51
|
Leach GA, Dean RA, Kumar NG, Tsai C, Chiarappa FE, Cederna PS, Kung TA, Reid CM. Regenerative Peripheral Nerve Interface Surgery: Anatomic and Technical Guide. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5127. [PMID: 37465283 PMCID: PMC10351954 DOI: 10.1097/gox.0000000000005127] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Regenerative peripheral nerve interface (RPNI) surgery has been demonstrated to be an effective tool as an interface for neuroprosthetics. Additionally, it has been shown to be a reproducible and reliable strategy for the active treatment and for prevention of neuromas. The purpose of this article is to provide a comprehensive review of RPNI surgery to demonstrate its simplicity and empower reconstructive surgeons to add this to their armamentarium. This article discusses the basic science of neuroma formation and prevention, as well as the theory of RPNI. An anatomic review and discussion of surgical technique for each level of amputation and considerations for other etiologies of traumatic neuromas are included. Lastly, the authors discuss the future of RPNI surgery and compare this with other active techniques for the treatment of neuromas.
Collapse
Affiliation(s)
- Garrison A. Leach
- From the Department of General Surgery, Division of Plastic Surgery, University of California San Diego, La Jolla, Calif
| | - Riley A. Dean
- From the Department of General Surgery, Division of Plastic Surgery, University of California San Diego, La Jolla, Calif
| | - Nishant Ganesh Kumar
- Section of Plastic and Reconstructive Surgery and the Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Catherine Tsai
- From the Department of General Surgery, Division of Plastic Surgery, University of California San Diego, La Jolla, Calif
| | - Frank E. Chiarappa
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, Calif
| | - Paul S. Cederna
- Section of Plastic and Reconstructive Surgery and the Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Theodore A. Kung
- Section of Plastic and Reconstructive Surgery and the Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Chris M. Reid
- From the Department of General Surgery, Division of Plastic Surgery, University of California San Diego, La Jolla, Calif
| |
Collapse
|
52
|
Nasiry D, Khalatbary AR. Stem cell-derived extracellular vesicle-based therapy for nerve injury: A review of the molecular mechanisms. World Neurosurg X 2023; 19:100201. [PMID: 37181584 PMCID: PMC10173266 DOI: 10.1016/j.wnsx.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Recent evidence suggests that stem cell therapy has beneficial effects on nerve damage. These beneficial effects were subsequently found to be exerted in part in a paracrine manner by the release of extracellular vesicles. Stem cell-secreted extracellular vesicles have shown great potential to reduce inflammation and apoptosis, optimize the function of Schwann cells, regulate genes related to regeneration, and improve behavioral performance after nerve damage. This review summarizes the current knowledge on the effect of stem cell-derived extracellular vesicles on neuroprotection and regeneration along with their molecular mechanisms after nerve damage.
Collapse
Affiliation(s)
- Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Cellular and Molecular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Corresponding author.
| |
Collapse
|
53
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Composite Nanocoatings of Biomedical Magnesium Alloy Implants: Advantages, Mechanisms, and Design Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300658. [PMID: 37097626 PMCID: PMC10288271 DOI: 10.1002/advs.202300658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The rapid degradation of magnesium (Mg) alloy implants erodes mechanical performance and interfacial bioactivity, thereby limiting their clinical utility. Surface modification is among the solutions to improve corrosion resistance and bioefficacy of Mg alloys. Novel composite coatings that incorporate nanostructures create new opportunities for their expanded use. Particle size dominance and impermeability may increase corrosion resistance and thereby prolong implant service time. Nanoparticles with specific biological effects may be released into the peri-implant microenvironment during the degradation of coatings to promote healing. Composite nanocoatings provide nanoscale surfaces to promote cell adhesion and proliferation. Nanoparticles may activate cellular signaling pathways, while those with porous or core-shell structures may carry antibacterial or immunomodulatory drugs. Composite nanocoatings may promote vascular reendothelialization and osteogenesis, attenuate inflammation, and inhibit bacterial growth, thus increasing their applicability in complex clinical microenvironments such as those of atherosclerosis and open fractures. This review combines the physicochemical properties and biological efficiency of Mg-based alloy biomedical implants to summarize the advantages of composite nanocoatings, analyzes their mechanisms of action, and proposes design and construction strategies, with the purpose of providing a reference for promoting the clinical application of Mg alloy implants and to further the design of nanocoatings.
Collapse
Affiliation(s)
- Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Gege Xiong
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Shuquan Lan
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
54
|
Horníček J, Olšák P, Kolář P, Kolářová B. Perspectives of Electroacupuncture as a New Option for the Treatment of Denervated Muscles. Med Acupunct 2023; 35:107-110. [PMID: 37351450 PMCID: PMC10282816 DOI: 10.1089/acu.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Introduction Conservative treatment of peripheral nerve injuries is based on physical therapy approaches, including electrostimulation of denervated muscle. Electrostimulation retards denervation atrophy and prolongs the time window for axon reinnervation. Aim This article focuses on the potential of electroacupuncture, which combines electrostimulation with acupuncture, in the context of the latest knowledge on the mechanisms of axonal regeneration. Results and conclusions The possibilities of influencing the growth rate of the axon itself through neurotrophic factors have primarily been previously proven in rodent models. Electroacupuncture as mini-invasive electrostimulation using acupuncture needles appears to be a promising option for the treatment of peripheral nerve paresis. However, this therapy needs to be evaluated in the context of human medicine.
