submucosal dissection: a multicentre, randomized trial. Sci Rep 2023; 13:6849. [PMID: 37101001 PMCID: PMC10133223 DOI: 10.1038/s41598-023-33982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
There are significant risks of adverse events following oesophageal endoscopic submucosal dissection (ESD), such as stricture, delayed bleeding and perforation. Therefore, it is necessary to protect artificial ulcers and promote the healing process. The current study was performed to investigate the protective role of a novel gel against oesophageal ESD-associated wounds. This was a multicentre, randomized, single-blind, controlled trial that recruited participants who underwent oesophageal ESD in four hospitals in China. Participants were randomly assigned to the control or experimental group in a 1:1 ratio and the gel was used after ESD in the latter. Masking of the study group allocations was only attempted for participants. The participants were instructed to report any adverse events on post-ESD days 1, 14, and 30. Moreover, repeat endoscopy was performed at the 2-week follow-up to confirm wound healing. Among the 92 recruited patients, 81 completed the study. In the experimental group, the healing rates were significantly higher than those in the control group (83.89 ± 9.51% vs. 73.28 ± 17.81%, P = 0.0013). Participants reported no severe adverse events during the follow-up period. In conclusion, this novel gel could safely, effectively, and conveniently accelerate wound healing following oesophageal ESD. Therefore, we recommend applying this gel in daily clinical practice.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, Zhejiang, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Lei Xu
- Department of Gastroenterology, Ningbo City First Hospital, Ningbo, Zhejiang, China
| | - Haifeng Jin
- Department of Gastroenterology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Li Cen
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, Zhejiang, China
| | - Caijuan Dong
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, Zhejiang, China
| | - Linying Xin
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, Zhejiang, China
| | - Jiali Wu
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, Zhejiang, China
| | - Weimiao Lin
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, Zhejiang, China
| | - Bin Lv
- Department of Gastroenterology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Feng Ji
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, Zhejiang, China
| | - Chaohui Yu
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, Zhejiang, China.
| | - Zhe Shen
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
66
|
Alven S, Ubanako P, Adeyemi SA, Ndinteh DT, Choonara YE, Aderibigbe BA. Carboxymethyl cellulose/poloxamer gels enriched with essential oil and Ag nanoparticles: promising wound dressings. Ther Deliv 2023; 14:139-156. [PMID: 37125434 DOI: 10.4155/tde-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Aim: Essential oils are promising antibacterial and wound-healing agents that should be explored for the design of wound dressings. Materials & methods: Topical gels prepared from a combination of carboxymethyl cellulose and poloxamer were incorporated with tea tree and lavender oil together with Ag nanoparticles. In vitro release, cytotoxicity, antibacterial, and wound healing studies were performed. Results: The gels displayed good spreadability with viscosity in the range of 210-1200 cP. The gels displayed promising antibacterial activity against selected Gram-positive and Gram-negative bacteria used in the study. The % cell viability of the gels was more than 90.83%. Conclusion: The topical gels displayed excellent wound closure in vitro revealing that they are potential wound dressings for bacteria-infected wounds.
Collapse
Affiliation(s)
- Sibusiso Alven
- Department of Chemistry University of Fort Hare, Alice Eastern Cape, 5700, South Africa
| | - Philemon Ubanako
- Department of Pharmacy & Pharmacology, Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Samson A Adeyemi
- Department of Pharmacy & Pharmacology, Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Derek T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Yahya E Choonara
- Department of Pharmacy & Pharmacology, Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
67
|
Pérez-González N, Espinoza LC, Rincón M, Sosa L, Mallandrich M, Suñer-Carbó J, Bozal-de Febrer N, Calpena AC, Clares-Naveros B. Gel Formulations with an Echinocandin for Cutaneous Candidiasis: The Influence of Azone and Transcutol on Biopharmaceutical Features. Gels 2023; 9:gels9040308. [PMID: 37102920 PMCID: PMC10138157 DOI: 10.3390/gels9040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Caspofungin is a drug that is used for fungal infections that are difficult to treat, including invasive aspergillosis and candidemia, as well as other forms of invasive candidiasis. The aim of this study was to incorporate Azone in a caspofungin gel (CPF-AZ-gel) and compare it with a promoter-free caspofungin gel (CPF-gel). An in vitro release study using a polytetrafluoroethylene membrane and ex vivo permeation into human skin was adopted. The tolerability properties were confirmed by histological analysis, and an evaluation of the biomechanical properties of the skin was undertaken. Antimicrobial efficacy was determined against Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. CPF-AZ-gel and CPF-gel, which had a homogeneous appearance, pseudoplastic behavior, and high spreadability, were obtained. The biopharmaceutical studies confirmed that caspofungin was released following a one-phase exponential association model and the CPF-AZ gel showed a higher release. The CPF-AZ gel showed higher retention of caspofungin in the skin while limiting the diffusion of the drug to the receptor fluid. Both formulations were well-tolerated in the histological sections, as well as after their topical application in the skin. These formulations inhibited the growth of C. glabrata, C. parapsilosis, and C. tropicalis, while C. albicans showed resistance. In summary, dermal treatment with caspofungin could be used as a promising therapy for cutaneous candidiasis in patients that are refractory or intolerant to conventional antifungal agents.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | | | - María Rincón
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona (UB), C. Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Mireia Mallandrich
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
68
|
Gradinaru LM, Bercea M, Lupu A, Gradinaru VR. Development of Polyurethane/Peptide-Based Carriers with Self-Healing Properties. Polymers (Basel) 2023; 15:polym15071697. [PMID: 37050311 PMCID: PMC10096672 DOI: 10.3390/polym15071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In situ-forming gels with self-assembling and self-healing properties are materials of high interest for various biomedical applications, especially for drug delivery systems and tissue regeneration. The main goal of this research was the development of an innovative gel carrier based on dynamic inter- and intramolecular interactions between amphiphilic polyurethane and peptide structures. The polyurethane architecture was adapted to achieve the desired amphiphilicity for self-assembly into an aqueous solution and to facilitate an array of connections with peptides through physical interactions, such as hydrophobic interactions, dipole-dipole, electrostatic, π–π stacking, or hydrogen bonds. The mechanism of the gelation process and the macromolecular conformation in water were evaluated with DLS, ATR-FTIR, and rheological measurements at room and body temperatures. The DLS measurements revealed a bimodal distribution of small (~30–40 nm) and large (~300–400 nm) hydrodynamic diameters of micelles/aggregates at 25 °C for all samples. The increase in the peptide content led to a monomodal distribution of the peaks at 37 °C (~25 nm for the sample with the highest content of peptide). The sol–gel transition occurs very quickly for all samples (within 20–30 s), but the equilibrium state of the gel structure is reached after 1 h in absence of peptide and required more time as the content of peptide increases. Moreover, this system presented self-healing properties, as was revealed by rheological measurements. In the presence of peptide, the structure recovery after each cycle of deformation is a time-dependent process, the recovery is complete after about 300 s. Thus, the addition of the peptide enhanced the polymer chain entanglement through intermolecular interactions, leading to the preparation of a well-defined gel carrier. Undoubtedly, this type of polyurethane/peptide-based carrier, displaying a sol–gel transition at a biologically relevant temperature and enhanced viscoelastic properties, is of great interest in the development of medical devices for minimally invasive procedures or precision medicine.
