51
|
Esfahani RR, Jun H, Rahmani S, Miller A, Lahann J. Microencapsulation of Live Cells in Synthetic Polymer Capsules. ACS OMEGA 2017; 2:2839-2847. [PMID: 30023677 PMCID: PMC6044854 DOI: 10.1021/acsomega.7b00570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/07/2017] [Indexed: 05/07/2023]
Abstract
In cell therapies, it is advantageous to encapsulate live cells in protective, semipermeable microparticles for controlled release of cytokines, growth factors, monoclonal antibodies, or insulin. Here, a modified electrospraying approach with an organic solution of poly(lactide-co-glycolide) (PLGA) polymer is used to create synthetic PLGA capsules that effectively protect live cells. Using a design of experiment (DOE) methodology, the effect of governing jetting parameters on encapsulation efficiency, yield, and size is systematically evaluated. On the basis of this analysis, the interaction between bovine serum albumin concentration and core flow rate is the most dominant factor determining core encapsulation efficiency as well as the microcapsule size. However, the interaction between shell solvent ratio and shell flow rate predominantly defines the particle yield. To validate these findings, live cells have been successfully encapsulated in microcapsules using optimized parameters from the DOE analysis and have survived the electrohydrodynamic jetting process. Extending the currently available toolkit for cell microencapsulation, these biodegradable, semi-impermeable cell-laden microcapsules may find a range of applications in areas such as tissue engineering, regenerative medicine, and drug delivery.
Collapse
Affiliation(s)
- Reza Roghani Esfahani
- Chemical
Engineering Department, Biointerface Institute, and Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Haysun Jun
- Chemical
Engineering Department, Biointerface Institute, and Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sahar Rahmani
- Chemical
Engineering Department, Biointerface Institute, and Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrea Miller
- Chemical
Engineering Department, Biointerface Institute, and Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joerg Lahann
- Chemical
Engineering Department, Biointerface Institute, and Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
52
|
Acarregui A, Ciriza J, Saenz del Burgo L, Gurruchaga Iribar H, Yeste J, Illa X, Orive G, Hernández RM, Villa R, Pedraz JL. Characterization of an encapsulated insulin secreting human pancreatic beta cell line in a modular microfluidic device. J Drug Target 2017; 26:36-44. [DOI: 10.1080/1061186x.2017.1334208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Argia Acarregui
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Laura Saenz del Burgo
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Haritz Gurruchaga Iribar
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - José Yeste
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Barcelona, Spain
| | - Xavi Illa
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Barcelona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Rosa M. Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Rosa Villa
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Barcelona, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| |
Collapse
|
53
|
Huang H, Yu Y, Hu Y, He X, Usta OB, Yarmush ML. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. LAB ON A CHIP 2017; 17:1913-1932. [PMID: 28509918 PMCID: PMC5548188 DOI: 10.1039/c7lc00262a] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogel microcapsules provide miniaturized and biocompatible niches for three-dimensional (3D) in vitro cell culture. They can be easily generated by droplet-based microfluidics with tunable size, morphology, and biochemical properties. Therefore, microfluidic generation and manipulation of cell-laden microcapsules can be used for 3D cell culture to mimic the in vivo environment towards applications in tissue engineering and high throughput drug screening. In this review of recent advances mainly since 2010, we will first introduce general characteristics of droplet-based microfluidic devices for cell encapsulation with an emphasis on the fluid dynamics of droplet breakup and internal mixing as they directly influence microcapsule's size and structure. We will then discuss two on-chip manipulation strategies: sorting and extraction from oil into aqueous phase, which can be integrated into droplet-based microfluidics and significantly improve the qualities of cell-laden hydrogel microcapsules. Finally, we will review various applications of hydrogel microencapsulation for 3D in vitro culture on cell growth and proliferation, stem cell differentiation, tissue development, and co-culture of different types of cells.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yin Yu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yong Hu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University,
Columbus, USA
| | - O. Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
- Department of Biomedical Engineering, Rutgers University,
Piscataway, New Jersey 08854, United States
| |
Collapse
|
54
|
Yang J, Li J, Li X, Wang X, Yang Y, Kawazoe N, Chen G. Nanoencapsulation of individual mammalian cells with cytoprotective polymer shell. Biomaterials 2017; 133:253-262. [PMID: 28445804 DOI: 10.1016/j.biomaterials.2017.04.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022]
Abstract
Nanoencapsulation of individual mammalian cells has great potential in biomedical, biotechnological and bioelectronic applications. However, existing techniques for cell nanoencapsulation generally yield short sustaining period and loose structure of encapsulation shell, which fails to meet the long-term cytoprotection and immunosuppression requirements. Here, we report a mild method to realize the nanoencapsulation of individual mammalian cells by layer-by-layer (LbL) assembly of gelatin inner layer and cross-linking of poly(ethylene glycol) (PEG) outer layer through thiol-click chemistry. With the present method, the encapsulated individual HeLa cells showed a high viability, long persistence period and effective resistance against macro external entities and high physical stress. Moreover, on-demand cell release could also be achieved by selective cleavage of succinimide thioether linkage in the outer PEG layer. The approach presented here may provide a new and versatile method for the cleavable nanoencapsulation of individual mammalian cells.