Collapse
Affiliation(s)
- Jiří Horníček
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Olomouc, Czech Republic
- Rehabilitation Department, University Hospital Olomouc, Olomouc, Czech Republic
| | - Peter Olšák
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Olomouc, Czech Republic
| | - Petr Kolář
- Rehabilitation Department, University Hospital Olomouc, Olomouc, Czech Republic
| | - Barbora Kolářová
- Rehabilitation Department, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
55
|
Lin Y, Yu J, Zhang Y, Hayat U, Liu C, Huang X, Lin H, Wang JY. 4D printed tri-segment nerve conduit using zein gel as the ink for repair of rat sciatic nerve large defect. BIOMATERIALS ADVANCES 2023; 151:213473. [PMID: 37245344 DOI: 10.1016/j.bioadv.2023.213473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Zein has enormous potential for application in biomedical field due to biodegradation and biocompatibility, we have recently prepared zein gel as a possible 3D printing ink. Our previous studies found that the pore structure in zein material can reduce early inflammation, promote the polarization of macrophages toward the M2 phenotype, and accelerate nerve regeneration. To further explore the role of zein in nerve repair, we used 4D printing technique to create nerve conduits with zein protein gel, and designed 2 types of tri-segment conduits with different degradation rates. Structural parts printed in support baths with higher water content show faster degradation rates than those printed in support baths with lower water content. The conduits that degraded quickly at both ends and slowly in the middle (CB75-CB40-CB75) and the conduits that degraded slowly at both ends and quickly in the middle (CB40-CB75-CB40) were 4D printed, respectively. Animal experiments suggest that the CB75-CB40-CB75 conduit is better for nerve repair, which may be because its degradation pattern can match to the pattern of nerve regeneration better. Our new strategy through 4D printing indicated that fine modulation in conduit degradation can affect efficacy of nerve repair significantly.
Collapse
Affiliation(s)
- Yaofa Lin
- Department of Orthopaedics, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai 201803, China
| | - Jinwen Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yubei Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Uzma Hayat
- Jiaxing Yaojiao Medical Device Co. Ltd., 321 Jiachuang Road, Jiaxing 314032, China
| | - Chang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyun Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai 200040, China
| | - Haodong Lin
- Department of Orthopaedics, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai 201803, China; Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai 200080, China.
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Jiaxing Yaojiao Medical Device Co. Ltd., 321 Jiachuang Road, Jiaxing 314032, China.
| |
Collapse
|
56
|
Jiang L, Ouyang X, Zhang D, Wang G, Zhang Z, Wang W, Yan H. The role of Gel-Ppy-modified nerve conduit on the repair of sciatic nerve defect in rat model. FASEB J 2023; 37:e22921. [PMID: 37052612 DOI: 10.1096/fj.202201969r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
The serious clinical challenge of peripheral nerve injury (PNI) is nerve regeneration. Nerve conduit represents a promising strategy to contribute to nerve regeneration by bridging injured nerve gaps. However, due to a unique microenvironment of nerve tissue, autologous nerves have not been substituted by nerve conduit. Nerve regeneration after nerve conduit implantation depends on many factors, such as conductivity and biocompatibility. Therefore, Gelatin (Gel) with biocompatibility and polypyrrole (Ppy) with conductivity is highly concerned. In this paper, Gel-Ppy modified nerve conduit was fabricated with great biocompatibility and conductivity to evaluate its properties of enhancing nerve regeneration in vivo and in vitro. The proliferation of Schwann cells on Gel-Ppy modified nerve conduit was remarkably increased. Consistent with in vitro results, the Gel-Ppy nerve conduit could contribute to the regeneration of Schwann cell in vivo. The axon diameters and myelin sheath thickness were also enhanced, resulting in the amelioration of muscle atrophy, nerve conduction, and motor function recovery. To explain this interesting phenomenon, western blot results indicated that the Gel-Ppy conduit facilitated nerve regeneration via upregulating the Rap1 pathway to induce neurite outgrowth. Therefore, the above results demonstrated that Gel-Ppy modified nerve conduit could provide an acceptable microenvironment for nerve regeneration and be popularized as a novel therapeutic strategy of PNI.
Collapse
Affiliation(s)
- Liangfu Jiang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Wound Repair), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xingyu Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dupiao Zhang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Gang Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhe Zhang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hede Yan
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
57
|
Bueno CRDS, Tonin MCC, Buchaim DV, Barraviera B, Ferreira Junior RS, Santos PSDS, Reis CHB, Pastori CM, Pereira EDSBM, Nogueira DMB, Cini MA, Rosa Junior GM, Buchaim RL. Morphofunctional Improvement of the Facial Nerve and Muscles with Repair Using Heterologous Fibrin Biopolymer and Photobiomodulation. Pharmaceuticals (Basel) 2023; 16:ph16050653. [PMID: 37242436 DOI: 10.3390/ph16050653] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral nerve injuries impair the patient's functional capacity, including those occurring in the facial nerve, which require effective medical treatment. Thus, we investigated the use of heterologous fibrin biopolymer (HFB) in the repair of the buccal branch of the facial nerve (BBFN) associated with photobiomodulation (PBM), using a low-level laser (LLLT), analyzing the effects on axons, muscles facials, and functional recovery. This experimental study used twenty-one rats randomly divided into three groups of seven animals, using the BBFN bilaterally (the left nerve was used for LLLT): Control group-normal and laser (CGn and CGl); Denervated group-normal and laser (DGn and DGl); Experimental Repair Group-normal and laser (ERGn and ERGl). The photobiomodulation protocol began in the immediate postoperative period and continued for 5 weeks with a weekly application. After 6 weeks of the experiment, the BBFN and the perioral muscles were collected. A significant difference (p < 0.05) was observed in nerve fiber diameter (7.10 ± 0.25 µm and 8.00 ± 0.36 µm, respectively) and axon diameter (3.31 ± 0.19 µm and 4.07 ± 0.27 µm, respectively) between ERGn and ERGl. In the area of muscle fibers, ERGl was similar to GC. In the functional analysis, the ERGn and the ERGI (4.38 ± 0.10) and the ERGI (4.56 ± 0.11) showed parameters of normality. We show that HFB and PBM had positive effects on the morphological and functional stimulation of the buccal branch of the facial nerve, being an alternative and favorable for the regeneration of severe injuries.