Collapse
|
69
|
Varela-Rey I, de la Iglesia D, San Bruno-Ruz A, Mejuto-Fernández R, Monteserín-Ron L, López-Diaz J, García-Salom P, González-Cantalapiedra A, Manuel Brea J, Piña-Márquez R, Díaz-Tomé V, González-Barcia M, Zarra-Ferro I, Mondelo-García C, Dominguez-Muñoz JE, Otero-Espinar FJ, Fernández-Ferreiro A. Design and biopharmaceutical preclinical characterisation of a new thermosensitive hydrogel for the removal of gastric polyps. Int J Pharm 2023; 635:122706. [PMID: 36803925 DOI: 10.1016/j.ijpharm.2023.122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND AND AIMS Submucosal injection agents are widely used solutions in gastric polyp resection techniques. Currently, many different solutions are used in clinical practice, but most are not authorised for this use or are not biopharmaceutical characterised. The objective of this multidisciplinary work is to test the efficacy of a novel thermosensitive hydrogel designed specifically for this indication. METHODS A mixture design of various components (Pluronic®, hyaluronic acid and sodium alginate) was carried out to select the combination with optimal properties for this use. Three final thermosensitive hydrogels were selected on which biopharmaceutical characterisation was performed and stability and biocompatibility were analysed. Efficacy in maintaining elevation was tested ex vivo on pig mucosa and in vivo in pigs RESULTS: The mixture design allowed selection of the ideal combinations of agents for the characteristics sought. The thermosensitive hydrogels studied showed high values of hardness and viscosity at 37 °C, maintaining good syringeability. One of them demonstrated superiority in maintaining polyp elevation in the ex vivo assay and non-inferiority in the in vivo assay. CONCLUSION The thermosensitive hydrogel specifically designed for this use is promising both for its biopharmaceutical characteristics and for its demonstrated efficacy. This study lays the foundation for evaluating the hydrogel in humans.
Collapse
Affiliation(s)
- Iria Varela-Rey
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Daniel de la Iglesia
- Digestive Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Alba San Bruno-Ruz
- Digestive Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Rafael Mejuto-Fernández
- Digestive Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Luzdivina Monteserín-Ron
- Digestive Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Javier López-Diaz
- Digestive Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Pedro García-Salom
- Pharmacy Department, University Clinical Hospital Dr. Balmis, 03010 Alicante, Spain
| | | | | | | | - Victoria Díaz-Tomé
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - J Enrique Dominguez-Muñoz
- Digestive Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
70
|
Halligan E, Zhuo S, Colbert DM, Alsaadi M, Tie BSH, Bezerra GSN, Keane G, Geever LM. Modulation of the Lower Critical Solution Temperature of Thermoresponsive Poly( N-vinylcaprolactam) Utilizing Hydrophilic and Hydrophobic Monomers. Polymers (Basel) 2023; 15:polym15071595. [PMID: 37050207 PMCID: PMC10096650 DOI: 10.3390/polym15071595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/14/2023] Open
Abstract
Four-dimensional printing is primarily based on the concept of 3D printing technology. However, it requires additional stimulus and stimulus-responsive materials. Poly-N-vinylcaprolactam is a temperature-sensitive polymer. Unique characteristics of poly-N-vinylcaprolactam -based hydrogels offer the possibility of employing them in 4D printing. The main aim of this study is to alter the phase transition temperature of poly-N-vinylcaprolactam hydrogels. This research focuses primarily on incorporating two additional monomers with poly-N-vinylcaprolactam: Vinylacetate and N-vinylpyrrolidone. This work contributes to this growing area of research by altering (increasing and decreasing) the lower critical solution temperature of N-vinylcaprolactam through photopolymerisation. Poly-N-vinylcaprolactam exhibits a lower critical solution temperature close to the physiological temperature range of 34-37 °C. The copolymers were analysed using various characterisation techniques, such as FTIR, DSC, and UV-spectrometry. The main findings show that the inclusion of N-vinylpyrrolidone into poly-N-vinylcaprolactam increased the lower critical solution temperature above the physiological temperature. By incorporating vinylacetate, the lower critical solution temperature dropped to 21 °C, allowing for potential self-assembly of 4D-printed objects at room temperature. In this case, altering the lower critical solution temperature of the material can potentially permit the transformation of the 4D-printed object at a particular temperature.
Collapse
Affiliation(s)
- Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Declan Mary Colbert
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Mohamad Alsaadi
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
- CONFIRM Centre for Smart Manufacturing, University of Limerick, V94 C928 Co. Limerick, Ireland
| | - Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gilberto S N Bezerra
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Luke M Geever
- Applied Polymer Technologies Gateway, Material Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| |
Collapse
|
71
|
Anosov AA, Smirnova EY, Korepanova EA, Kazamanov VA, Derunets AS. Different effects of two Poloxamers (L61 and F68) on the conductance of bilayer lipid membranes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:14. [PMID: 36920579 DOI: 10.1140/epje/s10189-023-00270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The integral conductance of planar lipid bilayer membranes in the presence of two Poloxamers (Pluronics) L61 and F68 with the same lengths of hydrophobic poly(propylene oxide) blocks and the different lengths of hydrophilic poly(ethylene oxide) blocks increases with an increase in the concentration of both Pluronics; however, the shape of the conductance-concentration curves is super linear for L61 and sublinear for F68. In the presence of both Pluronics, rare discrete current jumps are observed against the background of continuous current. At high concentrations, the I-V curves of membranes with both L61 and F68 became nonlinear at sufficiently low voltages but differed significantly. At voltages greater than 50 mV, the conductance of membranes with L61 increased sharply and quantized jumps were observed toward higher conductance, which could be interpreted as the appearance of additional pores. On the contrary, the conductance of membranes with F68 decreased and quantized jumps to lower conductance were observed, which could be interpreted as blocking of already existing pores. We attributed the differences in the conductance-concentration and I-V curves of these two Pluronics to their different effects on the dynamics of membrane hydration and, accordingly, on the probability of formation of conducting pores.