Collapse
Affiliation(s)
- Jianmin Yang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingchao Li
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Xiaomeng Li
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Xinlong Wang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yingjun Yang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Naoki Kawazoe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
55
|
Dollinger BR, Gupta MK, Martin JR, Duvall CL. Reactive Oxygen Species Shielding Hydrogel for the Delivery of Adherent and Nonadherent Therapeutic Cell Types<sup/>. Tissue Eng Part A 2017; 23:1120-1131. [PMID: 28394196 DOI: 10.1089/ten.tea.2016.0495] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell therapies suffer from poor survival post-transplant due to placement into hostile implant sites characterized by host immune response and innate production of high levels of reactive oxygen species (ROS). We hypothesized that cellular encapsulation within an injectable, antioxidant hydrogel would improve viability of cells exposed to high oxidative stress. To test this hypothesis, we applied a dual thermo- and ROS-responsive hydrogel comprising the ABC triblock polymer poly[(propylene sulfide)-block-(N,N-dimethyl acrylamide)-block-(N-isopropylacrylamide)] (PPS135-b-PDMA152-b-PNIPAAM225, PDN). The PPS chemistry reacts irreversibly with ROS such as hydrogen peroxide (H2O2), imparting inherent antioxidant properties to the system. Here, PDN hydrogels were successfully integrated with type 1 collagen to form ROS-protective, composite hydrogels amenable to spreading and growth of adherent cell types such as mesenchymal stem cells (MSCs). It was also shown that, using a control hydrogel substituting nonreactive polycaprolactone in place of PPS, the ROS-reactive PPS chemistry is directly responsible for PDN hydrogel cytoprotection of both MSCs and insulin-producing β-cell pseudo-islets against H2O2 toxicity. In sum, these results establish the potential of cytoprotective, thermogelling PDN biomaterials for injectable delivery of cell therapies.
Collapse
Affiliation(s)
- Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - John R Martin
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
56
|
Saenz del Burgo L, Ciriza J, Acarregui A, Gurruchaga H, Blanco FJ, Orive G, Hernández RM, Pedraz JL. Hybrid Alginate–Protein-Coated Graphene Oxide Microcapsules Enhance the Functionality of Erythropoietin Secreting C2C12 Myoblasts. Mol Pharm 2017; 14:885-898. [DOI: 10.1021/acs.molpharmaceut.6b01078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Laura Saenz del Burgo
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Argia Acarregui
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Haritz Gurruchaga
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Francisco Javier Blanco
- INIBIC-Hospital Universitario La Coruña, 15006, La Coruña, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), La
Coruña, Spain
| | - Gorka Orive
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa María Hernández
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
57
|
Saenz del Burgo L, Ciriza J, Hernández RM, Orive G, Pedraz JL. Microencapsulated Cells for Cancer Therapy. Methods Mol Biol 2017; 1479:261-272. [PMID: 27738943 DOI: 10.1007/978-1-4939-6364-5_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The microencapsulation of different types of cells that are able to produce therapeutic factors is being investigated for the treatment of several human diseases. Most efforts are focused on chronic and degenerative diseases as this strategy could become an alternative to some commonly used parenteral treatments that need to be repeatedly administered. But, this approach has also been investigated in the field of oncology with the aim of providing immunomodulatory antibodies that are able to enhance the patient's inherent immune response against the tumor. These kind of treatments would provide the patient with the therapeutic drug produced in situ, de novo, and in a sustained way, making the therapy more comfortable.Although different devices are nowadays available to produce cell-enclosing alginate-microcapsules, here, we describe the most important steps and advices in order to fabricate alginate-poly-L-lysine-alginate microcapsules containing hybridoma cells for cancer management using an electrostatic bead generator, and how to evaluate the viability of those cells over the time.
Collapse
Affiliation(s)
- L Saenz del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - R M Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
58
|
Abstract
Physiological characteristics of diseases bring about both challenges and opportunities for targeted drug delivery. Various drug delivery platforms have been devised ranging from macro- to micro- and further into the nanoscopic scale in the past decades. Recently, the favorable physicochemical properties of nanomaterials, including long circulation, robust tissue and cell penetration attract broad interest, leading to extensive studies for therapeutic benefits. Accumulated knowledge about the physiological barriers that affect the in vivo fate of nanomedicine has led to more rational guidelines for tailoring the nanocarriers, such as size, shape, charge, and surface ligands. Meanwhile, progresses in material chemistry and molecular pharmaceutics generate a panel of physiological stimuli-responsive modules that are equipped into the formulations to prepare “smart” drug delivery systems. The capability of harnessing physiological traits of diseased tissues to control the accumulation of or drug release from nanomedicine has further improved the controlled drug release profiles with a precise manner. Successful clinical translation of a few nano-formulations has excited the collaborative efforts from the research community, pharmaceutical industry, and the public towards a promising future of smart drug delivery.