Collapse
Affiliation(s)
- Cleuber Rodrigo de Souza Bueno
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Dentistry School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Maria Clara Cassola Tonin
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Universidade Estadual Paulista, UNESP), Botucatu 18610-307, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Universidade Estadual Paulista), Botucatu 18618-687, Brazil
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Universidade Estadual Paulista, UNESP), Botucatu 18610-307, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Universidade Estadual Paulista), Botucatu 18618-687, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | | | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | - Dayane Maria Braz Nogueira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Marcelo Augusto Cini
- Medical School, University of West Paulista (UNOESTE), Guarujá 11441-225, Brazil
| | | | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
58
|
Wang J, Liu Y, Lv M, Zhao X, So KF, Li H, EL-Newehy M, EL-Hamshary H, Morsi Y, Mo X. Regulation of nerve cells using conductive nanofibrous scaffolds for controlled release of Lycium barbarum polysaccharides and nerve growth factor. Regen Biomater 2023; 10:rbad038. [PMID: 37215435 PMCID: PMC10196224 DOI: 10.1093/rb/rbad038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Currently, more and more patients suffer from peripheral nerve injury due to trauma, tumor and other causes worldwide. Biomaterial-based nerve conduits are increasingly recognized as a potential alternative to nerve autografts for the treatment of peripheral nerve injury. However, an ideal nerve conduit must offer topological guidance and biochemical and electrical signal transduction mechanisms. In this work, aligned conductive nanofibrous scaffolds comprising polylactic-co-glycolic acid and multiwalled carbon nanotubes (MWCNTs) were fabricated via coaxial electrospinning, and nerve growth factor (NGF) and Lycium barbarum polysaccharides (LBP) purified from the wolfberry were loaded on the core and shell layers of the nanofibers, respectively. LBP were confirmed to accelerate long-distance axon regeneration after severe peripheral nerve injury. In addition, the synergistic promotion of LBP and NGF on nerve cell proliferation and neurite outgrowth was demonstrated. MWCNTs were introduced into the aligned fibers to further increase the electrical conductivity, which promoted the directional growth and neurite extension of neurons in vitro. Further, the combination of conductive fibrous scaffolds with electrical stimulation that mimics endogenous electric fields significantly promoted the differentiation of PC12 cells and the axon outgrowth of neurons. Based on robust cell-induced behaviors, conductive composite fibers with optimized fiber alignment may be used for the promotion of nerve recovery.
Collapse
Affiliation(s)
- Jing Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, 201306, P.R. China
| | - Yuan Liu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Minmin Lv
- University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, P.R. China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Kwok Fai So
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, P.R. China
- Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, P.R. China
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P.R. China
| | - Hui Li
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Mohamed EL-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, P.O. Box 2455, Saudi Arabia
| | - Hany EL-Hamshary
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, P.O. Box 2455, Saudi Arabia
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC 3122, Australia
| | - Xiumei Mo
- Correspondence address. E-mail: (X.M.)
| |
Collapse
|
59
|
Er-Rouassi H, Bakour M, Touzani S, Vilas-Boas M, Falcão S, Vidal C, Lyoussi B. Beneficial Effect of Bee Venom and Its Major Components on Facial Nerve Injury Induced in Mice. Biomolecules 2023; 13:680. [PMID: 37189427 PMCID: PMC10135545 DOI: 10.3390/biom13040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Peripheral nerve injury (PNI) is a health problem that affects many people worldwide. This study is the first to evaluate the potential effect of bee venom (BV) and its major components in a model of PNI in the mouse. For that, the BV used in this study was analyzed using UHPLC. All animals underwent a distal section-suture of facial nerve branches, and they were randomly divided into five groups. Group 1: injured facial nerve branches without any treatment. Group 2: the facial nerve branches were injured, and the normal saline was injected similarly as in the BV-treated group. Group 3: injured facial nerve branches with local injections of BV solution. Group 4: injured facial nerve branches with local injections of a mixture of PLA2 and melittin. Group 5: injured facial nerve branches with local injection of betamethasone. The treatment was performed three times a week for 4 weeks. The animals were submitted to functional analysis (observation of whisker movement and quantification of nasal deviation). The vibrissae muscle re-innervation was evaluated by retrograde labeling of facial motoneurons in all experimental groups. UHPLC data showed 76.90 ± 0.13%, 11.73 ± 0.13%, and 2.01 ± 0.01%, respectively, for melittin, phospholipase A2, and apamin in the studied BV sample. The obtained results showed that BV treatment was more potent than the mixture of PLA2 and melittin or betamethasone in behavioral recovery. The whisker movement occurred faster in BV-treated mice than in the other groups, with a complete disappearance of nasal deviation two weeks after surgery. Morphologically, a normal fluorogold labeling of the facial motoneurons was restored 4 weeks after surgery in the BV-treated group, but no such restoration was ever observed in other groups. Our findings indicate the potential of the use of BV injections to enhance appropriate functional and neuronal outcomes after PNI.
