51
|
Sakai T, Kawano K, Iino M, Takeuchi T, Imanishi M, Futaki S. Loosening of Lipid Packing by Cell‐Surface Recruitment of Amphiphilic Peptides by Coiled‐Coil Tethering. Chembiochem 2019; 20:2151-2159. [DOI: 10.1002/cbic.201900347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Takayuki Sakai
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Kenichi Kawano
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Masatomo Iino
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Toshihide Takeuchi
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Miki Imanishi
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| | - Shiroh Futaki
- Institute for Chemical ResearchKyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
52
|
Sarhadi S, Ganjali S, Pirro M, Sahebkar A. The role of high-density lipoproteins in antitumor drug delivery. IUBMB Life 2019; 71:1442-1452. [PMID: 31290612 DOI: 10.1002/iub.2105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/01/2019] [Indexed: 01/30/2023]
Abstract
High-density lipoproteins (HDLs) are the smallest lipoprotein with the highest level of protein in their surface. The main role of HDLs are reverse transport of cholesterol from peripheral tissues to the liver. More recently, HDLs have been considered as a new drug delivery system because of their small size, proper surface properties, long circulation time, biocompatibility, biodegradability, and low immune stimulation. Delivery of anticancer drug to the tumor tissue is a major obstacle against successful chemotherapy, which is because of the toxicity and poor aqueous solubility of these drugs. Loading chemotherapeutic drugs in the lipid core of HDLs can overcome the aforementioned problems and increase the efficiency of drug delivery. In this review, we discuss the use of HDLs particles in drug delivery to the tumor tissue and explain some barriers and limitations that exist in the use of HDLs as an ideal delivery vehicle.
Collapse
Affiliation(s)
- Susan Sarhadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
53
|
Abstract
Highly efficient drug-delivery tools for membrane-impermeable compounds, proteins, and nucleic acids in living cells are useful in the fields of chemical biology and drug discovery, and such tools have been widely studied. One strategy in the development of novel drug-delivery tools is to utilize cell-penetrating peptide (CPP) foldamers. CPP foldamers are folded oligopeptides that possess cell membrane permeability. In recent decades, a wide variety of CPP foldamers have been reported by many groups. Herein, CPP foldamers are introduced and discussed from the viewpoints of component monomers (amino acids) and their application as drug-delivery tools.
Collapse
Affiliation(s)
- Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
54
|
Negishi Y, Nomizu M. Laminin-derived peptides: Applications in drug delivery systems for targeting. Pharmacol Ther 2019; 202:91-97. [PMID: 31158392 DOI: 10.1016/j.pharmthera.2019.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
Abstract
Recently, the development of drug delivery systems (DDSs) for clinical application of anticancer drugs and gene therapy has rapidly progressed. In particular, DDS carriers used for chemotherapy and gene therapy are required to selectively deliver drugs and genes to cancer cells. Both the carrier and the molecule must in combination be highly selective in most cases. Possible candidate targeting molecules are the laminins, major basement membrane proteins that interact with various cells through their multiple constituent active peptide sequences. Laminin-derived peptides bind to various cellular receptors and have been used for DDSs as a targeting moiety. Here, we review the progress in laminin-derived peptide-conjugated DDSs. Drug and gene carriers as well as ultrasound diagnostic contrast agents utilizing laminin-derived peptides for selective targeting are useful components of DDSs and play important roles in cancer and in the neovasculature.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
55
|
Jiang H, Hu X, Mosel S, Knauer SK, Hirschhäuser C, Schmuck C. A Branched Tripeptide with an Anion‐Binding Motif as a New Delivery Carrier for Efficient Gene Transfection. Chembiochem 2019; 20:1410-1416. [DOI: 10.1002/cbic.201800728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Hao Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST) Wuhan 430074 P.R. China
- Institute for Organic ChemistryUniversity of Duisburg–Essen Universitätsstrasse 7 45141 Essen Germany
| | - Xiao‐Yu Hu
- Institute for Organic ChemistryUniversity of Duisburg–Essen Universitätsstrasse 7 45141 Essen Germany
- Applied Chemistry DepartmentSchool of Material Science and EngineeringNanjing University of Aeronautics and Astronautics Nanjing 210016 P.R. China
| | - Stefanie Mosel
- Institute for BiologyUniversity of Duisburg–Essen Universitätsstrasse 5 45141 Essen Germany
| | - Shirley K. Knauer
- Institute for BiologyUniversity of Duisburg–Essen Universitätsstrasse 5 45141 Essen Germany
| | - Christoph Hirschhäuser
- Institute for Organic ChemistryUniversity of Duisburg–Essen Universitätsstrasse 7 45141 Essen Germany
| | - Carsten Schmuck
- Institute for Organic ChemistryUniversity of Duisburg–Essen Universitätsstrasse 7 45141 Essen Germany
| |
Collapse
|
56
|
CGA-N9, an antimicrobial peptide derived from chromogranin A: direct cell penetration of and endocytosis by Candida tropicalis. Biochem J 2019; 476:483-497. [PMID: 30610128 PMCID: PMC6362824 DOI: 10.1042/bcj20180801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
CGA-N9 is a peptide derived from the N-terminus of human chromogranin A comprising amino acids 47–55. Minimum inhibitory concentration (MIC) assays showed that CGA-N9 had antimicrobial activity and exhibited time-dependent inhibition activity against Candida tropicalis, with high safety in human red blood cells (HRBCs) and mouse brain microvascular endothelial cells (bEnd.3). According to the results of transmission electron microscopy (TEM), flow cytometry and confocal microscopy, CGA-N9 accumulated in cells without destroying the integrity of the cell membrane; the peptide was initially localized to the cell membrane and subsequently internalized into the cytosol. An investigation of the cellular internalization mechanism revealed that most CGA-N9 molecules entered the yeast cells, even at 4°C and in the presence of sodium azide (NaN3), both of which block all energy-dependent transport mechanisms. In addition, peptide internalization was affected by the endocytic inhibitors 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), cytochalasin D (CyD) and heparin; chlorpromazine (CPZ) also had some effect on CGA-N9 internalization. Similar results were obtained in the MIC assays, whereby the anticandidal activity of CGA-N9 was blocked to different degrees in the presence of EIPA, CyD, heparin or CPZ. Therefore, most CGA-N9 passes through the C. tropicalis cell membrane via direct cell penetration, whereas the remainder enters through macropinocytosis and sulfate proteoglycan-mediated endocytosis, with a slight contribution from clathrin-mediated endocytosis.
Collapse
|
57
|
Oba M, Nagano Y, Kato T, Tanaka M. Secondary structures and cell-penetrating abilities of arginine-rich peptide foldamers. Sci Rep 2019; 9:1349. [PMID: 30718681 PMCID: PMC6362038 DOI: 10.1038/s41598-018-38063-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022] Open
Abstract
Foldamers, which are folded oligomers with well-defined conformations, have been recently reported to have a good cell-penetrating ability. α,α-Disubstituted α-amino acids are one such promising tool for the design of peptide foldamers. Here, we prepared four types of L-arginine-rich nonapeptides containing L-leucine or α,α-disubstituted α-amino acids, and evaluated their secondary structures and cell-penetrating abilities in order to elucidate a correlation between them. Peptides containing α,α-disubstituted α-amino acids had similar resistance to protease digestion but showed different secondary structures. Intracellular uptake assays revealed that the helicity of peptides was important for their cell-penetrating abilities. These findings suggested that a peptide foldamer with a stable helical structure could be promising for the design of cell-penetrating peptides.