Collapse
Affiliation(s)
- A A Anosov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Kotelnikov Institute of Radioengineering and Electronics of RAS, Moscow, Russia
| | - E Yu Smirnova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - E A Korepanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V A Kazamanov
- MIREA-Russian Technological University, Moscow, Russia
| | - A S Derunets
- National Research Center Kurchatov Institute, Moscow, Russia.
| |
Collapse
|
72
|
Huysecom AS, Glorieux C, Thoen J, Thielemans W, Fustin CA, Moldenaers P, Cardinaels R. Phase behavior of medium-length hydrophobically associating PEO-PPO multiblock copolymers in aqueous media. J Colloid Interface Sci 2023; 641:521-538. [PMID: 36948106 DOI: 10.1016/j.jcis.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
HYPOTHESIS The micellization of block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) is driven by the dehydration of PPO at elevated temperatures. At low concentrations, a viscous solution of isolated micelles is obtained, whereas at higher concentrations, crowding of micelles results in an elastic gel. Alternating PEO-PPO multiblock copolymers are expected to exhibit different phase behavior, with altered phase boundaries and thermodynamics, as compared to PEO-PPO-PEO triblock copolymers (Pluronics®) with equal hydrophobicity, thereby proving the pivotal role of copolymer architecture and molecular weight. EXPERIMENTS Multiple characterization techniques were used to map the phase behavior as a function of temperature and concentration of PEO-PPO multiblock copolymers (ExpertGel®) in aqueous solution. These techniques include shear rheology, differential and adiabatic scanning calorimetry, isothermal titration calorimetry and light transmittance. The micellar size and topology were studied by dynamic light scattering. FINDINGS Multiblocks have lower transition temperatures and higher thermodynamic driving forces for micellization as compared to triblocks due to the presence of more than one PPO block per chain. With increasing concentration, the multiblock copolymers in solution gradually evolve into a viscoelastic network formed by soluble bridges in between micellar nodes, whereas hairy triblock micelles jam into liquid crystalline phases resembling an elastic colloidal crystal.
Collapse
Affiliation(s)
- An-Sofie Huysecom
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| | - Christ Glorieux
- Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.
| | - Jan Thoen
- Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| | - Charles-André Fustin
- Bio and Soft Matter, Institute of Condensed Matter and Nanosciences, UC Louvain, Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium; Processing and Performance of Materials, Department of Mechanical Engineering, TU Eindhoven, Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
73
|
Tang M, Zhong Z, Ke C. Advanced supramolecular design for direct ink writing of soft materials. Chem Soc Rev 2023; 52:1614-1649. [PMID: 36779285 DOI: 10.1039/d2cs01011a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host-guest inclusion, metal-ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.
Collapse
Affiliation(s)
- Miao Tang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Zhuoran Zhong
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| |
Collapse
|
74
|
Rafael D, Montero S, Carcavilla P, Andrade F, German-Cortés J, Diaz-Riascos ZV, Seras-Franzoso J, Llaguno M, Fernández B, Pereira A, Duran-Lara EF, Schwartz S, Abasolo I. Intracellular Delivery of Anti-Kirsten Rat Sarcoma Antibodies Mediated by Polymeric Micelles Exerts Strong In Vitro and In Vivo Anti-Tumorigenic Activity in Kirsten Rat Sarcoma-Mutated Cancers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10398-10413. [PMID: 36795046 DOI: 10.1021/acsami.2c19897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Kirsten rat sarcoma viral oncogene (KRAS) is one of the most well-known proto-oncogenes, frequently mutated in pancreatic and colorectal cancers, among others. We hypothesized that the intracellular delivery of anti-KRAS antibodies (KRAS-Ab) with biodegradable polymeric micelles (PM) would block the overactivation of the KRAS-associated cascades and revert the effect of its mutation. To this end, PM-containing KRAS-Ab (PM-KRAS) were obtained using Pluronic F127. The feasibility of using PM for antibody encapsulation as well as the conformational change of the polymer and its intermolecular interactions with the antibodies was studied, for the first time, using in silico modeling. In vitro, encapsulation of KRAS-Ab allowed their intracellular delivery in different pancreatic and colorectal cancer cell lines. Interestingly, PM-KRAS promoted a high proliferation impairment in regular cultures of KRAS-mutated HCT116 and MIA PaCa-2 cells, whereas the effect was neglectable in non-mutated or KRAS-independent HCT-8 and PANC-1 cancer cells, respectively. Additionally, PM-KRAS induced a remarkable inhibition of the colony formation ability in low-attachment conditions in KRAS-mutated cells. In vivo, when compared with the vehicle, the intravenous administration of PM-KRAS significantly reduced tumor volume growth in HCT116 subcutaneous tumor-bearing mice. Analysis of the KRAS-mediated cascade in cell cultures and tumor samples showed that the effect of PM-KRAS was mediated by a significant reduction of the ERK phosphorylation and a decrease in expression in the stemness-related genes. Altogether, these results unprecedently demonstrate that the delivery of KRAS-Ab mediated by PM can safely and effectively reduce the tumorigenicity and the stemness properties of KRAS-dependent cells, thus bringing up new possibilities to reach undruggable intracellular targets.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Sara Montero
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Pilar Carcavilla
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Fernanda Andrade
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Júlia German-Cortés
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Zamira V Diaz-Riascos
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Monserrat Llaguno
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Begoña Fernández
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Alfredo Pereira
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Metropolitan Region 8380492, Chile
| | - Esteban F Duran-Lara
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca, Maule 1141, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, P.O. Box 747, Talca, Maule 1141, Chile
| | - Simó Schwartz
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| |