Collapse
Affiliation(s)
- Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Wenyan Ji
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Grace Wright
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
59
|
Majewski RL, Zhang W, Ma X, Cui Z, Ren W, Markel DC. Bioencapsulation technologies in tissue engineering. J Appl Biomater Funct Mater 2016; 14:e395-e403. [PMID: 27716872 PMCID: PMC5623183 DOI: 10.5301/jabfm.5000299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/30/2022] Open
Abstract
Bioencapsulation technologies have played an important role in the developing successes of tissue engineering. Besides offering immunoisolation, they also show promise for cell/tissue banking and the directed differentiation of stem cells, by providing a unique microenvironment. This review describes bioencapsulation technologies and summarizes their recent progress in research into tissue engineering. The review concludes with a brief outlook regarding future research directions in this field.
Collapse
Affiliation(s)
- Rebecca L. Majewski
- BioMolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin - USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin - USA
| | - Wujie Zhang
- BioMolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin - USA
| | - Xiaojun Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning Province - PR China
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, Oxford - UK
| | - Weiping Ren
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan - USA
- Department of Orthopedic Surgery, Providence Hospital and Medical Centers, Southfield, Michigan - USA
| | - David C. Markel
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan - USA
- Department of Orthopedic Surgery, Providence Hospital and Medical Centers, Southfield, Michigan - USA
| |
Collapse
|
60
|
Vigani B, Mastracci L, Grillo F, Perteghella S, Preda S, Crivelli B, Antonioli B, Galuzzi M, Tosca MC, Marazzi M, Torre ML, Chlapanidas T. Local biological effects of adipose stromal vascular fraction delivery systems after subcutaneous implantation in a murine model. J BIOACT COMPAT POL 2016; 31:600-612. [DOI: 10.1177/0883911516635841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The aim of this study was to test alginate beads and silk fibroin non-woven mats as stromal vascular fraction delivery systems to support cell implantation for tissue repair and regeneration, through trophic and immunomodulant paracrine signaling. Furthermore, in vivo scaffold biocompatibility was histologically analyzed in a murine model at different time endpoints, with particular focus on construct-induced vascularization and neoangiogenesis. The fibroin mat induced a typical foreign body reaction, recruiting macrophages and giant cells and concurrently promoted neovascularization of the implanted construct. Conversely, alginate beads triggered a more circumscribed, chronic inflammatory reaction, which decreased over time. The combined in vivo implantation of alginate beads and fibroin mat with stromal vascular fraction promoted vascularization and integration of scaffolds into the surrounding subcutaneous environment. The new blood vessel ingrowth should, hopefully, support engineered cell viability and functionality, as well as the transport of soluble bioactive molecules. Due to their neovascularization properties, stromal vascular fraction administration, using alginate or fibroin scaffolds, is a new, promising, cost-effective tissue engineering approach.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Luca Mastracci
- Pathology Section, Department of Surgical and Integrated Diagnostic Sciences (DISC), University of Genoa, IRCCS AOU San Martino—IST, Genoa, Italy
| | - Federica Grillo
- Pathology Section, Department of Surgical and Integrated Diagnostic Sciences (DISC), University of Genoa, IRCCS AOU San Martino—IST, Genoa, Italy
| | | | - Stefania Preda
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Barbara Antonioli
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Marta Galuzzi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Marta C Tosca
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Mario Marazzi
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Maria L Torre
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
61
|
Kühn PT, Meijer TL, Schiavon I, van Poll M, van Aken J, Groen S, Kuijer R, van Kooten TG, van Rijn P. Non-Covalently Stabilized Alginate Hydrogels as Functional Cell Scaffold Material. Macromol Biosci 2016; 16:1693-1702. [DOI: 10.1002/mabi.201600214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Philipp T. Kühn
- Department of Biomedical Engineering-FB40; W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; University Medical Center Groningen; Groningen, A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Thomas L. Meijer
- Department of Biomedical Engineering-FB40; W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; University Medical Center Groningen; Groningen, A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Irene Schiavon
- Department of Biomedical Engineering-FB40; W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; University Medical Center Groningen; Groningen, A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Mathijs van Poll
- Department of Biomedical Engineering-FB40; W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; University Medical Center Groningen; Groningen, A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Joris van Aken
- Department of Biomedical Engineering-FB40; W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; University Medical Center Groningen; Groningen, A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Swen Groen
- Department of Biomedical Engineering-FB40; W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; University Medical Center Groningen; Groningen, A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Roel Kuijer
- Department of Biomedical Engineering-FB40; W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; University Medical Center Groningen; Groningen, A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Theo G. van Kooten