Collapse
Affiliation(s)
- Makoto Oba
- Graduate School Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Yu Nagano
- Graduate School Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Takuma Kato
- Graduate School Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
- Osaka University of Pharmaceutical Sciences, 40-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Masakazu Tanaka
- Graduate School Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
58
|
Ojeda PG, Henriques ST, Pan Y, Nicolazzo JA, Craik DJ, Wang CK. Lysine to arginine mutagenesis of chlorotoxin enhances its cellular uptake. Biopolymers 2018; 108. [PMID: 28459137 DOI: 10.1002/bip.23025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Chlorotoxin (CTX), a disulfide-rich peptide from the scorpion Leiurus quinquestriatus, has several promising biopharmaceutical properties, including preferential affinity for certain cancer cells, high serum stability, and cell penetration. These properties underpin its potential for use as a drug design scaffold, especially for the treatment of cancer; indeed, several analogs of CTX have reached clinical trials. Here, we focus on its ability to internalize into cells-a trait associated with a privileged subclass of peptides called cell-penetrating peptides-and whether it can be improved through conservative substitutions. Mutants of CTX were made using solid-phase peptide synthesis and internalization into human cervical carcinoma (HeLa) cells was monitored by fluorescence and confocal microscopy. CTX_M1 (ie, [K15R/K23R]CTX) and CTX_M2 (ie, [K15R/K23R/Y29W]CTX) mutants showed at least a twofold improvement in uptake compared to CTX. We further showed that these mutants internalize into HeLa cells largely via an energy-dependent mechanism. Importantly, the mutants have high stability, remaining intact in serum for over 24 h; thus, retaining the characteristic stability of their parent peptide. Overall, we have shown that simple conservative substitutions can enhance the cellular uptake of CTX, suggesting that such type of mutations might be useful for improving uptake of other peptide toxins.
Collapse
Affiliation(s)
- Paola G Ojeda
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
59
|
Yang D, Wu W, Wang S. Biocompatibility and degradability of alginate-poly- L-arginine microcapsules prepared by high-voltage electrostatic process. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1417291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
| | - Wenguo Wu
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Shibin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
60
|
Yuan Y, He Y, Bo R, Ma Z, Wang Z, Dong L, Lin TY, Xue X, Li Y. A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. NANOSCALE 2018; 10:21634-21639. [PMID: 30457141 PMCID: PMC6317527 DOI: 10.1039/c8nr05141k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles have been extensively employed for theranostic applications due to their good biocompatibility and excellent magnetic resonance imaging (MRI) properties. However, these particles typically require surface modification due to their hydrophobic surfaces caused by the oil-phase surfactants used in the fabrication and thus, the drug loading on their surface is usually limited. Here, we provided a novel and facile approach to conveniently perform surface modification of SPIO while simultaneously loading a large amount of drug. By synthesizing an amphiphilic irinotecan-based compound with a hydrophobic tail enabling insertion into the SPIO assembly, an excellent SPIO-based theranostic nanomedicine (SPIO@IR) was produced. SPIO@IR not only extensively improved the drug efficacy, but also allowed visualization by MRI in biological systems.
Collapse
Affiliation(s)
- Ye Yuan
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070,P.R. China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Yixuan He
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Ruonan Bo
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Zhao Ma
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Zhongling Wang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Lijie Dong
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070,P.R. China
| | - Tzu-yin Lin
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| |
Collapse
|
61
|
Jeong D, Pal T, Kim H, Kim TW, Biswas G, Lee D, Singh T, Murthy ASN, Kim W, Kim K, Im J. Preparation of a Camptothecin‐conjugated Molecular Carrier and its Cytotoxic Effect Toward Human Colorectal Carcinoma
In Vitro. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongjun Jeong
- Department of Pathology, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Tarun Pal
- Department of ChemistryPohang University of Science and Technology Pohang Republic of Korea
| | - Hyungjoo Kim
- Soonchunhyang Medical Science Research Institute, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Tae Wan Kim
- Soonchunhyang Medical Science Research Institute, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Goutam Biswas
- Department of ChemistryCooch Behar Panchanan Barma University Cooch Behar India
| | - Daeun Lee
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Tejinder Singh
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Akula S. N. Murthy
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Wanil Kim
- Department of Life Science, Division of Molecular and Life Science and Division of Integrative Biosciences and BiotechnologyPohang University of Science and Technology Pohang Republic of Korea
| | - Kyong‐Tai Kim
- Department of Life Science, Division of Molecular and Life Science and Division of Integrative Biosciences and BiotechnologyPohang University of Science and Technology Pohang Republic of Korea
| | - Jungkyun Im
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| |
Collapse
|
62
|
Via MA, Klug J, Wilke N, Mayorga LS, Del Pópolo MG. The interfacial electrostatic potential modulates the insertion of cell-penetrating peptides into lipid bilayers. Phys Chem Chem Phys 2018; 20:5180-5189. [PMID: 29393934 DOI: 10.1039/c7cp07243k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell-penetrating peptides (CPP) are short sequences of cationic amino-acids that show a surprising ability to traverse lipid bilayers. CPP are considered to be some of the most effective vectors to introduce membrane-impermeable cargos into cells, but the molecular basis of the membrane translocation mechanisms and its dependence on relevant membrane physicochemical properties have yet to be fully determined. In this paper we resort to Molecular Dynamics simulations and experiments to investigate how the electrostatic potential across the lipid/water interface affects the insertion of hydrophilic and amphipathic CPP into two-dimensional lipid structures. Simulations are used to quantify the effect of the transmembrane potential on the free-energy profile associated with the transfer of the CPP across a neutral lipid bilayer. It is found that the electrostatic bias has a relatively small effect on the binding of the peptides to the membrane surface, but that it significantly lowers the permeation barrier. A charge compensation mechanism, arising from the segregation of counter-ions while the peptide traverses the membrane, determines the shape and symmetry of the free-energy curves and underlines relevant mechanistic considerations. Langmuir monolayer experiments performed with a variety of amphiphiles model the incorporation of the CPP into the external membrane leaflet. It is shown that the dipole potential of the monolayer controls the extent of penetration of the CPP into the lipid aggregate, to a greater degree than its surface charge.
Collapse
Affiliation(s)
- Matías A Via
- CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, CP5500, Argentina.