Collapse
|
75
|
Seo Y, Lim H, Park H, Yu J, An J, Yoo HY, Lee T. Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics 2023; 15:772. [PMID: 36986633 PMCID: PMC10058399 DOI: 10.3390/pharmaceutics15030772] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Numerous drugs have emerged to treat various diseases, such as COVID-19, cancer, and protect human health. Approximately 40% of them are lipophilic and are used for treating diseases through various delivery routes, including skin absorption, oral administration, and injection. However, as lipophilic drugs have a low solubility in the human body, drug delivery systems (DDSs) are being actively developed to increase drug bioavailability. Liposomes, micro-sponges, and polymer-based nanoparticles have been proposed as DDS carriers for lipophilic drugs. However, their instability, cytotoxicity, and lack of targeting ability limit their commercialization. Lipid nanoparticles (LNPs) have fewer side effects, excellent biocompatibility, and high physical stability. LNPs are considered efficient vehicles of lipophilic drugs owing to their lipid-based internal structure. In addition, recent LNP studies suggest that the bioavailability of LNP can be increased through surface modifications, such as PEGylation, chitosan, and surfactant protein coating. Thus, their combinations have an abundant utilization potential in the fields of DDSs for carrying lipophilic drugs. In this review, the functions and efficiencies of various types of LNPs and surface modifications developed to optimize lipophilic drug delivery are discussed.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| |
Collapse
|
76
|
Su R, Li P, Zhang Y, Lv Y, Wen F, Su W. Polydopamine/tannic acid/chitosan/poloxamer 407/188 thermosensitive hydrogel for antibacterial and wound healing. Carbohydr Polym 2023; 302:120349. [PMID: 36604043 DOI: 10.1016/j.carbpol.2022.120349] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
The design and development of smart shape-adaptable wound dressings with superior antimicrobial ability remain a challenge in therapeutic and clinical application. Herein, polydopamine/tannic acid/chitosan/poloxamer 407/188 hydrogel (PTCPP) was prepared with the aim of developing an in situ-formed antibacterial wound dressing with temperature stimulation and near-infrared radiation (NIR) responsive ability. PTCPP possessed injectability, photothermal stability, sustained release properties and cytocompatibility. In vitro antibacterial results showed that the bactericidal rates of PTCPP against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) under NIR irradiation were 99.994 % and 99.91 %, respectively. In vivo experiments, PTCPP can adapt to shape of the wound, showing good adhesion, while promoting wound healing in bacterial infections. Therefore, PTCPP has potential application in the treatment of infectious wounds, and provides a strategic choice for developing antibacterial wound dressing combined with photothermal therapy.
Collapse
Affiliation(s)
- Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yingbin Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
77
|
Cannabidiol-Loaded Nanostructured Lipid Carriers (NLCs) for Dermal Delivery: Enhancement of Photostability, Cell Viability, and Anti-Inflammatory Activity. Pharmaceutics 2023; 15:pharmaceutics15020537. [PMID: 36839859 PMCID: PMC9964291 DOI: 10.3390/pharmaceutics15020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to encapsulate cannabidiol (CBD) extract in nanostructured lipid carriers (NLCs) to improve the chemical stability and anti-inflammatory activity of CBD for dermal delivery. CBD-loaded NLCs (CBD-NLCs) were prepared using cetyl palmitate (CP) as a solid lipid and stabilized with Tego® Care 450 (TG450) or poloxamer 188 (P188) by high-pressure homogenization (HPH). The CBD extract was loaded at 1% w/w. Three different oils were employed to produce CBD-NLCs, including Transcutol® P, medium-chain triglycerides (MCT), and oleic acid (OA). CBD-NLCs were successfully prepared with an entrapment efficiency (E.E.) of 100%. All formulations showed particle sizes between 160 and 200 nm with PDIs less than 0.10. The type of surfactant and oil used affected the particle sizes, zeta potential, and crystallinity of the CBD-NLCs. CBD-NLCs stabilized with TG450 showed higher crystallinity after production and storage at 30 °C for 30 days as compared to those with P188. Encapsulation of the CBD extract in NLCs enhanced its chemical stability after exposure to simulated sunlight (1000 kJ/m2) compared to that of the CBD extract in ethanolic solution. The CBD-NLCs prepared from MCT and OA showed slower CBD release compared with that from Transcutol® P, and the kinetic data for release of CBD from CBD-NLCs followed Higuchi's release model with a high coefficient of determination (>0.95). The extent of CBD permeation through Strat-M® depended on the oil type. The cytotoxicity of the CBD extract on HaCaT and HDF cells was reduced by encapsulation in the NLCs. The anti-inflammatory activity of the CBD extract in RAW264.7 cell macrophages was enhanced by encapsulation in CBD-NLCs prepared from MCT and OA.
Collapse
|
78
|
Haloi P, Chawla S, Konkimalla VB. Thermosensitive smart hydrogel of PEITC ameliorates the therapeutic efficacy in rheumatoid arthritis. Eur J Pharm Sci 2023; 181:106367. [PMID: 36572358 DOI: 10.1016/j.ejps.2022.106367] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune condition that accompanies chronic inflammation of joints with limited therapeutic options. Phenethyl isothiocyanate (PEITC), a bioactive phytochemical, exerts its chemopreventive, anti-oxidant, and anti-inflammatory activity via the Nrf-2 pathway. However, limited water solubility, short half-life, and instability are reasons for the low bioavailability of PEITC that hampers clinical application. From studies in healthy rats, the performance of PEITC-loaded chitosan/pluronic F-127 smart hydrogel (PH) as a thermosensitive injectable demonstrated adequate thermosensitivity (gel formation), injectability (ease of administration), biocompatibility (with prolonged contact), pharmacokinetics (sustained drug release), and biosafety (nontoxic to major organs). In the adjuvant-induced arthritis (AIA) rat model, PEITC-hydrogel (PH50) injected into the knee joint lowered RA-related symptoms significantly (paw edema and arthritis score). Further, a marked reduction in bone erosion and inflammation-specific biomarkers was observed. Finally, this study demonstrates a smart injectable hydrogel optimally loaded with PEITC which is safe, biocompatible and exhibits significant therapeutic efficacy in RA conditions.