- Department of Biomedical Engineering-FB40; W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; University Medical Center Groningen; Groningen, A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40; W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; University Medical Center Groningen; Groningen, A. Deusinglaan 1 9713 AV Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
62
|
Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:496-504. [PMID: 27612740 DOI: 10.1016/j.msec.2016.06.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 11/23/2022]
Abstract
Alginate hydrogels have been used in cell encapsulation for many years but a prevalent issue with pure alginates is that they are unable to provide enough bioactive properties to interact with mammalian cells. This paper discusses the modification of alginate with mussel-inspired dopamine for cell loading and anti-infection. Mouse bone marrow stem cells were immobilized into alginate and alginate-dopamine beads and fibers. Through live-dead and MTT assay, alginates modified by dopamine promoted cell viability and proliferation. In vitro cell differentiation results showed that such an alginate-dopamine gel can promote the osteogenic differentiation of mesenchymal stem cell after PCR and ALP assays. In addition to that, the adhesive prosperities of dopamine allowed for coating the surface of alginate-dopamine gel with silver nanoparticles, which provided the gel with significant antibacterial characteristics. Overall, these results demonstrate that a dopamine-modified alginate gel can be a great tool for cell encapsulation to promote cell proliferation and can be applied to bone regeneration, especially in contaminated bone defects.
Collapse
|
63
|
|
64
|
Zhang BB, Wang L, Charles V, Rooke JC, Su BL. Robust and Biocompatible Hybrid Matrix with Controllable Permeability for Microalgae Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8939-8946. [PMID: 27027232 DOI: 10.1021/acsami.6b00191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hybrid beads with entrapped microalgae Chlamydomonas reinhardtii were synthesized for the sustainable production of high value metabolites via photosynthesis. Encapsulating the microalgae requires an exquisite control of material properties, which has been achieved by modifying the composition (alginate, polycation, and silica). A coating of PDADMAC precluded cell leakage as indicated by the OD750 value of the culture medium, and the homogeneous distribution of silica prevented bead shrinkage from the strong electronic force of PDADMAC, resulting in a robust and biocompatible matrix for the cells. Besides fabricating suitable porous beads for the diffusion of expected metabolites, the permeability can be controlled to a certain degree by applying different molecular weights of PDADMAC. The hybrid alginate+silica/CaCl2+PDADMAC beads possessed sufficient mechanical rigidity to sheer force under constant stirring and good chemical stability to chelating agents such as sodium citrate. Moreover, the encapsulated cells exhibited excellent long-term viability and cellular functionality, which retained about 81.5% of the original value after a 120 day encapsulation as observed by microscopy and oximetry measurement. This study is not only significant for understanding the critical role of polycations and silica involved in the synthesis of hybrid beads but also important for real-scale bioengineering applications.
Collapse
Affiliation(s)
- Bo-Bo Zhang
- Laboratory of Inorganic Materials Chemistry, University of Namur , rue de Bruxelles, 61, Namur B-5000, Belgium
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
| | - Li Wang
- Laboratory of Inorganic Materials Chemistry, University of Namur , rue de Bruxelles, 61, Namur B-5000, Belgium
- Laboratory of Living Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Luoshi Road 122, Wuhan 430070, P. R. China
| | - Valérie Charles
- Laboratory of Inorganic Materials Chemistry, University of Namur , rue de Bruxelles, 61, Namur B-5000, Belgium
| | - Joanna C Rooke
- Laboratory of Inorganic Materials Chemistry, University of Namur , rue de Bruxelles, 61, Namur B-5000, Belgium
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry, University of Namur , rue de Bruxelles, 61, Namur B-5000, Belgium
- Laboratory of Living Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Luoshi Road 122, Wuhan 430070, P. R. China
| |
Collapse
|
65
|
Kumar S, Babiarz J, Basak S, Kim JH, Barminko J, Gray A, Mendapara P, Schloss R, Yarmush ML, Grumet M. Sizes and Sufficient Quantities of MSC Microspheres for Intrathecal Injection to Modulate Inflammation in Spinal Cord Injury. ACTA ACUST UNITED AC 2016; 5. [PMID: 29545904 DOI: 10.1142/s179398441550004x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microencapsulation of mesenchymal stem cells (MSC) in alginate facilitates cell delivery, localization and survival, and modulates inflammation in vivo. However, we found that delivery of the widely used ~0.5 mm diameter encapsulated MSC (eMSC) by intrathecal injection into spinal cord injury (SCI) rats was highly variable. Injections of smaller (~0.2 mm) diameter eMSC into the lumbar spine were much more reproducible and they increased the anti-inflammatory macrophage response around the SCI site. We now report that injection of small eMSC >2 cm caudal from the rat SCI improved locomotion and myelin preservation 8 weeks after rat SCI versus control injections. Because preparation of sufficient quantities of small eMSC for larger studies was not feasible and injection of the large eMSC is problematic, we have developed a procedure to prepare medium-sized eMSC (~0.35 mm diameter) that can be delivered more reproducibly into the lumbar rat spine. The number of MSC incorporated/capsule in the medium sized capsules was ~5-fold greater than that in small capsules and the total yield of eMSC was ~20-fold higher than that for the small capsules. Assays with all three sizes of eMSC capsules showed that they inhibited TNF-α secretion from activated macrophages in co-cultures, suggesting no major difference in their anti-inflammatory activity in vitro. The in vivo activity of the medium-sized eMSC was tested after injecting them into the lumbar spine 1 day after SCI. Histological analyses 1 week later showed that eMSC reduced levels of activated macrophages measured by IB4 staining and increased white matter sparing in similar regions adjacent to the SCI site. The combined results indicate that ~0.35 mm diameter eMSC reduced macrophage inflammation in regions where white matter was preserved during critical early phases after SCI. These techniques enable preparation of eMSC in sufficient quantities to perform pre-clinical SCI studies with much larger numbers of subjects that will provide functional analyses of several critical parameters in rodent models for CNS inflammatory injury.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA
| | - Joanne Babiarz
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA
| | - Sayantani Basak
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA
| | - Jae Hwan Kim
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA. Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jeffrey Barminko
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA. The Mount Sinai Hospital, One Gustave L. Levy Place New York, NY 10029
| | - Andrea Gray
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Parry Mendapara
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Martin Grumet
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center. Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, 08854 USA
| |
Collapse
|
66
|
The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Stem Cells Int 2016; 2016:8140168. [PMID: 26880991 PMCID: PMC4736575 DOI: 10.1155/2016/8140168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/26/2022] Open
Abstract
Genetic manipulation is a powerful tool to establish the causal relationship between a genetic lesion and a particular pathological phenotype. The rise of CRISPR/Cas9 genome-engineering tools overcame the traditional technical bottleneck for routine site-specific genetic manipulation in cells. To create the perfect in vitro cell model, there is significant interest from the stem cell research community to adopt this fast evolving technology. This review addresses this need directly by providing both the up-to-date biochemical rationale of CRISPR-mediated genome engineering and detailed practical guidelines for the design and execution of CRISPR experiments in cell models. Ultimately, this review will serve as a timely and comprehensive guide for this fast developing technology.
Collapse
|
67
|
Yang J, Li J, Wang X, Li X, Kawazoe N, Chen G. Single mammalian cell encapsulation by in situ polymerization. J Mater Chem B 2016; 4:7662-7668. [DOI: 10.1039/c6tb02491b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Encapsulation of single mammalian cells with a cytoprotective polymeric shell through two mild reaction steps, surface acryloylation and in situ polymerization.
Collapse
Affiliation(s)
- Jianmin Yang
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Jingchao Li
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Xinlong Wang
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Xiaomeng Li
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Naoki Kawazoe
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| |
Collapse
|
68
|
Wang J, Cheng Y, Yu Y, Fu F, Chen Z, Zhao Y, Gu Z. Microfluidic Generation of Porous Microcarriers for Three-Dimensional Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27035-27039. [PMID: 26634625 DOI: 10.1021/acsami.5b10442] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inspired by the microstructure of the stem cell niche, which is generally composed of adjacent cell protection layers and an extracellular matrix (ECM), we present novel microfluidic porous microcarriers for cell culture that consist of external-internal connected scaffold structures and biopolymer matrix fillers. The biomimetic scaffold structure of the porous microcarriers not only avoids the imposition of shear forces on the encapsulated cells but also provides a confined microenvironment for cell self-assembly, whereas the biopolymers in the porous cores of the microcarriers can act as an ECM microenvironment to promote the formation of multicellular spheroid aggregates for biomedical applications.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| |
Collapse
|
69
|
Funaro MG, Nemani KV, Chen Z, Bhujwalla ZM, Griswold KE, Gimi B. Effect of alginate microencapsulation on the catalytic efficiency andin vitroenzyme-prodrug therapeutic efficacy of cytosine deaminase and of recombinantE. coliexpressing cytosine deaminase. J Microencapsul 2015; 33:64-70. [DOI: 10.3109/02652048.2015.1115902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
70
|
Zhang Q, Lin D, Yao S. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym 2015; 132:311-22. [DOI: 10.1016/j.carbpol.2015.06.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
|
71
|
Oliva N, Carcole M, Beckerman M, Seliktar S, Hayward A, Stanley J, Parry NMA, Edelman ER, Artzi N. Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia. Sci Transl Med 2015; 7:272ra11. [PMID: 25632035 DOI: 10.1126/scitranslmed.aaa1616] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A "one material fits all" mindset ignores profound differences in target tissues that affect their responses and reactivity. Yet little attention has been paid to the role of diseased tissue on material performance, biocompatibility, and healing capacity. We assessed material-tissue interactions with a prototypical adhesive material based on dendrimer/dextran and colon as a model tissue platform. Adhesive materials have high sensitivity to changes in their environment and can be exploited to probe and quantify the influence of even subtle modifications in tissue architecture and biology. We studied inflammatory colitis and colon cancer and found not only a difference in adhesion related to surface chemical interactions but also the existence of a complex interplay that determined the overall dendrimer/dextran biomaterial compatibility. Compatibility was contextual, not simply a constitutive property of the material, and was related to the extent and nature of immune cells in the diseased environment present before material implantation. We then showed how to use information about local alterations of the tissue microenvironment to assess disease severity. This in turn guided us to an optimal dendrimer/dextran formulation choice using a predictive model based on clinically relevant conditions.