| | | | | | | | | |
Collapse
|
63
|
Kawaguchi Y, Ise S, Azuma Y, Takeuchi T, Kawano K, Le TK, Ohkanda J, Futaki S. Dipicolylamine/Metal Complexes that Promote Direct Cell-Membrane Penetration of Octaarginine. Bioconjug Chem 2018; 30:454-460. [DOI: 10.1021/acs.bioconjchem.8b00691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shoko Ise
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Azuma
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshihide Takeuchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toan Khanh Le
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junko Ohkanda
- Institute of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
64
|
Faya M, Kalhapure RS, Dhumal D, Agrawal N, Omolo C, Akamanchi KG, Govender T. Antimicrobial cell penetrating peptides with bacterial cell specificity: pharmacophore modelling, quantitative structure activity relationship and molecular dynamics simulation. J Biomol Struct Dyn 2018; 37:2370-2380. [PMID: 30047310 DOI: 10.1080/07391102.2018.1484814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Current research has shown cell-penetrating peptides and antimicrobial peptides (AMPs) as probable vectors for use in drug delivery and as novel antibiotics. It has been reported that the higher the therapeutic index (TI) the higher would be the bacterial cell penetrating ability. To the best of our knowledge, no in-silico study has been performed to determine bacterial cell specificity of the antimicrobial cell penetrating peptides (aCPP's) based on their TI. The aim of this study was to develop a quantitative structure activity relationship (QSAR) model, which can estimate antimicrobial potential and cell-penetrating ability of aCPPs against S. aureus, to confirm the relationship between the TI and aCPPs and to identify specific descriptors responsible for aCPPs penetrating ability. Molecular dynamics (MD) simulation was also performed to confirm the membrane insertion of the most active aCPPs obtained from the QSAR study. The most appropriate pharmacophore was identified to predict the aCPP's activity. The statistical results confirmed the validity of the model. The QSAR model was successful in identifying the optimal aCPP with high activity prediction and provided insights into the structural requirements to correlate their TI to cell penetrating ability. MD simulation of the best aCPP with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer confirmed its interaction with the membrane and the C-terminal residues of the aCPP played a key role in membrane penetration. The strategy of combining QSAR and molecular dynamics, allowed for optimal estimation of ligand-target interaction and confirmed the importance of Trp and Lys in interacting with the POPC bilayer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mbuso Faya
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Rahul S Kalhapure
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Dinesh Dhumal
- b Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| | - Nikhil Agrawal
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Calvin Omolo
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Krishnacharya G Akamanchi
- b Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| | - Thirumala Govender
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| |
Collapse
|
65
|
Du S, Liew SS, Li L, Yao SQ. Bypassing Endocytosis: Direct Cytosolic Delivery of Proteins. J Am Chem Soc 2018; 140:15986-15996. [DOI: 10.1021/jacs.8b06584] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shubo Du
- Department of Chemistry, National University of Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Si Si Liew
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P.R. China
| | - Shao Q. Yao
- Department of Chemistry, National University of Singapore, 117543, Singapore
| |
Collapse
|
66
|
Development of novel affinity reagents for detecting protein tyrosine phosphorylation based on superbinder SH2 domain in tumor cells. Anal Chim Acta 2018; 1032:138-146. [DOI: 10.1016/j.aca.2018.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 11/18/2022]
|
67
|
Numata K, Horii Y, Oikawa K, Miyagi Y, Demura T, Ohtani M. Library screening of cell-penetrating peptide for BY-2 cells, leaves of Arabidopsis, tobacco, tomato, poplar, and rice callus. Sci Rep 2018; 8:10966. [PMID: 30030484 PMCID: PMC6054692 DOI: 10.1038/s41598-018-29298-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are used for various applications, especially in the biomedical field. Recently, CPPs have been used as a part of carrier to deliver proteins and/or genes into plant cells and tissues; hence, these peptides are attractive tools for plant biotechnological and agricultural applications, but require more efficient delivery rates and optimization by species before wide-scale use can be achieved. Here, we developed a library containing 55 CPPs to determine the optimal CPP characteristics for penetration of BY-2 cells and leaves of Nicotiana benthamiana, Arabidopsis thaliana, tomato (Solanum lycopersicum), poplar (hybrid aspen Populus tremula × tremuloides line T89), and rice (Oryza sativa). By investigating the cell penetration efficiency of CPPs in the library, we identified several efficient CPPs for all the plants studied except rice leaf. In the case of rice, several CPPs showed efficient penetration into rice callus. Furthermore, we examined the relationship between cell penetration efficiency and CPP secondary structural characteristics. The cell penetration efficiency of Lys-containing CPPs was relatively greater in plant than in animal cells, which could be due to differences in lipid composition and surface charge of the cell membranes. The variation in optimal CPPs across the plants studied here suggests that CPPs must be optimized for each plant species and target tissues of interest.
Collapse
Affiliation(s)
- Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Yoko Horii
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Kazusato Oikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yu Miyagi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Taku Demura
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Misato Ohtani
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
68
|
Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018; 118:6844-6892. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Citation(s) in RCA: 780] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level. Finally, the future perspectives and imminent challenges for polymeric micelles as nanomedicines are discussed, anticipating to spur further innovations.
Collapse
Affiliation(s)
| | | | | | - Kazunori Kataoka
- Innovation Center of NanoMedicine , Kawasaki Institute of Industrial Promotion , 3-25-14, Tonomachi , Kawasaki-ku , Kawasaki 210-0821 , Japan.,Policy Alternatives Research Institute , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
69
|
Vazdar M, Heyda J, Mason PE, Tesei G, Allolio C, Lund M, Jungwirth P. Arginine "Magic": Guanidinium Like-Charge Ion Pairing from Aqueous Salts to Cell Penetrating Peptides. Acc Chem Res 2018; 51:1455-1464. [PMID: 29799185 DOI: 10.1021/acs.accounts.8b00098] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is a textbook knowledge that charges of the same polarity repel each other. For two monovalent ions in the gas phase at a close contact this repulsive interaction amounts to hundreds of kilojoules per mole. In aqueous solutions, however, this Coulomb repulsion is strongly attenuated by a factor equal to the dielectric constant of the medium. The residual repulsion, which now amounts only to units of kilojoules per mole, may be in principle offset by attractive interactions. Probably the smallest cationic pair, where a combination of dispersion and cavitation forces overwhelms the Coulomb repulsion, consists of two guanidinium ions in water. Indeed, by a combination of molecular dynamics with electronic structure calculations and electrophoretic, as well as spectroscopic, experiments, we have demonstrated that aqueous guanidinium cations form (weakly) thermodynamically stable like-charge ion pairs. The importance of pairing of guanidinium cations in aqueous solutions goes beyond a mere physical curiosity, since it has significant biochemical implications. Guanidinium chloride is known to be an efficient and flexible protein denaturant. This is due to the ability of the orientationally amphiphilic guanidinium cations to disrupt various secondary structural motifs of proteins by pairing promiscuously with both hydrophobic and hydrophilic groups, including guanidinium-containing side chains of arginines. The fact that the cationic guanidinium moiety forms the dominant part of the arginine side chain implies that the like-charge ion pairing may also play a role for interactions between peptides and proteins. Indeed, arginine-arginine pairing has been frequently found in structural protein databases. In particular, when strengthened by a presence of negatively charged glutamate, aspartate, or C-terminal carboxylic groups, this binding motif helps to stabilize peptide or protein dimers and is also found in or near active sites of several enzymes. The like-charge pairing of the guanidinium side-chain groups may also hold the key to the understanding of the arginine "magic", that is, the extraordinary ability of arginine-rich polypeptides to passively penetrate across cellular membranes. Unlike polylysines, which are also highly cationic but lack the ease in crossing membranes, polyarginines do not exhibit mutual repulsion. Instead, they accumulate at the membrane, weaken it, and might eventually cross in a concerted, "train-like" manner. This behavior of arginine-rich cell penetrating peptides can be exploited when devising smart strategies how to deliver in a targeted way molecular cargos into the cell.
Collapse
Affiliation(s)
- Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Philip E. Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Giulio Tesei
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Christoph Allolio
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Giv’at Ram, Jerusalem 9190401, Israel
| | - Mikael Lund
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| |
Collapse
|
70
|
A cell-penetrating peptide conjugated carboxymethyl-β-cyclodextrin to improve intestinal absorption of insulin. Int J Biol Macromol 2018; 111:685-695. [DOI: 10.1016/j.ijbiomac.2018.01.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
|
71
|
Zhou J, Mohamed Wali AR, Ma S, He Y, Yue D, Tang JZ, Gu Z. Tailoring the Supramolecular Structure of Guanidinylated Pullulan toward Enhanced Genetic Photodynamic Therapy. Biomacromolecules 2018; 19:2214-2226. [PMID: 29689167 DOI: 10.1021/acs.biomac.8b00273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the progress of designing a gene carrier system, what is urgently needed is a balance of excellent safety and satisfactory efficiency. Herein, a straightforward and versatile synthesis of a cationic guanidine-decorated dendronized pullulan (OGG3P) for efficient genetic photodynamic therapy was proposed. OGG3P was able to block the mobility of DNA from a weight ratio of 2. However, G3P lacking guanidine residues could not block DNA migration until at a weight ratio of 15, revealing guanidination could facilitate DNA condensation via specific guanidinium-phosphate interactions. A zeta potential plateau (∼+23 mV) of OGG3P complexes indicated the nonionic hydrophilic hydroxyl groups in pullulan might neutralize the excessive detrimental cationic charges. There was no obvious cytotoxicity and hemolysis, but also enhancement of transfection efficiency with regard to OGG3P in comparison with that of native G3P in Hela and HEK293T cells. More importantly, we found that the uptake efficiency in Hela cells between OGG3P and G3P complexes was not markedly different. However, guanidination caused changes in uptake pathway and led to macropinocytosis pathway, which may be a crucial reason for improved transfection efficiency. After introducing a therapeutic pKillerRed-mem plasmid, OGG3P complexes achieved significantly enhanced KillerRed protein expression and ROS production under irradiation. ROS-induced cancer cells proliferation suppression was also confirmed. This study highlights the guanidine-decorated dendronized pullulan could emerge as a reliable nonviral gene carrier to specifically deliver therapeutic genes.