Collapse
Affiliation(s)
- Hafsa Er-Rouassi
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- The Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco
| | - Soumaya Touzani
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Soraia Falcão
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Catherine Vidal
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
60
|
Zhang Y, Chen C, Li D, Chen P, Hang L, Yang J, Xie J. Exploration and identification of six novel ferroptosis-related hub genes as potential gene signatures for peripheral nerve injury. Front Genet 2023; 14:1156467. [PMID: 37091802 PMCID: PMC10119587 DOI: 10.3389/fgene.2023.1156467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Specific biomarkers of ferroptosis after peripheral nerve injury (PNI) are still under debate. In this study, 52 differentially expressed ferroptosis-related genes (DE-FRGs) were retrieved from publicly accessible sequencing data of intact and injured samples of rats with sciatic nerve crush injury. Functional enrichment analyses revealed that adipogenesis, mitochondrial gene sets, and pathways of MAPK, p53, and CD28 family were predominantly engaged in ferroptosis after PNI. Next, Cdkn1a, Cdh1, Hif1a, Hmox1, Nfe2l2, and Tgfb1 were investigated as new ferroptosis-associated hub genes after PNI. Subsequently, clustering correlation heatmap shows six hub genes are linked to mitochondria. The immunofluorescence assay at 0, 1, 4, 7, and 14 days indicated the temporal expression patterns of Tgfb1, Hmox1, and Hif1a after PNI were consistent with ferroptosis validated by PI and ROS staining, while Cdh1, Cdkn1a, and Nfe2l2 were the opposite. In summary, this study identified six hub genes as possible ferroptosis-related biomarkers for PNI, which may offer therapeutic targets for peripheral nerve regeneration and provide a therapeutic window for ferroptosis.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dawei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Hang
- Business School, Tianhua College, Shanghai Normal University, Shanghai, China
- *Correspondence: Lei Hang, ; Jun Yang, ; Jin Xie,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Lei Hang, ; Jun Yang, ; Jin Xie,
| | - Jin Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Lei Hang, ; Jun Yang, ; Jin Xie,
| |
Collapse
|
61
|
Kaplan AA, Önger ME, Kaplan S. THE EFFECTS OF CURCUMIN AND BLUEBERRY ON AXONAL REGENERATION AFTER PERIPHERAL NERVE INJURY. J Chem Neuroanat 2023; 130:102260. [PMID: 36965643 DOI: 10.1016/j.jchemneu.2023.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The purpose of this study was to analyze the axonal regeneration and therapeutic effects of curcumin and blueberry administration following peripheral nerve injury using stereological, electron microscopic and electrophysiological methods. Animals in were assigned into one of four groups - control (Cont), injury (Inj), injury+curcumin (Cur) and injury+blueberry (Blue). Following the induction of sciatic nerve crush injury (75 Newtons for 5sec) in the Inj, Cur, and Blue groups, the rats in the Cur group received intraperitoneal injection of 30mg/kg curcumin (Sigma C1386) and the rats in the Blue group received 4g/kg blueberry by gavage over a four-week period. The rats in the Cont and Inj groups were not exposed to any substance. All animals were given standard chow. Sciatic functional index analyses were performed on the 14th and 28th days after injury, and electromyography (EMG) results were recorded. Stereological analysis of the nerve was performed under light microscopy. Light and electron microscopies were used for the histopathological evaluation of the sciatic nerve. Analysis of myelinated axon numbers revealed no significant differences between the Inj group and the Cur and Blue groups. However, a significant difference was observed between the Blue and Inj groups in terms of axonal areas. EMG test results differed between the Blue and the Inj groups (p<0.05), but no significant difference was observed between the Inj and Cur groups. Electron microscopic analysis revealed protective effects of curcumin and blueberry treatment after injury. The use of the curcumin and blueberry may represent a supportive approach to the protection of nerve fibers after peripheral nerve crush injury.
Collapse
Affiliation(s)
- Arife Ahsen Kaplan
- Department of Histology and Embryology, Medicine Faculty, İstanbul Medipol University, İstanbul, Turkey
| | - Mehmet Emin Önger
- Department of Histology and Embryology, Medicine Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Medicine Faculty, Ondokuz Mayıs University, Samsun, Turkey; Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| |
Collapse
|
62
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
63
|
DOK7 Promotes NMJ Regeneration After Nerve Injury. Mol Neurobiol 2023; 60:1453-1464. [PMID: 36464749 DOI: 10.1007/s12035-022-03143-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 12/11/2022]
Abstract
Motor function recovery from injury requires the regeneration of not only muscle fibers, but also the neuromuscular junction-the synapse between motor nerve terminals and muscle fibers. However, unlike muscle regeneration which has been extensively studied, little is known about the molecular mechanisms of NMJ regeneration. Recognizing the critical role of agrin-LRP4-MuSK signaling in NMJ formation and maintenance, we investigated whether increasing MuSK activity promotes NMJ regeneration. To this end, we evaluated the effect of DOK7, a protein that stimulates MuSK, on NMJ regeneration. Reinnervation, AChR cluster density, and endplate area were improved, and fragmentation was reduced in the AAV9-DOK7-GFP-injected muscles compared with muscles injected with AAV9-GFP. These results demonstrated expedited NMJ regeneration associated with increased DOK7 expression and support the hypothesis that increasing agrin signaling benefits motor function recovery after injury. Our findings propose a potentially new therapeutic strategy for functional recovery after muscle and nerve injury, i.e., promoting NMJ regeneration by increasing agrin signaling.
Collapse
|
64
|
Szymoniuk M, Mazurek M, Dryla A, Kamieniak P. The application of 3D-bioprinted scaffolds for neuronal regeneration after traumatic spinal cord injury - A systematic review of preclinical in vivo studies. Exp Neurol 2023; 363:114366. [PMID: 36858280 DOI: 10.1016/j.expneurol.2023.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND The implantation of 3D-bioprinted scaffolds represents a promising therapeutic approach for traumatic Spinal Cord Injury (SCI), currently investigating in preclinical in vivo studies. However, a systematic review of the relevant literature has not been performed to date. Hence, we systematically reviewed the outcomes of the application of 3D-bioprinted implants in the treatment of SCI based on studies conducted on experimental animal models. METHODS We searched PubMed, Scopus, Web of Science, and Cochrane Library databases. Manuscripts in other designs than in vivo preclinical study and written in other languages than English were excluded. A risk of bias assessment was performed using SYRCLE's tool. The quality of included articles was assessed by ARRIVE guidelines. Extracted data were synthesized only qualitatively because the data were not suitable for conducting the meta-analysis. RESULTS Overall, eleven animal studies reporting on the transection SCI rat model were included. Six of included studies investigated 3D-bioprinted scaffolds enriched with stem cells, two studies - 3D-bioprinted scaffolds combined with growth factors, and three studies - stand-alone 3D-bioprinted scaffolds. In all included studies the application of 3D-bioprinted scaffolds led to significant improvement in functional scores compared with no treated SCI rats. The functional recovery corresponded with the changes observed at the injury site in histological analyses. Seven studies demonstrated medium, three studies - high, and one study - low risk of bias. Moreover, some of the included studies were conducted in the same scientific center. The overall quality assessment ratio amounted to 0.60, which was considered average quality. CONCLUSION The results of our systematic review suggest that 3D-bioprinted scaffolds may be a feasible therapeutic approach for the treatment of SCI. Further evidence obtained on other experimental SCI models is necessary before the clinical translation of 3D-bioprinted scaffolds.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland.