Collapse
Affiliation(s)
- Nuria Oliva
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Maria Carcole
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Industrial Engineering, Institut Quimic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Margarita Beckerman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Ort Braude College, Karmiel 21982, Israel
| | - Sivan Seliktar
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Ort Braude College, Karmiel 21982, Israel
| | - Alison Hayward
- Concord Biomedical Sciences and Emerging Technologies, Lexington, MA 02421, USA
| | - James Stanley
- Concord Biomedical Sciences and Emerging Technologies, Lexington, MA 02421, USA
| | | | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
72
|
Cell encapsulation: technical and clinical advances. Trends Pharmacol Sci 2015; 36:537-46. [DOI: 10.1016/j.tips.2015.05.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/18/2023]
|
73
|
Biodegradable colloidal microgels with tunable thermosensitive volume phase transitions for controllable drug delivery. J Colloid Interface Sci 2015; 450:26-33. [DOI: 10.1016/j.jcis.2015.02.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
|
74
|
Gray A, Maguire T, Schloss R, Yarmush ML. Identification of IL-1β and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods. Biotechnol Prog 2015; 31:1058-70. [PMID: 25958832 DOI: 10.1002/btpr.2103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Induction of therapeutic mesenchymal stromal cell (MSC) function is dependent upon activating factors present in diseased or injured tissue microenvironments. These functions include modulation of macrophage phenotype via secreted molecules including prostaglandin E2 (PGE2). Many approaches aim to optimize MSC-based therapies, including preconditioning using soluble factors and cell immobilization in biomaterials. However, optimization of MSC function is usually inefficient as only a few factors are manipulated in parallel. We utilized fractional factorial design of experiments to screen a panel of 6 molecules (lipopolysaccharide [LPS], polyinosinic-polycytidylic acid [poly(I:C)], interleukin [IL]-6, IL-1β, interferon [IFN]-β, and IFN-γ), individually and in combinations, for the upregulation of MSC PGE2 secretion and attenuation of macrophage secretion of tumor necrosis factor (TNF)-α, a pro-inflammatory molecule, by activated-MSC conditioned medium (CM). We used multivariable linear regression (MLR) and analysis of covariance to determine differences in functions of optimal factors on monolayer MSCs and alginate-encapsulated MSCs (eMSCs). The screen revealed that LPS and IL-1β potently activated monolayer MSCs to enhance PGE2 production and attenuate macrophage TNF-α. Activation by LPS and IL-1β together synergistically increased MSC PGE2, but did not synergistically reduce macrophage TNF-α. MLR and covariate analysis revealed that macrophage TNF-α was strongly dependent on the MSC activation factor, PGE2 level, and macrophage donor but not MSC culture format (monolayer versus encapsulated). The results demonstrate the feasibility and utility of using statistical approaches for higher throughput cell analysis. This approach can be extended to develop activation schemes to maximize MSC and MSC-biomaterial functions prior to transplantation to improve MSC therapies.