Collapse
Affiliation(s)
- Jie Zhou
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China
| | - Aisha Roshan Mohamed Wali
- School of Pharmacy, Faculty of Science and Engineering , University of Wolverhampton , Wulfruna Street , Wolverhampton WV1 1LY , United Kingdom
| | - Shengnan Ma
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China
| | - Yiyan He
- College of Materials Science and Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| | - Dong Yue
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China
| | - James Zhenggui Tang
- School of Pharmacy, Faculty of Science and Engineering , University of Wolverhampton , Wulfruna Street , Wolverhampton WV1 1LY , United Kingdom
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China.,College of Materials Science and Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| |
Collapse
|
72
|
Kato T, Oba M, Nishida K, Tanaka M. Cell-Penetrating Peptides Using Cyclic α,α-Disubstituted α-Amino Acids with Basic Functional Groups. ACS Biomater Sci Eng 2018; 4:1368-1376. [PMID: 33418667 DOI: 10.1021/acsbiomaterials.8b00180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the delivery of cell-impermeable molecules, cell-penetrating peptides (CPPs) have been attracting increasing attention as intracellular delivery tools. In the present study, we designed four types of cyclic α,α-disubstituted α-amino acids (dAAs) with basic functional groups on their five-membered rings and different chiralities at the α-position and introduced them into arginine (Arg)-rich peptides. The evaluation of cell-penetrating abilities indicated that these peptides exhibited better cell permeabilities than an Arg nonapeptide. Furthermore, peptides containing dAAs delivered plasmid DNA (pDNA) better than a commercially available transfection reagent with a longer incubation time. These results demonstrate that the introduction of cyclic dAAs with basic functional groups into Arg-rich peptides is an effective strategy for the design of CPPs as a pDNA delivery tool.
Collapse
Affiliation(s)
- Takuma Kato
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.,Osaka University of Pharmaceutical Sciences, 40-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
73
|
He Y, Li F, Huang Y. Smart Cell-Penetrating Peptide-Based Techniques for Intracellular Delivery of Therapeutic Macromolecules. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:183-220. [PMID: 29680237 DOI: 10.1016/bs.apcsb.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many therapeutic macromolecules must enter cells to take their action. However, their treatment outcomes are often hampered by their poor transportation into target cells. Therefore, efficient intracellular delivery of these macromolecules is critical for improving their therapeutic efficacy. Cell-penetrating peptide (CPP)-based approaches are one of the most efficient methods for intracellular delivery of macromolecular therapeutics. Nevertheless, poor specificity is a significant concern for systemic administrated CPP-based delivery systems. This chapter will review recent advances in CPP-mediated macromolecule delivery with a focus on various smart strategies which not only enhance the intracellular delivery but also improve the targeting specificity.
Collapse
Affiliation(s)
- Yang He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Feng Li
- Harrison School of Pharmacy, Auburn University, Auburn, AL, United states.
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
74
|
Zhou J, Du X, Berciu C, Del Signore SJ, Chen X, Yamagata N, Rodal AA, Nicastro D, Xu B. Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis. Mol Ther 2018; 26:648-658. [PMID: 29396265 PMCID: PMC5835119 DOI: 10.1016/j.ymthe.2017.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022] Open
Abstract
Most of the peptides used for promoting cellular uptake bear positive charges. In our previous study, we reported an example of taurine (bearing negative charges in physiological conditions) promoting cellular uptake of D-peptides. Taurine, conjugated to a small D-peptide via an ester bond, promotes the cellular uptake of this D-peptide. Particularly, intracellular carboxylesterase (CES) instructs the D-peptide to self-assemble and to form nanofibers, which largely disfavors efflux and further enhances the intracellular accumulation of the D-peptide, as supported by that the addition of CES inhibitors partially impaired cellular uptake of this molecule in mammalian cell lines. Using dynamin 1, 2, and 3 triple knockout (TKO) mouse fibroblasts, we demonstrated that cells took up this molecule via macropinocytosis and dynamin-dependent endocytosis. Imaging of Drosophila larval blood cells derived from endocytic mutants confirmed the involvement of multiple endocytosis pathways. Electron microscopy (EM) indicated that the precursors can form aggregates on the cell surface to facilitate the cellular uptake via macropinocytosis. EM also revealed significantly increased numbers of vesicles in the cytosol. This work provides new insights into the cellular uptake of taurine derivative for intracellular delivery and self-assembly of D-peptides.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Cristina Berciu
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Steven J Del Signore
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Xiaoyi Chen
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Natsuko Yamagata
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Avital A Rodal
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Daniela Nicastro
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA; Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| |
Collapse
|
75
|
Ma X, Song Q, Gao X. Reconstituted high-density lipoproteins: novel biomimetic nanocarriers for drug delivery. Acta Pharm Sin B 2018; 8:51-63. [PMID: 29872622 PMCID: PMC5985628 DOI: 10.1016/j.apsb.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/23/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Abstract
High-density lipoproteins (HDL) are naturally-occurring nanoparticles that are biocompatible, non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and transport lipids, proteins and microRNA from donor cells to recipient cells. Based on their intrinsic targeting properties, HDL are regarded as promising drug delivery systems. In order to produce on a large scale and to avoid blood borne pollution, reconstituted high-density lipoproteins (rHDL) possessing the biological properties of HDL have been developed. This review summarizes the biological properties and biomedical applications of rHDL as drug delivery platforms. It focuses on the emerging approaches that have been developed for the generation of biomimetic nanoparticles rHDL to overcome the biological barriers to drug delivery, aiming to provide an alternative, promising avenue for efficient targeting transport of nanomedicine.
Collapse
Affiliation(s)
| | | | - Xiaoling Gao
- Corresponding author. Tel.: +86 21 63846590 776945.
| |
Collapse
|
76
|
Shi NQ, Li Y, Zhang Y, Shen N, Qi L, Wang SR, Qi XR. Intelligent "Peptide-Gathering Mechanical Arm" Tames Wild "Trojan-Horse" Peptides for the Controlled Delivery of Cancer Nanotherapeutics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41767-41781. [PMID: 29161013 DOI: 10.1021/acsami.7b15523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell-penetrating peptides (CPPs), also called "Trojan-Horse" peptides, have been used for facilitating intracellular delivery of numerous diverse cargoes and even nanocarriers. However, the lack of targeting specificity ("wildness" or nonselectivity) of CPP-nanocarriers remains an intractable challenge for many in vivo applications. In this work, we used an intelligent "peptide-gathering mechanical arm" (Int PMA) to curb CPPs' wildness and enhance the selectivity of R9-liposome-based cargo delivery for tumor targeting. The peptide NGR, serving as a cell-targeting peptide for anchoring, and peptide PLGLAG, serving as a substrate peptide for deanchoring, were embedded in the Int PMA motif. The Int PMA construct was designed to be sensitive to tumor microenvironmental stimuli, including aminopeptidase N (CD13) and matrix metalloproteinases (MMP-2/9). Moreover, Int PMA could be specifically recognized by tumor tissues via CD13-mediated anchoring and released for cell entry by MMP-2/9-mediated deanchoring. To test the Int PMA design, a series of experiments were conducted in vitro and in vivo. Functional conjugates Int PMA-R9-poly(ethylene glycol) (PEG)2000-distearoylphosphatidyl-ethanolamine (DSPE) and R9-PEG2000-DSPE were synthesized by Michael addition reaction and were characterized by thin-layer chromatography and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The Int PMA-R9-modified doxorubicin-loaded liposomes (Int PMA-R9-Lip-DOX) exhibited a proper particle diameter (approximately 155 nm) with in vitro sustained release characteristics. Cleavage assay showed that Int PMA-R9 peptide molecules could be cleaved by MMP-2/9 for completion of deanchoring. Flow cytometry and confocal microscopy studies indicated that Int PMA-R9-Lip-DOX can respond to both endogenous and exogenous stimuli in the presence/absence of excess MMP-2/9 and MMP-2/9 inhibitor (GM6001) and effectively function under competitive receptor-binding conditions. Moreover, Int PMA-R9-Lip-DOX generated more significant subcellular dispersions that were especially evident within endoplasmic reticulum (ER) and Golgi apparatus. Notably, Int PMA-R9-Lip-DOX could induce enhanced apoptosis, during which caspase 3/7 might be activated. In addition, Int PMA-R9-Lip-DOX displayed enhanced in vitro and in vivo antitumor efficacy versus "wild" R9-Lip-DOX. On the basis of investigations at the molecular level, cellular level, and animals' level, the control of Int PMA was effective and promoted selective delivery of R9-liposome cargo to the target site and reduced nonspecific uptake. This Int PMA-controlled strategy based on aminopeptidase-guided anchoring and protease-triggered deanchoring effectively curbed the wildness of CPPs and bolstered their effectiveness for in vivo delivery of nanotherapeutics. The specific nanocarrier delivery system used here could be adapted using a variety of intelligent designs based on combinations of multifunctional peptides that would specifically and preferentially bind to tumors versus nontumor tissues for tumor-localized accumulation in vivo. Thus, CPPs have a strong advantage for the development of intelligent nanomedicines for targeted tumor therapy.