Collapse
Affiliation(s)
- Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
79
|
Intranasally administered thermosensitive gel for brain-targeted delivery of rhynchophylline to treat Parkinson's disease. Colloids Surf B Biointerfaces 2023; 222:113065. [PMID: 36473372 DOI: 10.1016/j.colsurfb.2022.113065] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The aim of this study is to overcome the obstacle of the blood-brain barrier (BBB) in therapeutic drugs of Parkinson's disease (PD), like rhynchophylline (RIN) entry by intranasal administration and to solve the problem of short residence time of drugs in the nasal cavity by the dosage form design of thermosensitive gel. We first conducted a study of the screening of absorption enhancers and 3% hydroxypropyl-β-cyclodextrin (HP-β-CD) was effective to improve the nasal mucosal permeability of RIN. By adjusting the ratio of different components in order to make the gel with adhesion and rapid gelation which were determined to be Poloxamer 407 (P407) 20%, Poloxamer 188 (P188) 1%, polyethylene glycol 6000 (PEG-6000) 1% and HP-β-CD 3%. In addition, the characterization showed that the thermosensitive gel was network cross-linked, rapidly gelation upon entry into the nasal cavity and was stable as semi-solid state with adhesion as well as sustained release properties. Moreover, pharmacokinetic study was performed to evaluate the bioavailability and brain targeting of RIN thermosensitive gel and which were 1.6 times and 2.1 times higher than those of oral administration. We also evaluated the anti-PD effects of RIN thermosensitive gel in-vitro as well as in-vivo. The results showed that RIN thermosensitive gel was effective in repairing the motor function impairment, dysregulated expression levels of oxidative stress factors, and positive neuronal damage within the substantia nigra and dopamine caused by PD. The constructed intranasal drug administration strategy through thermosensitive gel provided a new choice for targeted treatment of PD together with other central nervous system diseases.
Collapse
|
80
|
Hrynevich A, Li Y, Cedillo-Servin G, Malda J, Castilho M. (Bio)fabrication of microfluidic devices and organs-on-a-chip. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
81
|
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023; 353:802-822. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Collapse
Affiliation(s)
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - João Prata
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Ricardo Martins Lopes da Fonte
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP) and Tiradentes University, Aracaju, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
82
|
Dauer K, Werner C, Lindenblatt D, Wagner KG. Impact of process stress on protein stability in highly-loaded solid protein/PEG formulations from small-scale melt extrusion. Int J Pharm X 2022; 5:100154. [PMID: 36632069 PMCID: PMC9826855 DOI: 10.1016/j.ijpx.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
As protein-based therapeutics often exhibit a limited stability in liquid formulations, there is a growing interest in the development of solid protein formulations due to improved protein stability in the solid state. We used small-scale (<3 g) ram and twin-screw extrusion for the solid stabilization of proteins (Lysozyme, BSA, and human insulin) in PEG-matrices. Protein stability after extrusion was systematically investigated using ss-DSC, ss-FTIR, CD spectroscopy, SEM-EDX, SEC, RP-HPLC, and in case of Lysozyme an activity assay. The applied analytical methods offered an accurate assessment of protein stability in extrudates, enabling the comparison of different melt extrusion formulations and process parameters (e.g., shear stress levels, screw configurations, residence times). Lysozyme was implemented as a model protein and was completely recovered in its active form after extrusion. Differences seen between Lysozyme- and BSA- or human insulin-loaded extrudates indicated that melt extrusion could have an impact on the conformational stability. In particular, BSA and human insulin were more susceptible to heat exposure and shear stress compared to Lysozyme, where shear stress was the dominant parameter. Consequently, ram extrusion led to less conformational changes compared to TSE. Ram extrusion showed good protein particle distribution resulting in the preferred method to prepare highly-loaded solid protein formulations.
Collapse
Key Words
- BSA, bovine serum albumin
- BSE, backscattered electron
- CD, circular dichroism
- DSC, Differential Scanning Calorimetry
- EDX, energy-dispersive X-ray detector
- EVA, Ethylene-vinyl acetate
- FTIR, Fourier transformation infrared spectroscopy
- HME, hot-melt extrusion
- HMWS, high molecular weight species
- Hot-melt extrusion
- PEG, polyethylene glycol
- PEO, polyethylene oxide
- PLGA, Poly Lactic-co-Glycolic Acid
- Protein stability
- SEM, scanning electron microscopy
- Small-scale
- Solid-state characterization
- TSE, twin-screw extrusion
- ss, solid-state
Collapse
Affiliation(s)
- Katharina Dauer
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
| | - Christian Werner
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Dirk Lindenblatt
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Karl Gerhard Wagner
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
- Corresponding author at: University of Bonn, Department of Pharmaceutics, 53121 Bonn, Germany.
| |
Collapse
|
83
|
Mishra S, Streeter PR. Micelle-Based Nanocarriers for Targeted Delivery of Cargo to Pancreas. Methods Mol Biol 2022; 2592:175-184. [PMID: 36507993 DOI: 10.1007/978-1-0716-2807-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innovations in the field of amphiphilic block copolymers have led to the development of a series of attractive polymer-based drug and gene delivery micellar formulations. The amphiphilic block copolymers' low critical micelle concentration (CMC) results in highly stable nanoscale micelles possessing favorable in vivo safety profiles and biocompatibility, making them an excellent carrier choice for the systemic administration of various poorly soluble drugs. These micelles can also be used as an actively targeted drug delivery system. The targeting is achieved by conjugating specific targeting ligand molecules to the micelle surface. The conjugation takes place at the hydrophilic termini of the copolymers, which forms the shell or surface of the nanomicelles. In our lab, we have developed a targeted Pluronic® F127-based nanoformulation to achieve targeting of specific cell types in the pancreas. To achieve active targeting based on the desired end application, we have conjugated several monoclonal antibodies (~150 kDa IgG) reactive to specific cell types in the pancreas by coupling lysine amino groups of the antibody to the p-nitrophenyl carbonate groups generated on the hydrophilic PEO segments of the Pluronic® F127. The resultant targeted nanomicelles demonstrated high binding specificity and targeting efficiency. These nanomicelles can be used to encapsulate and deliver hydrophobic imaging agents and/or water-insoluble therapeutic small molecules to specific pancreatic cell types, enabling the development of diverse tools for use in the diagnosis and/or treatment of pancreas pathologies.
Collapse
Affiliation(s)
- Swati Mishra
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA.