Collapse
Affiliation(s)
- Andrea Gray
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Timothy Maguire
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Rene Schloss
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Martin L Yarmush
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| |
Collapse
|
75
|
Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin. Int J Pharm 2015; 485:15-24. [DOI: 10.1016/j.ijpharm.2015.02.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/17/2015] [Indexed: 01/06/2023]
|
76
|
Bussche L, Harman RM, Syracuse BA, Plante EL, Lu YC, Curtis TM, Ma M, Van de Walle GR. Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro. Stem Cell Res Ther 2015; 6:66. [PMID: 25889766 PMCID: PMC4413990 DOI: 10.1186/s13287-015-0037-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The prevalence of impaired cutaneous wound healing is high and treatment is difficult and often ineffective, leading to negative social and economic impacts for our society. Innovative treatments to improve cutaneous wound healing by promoting complete tissue regeneration are therefore urgently needed. Mesenchymal stromal cells (MSCs) have been reported to provide paracrine signals that promote wound healing, but (i) how they exert their effects on target cells is unclear and (ii) a suitable delivery system to supply these MSC-derived secreted factors in a controlled and safe way is unavailable. The present study was designed to provide answers to these questions by using the horse as a translational model. Specifically, we aimed to (i) evaluate the in vitro effects of equine MSC-derived conditioned medium (CM), containing all factors secreted by MSCs, on equine dermal fibroblasts, a cell type critical for successful wound healing, and (ii) explore the potential of microencapsulated equine MSCs to deliver CM to wounded cells in vitro. METHODS MSCs were isolated from the peripheral blood of healthy horses. Equine dermal fibroblasts from the NBL-6 (horse dermal fibroblast cell) line were wounded in vitro, and cell migration and expression levels of genes involved in wound healing were evaluated after treatment with MSC-CM or NBL-6-CM. These assays were repeated by using the CM collected from MSCs encapsulated in core-shell hydrogel microcapsules. RESULTS Our salient findings were that equine MSC-derived CM stimulated the migration of equine dermal fibroblasts and increased their expression level of genes that positively contribute to wound healing. In addition, we found that equine MSCs packaged in core-shell hydrogel microcapsules had similar effects on equine dermal fibroblast migration and gene expression, indicating that microencapsulation of MSCs does not interfere with the release of bioactive factors. CONCLUSIONS Our results demonstrate that the use of CM from MSCs might be a promising new therapy for impaired cutaneous wounds and that encapsulation may be a suitable way to effectively deliver CM to wounded cells in vivo.
Collapse
Affiliation(s)
- Leen Bussche
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| | - Bethany A Syracuse
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| | - Eric L Plante
- Department of Biological Sciences, State University of New York at Cortland, 21 Graham Avenue, Cortland, NY, 13045, USA.
| | - Yen-Chun Lu
- Department of Biological and Environmental Engineering, Cornell University, Wing Road, Ithaca, NY, 14850, USA.
| | - Theresa M Curtis
- Department of Biological Sciences, State University of New York at Cortland, 21 Graham Avenue, Cortland, NY, 13045, USA.
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Wing Road, Ithaca, NY, 14850, USA.
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| |
Collapse
|
77
|
Garate A, Santos E, Pedraz JL, Hernández RM, Orive G. Evaluation of different RGD ligand densities in the development of cell-based drug delivery systems. J Drug Target 2015; 23:806-12. [DOI: 10.3109/1061186x.2015.1020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
78
|
Wan W, Zhang S, Ge L, Li Q, Fang X, Yuan Q, Zhong W, Ouyang J, Xing M. Layer-by-layer paper-stacking nanofibrous membranes to deliver adipose-derived stem cells for bone regeneration. Int J Nanomedicine 2015; 10:1273-90. [PMID: 25709448 PMCID: PMC4334347 DOI: 10.2147/ijn.s77118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bone tissue engineering through seeding of stem cells in three-dimensional scaffolds has greatly improved bone regeneration technology, which historically has been a constant challenge. In this study, we researched the use of adipose-derived stem cell (ADSC)-laden layer-by-layer paper-stacking polycaprolactone/gelatin electrospinning nanofibrous membranes for bone regeneration. Using this novel paper-stacking method makes oxygen distribution, nutrition, and waste transportation work more efficiently. ADSCs can also secrete multiple growth factors required for osteogenesis. After the characterization of ADSC surface markers CD29, CD90, and CD49d using flow cytometry, we seeded ADSCs on the membranes and found cells differentiated, with significant expression of the osteogenic-related proteins osteopontin, osteocalcin, and osteoprotegerin. During 4 weeks in vitro, the ADSCs cultured on the paper-stacking membranes in the osteogenic medium exhibited the highest osteogenic-related gene expressions. In vivo, the paper-stacking scaffolds were implanted into the rat calvarial defects (5 mm diameter, one defect per parietal bone) for 12 weeks. Investigating with microcomputer tomography, the ADSC-laden paper-stacking membranes showed the most significant bone reconstruction, and from a morphological perspective, this group occupied 90% of the surface area of the defect, produced the highest bone regeneration volume, and showed the highest bone mineral density of 823.06 mg/cm(3). From hematoxylin and eosin and Masson staining, the new bone tissue was most evident in the ADSC-laden scaffold group. Using quantitative polymerase chain reaction analysis from collected tissues, we found that the ADSC-laden paper-stacking membrane group presented the highest osteogenic-related gene expressions of osteocalcin, osteopontin, osteoprotegerin, bone sialoprotein, runt-related transcription factor 2, and osterix (two to three times higher than the control group, and 1.5 times higher than the paper-stacking membrane group in all the genes). It is proposed that ADSC-laden layer-by-layer paper-stacking scaffolds could be used as a way of promoting bone defect treatment.