Collapse
Affiliation(s)
- Nian-Qiu Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin 300071, China
| | | | - Yong Zhang
- College of Life Science, Jilin University , 2699 Qianjin Street, Changchun 130012, Jilin Province, China
| | | | | | | | - Xian-Rong Qi
- Department of Pharmaceutics, School of Pharmaceutical Science, Peking University , Beijing 100191, China
| |
Collapse
|
77
|
Chen J, Li H, Chen J. Human epidermal growth factor coupled to different structural classes of cell penetrating peptides: A comparative study. Int J Biol Macromol 2017; 105:336-345. [DOI: 10.1016/j.ijbiomac.2017.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/30/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
|
78
|
Gonçalves F, Castro TG, Nogueira E, Pires R, Silva C, Ribeiro A, Cavaco-Paulo A. OBP fused with cell-penetrating peptides promotes liposomal transduction. Colloids Surf B Biointerfaces 2017; 161:645-653. [PMID: 29169119 DOI: 10.1016/j.colsurfb.2017.11.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Cell-penetrating peptides (CPPs) have been applied as novel transport systems with the ability to facilitate the delivery of peptides, proteins, and oligonucleotides into cells. Herein, we designed different fusion proteins composed by pig odorant binding protein (OBP-I) and three CPPs, namely Tat, pVEC and Pep-1. A new methodology using liposomes as reservoirs and OBP:CPPs as carriers was developed as an advanced system to capture odorant molecules. 1-aminoanthracene (1-AMA) was used as a model molecule to evaluate the transduction ability of OBP:CPPs into the reservoirs. The transduction efficiency was dependent on the initial capacity of OBP:CPPs to bind 1-AMA and on the penetration of liposomes promoted by the CPPs. An encapsulation efficiency of 42% was obtained with OBP:Tat fusion protein. The presence of Tat peptide increased the 1-AMA transduction of 1.3 and 2.5 fold compared with Pep-1 and pVEC, respectively. This work expands the application of OBPs and CPPs on the design of promising capture and delivery systems for textile and cosmetic applications.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eugénia Nogueira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ricardo Pires
- 3B́s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Ave Park, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
79
|
Futaki S, Nakase I. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization. Acc Chem Res 2017; 50:2449-2456. [PMID: 28910080 DOI: 10.1021/acs.accounts.7b00221] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the recent hot topics in peptide-related chemical biology research is the potential of cell-penetrating peptides (CPPs). Owing to their ability to deliver exogenous molecules into cells easily and effectively, their flexible design that allows transporters to comprise various chemical structures and functions, and their potential in chemical and cell biology studies and clinical applications, CPPs have been attracting enormous interest among researchers in related fields. Consequently, publications on CPPs have increased significantly. Although there are many types of CPPs with different physicochemical properties and applications, arginine-rich CPPs, which include the human immunodeficiency virus type 1 (HIV-1) TAT peptide and oligoarginines, are among the most extensively employed and studied. Previous studies demonstrated the importance of the guanidino group in arginine, which confers flexibility in transporter design. Therefore, in addition to peptides, various transporters rich in guanidino groups, which do not necessarily share specific chemical and three-dimensional structures, have been developed. Typically, cell-penetrating transporters have 6-12 guanidino groups. Since the pKa of the guanidino group in arginine is approximately 12.5, these molecules are highly basic and hydrophilic. Our group is interested in why these cationic molecules can penetrate cells. Understanding their mechanism of action should lead to the rational design of intracellular delivery systems that have high efficacy. Additionally, novel cellular uptake mechanisms may be elucidated during the course of these studies. Therefore, our group is trying to understand the basic aspects underlying the ability of these peptides to penetrate cells. Regarding the delivery of biopharmaceuticals including proteins and nucleic acids, achieving efficient and effective delivery to target organs and cells is one of the biggest challenges. Furthermore, when the target sites of these drug molecules are within cells, effective cell penetration becomes another obstacle. Cells are surrounded by a membrane that separates the inside of the cell from its outside. This barrier function is critical for keeping cellular contents inside cells, and without this, cells cannot function. Therefore, understanding the mechanism of action of CPPs is necessary to overcome these obstacles and will allow us not only to improve CPP-mediated delivery but also to create other types of intracellular delivery systems. In this Account, we summarize the current knowledge on the mechanisms of internalization of arginine-rich CPPs, from the viewpoints of both direct cell-membrane penetration (i.e., physicochemical aspects) and endocytic uptake (i.e., physiological aspects), and discuss the implications of this knowledge. We also discussed loosening of lipid packing as a factor to promote direct cell-membrane penetration.
Collapse
Affiliation(s)
- Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ikuhiko Nakase
- Nanoscience
and Nanotechnology Research Center, Research Organization for the
21st Century, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
80
|
Mizuno A, Matsui K, Shuto S. From Peptides to Peptidomimetics: A Strategy Based on the Structural Features of Cyclopropane. Chemistry 2017. [PMID: 28632330 DOI: 10.1002/chem.201702119] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptidomimetics, non-natural mimicries of bioactive peptides, comprise an important class of drug molecules. The essence of the peptidomimetic design is to mimic the key conformation assumed by the bioactive peptides upon binding to their targets. Regulation of the conformation of peptidomimetics is important not only to enhance target binding affinity and selectivity, but also to confer cell-membrane permeability for targeting protein-protein interactions in cells. The rational design of peptidomimetics with suitable three-dimensional structures is challenging, however, due to the inherent flexibility of peptides and their dynamic conformational changes upon binding to the target biomolecules. In this Minireview, a three-dimensional structural diversity-oriented strategy based on the characteristic structural features of cyclopropane to address this challenging issue in peptidomimetic chemistry is described.
Collapse
Affiliation(s)
- Akira Mizuno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Kouhei Matsui
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
81
|
Oba M, Kunitake M, Kato T, Ueda A, Tanaka M. Enhanced and Prolonged Cell-Penetrating Abilities of Arginine-Rich Peptides by Introducing Cyclic α,α-Disubstituted α-Amino Acids with Stapling. Bioconjug Chem 2017; 28:1801-1806. [PMID: 28603971 DOI: 10.1021/acs.bioconjchem.7b00190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cell-penetrating peptides are receiving increasing attention as drug delivery tools, and the search for peptides with high cell-penetrating ability and negligible cytotoxicity has become a critical research topic. Herein, cyclic α,α-disubstituted α-amino acids were introduced into arginine-rich peptides and an additional staple was provided in the side chain. The peptides designed in the present study showed more enhanced and prolonged cell-penetrating abilities than an arginine nonapeptide due to high resistance to protease and conformationally stable helical structures.