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health and Science University, OR, USA.
| | - Philip R Streeter
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health and Science University, OR, USA
| |
Collapse
|
84
|
Temperature-responsive hydrogel for tumor embolization therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
85
|
Jin X, Zhang W, Shan J, He J, Qian H, Chen X, Wang X. Thermosensitive Hydrogel Loaded with Nickel-Copper Bimetallic Hollow Nanospheres with SOD and CAT Enzymatic-Like Activity Promotes Acute Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50677-50691. [PMID: 36326126 DOI: 10.1021/acsami.2c17242] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Various injury defense and repair functions are performed by the skin. Free radicals secreted after injury cause oxidative stress and inflammatory responses, which make wound healing difficult. However, the current metal nanomaterials for wound repair do not have sufficient catalytic activity or complex material design and cannot properly fit wounds. Therefore, it is imperative to develop more effective therapeutic approaches. This study investigated the effect of Ni4Cu2 hollow nanospheres composited with F127 hydrogel on promoting wound healing by applying them to wounds. Ni4Cu2 hollow nanospheres exhibited a superior spatial structure, contained many catalytic sites, and could be synthesized in a simple manner. In vitro experiments showed that Ni4Cu2 hollow nanospheres had superoxide dismutase-like activity and promoted fibroblast migration, angiogenesis, and macrophage polarization. F127, which is a thermosensitive, nontoxic, phase-change and porous hydrogel material, has proven to be an effective choice for injectable and sprayable medical dressings. Ni4Cu2 hollow nanospheres were mixed with F127 hydrogel without significantly affecting its performance. In addition to adapting to the complex, irregular gaps of acute wounds, the mixture lengthened the nanozyme release time, which enhanced healing. Based on the animal experiments, the Ni4Cu2/F127 composite hydrogel effectively promoted wound healing, epithelial regeneration, and the formation of skin appendages such as hair follicles in mice. Furthermore, the Ni4Cu2/F127 composite hydrogel was nontoxic to animals and had high biological safety. The Ni4Cu2/F127 composite hydrogel has provided an innovative strategy to develop composite hydrogels for the treatment of acute skin wounds.
Collapse
Affiliation(s)
- Xu Jin
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei230022, P. R. China
| | - Wei Zhang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, P. R. China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei230022, P. R. China
| | - Jia He
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei230022, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, P. R. China
| | - Xulin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, P. R. China
| |
Collapse
|
86
|
Development and Evaluation of PLGA Nanoparticle-Loaded Organogel for the Transdermal Delivery of Risperidone. Gels 2022; 8:gels8110709. [PMID: 36354616 PMCID: PMC9689791 DOI: 10.3390/gels8110709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
A transdermal delivery approach may circumvent the limitations associated with the oral use of risperidone (RIS), an atypical antipsychotic drug. The current study focuses on the utilization of poloxamer (pluronic) lecithin organogel (PLO), a suitable transdermal vehicle, and a biodegradable nanoparticulate system of PLGA with the potential to deliver RIS in an efficient way. PLGA nanoparticles were fabricated using different ratios of the polymer and surfactant. The optimization was performed principally on the basis of particle size and entrapment efficiency (EE). The developed PLGA nanoparticles were spherical, sized around 109 nm with negative charge (−9.3 mv) and enhanced drug entrapment efficiency (58%). The in vitro drug release study of lyophilized nanoparticles showed a sustained pattern. Statistical analysis confirmed that there was a significant difference (p < 0.05) between the nanoparticle-loaded PLO gel and conventional drug formulations in terms of drug release and ex vivo permeation across rat skin (three-fold). The results confirm enhanced drug release and permeation through the skin at 72 h. Hence, the investigated formulation could be a better alternative to the conventional route for improving patient compliance.
Collapse
|
87
|
The influence of different bioadhesive polymers on physicochemical properties of thermoresponsive emulgels containing Amazonian andiroba oil. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
88
|
Bardoula V, Leclercq L, Hoogenboom R, Nardello-Rataj V. Amphiphilic nonionic block and gradient copoly(2-oxazoline)s based on 2-methyl-2-oxazoline and 2-phenyl-2-oxazoline as efficient stabilizers for the formulation of tailor-made emulsions. J Colloid Interface Sci 2022; 632:223-236. [DOI: 10.1016/j.jcis.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
89
|
Shafiq A, Ahmad M, Minhas MU, Shoukat H, Pervaiz F, Shafique M, Ashraf S. Tolterodine tartrate loaded biodegradable and pH-responsive amphiphilic block copolymer (PF127) hydrogels: synthesis, characterization, and acute toxicity evaluation. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2075274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Afifa Shafiq
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Hina Shoukat
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Mamuna Shafique
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Shazia Ashraf
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
90
|
Liang X, Gillies ER. Self-immolative Amphiphilic Diblock Copolymers with Individually Triggerable Blocks. ACS POLYMERS AU 2022; 2:313-323. [PMID: 36254315 PMCID: PMC9562457 DOI: 10.1021/acspolymersau.2c00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Self-immolative polymers
are a growing class of degradable polymers
that undergo end-to-end depolymerization after the stimuli-responsive
cleavage of an end-cap or backbone unit. Their incorporation into
amphiphilic block copolymers can lead to functions such as the disintegration
of copolymer nanoassemblies when depolymerization is triggered. However,
diblock copolymers have not yet been developed where both blocks are
self-immolative. Described here is the synthesis, self-assembly, and
triggered depolymerization of self-immolative block copolymers with
individually triggerable hydrophilic and hydrophobic blocks. Neutral
and cationic hydrophilic polyglyxoylamides (PGAm) with acid-responsive
end caps were synthesized and coupled to an ultraviolet (UV) light-triggerable
poly(ethyl glyoxylate) (PEtG) hydrophobic block. The resulting block
copolymers self-assembled to form nanoparticles in aqueous solution,
and their depolymerization in response to acid and UV light was studied
by techniques including light scattering, NMR spectroscopy, and electron
microscopy. Acid led to selective depolymerization of the PGAm blocks,
leading to aggregation, while UV light led to selective depolymerization
of the PEtG block, leading to disassembly. This self-immolative block
copolymer system provides an enhanced level of control over smart
copolymer assemblies and their degradation.
Collapse
Affiliation(s)
- Xiaoli Liang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Elizabeth R. Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
- The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada, N6A 5B9
| |
Collapse
|
91
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
92
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
93
|
Protopapa C, Siamidi A, Pavlou P, Vlachou M. Excipients Used for Modified Nasal Drug Delivery: A Mini-Review of the Recent Advances. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6547. [PMID: 36233902 PMCID: PMC9571052 DOI: 10.3390/ma15196547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ongoing challenging task in the field of nasal drug delivery is the maintenance of an efficient concentration of the active substance in the target area for an adequate period of time. Thus, there is an urgent need to develop effective new strategies for drug delivery to the nose, using cutting edge technology and materials for this particular type of drug delivery. This review gives an account of the critical components of nasal drug delivery and the parameters influencing drug absorption in the nose, including the excipients required for modified drug administration.