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Aleksandra Dryla
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| |
Collapse
|
65
|
Bianchini M, Micera S, Redolfi Riva E. Recent Advances in Polymeric Drug Delivery Systems for Peripheral Nerve Regeneration. Pharmaceutics 2023; 15:pharmaceutics15020640. [PMID: 36839962 PMCID: PMC9965241 DOI: 10.3390/pharmaceutics15020640] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
When a traumatic event causes complete denervation, muscle functional recovery is highly compromised. A possible solution to this issue is the implantation of a biodegradable polymeric tubular scaffold, providing a biomimetic environment to support the nerve regeneration process. However, in the case of consistent peripheral nerve damage, the regeneration capabilities are poor. Hence, a crucial challenge in this field is the development of biodegradable micro- nanostructured polymeric carriers for controlled and sustained release of molecules to enhance nerve regeneration. The aim of these systems is to favor the cellular processes that support nerve regeneration to increase the functional recovery outcome. Drug delivery systems (DDSs) are interesting solutions in the nerve regeneration framework, due to the possibility of specifically targeting the active principle within the site of interest, maximizing its therapeutical efficacy. The scope of this review is to highlight the recent advances regarding the study of biodegradable polymeric DDS for nerve regeneration and to discuss their potential to enhance regenerative performance in those clinical scenarios characterized by severe nerve damage.
Collapse
Affiliation(s)
- Marta Bianchini
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1000 Lausanne, Switzerland
| | - Eugenio Redolfi Riva
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Correspondence:
| |
Collapse
|
66
|
Zhang X, Liu F, Gu Z. Tissue Engineering in Neuroscience: Applications and Perspectives. BME FRONTIERS 2023; 4:0007. [PMID: 37849680 PMCID: PMC10521717 DOI: 10.34133/bmef.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 10/19/2023] Open
Abstract
Neurological disorders have always been a threat to human physical and mental health nowadays, which are closely related to the nonregeneration of neurons in the nervous system (NS). The damage to the NS is currently difficult to repair using conventional therapies, such as surgery and medication. Therefore, repairing the damaged NS has always been a vast challenge in the area of neurology. Tissue engineering (TE), which integrates the cell biology and materials science to reconstruct or repair organs and tissues, has widespread applications in bone, periodontal tissue defects, skin repairs, and corneal transplantation. Recently, tremendous advances have been made in TE regarding neuroscience. In this review, we summarize TE's recent progress in neuroscience, including pathological mechanisms of various neurological disorders, the concepts and classification of TE, and the most recent development of TE in neuroscience. Lastly, we prospect the future directions and unresolved problems of TE in neuroscience.
Collapse
Affiliation(s)
- Xiaoge Zhang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuyao Liu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Gu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
67
|
Yang H, Dong Y, Wang Z, Lai J, Yao C, Zhou H, Alhaskawi A, Hasan Abdullah Ezzi S, Kota VG, Hasan Abdulla Hasan Abdulla M, Lu H. Traumatic neuromas of peripheral nerves: Diagnosis, management and future perspectives. Front Neurol 2023; 13:1039529. [PMID: 36712443 PMCID: PMC9875025 DOI: 10.3389/fneur.2022.1039529] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Traumatic neuromas are infrequent in clinical settings but are prevalent following trauma or surgery. A traumatic neuroma is not a true malignancy, rather, it is a hyperplastic, reparative nerve reaction after injury and typically manifests as a nodular mass. The most common clinical manifestations include painful hypersensitivity and the presence of a trigger point that causes neuralgic pain, which could seriously decrease the living standards of patients. While various studies are conducted aiming to improve current diagnosis and management strategies via the induction of emerging imaging tools and surgical or conservative treatment. However, researchers and clinicians have yet to reach a consensus regarding traumatic neuromas. In this review, we aim to start with the possible underlying mechanisms of traumatic neuromas, elaborate on the diagnosis, treatment, and prevention schemes, and discuss the current experiment models and advances in research for the future management of traumatic neuromas.
Collapse
Affiliation(s)
- Hu Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingtian Lai
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenjun Yao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Hui Lu ✉
| |
Collapse
|
68
|
Talukder MAH, Elfar J, Lee J, Karuman Z, Gurjar A, Govindappa P, Guddadarangaiah J, Manto K, Wandling G, Hegarty J, Waning D. Functional recovery and muscle atrophy in pre-clinical models of peripheral nerve transection and gap-grafting in mice: effects of 4-aminopyridine. Neural Regen Res 2023; 18:439-444. [PMID: 35900443 PMCID: PMC9396510 DOI: 10.4103/1673-5374.346456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We recently demonstrated a repurposing beneficial effect of 4-aminopyridine (4-AP), a potassium channel blocker, on functional recovery and muscle atrophy after sciatic nerve crush injury in rodents. However, this effect of 4-AP is unknown in nerve transection, gap, and grafting models. To evaluate and compare the functional recovery, nerve morphology, and muscle atrophy, we used a novel stepwise nerve transection with gluing (STG), as well as 7-mm irreparable nerve gap (G-7/0) and 7-mm isografting in 5-mm gap (G-5/7) models in the absence and presence of 4-AP treatment. Following surgery, sciatic functional index was determined weekly to evaluate the direct in vivo global motor functional recovery. After 12 weeks, nerves were processed for whole-mount immunofluorescence imaging, and tibialis anterior muscles were harvested for wet weight and quantitative histomorphological analyses for muscle fiber cross-sectional area and minimal Feret’s diameter. Average post-injury sciatic functional index values in STG and G-5/7 models were significantly greater than those in the G-7/0 model. 4-AP did not affect the sciatic functional index recovery in any model. Compared to STG, nerve imaging revealed more misdirected axons and distorted nerve architecture with isografting. While muscle weight, cross-sectional area, and minimal Feret’s diameter were significantly smaller in G-7/0 model compared with STG and G-5/7, 4-AP treatment significantly increased right TA muscle mass, cross-sectional area, and minimal Feret’s diameter in G-7/0 model. These findings demonstrate that functional recovery and muscle atrophy after peripheral nerve injury are directly related to the intervening nerve gap, and 4-AP exerts differential effects on functional recovery and muscle atrophy.