Collapse
Affiliation(s)
- Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University , 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masayuki Kunitake
- Graduate School of Biomedical Sciences, Nagasaki University , 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takuma Kato
- Graduate School of Biomedical Sciences, Nagasaki University , 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University , 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University , 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
82
|
Murayama T, Masuda T, Afonin S, Kawano K, Takatani‐Nakase T, Ida H, Takahashi Y, Fukuma T, Ulrich AS, Futaki S. Loosening of Lipid Packing Promotes Oligoarginine Entry into Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomo Murayama
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Toshihiro Masuda
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) P.O.B. 3640 76021 Karlsruhe Germany
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Tomoka Takatani‐Nakase
- School of Pharmacy and Pharmaceutical Sciences Mukogawa Women's University, Nishinomiya Hyogo 663-8179 Japan
| | - Hiroki Ida
- Graduate School of Environmental Studies Tohoku University Aramaki Aoba Sendai 980-8579 Japan
| | - Yasufumi Takahashi
- Faculty of Electrical and Computer Engineering Institute of Science and Engineering Kanazawa University Kanazawa 920-1192 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) (Japan) Science and Technology Agency (JST) Saitama 332-0012 Japan
| | - Takeshi Fukuma
- Faculty of Electrical and Computer Engineering Institute of Science and Engineering Kanazawa University Kanazawa 920-1192 Japan
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) P.O.B. 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| |
Collapse
|
83
|
Murayama T, Masuda T, Afonin S, Kawano K, Takatani‐Nakase T, Ida H, Takahashi Y, Fukuma T, Ulrich AS, Futaki S. Loosening of Lipid Packing Promotes Oligoarginine Entry into Cells. Angew Chem Int Ed Engl 2017; 56:7644-7647. [DOI: 10.1002/anie.201703578] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Tomo Murayama
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Toshihiro Masuda
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) P.O.B. 3640 76021 Karlsruhe Germany
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Tomoka Takatani‐Nakase
- School of Pharmacy and Pharmaceutical Sciences Mukogawa Women's University, Nishinomiya Hyogo 663-8179 Japan
| | - Hiroki Ida
- Graduate School of Environmental Studies Tohoku University Aramaki Aoba Sendai 980-8579 Japan
| | - Yasufumi Takahashi
- Faculty of Electrical and Computer Engineering Institute of Science and Engineering Kanazawa University Kanazawa 920-1192 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) (Japan) Science and Technology Agency (JST) Saitama 332-0012 Japan
| | - Takeshi Fukuma
- Faculty of Electrical and Computer Engineering Institute of Science and Engineering Kanazawa University Kanazawa 920-1192 Japan
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) P.O.B. 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| |
Collapse
|
84
|
Cheng Y, Sun C, Ou X, Liu B, Lou X, Xia F. Dual-targeted peptide-conjugated multifunctional fluorescent probe with AIEgen for efficient nucleus-specific imaging and long-term tracing of cancer cells. Chem Sci 2017; 8:4571-4578. [PMID: 28626568 PMCID: PMC5471453 DOI: 10.1039/c7sc00402h] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Precisely targeted transportation of a long-term tracing regent to a nucleus with low toxicity is one of the most challenging concerns in revealing cancer cell behaviors. Here, we report a dual-targeted peptide-conjugated multifunctional fluorescent probe (cNGR-CPP-NLS-RGD-PyTPE, TCNTP) with aggregation-induced emission (AIE) characteristic, for efficient nucleus-specific imaging and long-term and low-toxicity tracing of cancer cells. TCNTP mainly consists of two components: one is a functionalized combinatorial peptide (TCNT) containing two targeted peptides (cNGR and RGD), a cell-penetrating peptide (CPP) and a nuclear localization signal (NLS), which can specifically bind to a cell surface and effectively enter into the nucleus; the other one is an AIE-active tetraphenylethene derivative (PyTPE, a typical AIEgen) as fluorescence imaging reagent. In the presence of aminopeptidase N (CD13) and integrin αvβ3, TCNTP can specifically bind to both of them using cNGR and RGD, respectively, lighting up its yellow fluorescence. Because it contains CPP, TCNTP can be effectively integrated into the cytoplasm, and then be delivered into the nucleus with the help of NLS. TCNTP exhibited strong fluorescence in the nucleus of CD13 and integrin αvβ3 overexpression cells due to the specific targeting ability, efficient transport capacity and AIE characteristic in a more crowded space. Furthermore, TCNTP can be applied for long-term tracing in living cells, scarcely affecting normal cells with negligible toxicity in more than ten passages.
Collapse
Affiliation(s)
- Yong Cheng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
- National Engineering Research Center for Nanomedicine , Department of Biomedical Engineering , College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Chunli Sun
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
| | - Xiaowen Ou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
| | - Bifeng Liu
- National Engineering Research Center for Nanomedicine , Department of Biomedical Engineering , College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China . ;
- National Engineering Research Center for Nanomedicine , Department of Biomedical Engineering , College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| |
Collapse
|
85
|
Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat Chem 2017; 9:751-761. [DOI: 10.1038/nchem.2779] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
|
86
|
Sano KI, Iijima K, Nakayama N, Ijiro K, Osada Y. Efficient Cellular Protein Transduction Using a Coiled-coil Protein Carrier. CHEM LETT 2017. [DOI: 10.1246/cl.170060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ken-Ichi Sano
- Department of Innovative Systems Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology, Miyashiro, Saitama 345-8501
| | - Kanako Iijima
- Department of Innovative Systems Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501
| | - Norihisa Nakayama
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology, Miyashiro, Saitama 345-8501
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0021
| | - Yoshihito Osada
- Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama 351-0198
| |
Collapse
|
87
|
Yang Z, Li Y, Gao J, Cao Z, Jiang Q, Liu J. pH and redox dual-responsive multifunctional gene delivery with enhanced capability of transporting DNA into the nucleus. Colloids Surf B Biointerfaces 2017; 153:111-122. [DOI: 10.1016/j.colsurfb.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
|
88
|
Ullah I, Muhammad K, Akpanyung M, Nejjari A, Neve AL, Guo J, Feng Y, Shi C. Bioreducible, hydrolytically degradable and targeting polymers for gene delivery. J Mater Chem B 2017; 5:3253-3276. [PMID: 32264392 DOI: 10.1039/c7tb00275k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, synthetic gene carriers have been intensively developed owing to their promising application in gene therapy and considered as a suitable alternative to viral vectors because of several benefits. But cationic polymers still face some problems like low transfection efficiency, cytotoxicity, and poor cell recognition and internalization. The emerging engineered and smart polymers can respond to some changes in the biological environment like pH change, ionic strength change and redox potential, which is beneficial for cellular uptake. Redox-sensitive disulfide based and hydrolytically degradable cationic polymers serve as gene carriers with excellent transfection efficiency and good biocompatibility owing to degradation in the cytoplasm. Additionally, biodegradable polymeric micelles with cell-targeting function are recently emerging gene carriers, especially for the transfection of endothelial cells. In this review, some strategies for gene carriers based on these bioreducible and hydrolytically degradable polymers will be illustrated.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Trends in the Binding of Cell Penetrating Peptides to siRNA: A Molecular Docking Study. JOURNAL OF BIOPHYSICS 2017; 2017:1059216. [PMID: 28321253 PMCID: PMC5340175 DOI: 10.1155/2017/1059216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/15/2017] [Indexed: 11/20/2022]
Abstract
The use of gene therapeutics, including short interfering RNA (siRNA), is limited by the lack of efficient delivery systems. An appealing approach to deliver gene therapeutics involves noncovalent complexation with cell penetrating peptides (CPPs) which are able to penetrate the cell membranes of mammals. Although a number of CPPs have been discovered, our understanding of their complexation and translocation of siRNA is as yet insufficient. Here, we report on computational studies comparing the binding affinities of CPPs with siRNA, considering a variety of CPPs. Specifically, seventeen CPPs from three different categories, cationic, amphipathic, and hydrophobic CPPs, were studied. Molecular mechanics were used to minimize structures, while molecular docking calculations were used to predict the orientation and favorability of sequentially binding multiple peptides to siRNA. Binding scores from docking calculations were highest for amphipathic peptides over cationic and hydrophobic peptides. Results indicate that initial complexation of peptides will likely occur along the major groove of the siRNA, driven by electrostatic interactions. Subsequent binding of CPPs is likely to occur in the minor groove and later on bind randomly, to siRNA or previously bound CPPs, through hydrophobic interactions. However, hydrophobic CPPs do not show this binding pattern. Ultimately binding yields a positively charged nanoparticle capable of noninvasive cellular import of therapeutic molecules.