Collapse
Affiliation(s)
- Chrystalla Protopapa
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Angeliki Siamidi
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
94
|
Brambilla E, Locarno S, Gallo S, Orsini F, Pini C, Farronato M, Thomaz DV, Lenardi C, Piazzoni M, Tartaglia G. Poloxamer-Based Hydrogel as Drug Delivery System: How Polymeric Excipients Influence the Chemical-Physical Properties. Polymers (Basel) 2022; 14:polym14173624. [PMID: 36080699 PMCID: PMC9460339 DOI: 10.3390/polym14173624] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Thermogelling amphiphilic block copolymers have been widely investigated in the development of pharmaceutical drug carriers. In particular, thermosensitive gels based on poloxamer 407 (P407) have great potential for periodontal disease treatment, thanks to their ability to be liquid at room temperature and become viscous gels at body temperature. However, some problems, related to short in situ residence time, reduce their feasible clinical use. Thus, in order to improve the effective applicability of these materials, we studied how P407 thermogels are affected by the pH and by the inclusion of different hydrophilic polymers, used as excipients for increasing the gel stiffness. For this scope, a complete chemical-physical characterization of the synthesized gels is provided, in terms of determination of sol-gel transition temperature, viscosity and erosion degree. The data are correlated according to a statistical multivariate approach based on Principal Component Analysis and their mucoadhesion properties are also tested by Tapping mode-Atomic Force Microscopy (TM-AFM) imaging. Finally, we studied how the different P407 formulations are able to influence the release pathway of two antibacterial drugs (i.e., chlorhexidine digluconate and doxycycline hyclate) largely used in oral diseases.
Collapse
Affiliation(s)
- Elisa Brambilla
- Department of Pharmaceutical Sciences, Section of General and Organic Chemistry Section “A. Marchesini”, University of Milan, 20133 Milan, Italy
| | - Silvia Locarno
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
- Correspondence:
| | - Salvatore Gallo
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
| | - Francesco Orsini
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
| | - Carolina Pini
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
| | - Marco Farronato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| | - Douglas Vieira Thomaz
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Cristina Lenardi
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
| | - Marco Piazzoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| |
Collapse
|
95
|
Henrici De Angelis L, Stirpe M, Tomolillo D, Donelli G, Francolini I, Vuotto C. The Multifunctional Role of Poloxamer P338 as a Biofilm Disrupter and Antibiotic Enhancer: A Small Step forward against the Big Trouble of Catheter-Associated Escherichia coli Urinary Tract Infections. Microorganisms 2022; 10:microorganisms10091757. [PMID: 36144359 PMCID: PMC9503575 DOI: 10.3390/microorganisms10091757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Poloxamer 338 (P338), a nonionic surfactant amphiphilic copolymer, is herein proposed as an anti-biofilm compound for the management of catheter-associated urinary tract infections (CAUTIs). P338’s ability to disrupt Escherichia coli biofilms on silicone urinary catheters and to serve as antibiotic enhancer was evaluated for biofilm-producing E. coli Ec5FSL and Ec9FSL clinical strains, isolated from urinary catheters. In static conditions, quantitative biofilm formation assay allowed us to determine the active P338 concentration. In dynamic conditions, the BioFlux system, combined with confocal laser scanning microscopy, allowed us to investigate the P338 solution’s ability to detach biofilm, alone or in combination with sub-MIC concentrations of cefoxitin (FOX). The 0.5% P338 solution was able to destroy the structure of E. coli biofilms, to reduce the volume and area fraction covered by adherent cells (41.42 ± 4.79% and 56.20 ± 9.22% reduction for the Ec5FSL and Ec9FSL biofilms, respectively), and to potentiate the activity of 1\2 MIC FOX in disaggregating biofilms (19.41 ± 7.41% and 34.66 ± 3.75% reduction in the area fraction covered by biofilm for Ec5FSL and Ec9FSL, respectively) and killing cells (36.85 ± 7.13% and 32.33 ± 4.65% increase in the biofilm area covered by dead Ec5FSL and Ec9FSL cells, respectively).
Collapse
Affiliation(s)
- Lucia Henrici De Angelis
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Science, Roma Tre University, 00154 Rome, Italy
| | - Mariarita Stirpe
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Dario Tomolillo
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Gianfranco Donelli
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (I.F.); (C.V.); Tel.: +39-06-49913162 (I.F.); +39-06-501703120 (C.V.)
| | - Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Correspondence: (I.F.); (C.V.); Tel.: +39-06-49913162 (I.F.); +39-06-501703120 (C.V.)
| |
Collapse
|
96
|
New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022; 14:pharmaceutics14081700. [PMID: 36015325 PMCID: PMC9416043 DOI: 10.3390/pharmaceutics14081700] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 12/20/2022] Open
Abstract
In the last decade, nanomedicine has arisen as an emergent area of medicine, which studies nanometric systems, namely polymeric micelles (PMs), that increase the solubility and the stability of the encapsulated drugs. Furthermore, their application in dermal drug delivery is also relevant. PMs present unique characteristics because of their unique core-shell architecture. They are colloidal dispersions of amphiphilic compounds, which self-assemble in an aqueous medium, giving a structure-type core-shell, with a hydrophobic core (that can encapsulate hydrophobic drugs), and a hydrophilic shell, which works as a stabilizing agent. These features offer PMs adequate steric protection and determine their hydrophilicity, charge, length, and surface density properties. Furthermore, due to their small size, PMs can be absorbed by the intestinal mucosa with the drug, and they transport the drug in the bloodstream until the therapeutic target. Moreover, PMs improve the pharmacokinetic profile of the encapsulated drug, present high load capacity, and are synthesized by a reproducible, easy, and low-cost method. In silico approaches have been explored to improve the physicochemical properties of PMs. Based on this, a computer-aided strategy was developed and validated to enable the delivery of poorly soluble drugs and established critical physicochemical parameters to maximize drug loading, formulation stability, and tumor exposure. Poly(2-oxazoline) (POx)-based PMs display unprecedented high loading concerning water-insoluble drugs and over 60 drugs have been incorporated in POx PMs. Among various stimuli, pH and temperature are the most widely studied for enhanced drug release at the site of action. Researchers are focusing on dual (pH and temperature) responsive PMs for controlled and improved drug release at the site of action. These dual responsive systems are mainly evaluated for cancer therapy as certain malignancies can cause a slight increase in temperature and a decrease in the extracellular pH around the tumor site. This review is a compilation of updated therapeutic applications of PMs, such as PMs that are based on Pluronics®, micelleplexes and Pox-based PMs in several biomedical applications.