Collapse
|
69
|
Liu Q, Deng X, Hou Z, Xu L, Zhang Y. Selective Repair of Motor Branches in the Femoral Nerve by Transferring the Motor Branches of Obturator Nerve: An Anatomical Feasibility Study. Ann Plast Surg 2023; 90:67-70. [PMID: 36534103 DOI: 10.1097/sap.0000000000003327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Anterior branch of the obturator nerve transfer has been proven as an effective method for femoral nerve injuries, but the patient still has difficulty in rising and squatting, up and downstairs. Here, we presented a novel neurotization procedure of selectively repairing 3 motor branches of the femoral nerve by transferring motor branches of the obturator nerve in the thigh level and assessing its anatomical feasibility. METHODS Eight adult cadavers (16 thighs) were dissected. The nerve overlap distance between the gracilis branch and the rectus femoris (RF) branch, the adductor longus (AL) branch and the vastus medialis (VM) branch, as well as the adductor magnus (AM) branch and the vastus intermedius (VI) branch were measured. Also, the axon counts of the donor and recipient nerve were evaluated by histological evaluation. RESULTS In all specimens, nerve overlap of at least 2.1 cm was observed in all 16 dissected thighs between the donor and recipient nerve branches, and the repair appeared to be without tension. There is no significant difference in the axon counts between gracilis branch (598 ± 83) and the RF branch (709 ± 151). The axon counts of the AL branch (601 ± 93) was about half of axon counts of the VM branch (1423 ± 189), and the axon counts of AM branch (761 ± 110) was also about half of the VI branch (1649 ± 281). CONCLUSIONS This novel technique of the combined nerve transfers below the inguinal ligament, specifically the gracilis branch to the RF branch, the AL branch to the VM branch, and the AM branch to the VI branch, is anatomically feasible. It provides a promising alternative in the repair of femoral nerve injuries and an anatomical basis for the clinical application of motor branches of the obturator nerve transfer to repair the motor portion of the injured femoral nerve.
Collapse
Affiliation(s)
- Qing Liu
- From the Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaobing Deng
- Department of Hand Surgery, Jiayou Shuguang Orthopaedic Hospital, Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Zhiping Hou
- From the Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
70
|
Hu X, Xu Y, Xu Y, Li Y, Guo J. Nanotechnology and Nanomaterials in Peripheral Nerve Repair and Reconstruction. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
71
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
72
|
Liu Y, Su G, Zhang R, Dai R, Li Z. Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds. Int J Mol Sci 2022; 24:336. [PMID: 36613778 PMCID: PMC9820076 DOI: 10.3390/ijms24010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainly divided into physical embedding and chemical synthesis of the NMFHs, are summarized and illustrated. Then, functions of the NMFHs brought by the NMs are reviewed, including hemostasis, antimicrobial activity, conductivity, regulation of reactive oxygen species (ROS) level, and stimulus responsiveness (pH responsiveness, photo-responsiveness, and magnetic responsiveness). Finally, current challenges and future perspectives in this field are discussed with the hope of inspiring additional ideas.
Collapse
Affiliation(s)
- Yangkun Liu
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
73
|
Griffin KH, Fok SW, Kent Leach J. Strategies to capitalize on cell spheroid therapeutic potential for tissue repair and disease modeling. NPJ Regen Med 2022; 7:70. [PMID: 36494368 PMCID: PMC9734656 DOI: 10.1038/s41536-022-00266-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Cell therapies offer a tailorable, personalized treatment for use in tissue engineering to address defects arising from trauma, inefficient wound repair, or congenital malformation. However, most cell therapies have achieved limited success to date. Typically injected in solution as monodispersed cells, transplanted cells exhibit rapid cell death or insufficient retention at the site, thereby limiting their intended effects to only a few days. Spheroids, which are dense, three-dimensional (3D) aggregates of cells, enhance the beneficial effects of cell therapies by increasing and prolonging cell-cell and cell-matrix signaling. The use of spheroids is currently under investigation for many cell types. Among cells under evaluation, spheroids formed of mesenchymal stromal cells (MSCs) are particularly promising. MSC spheroids not only exhibit increased cell survival and retained differentiation, but they also secrete a potent secretome that promotes angiogenesis, reduces inflammation, and attracts endogenous host cells to promote tissue regeneration and repair. However, the clinical translation of spheroids has lagged behind promising preclinical outcomes due to hurdles in their formation, instruction, and use that have yet to be overcome. This review will describe the current state of preclinical spheroid research and highlight two key examples of spheroid use in clinically relevant disease modeling. It will highlight techniques used to instruct the phenotype and function of spheroids, describe current limitations to their use, and offer suggestions for the effective translation of cell spheroids for therapeutic treatments.
Collapse
Affiliation(s)
- Katherine H Griffin
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Shierly W Fok
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA.