Collapse
|
90
|
Yanagawa Y, Kawano H, Kobayashi T, Miyahara H, Okino A, Mitsuhara I. Direct protein introduction into plant cells using a multi-gas plasma jet. PLoS One 2017; 12:e0171942. [PMID: 28182666 PMCID: PMC5300220 DOI: 10.1371/journal.pone.0171942] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/27/2017] [Indexed: 11/30/2022] Open
Abstract
Protein introduction into cells is more difficult in plants than in mammalian cells, although it was reported that protein introduction was successful in shoot apical meristem and leaves only together with a cell-penetrating peptide. In this study, we tried to introduce superfolder green fluorescent protein (sGFP)-fused to adenylate cyclase as a reporter protein without a cell-penetrating peptide into the cells of tobacco leaves by treatment with atmospheric non-thermal plasmas. For this purpose, CO2 or N2 plasma was generated using a multi-gas plasma jet. Confocal microscopy indicated that sGFP signals were observed inside of leaf cells after treatment with CO2 or N2 plasma without substantial damage. In addition, the amount of cyclic adenosine monophosphate (cAMP) formed by the catalytic enzyme adenylate cyclase, which requires cellular calmodulin for its activity, was significantly increased in leaves treated with CO2 or N2 plasma, also indicating the introduction of sGFP-fused adenylate cyclase into the cells. These results suggested that treatment with CO2 or N2 plasma could be a useful technique for protein introduction into plant tissues.
Collapse
Affiliation(s)
- Yuki Yanagawa
- Institute of Agrobiological Sciences, NARO, Kannondai, Tsukuba, Ibaraki, Japan
| | - Hiroaki Kawano
- FIRST, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Tomohiro Kobayashi
- FIRST, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Hidekazu Miyahara
- FIRST, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Akitoshi Okino
- FIRST, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Ichiro Mitsuhara
- Institute of Agrobiological Sciences, NARO, Kannondai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
91
|
Rodríguez J, Mosquera J, Couceiro JR, Nitschke JR, Vázquez ME, Mascareñas JL. Anion Recognition as a Supramolecular Switch of Cell Internalization. J Am Chem Soc 2017; 139:55-58. [PMID: 27984855 PMCID: PMC5389450 DOI: 10.1021/jacs.6b11103] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cell internalization of designed oligoarginine peptides equipped with six glutamic acid residues and an anionic pyranine at the N-terminus is triggered upon addition of a supramolecular host. This host binds specifically to the pyranine moiety, enabling the complex to traverse the cell membrane. Interestingly, none of the components, neither the host nor the guest, are able to cross the cell membrane on their own.
Collapse
Affiliation(s)
- Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jonathan R. Nitschke
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L. Mascareñas
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
92
|
Zhang P, Ma J, Yan Y, Chen B, Liu B, Jian C, Zhu B, Liang S, Zeng Y, Liu Z. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org Biomol Chem 2017; 15:9379-9388. [DOI: 10.1039/c7ob02233f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, arginine modification rendered Lycosin-I with higher anticancer activity, penetrability, and dissemination ability against solid tumor cells due to the optimized physicochemical properties and high serum stability.
Collapse
|
93
|
Backlund CM, Sgolastra F, Otter R, Minter L, Takeuchi T, Futaki S, Tew GN. Increased Hydrophobic Block Length of PTDMs Promotes Protein Internalization. Polym Chem 2016; 7:7514-7521. [PMID: 29093759 PMCID: PMC5661863 DOI: 10.1039/c6py01615d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The plasma membrane is a major obstacle in the development and use of biomacromolecules for intracellular therapeutic applications. Protein transduction domains (PTDs) have been used to overcome this barrier, but often require covalent conjugation to their cargo and can be time consuming to synthesize. Synthetic monomers can be designed to mimic the amino acid moieties in PTDs, and their resulting polymers provide a well-controlled platform to vary molecular composition for structure-activity relationship studies. In this paper, a series of polyoxanorbornene-based synthetic mimics, inspired by PTDs, with varying cationic and hydrophobic densities, and the nature of the hydrophobic chain and degree of polymerizations were investigated in vitro to determine their ability to non-covalently transport enhanced green fluorescent protein into HeLa cells, Jurkat T cells, and hTERT mesenchymal stem cells. Polymers with high charge density lead to efficient protein delivery. Similarly, the polymers with the highest hydrophobic content and density proved to be the most efficient at internalization. The observed improvements with increased hydrophobic length and content were consistent across all three cell types, suggesting that these architectural relationships are not cell type specific. However, Jurkat T cells showed distinct variation in uptake between polymers than with the other two cell types. These results provide important design parameters for more effective delivery of biomacromolecules for intracellular delivery applications.
Collapse
Affiliation(s)
- Coralie M Backlund
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003
| | - Federica Sgolastra
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003
| | - Ronja Otter
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003
| | - Lisa Minter
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003
- Department of Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Toshihide Takeuchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003
- Department of Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
94
|
Bode SA, Kruis IC, Adams HPJHM, Boelens WC, Pruijn GJM, van Hest JCM, Löwik DWPM. Coiled-Coil-Mediated Activation of Oligoarginine Cell-Penetrating Peptides. Chembiochem 2016; 18:185-188. [DOI: 10.1002/cbic.201600614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Saskia A. Bode
- Bio-Organic Chemistry; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Ilmar C. Kruis
- Bio-Organic Chemistry; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
- Biomolecular Chemistry; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Hans P. J. H. M. Adams
- Bio-Organic Chemistry; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Wilbert C. Boelens
- Biomolecular Chemistry; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Ger J. M. Pruijn
- Biomolecular Chemistry; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| | - Dennis W. P. M. Löwik
- Bio-Organic Chemistry; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
| |
Collapse
|
95
|
Yoon JY, Yang KJ, Park SN, Kim DK, Kim JD. The effect of dexamethasone/cell-penetrating peptide nanoparticles on gene delivery for inner ear therapy. Int J Nanomedicine 2016; 11:6123-6134. [PMID: 27895484 PMCID: PMC5117898 DOI: 10.2147/ijn.s114241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dexamethasone (Dex)-loaded PHEA-g-C18-Arg8 (PCA) nanoparticles (PCA/Dex) were developed for the delivery of genes to determine the synergistic effect of Dex on gene expression. The cationic PCA nanoparticles were self-assembled to create cationic micelles containing an octadecylamine (C18) core with Dex and an arginine 8 (Arg8) peptide shell for electrostatic complexation with nucleic acids (connexin 26 [Cx26] siRNA, green fluorescent protein [GFP] DNA or brain-derived neurotrophic factor [BDNF] pDNA). The PCA/Dex nanoparticles conjugated with Arg8, a cell-penetrating peptide that enhances permeability through a round window membrane in the inner ear for gene delivery, exhibited high uptake efficiency in HEI-OC1 cells. This potential carrier co-delivering Dex and the gene into inner ear cells has a diameter of 120-140 nm and a zeta potential of 20-25 mV. Different types of genes were complexed with the Dex-loaded PCA nanoparticle (PCA/Dex/gene) for gene expression to induce additional anti-inflammatory effects. PCA/Dex showed mildly increased expression of GFP and lower mRNA expression of inflammatory cytokines (IL1b, IL12, and INFr) than did Dex-free PCA nanoparticles and Lipofectamine® reagent in HEI-OC1 cells. In addition, after loading Cx26 siRNA onto the surface of PCA/Dex, Cx26 gene expression was downregulated according to real-time polymerase chain reaction for 24 h, compared with that using Lipofectamine reagent. After loading BDNF DNA into PCA/Dex, increased expression of BDNF was observed for 30 h, and its signaling pathway resulted in an increase in phosphorylation of Akt, observed by Western blotting. Thus, Dex within PCA/Dex/gene nanoparticles created an anti-inflammatory effect and enhanced gene expression.