Collapse
Affiliation(s)
- Wenbing Wan
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Shiwen Zhang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
- Sichuan University, Chengdu, People’s Republic of China
| | - Liangpeng Ge
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Qingtao Li
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xingxing Fang
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
| | - Quan Yuan
- Sichuan University, Chengdu, People’s Republic of China
| | - Wen Zhong
- Department of Textile Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jun Ouyang
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
| | - Malcolm Xing
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
79
|
Gurruchaga H, Saenz del Burgo L, Ciriza J, Orive G, Hernández RM, Pedraz JL. Advances in cell encapsulation technology and its application in drug delivery. Expert Opin Drug Deliv 2015; 12:1251-67. [PMID: 25563077 DOI: 10.1517/17425247.2015.1001362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cell encapsulation technology has improved enormously since it was proposed 50 years ago. The advantages offered over other alternative systems, such as the prevention of repetitive drug administration, have triggered the use of this technology in multiple therapeutic applications. AREAS COVERED In this article, improvements in cell encapsulation technology and strategies to overcome the drawbacks that prevent its use in the clinic have been summarized and discussed. Different studies and clinical trials that have been performed in several therapeutic applications have also been described. EXPERT OPINION The authors believe that the future translation of this technology from bench to bedside requires the optimization of diverse aspects: i) biosafety, controlling and monitoring cell viability; ii) biocompatibility, reducing pericapsular fibrotic growth and hypoxia suffered by the graft; iii) control over drug delivery; iv) and the final scale up. On the other hand, an area that deserves more attention is the cryopreservation of encapsulated cells as this will facilitate the arrival of these biosystems to the clinic.
Collapse
Affiliation(s)
- Haritz Gurruchaga
- University of the Basque Country, Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Group, Faculty of Pharmacy, UPV/EHU , Vitoria-Gasteiz, 01006 , Spain
| | | | | | | | | | | |
Collapse
|
80
|
Hadjiev NA, Amsden BG. An assessment of the ability of the obstruction-scaling model to estimate solute diffusion coefficients in hydrogels. J Control Release 2014; 199:10-6. [PMID: 25499554 DOI: 10.1016/j.jconrel.2014.12.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 11/16/2022]
Abstract
The ability to estimate the diffusion coefficient of a solute within hydrogels has important application in the design and analysis of hydrogels used in drug delivery, tissue engineering, and regenerative medicine. A number of mathematical models have been derived for this purpose; however, they often rely on fitted parameters and so have limited predictive capability. Herein we assess the ability of the obstruction-scaling model to provide reasonable estimates of solute diffusion coefficients within hydrogels, as well as the assumption that a hydrogel can be represented as an entangled polymer solution of an equivalent concentration. Fluorescein isothiocyanate dextran solutes were loaded into sodium alginate solutions as well as hydrogels of different polymer volume fractions formed from photoinitiated cross-linking of methacrylate sodium alginate. The tracer diffusion coefficients of these solutes were measured using fluorescence recovery after photobleaching (FRAP). The measured diffusion coefficients were then compared to the values predicted by the obstruction-scaling model. The model predictions were within ±15% of the measured values, suggesting that the model can provide useful estimates of solute diffusion coefficients within hydrogels and solutions. Moreover, solutes diffusing in both sodium alginate solutions and hydrogels were demonstrated to experience the same degree of solute mobility restriction given the same effective polymer concentration, supporting the assumption that a hydrogel can be represented as an entangled polymer solution of equivalent concentration.
Collapse
Affiliation(s)
- Nicholas A Hadjiev
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
81
|
In vivo cell reprogramming to pluripotency: exploring a novel tool for cell replenishment and tissue regeneration. Biochem Soc Trans 2014. [DOI: 10.1042/bst20140012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The potential of cell-replacement strategies for the treatment of disorders in which a particular cell type is damaged or degenerated has prompted the search for the perfect cell source. iPSCs (induced pluripotent stem cells) stand out as very advantageous candidates thanks to their self-renewal capacity and differentiation potential, together with the possibility of generating them from autologous somatic cells with minimally invasive techniques. However, their differentiation into the required cell type, precise delivery and successful engraftment and survival in the host are still challenging. We have proposed the transient reprogramming of somatic cells towards a pluripotent state in their in vivo microenvironment as a means to facilitate the regeneration of the tissue. The initial reports of in vivo reprogramming to pluripotency in the literature are reviewed and the potential clinical applications of this strategy are discussed.
Collapse
|
82
|
Bandiera A, Markulin A, Corich L, Vita F, Borelli V. Stimuli-Induced Release of Compounds from Elastin Biomimetic Matrix. Biomacromolecules 2013; 15:416-22. [DOI: 10.1021/bm401677n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Antonella Bandiera
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Ana Markulin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lucia Corich
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Francesca Vita
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Violetta Borelli
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|