Collapse
|
97
|
Xu Y, Wang YN, Chong JY, Wang R. Thermo-responsive nonionic amphiphilic copolymers as draw solutes in forward osmosis process for high-salinity water reclamation. WATER RESEARCH 2022; 221:118768. [PMID: 35752097 DOI: 10.1016/j.watres.2022.118768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Recently, thermo-responsive nonionic amphiphilic copolymers have shown a great potential as forward osmosis (FO) draw solutes for high-salinity water desalination and zero-liquid discharge (ZLD). However, the relationship between the copolymer structural properties and key characteristics as draw solutes, as well as copolymer's chemical stability after regeneration have not been much studied. In this work, we systematically investigated poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) (PEO-PPO-PEO) copolymers as draw solute. The results showed that the PEO segments significantly influenced the viscosity, osmotic pressure and lowest phase separation temperature of the copolymer aqueous solutions. Among four commercial copolymers studied, Pluronic® L35 with moderate molecular weight (Mn 1,900 Da), 50% PEO, and relatively high hydrophilic-lipophilic balance (HLB) showed the best draw solution (DS) performance. It also showed great stability in physiochemical properties and draw capacity after more than ten cycles of regeneration. On the other hand, despite the fact that membrane fouling was observed due to the use of copolymer DS, the FO flux (∼1.2 L m‒2 h‒1, as similar with the virgin membrane) was not affected when high-salinity feedwater such as seawater RO brine was applied. Overall, our study has provided a more comprehensive understanding on the characteristics of nonionic amphiphilic copolymer DS and showcased the promise of copolymer-driven FO process in high-salinity water desalination and ZLD.
Collapse
Affiliation(s)
- Yilin Xu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
98
|
Liu Q, Zhai W. Hierarchical Porous Ceramics with Distinctive Microstructures by Emulsion-Based Direct Ink Writing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32196-32205. [PMID: 35786835 DOI: 10.1021/acsami.2c03245] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hierarchical porous materials are ubiquitous in nature and have inspired the fabrication of cellular structures for a multitude of applications. As an extrusion-based 3D printing technique, direct ink writing (DIW) allows for customizable design and accurate control of printed structures. Recently, its combination with colloidal processing methods used for bulk porous ceramics, such as emulsion templating, has further extended its capability of fabricating porous ceramics across multiple length scales. In light of the recent development, the ink formulation for emulsion-based DIW can be further explored, and there is still a need for a better understanding of the structure-property relationship. Herein, we introduce two types of gelling additives, i.e., poly(ethylenimine) (PEI) and Pluronic F-127, respectively, into particle-stabilized emulsions and fabricate hierarchical porous alumina lattices by DIW. We discover that the two gelling additives can lead to distinctive microstructures due to their different gelling mechanisms. Moreover, the 3D printed hierarchical porous ceramic lattices are found to exhibit a potential energy absorption property. The effects of ink formulations, including gelling additives and solid loading, on ink rheology, microstructure, and mechanical properties are investigated. The 3D printed hierarchical porous ceramic lattices exhibit a high average porosity of 73.7%-79.3% with an average compressive strength of 1.53-9.61 MPa and a specific energy absorption of 0.33-2.67 J/g. Featuring two distinctive microstructures with tunable structural features and mechanical properties, the 3D printed hierarchical porous ceramics in this study have potential in many applications, including lightweight structures, tissue engineering scaffolds, filtration, etc.
Collapse
Affiliation(s)
- Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, 117575 Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, 117575 Singapore
| |
Collapse
|
99
|
Zhao Y, Liu X, Peng X, Zheng Y, Cheng Z, Sun S, Ding Q, Liu W, Ding C. A poloxamer/hyaluronic acid/chitosan-based thermosensitive hydrogel that releases dihydromyricetin to promote wound healing. Int J Biol Macromol 2022; 216:475-486. [PMID: 35810849 DOI: 10.1016/j.ijbiomac.2022.06.210] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Wounds caused by accidents and surgery are inevitable, and inflammation and microbial infection during the healing process are serious clinical challenges, resulting in slow wound healing. In this study, we created a 37 °C-sensitive hydrogel using poloxamer, chitosan and hyaluronic acid, loaded with the active substance dihydromyricetin, and further evaluated its potential for wound healing. The hydrogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis for their micromorphological structure, characteristic functional groups, crystal structure and thermal stability, and in vitro drug release assays showed that the hydrogel could slowly release dihydromyricetin. In addition, the hydrogels were found to exhibit good biocompatibility and significant in vitro antioxidant and anti-inflammatory activity according to hemolysis, in vitro antioxidant and anti-inflammatory tests. Methyl thiazolyl tetrazole cytotoxicity tests verified that the film was non-toxic to human keratinocyte (HaCaT) cells, while in vivo experiments showed that this hydrogel could promote skin repair by promoting skin-associated growth factor expression and inhibiting nuclear factor kappa B-mediated cellular inflammatory factors. These results demonstrated that the temperature-sensitive hydrogels loaded with dihydromyricetin could serve as potential candidates for guided skin repair.
Collapse
Affiliation(s)
- Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China.
| | - Chuanbo Ding
- School of Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China.
| |
Collapse
|
100
|
The Use of Polymer Blends in the Treatment of Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071431. [PMID: 35890326 PMCID: PMC9322751 DOI: 10.3390/pharmaceutics14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The eye is an organ with limited drug access due to its anatomical and physiological barriers, and the usual forms of ocular administration are limited in terms of drug penetration, residence time, and bioavailability, as well as low patient compliance. Hence, therapeutic innovations in new drug delivery systems (DDS) have been widely explored since they show numerous advantages over conventional methods, besides delivering the content to the eye without interfering with its normal functioning. Polymers are usually used in DDS and many of them are applicable to ophthalmic use, especially biodegradable ones. Even so, it can be a hard task to find a singular polymer with all the desirable properties to deliver the best performance, and combining two or more polymers in a blend has proven to be more convenient, efficient, and cost-effective. This review was carried out to assess the use of polymer blends as DDS. The search conducted in the databases of Pubmed and Scopus for specific terms revealed that although the physical combination of polymers is largely applied, the term polymer blend still has low compliance.
Collapse
|