Collapse
Affiliation(s)
- Ji Young Yoon
- Department of Chemical and Biomolecular Engineering, BK 21 Plus Program, Korea Advanced Institute of Science and Technology, Guseong-Dong, Yuseong-Gu, Daejeon
| | - Keum-Jin Yang
- Clinical Research Institute, St Mary's Hospital, Daejeon
| | - Shi-Nae Park
- Department of Otolaryngology - Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Kee Kim
- Department of Otolaryngology - Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Duk Kim
- Department of Chemical and Biomolecular Engineering, BK 21 Plus Program, Korea Advanced Institute of Science and Technology, Guseong-Dong, Yuseong-Gu, Daejeon
| |
Collapse
|
96
|
Sánchez-Navarro M, Garcia J, Giralt E, Teixidó M. Using peptides to increase transport across the intestinal barrier. Adv Drug Deliv Rev 2016; 106:355-366. [PMID: 27155131 DOI: 10.1016/j.addr.2016.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023]
Abstract
The oral route is the preferred for the administration of drugs; however, it has some serious limitations. One of the main disadvantages is poor permeability across the intestinal barrier. Various approaches are currently being adopted to overcome this issue. In this review, we describe the alternatives that use peptides to enhance intestinal absorption. First, we define the various sources of peptide enhancers followed by the analysis of the absorption mechanism used. We then comment on the possible toxic effects derived from their use as permeation enhancers, as well as potential formulation strategies. Finally, the advantages and drawbacks of peptides as intestinal enhancers are examined.
Collapse
|
97
|
Oh M, Hu C, Urfano SF, Arostegui M, Slowinska K. Thermoresponsive Collagen/Cell Penetrating Hybrid Peptide as Nanocarrier in Targeting-Free Cell Selection and Uptake. Anal Chem 2016; 88:9654-9661. [PMID: 27603918 PMCID: PMC5177025 DOI: 10.1021/acs.analchem.6b02438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effective delivery of therapeutics and imaging agents to a selected group of cells has been at the forefront of biomedical research. Unfortunately, the identification of the unique cell surface targets for cell selection remains a major challenge, particularly if cells within the selected group are not identical. Here we demonstrate a novel approach to cell section relying on a thermoresponsive peptide-based nanocarrier. The hybrid peptide containing cell-penetrating peptide (CPP) and collagen (COLL) domains is designed to undergo coil-to-helix transition (folding) below physiological temperature. Because only the helical form undergoes effective internalization by the cells, this approach allows effective temperature-discriminate cellular uptake. The cells selected for uptake are locally cooled, thus enabling the carrier to fold and subsequently internalize. Our approach demonstrates a generic method as selected cells could differ from the adjacent cells or could belong to the same cell population. The method is fast (<15 min) and selective; over 99.6% of cells in vitro internalized the peptide carrier at low temperatures (15 °C), while less than 0.2% internalized at 37 °C. In vivo results confirm the high selectivity of the method. The potential clinical applications in mixed cell differentiation carcinoma, most frequently encountered in breast and ovarian cancer, are envisioned.
Collapse
Affiliation(s)
- Myungeun Oh
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California 90840
| | - Chloe Hu
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California 90840
| | - Selina F. Urfano
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California 90840
| | - Merlyn Arostegui
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California 90840
| | - Katarzyna Slowinska
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California 90840
| |
Collapse
|
98
|
McErlean EM, McCrudden CM, McCarthy HO. Delivery of nucleic acids for cancer gene therapy: overcoming extra- and intra-cellular barriers. Ther Deliv 2016; 7:619-37. [PMID: 27582234 DOI: 10.4155/tde-2016-0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The therapeutic potential of cancer gene therapy has been limited by the difficulty of delivering genetic material to target sites. Various biological and molecular barriers exist which need to be overcome before effective nonviral delivery systems can be applied successfully in oncology. Herein, various barriers are described and strategies to circumvent such obstacles are discussed, considering both the extracellular and intracellular setting. Development of multifunctional delivery systems holds much promise for the progression of gene delivery, and a growing body of evidence supports this approach involving rational design of vectors, with a unique molecular architecture. In addition, the potential application of composite gene delivery platforms is highlighted which may provide an alternative delivery strategy to traditional systemic administration.
Collapse
|
99
|
Liu Y, Wu P, Jiang J, Wu J, Chen Y, Tan Y, Tan C, Jiang Y. Conjugated Polyelectrolyte Nanoparticles for Apoptotic Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21984-21989. [PMID: 27525500 DOI: 10.1021/acsami.6b09347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three anionic conjugated polyelectrolytes (CPEs) with poly(p-phenylene ethynylene thiophene) backbones were designed and synthesized, among which PPET3-CO2Na showed greater molar extinction coefficient with red-shifted bands in both absorption and emission spectra compared to the well-studied PPE-CO2Na polymer. PPET3-CO2Na was thus chosen to construct CPE-based nanoparticles (CPNs) with cationic octaarginine (R8) peptide through electrostatic-interaction-induced self-assembly. Due to plasma membrane permeabilization and mitochondrial outer membrane permeabilization (MOMP) in early apoptotic cells, PPET3/R8 CPNs demonstrated excellent colocalization with MitoTracker Red in apoptotic cells instead of normal cells, which had potential application in cell imaging for early apoptosis recognition.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab - Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Pan Wu
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab - Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Jianhua Jiang
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Jiatao Wu
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab - Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Yan Chen
- The Ministry-Province Jointly Constructed Base for State Key Lab - Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
- Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute , Shenzhen 518055, P. R. China
| | - Ying Tan
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab - Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Chunyan Tan
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab - Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Yuyang Jiang
- The Ministry-Province Jointly Constructed Base for State Key Lab - Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University , Beijing 100084, P. R. China
| |
Collapse
|
100
|
Nakata E, Yukimachi Y, Uto Y, Hori H, Morii T. Latent pH-responsive ratiometric fluorescent cluster based on self-assembled photoactivated SNARF derivatives. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:431-436. [PMID: 27877893 PMCID: PMC5101900 DOI: 10.1080/14686996.2016.1204888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 05/23/2023]
Abstract
We have developed a self-assembled fluorescent cluster comprising a seminaphthorhodafluor (SNARF) derivative protected by a photoremovable o-nitrobenzyl group. Prior to UV irradiation, a colorless and nonfluorescent cluster was spontaneously assembled in aqueous solution. After UV irradiation, the self-assembled cluster remained intact and showed a large enhancement in pH-responsive fluorescence. The unique pH responsive fluorescent cluster could be used as a dual-emissive ratiometric fluorescent pH probe not only in the test tube but also in HeLa cell cultures.
Collapse
Affiliation(s)
- Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Yoshihiro Yukimachi
- Department of Life System, Institute of Technology and Science, Graduate School, The University of Tokushima, Tokushima, Japan
| | - Yoshihiro Uto
- Department of Life System, Institute of Technology and Science, Graduate School, The University of Tokushima, Tokushima, Japan
| | - Hitoshi Hori
- Department of Life System, Institute of Technology and Science, Graduate School, The University of Tokushima, Tokushima, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|