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
74
|
Thomson SE, Ng NY, Riehle MO, Kingham PJ, Dahlin LB, Wiberg M, Hart AM. Bioengineered nerve conduits and wraps for peripheral nerve repair of the upper limb. Cochrane Database Syst Rev 2022; 12:CD012574. [PMID: 36477774 PMCID: PMC9728628 DOI: 10.1002/14651858.cd012574.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Traumatic peripheral nerve injury is common and incurs significant cost to individuals and society. Healing following direct nerve repair or repair with autograft is slow and can be incomplete. Several bioengineered nerve wraps or devices have become available as an alternative to direct repair or autologous nerve graft. Nerve wraps attempt to reduce axonal escape across a direct repair site and nerve devices negate the need for a donor site defect, required by an autologous nerve graft. Comparative evidence to guide clinicians in their potential use is lacking. We collated existing evidence to guide the clinical application of currently available nerve wraps and conduits. OBJECTIVES To assess and compare the effects and complication rates of licensed bioengineered nerve conduits or wraps for surgical repair of traumatic peripheral nerve injuries of the upper limb. To compare effects and complications against the current gold surgical standard (direct repair or nerve autograft). SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was 26 January 2022. We searched online and, where not accessible, contacted societies' secretariats to review abstracts from the British Surgical Society of the Hand, International Federation of Surgical Societies of the Hand, Federation of European Surgical Societies of the Hand, and the American Society for Peripheral Nerve from October 2007 to October 2018. SELECTION CRITERIA We included parallel group randomised controlled trials (RCTs) and quasi-RCTs of nerve repair in the upper limb using a bioengineered wrap or conduit, with at least 12 months of follow-up. DATA COLLECTION AND ANALYSIS We used standard Cochrane procedures. Our primary outcomes were 1. muscle strength and 2. sensory recovery at 24 months or more. Our secondary outcomes were 3. British Medical Research Council (BMRC) grading, 4. integrated functional outcome (Rosén Model Instrument (RMI)), 5. touch threshold, 6. two-point discrimination, 7. cold intolerance, 8. impact on daily living measured using the Disability of Arm Shoulder and Hand Patient-Reported Outcome Measure (DASH-PROM), 9. sensory nerve action potential, 10. cost of the device, and 11. adverse events (any and specific serious adverse events (further surgery)). We used GRADE to assess the certainty of the evidence. MAIN RESULTS Five studies involving 213 participants and 257 nerve injuries reconstructed with wraps or conduits (129 participants) or standard repair (128 participants) met the inclusion criteria. Of those in the standard repair group, 119 nerve injuries were managed with direct epineurial repair, and nine autologous nerve grafts were performed. One study excluded the outcome data for the repair using an autologous nerve graft from their analysis, as it was the only autologous nerve graft in the study, so data were available for 127 standard repairs. There was variation in the functional outcome measures reported and the time postoperatively at which they were recorded. Mean sensory recovery, assessed with BMRC sensory grading (range S0 to S4, higher score considered better) was 0.03 points higher in the device group (range 0.43 lower to 0.49 higher; 1 RCT, 28 participants; very low-certainty evidence) than in the standard repair group (mean 2.75 points), which suggested little or no difference between the groups, but the evidence is very uncertain. There may be little or no difference at 24 months in mean touch thresholds between standard repair (0.81) and repair using devices, which was 0.01 higher but this evidence is also very uncertain (95% confidence interval (CI) 0.06 lower to 0.08 higher; 1 trial, 32 participants; very low-certainty evidence). Data were not available to assess BMRC motor grading at 24 months or more. Repair using bioengineered devices may not improve integrated functional outcome scores at 24 months more than standard techniques, as assessed by the Rosén Model Instrument (RMI; range 0 to 3, higher scores better); the CIs allow for both no important difference and a better outcome with standard repair (mean RMI 1.875), compared to the device group (0.17 lower, 95% CI 0.38 lower to 0.05 higher; P = 0.13; 2 trials, 60 participants; low-certainty evidence). Data from one study suggested that the five-year postoperative outcome of RMI may be slightly improved after repair using a device (mean difference (MD) 0.23, 95% CI 0.07 to 0.38; 1 trial, 28 participants; low-certainty evidence). No studies measured impact on daily living using DASH-PROM. The proportion of people with adverse events may be greater with nerve wraps or conduits than with standard techniques, but the evidence is very uncertain (risk ratio (RR) 7.15, 95% CI 1.74 to 29.42; 5 RCTs, 213 participants; very low-certainty evidence). This corresponds to 10 adverse events per 1000 people in the standard repair group and 68 per 1000 (95% CI 17 to 280) in the device group. The use of nerve repair devices may be associated with a greater need for revision surgery but this evidence is also very uncertain (12/129 device repairs required revision surgery (removal) versus 0/127 standard repairs; RR 7.61, 95% CI 1.48 to 39.02; 5 RCTs, 256 nerve repairs; very low-certainty evidence). AUTHORS' CONCLUSIONS Based on the available evidence, this review does not support use of currently available nerve repair devices over standard repair. There is significant heterogeneity in participants, injury pattern, repair timing, and outcome measures and their timing across studies of nerve repair using bioengineered devices, which make comparisons unreliable. Studies were generally small and at high or unclear risk of bias. These factors render the overall certainty of evidence for any outcome low or very low. The data reviewed here provide some evidence that more people may experience adverse events with use of currently available bioengineered devices than with standard repair techniques, and the need for revision surgery may also be greater. The evidence for sensory recovery is very uncertain and there are no data for muscle strength at 24 months (our primary outcome measures). We need further trials, adhering to a minimum standard of outcome reporting (with at least 12 months' follow-up, including integrated sensorimotor evaluation and patient-reported outcomes) to provide high-certainty evidence and facilitate more detailed analysis of effectiveness of emerging, increasingly sophisticated, bioengineered repair devices.
Collapse
Affiliation(s)
- Suzanne E Thomson
- Canniesburn Plastic Surgery Unit & Scottish National Brachial Plexus Injury Service, Glasgow Royal Infirmary, Glasgow, UK
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Nigel Yb Ng
- Aberdeen Royal Infirmary, University of Aberdeen, Aberdeen, UK
| | - Mathis O Riehle
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Paul J Kingham
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Andrew M Hart
- Canniesburn Plastic Surgery Unit & Scottish National Brachial Plexus Injury Service, Glasgow Royal Infirmary, Glasgow, UK
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| |
Collapse
|
75
|
Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, Chen Y, Lv Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 2022; 16:100394. [PMID: 36042853 PMCID: PMC9420381 DOI: 10.1016/j.mtbio.2022.100394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023] Open
Abstract
Sustained-release drug-loaded microspheres provide a long-acting sustained release, with targeted and other effects. There are many types of sustained-release drug microspheres and various preparation methods, and they are easy to operate. For these reasons, they have attracted widespread interest and are widely used in tissue engineering and other fields. In this paper, we provide a systematic review of the application of sustained-release drug microspheres in tissue engineering. First, we introduce this new type of drug delivery system (sustained-release drug carriers), describe the types of sustained-release drug microspheres, and summarize the characteristics of different microspheres. Second, we summarize the preparation methods of sustained-release drug microspheres and summarize the materials required for preparing microspheres. Third, various applications of sustained-release drug microspheres in tissue engineering are summarized. Finally, we summarize the shortcomings and discuss future prospects in the development of sustained-release drug microspheres. The purpose of this paper was to provide a further systematic understanding of the application of sustained-release drug microspheres in tissue engineering for the personnel engaged in related fields and to provide inspiration and new ideas for studies in related fields.
Collapse
Affiliation(s)
- Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qingting Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China
| |
Collapse
|
76
|
Kong Y, Kuss M, Shi Y, Fang F, Xue W, Shi W, Liu Y, Zhang C, Zhong P, Duan B. Exercise facilitates regeneration after severe nerve transection and further modulates neural plasticity. Brain Behav Immun Health 2022; 26:100556. [PMID: 36405423 PMCID: PMC9673108 DOI: 10.1016/j.bbih.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with severe traumatic peripheral nerve injury (PNI) always suffer from incomplete recovery and poor functional outcome. Physical exercise-based rehabilitation, as a non-invasive interventional strategy, has been widely acknowledged to improve PNI recovery by promoting nerve regeneration and relieving pain. However, effects of exercise on chronic plastic changes following severe traumatic PNIs have been limitedly discussed. In this study, we created a long-gap sciatic nerve transection followed by autograft bridging in rats and tested the therapeutic functions of treadmill running with low intensity and late initiation. We demonstrated that treadmill running effectively facilitated nerve regeneration and prevented muscle atrophy and thus improved sensorimotor functions and walking performance. Furthermore, exercise could reduce inflammation at the injured nerve as well as prevent the overexpression of TRPV1, a pain sensor, in primary afferent sensory neurons. In the central nervous system, we found that PNI induced transcriptive changes at the ipsilateral lumber spinal dorsal horn, and exercise could reverse the differential expression for genes involved in the Notch signaling pathway. In addition, through neural imaging techniques, we found volumetric, microstructural, metabolite, and neuronal activity changes in supraspinal regions of interest (i.e., somatosensory cortex, motor cortex, hippocampus, etc.) after the PNI, some of which could be reversed through treadmill running. In summary, treadmill running with late initiation could promote recovery from long-gap nerve transection, and while it could reverse maladaptive plasticity after the PNI, exercise may also ameliorate comorbidities, such as chronic pain, mental depression, and anxiety in the long term.
Collapse
Affiliation(s)
- Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| | - Fang Fang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Peng Zhong
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
77
|
Sarhane KA, Qiu C, Harris TG, Hanwright PJ, Mao HQ, Tuffaha SH. Translational bioengineering strategies for peripheral nerve regeneration: opportunities, challenges, and novel concepts. Neural Regen Res 2022; 18:1229-1234. [PMID: 36453398 PMCID: PMC9838159 DOI: 10.4103/1673-5374.358616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Peripheral nerve injuries remain a challenging problem in need of better treatment strategies. Despite best efforts at surgical reconstruction and postoperative rehabilitation, patients are often left with persistent, debilitating motor and sensory deficits. There are currently no therapeutic strategies proven to enhance the regenerative process in humans. A clinical need exists for the development of technologies to promote nerve regeneration and improve functional outcomes. Recent advances in the fields of tissue engineering and nanotechnology have enabled biomaterial scaffolds to modulate the host response to tissue repair through tailored mechanical, chemical, and conductive cues. New bioengineered approaches have enabled targeted, sustained delivery of protein therapeutics with the capacity to unlock the clinical potential of a myriad of neurotrophic growth factors that have demonstrated promise in enhancing regenerative outcomes. As such, further exploration of combinatory strategies leveraging these technological advances may offer a pathway towards clinically translatable solutions to advance the care of patients with peripheral nerve injuries. This review first presents the various emerging bioengineering strategies that can be applied for the management of nerve gap injuries. We cover the rationale and limitations for their use as an alternative to autografts, focusing on the approaches to increase the number of regenerating axons crossing the repair site, and facilitating their growth towards the distal stump. We also discuss the emerging growth factor-based therapeutic strategies designed to improve functional outcomes in a multimodal fashion, by accelerating axonal growth, improving the distal regenerative environment, and preventing end-organs atrophy.
Collapse
Affiliation(s)
- Karim A. Sarhane
- Department of Plastic and Reconstructive Surgery, Peripheral Nerve Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenhu Qiu
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas G.W. Harris
- Department of Plastic and Reconstructive Surgery, Peripheral Nerve Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip J. Hanwright
- Department of Plastic and Reconstructive Surgery, Peripheral Nerve Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sami H. Tuffaha
- Department of Plastic and Reconstructive Surgery, Peripheral Nerve Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Correspondence to: Sami H. Tuffaha, .
| |
Collapse
|
78
|
Phamornnak C, Han B, Spencer BF, Ashton MD, Blanford CF, Hardy JG, Blaker JJ, Cartmell SH. Instructive electroactive electrospun silk fibroin-based biomaterials for peripheral nerve tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213094. [PMID: 36162344 DOI: 10.1016/j.bioadv.2022.213094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/03/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Aligned sub-micron fibres are an outstanding surface for orienting and promoting neurite outgrowth; therefore, attractive features to include in peripheral nerve tissue scaffolds. A new generation of peripheral nerve tissue scaffolds is under development incorporating electroactive materials and electrical regimes as instructive cues in order to facilitate fully functional regeneration. Herein, electroactive fibres composed of silk fibroin (SF) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) were developed as a novel peripheral nerve tissue scaffold. Mats of SF with sub-micron fibre diameters of 190 ± 50 nm were fabricated by double layer electrospinning with thicknesses of ∼100 μm (∼70-80 μm random fibres and ∼20-30 μm aligned fibres). Electrospun SF mats were modified with interpenetrating polymer networks (IPN) of PEDOT:PSS in various ratios of PSS/EDOT (α) and the polymerisation was assessed by hard X-ray photoelectron spectroscopy (HAXPES). The mechanical properties of electrospun SF and IPNs mats were characterised in the wet state tensile and the electrical properties were examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The cytotoxicity and biocompatibility of the optimal IPNs (α = 2.3 and 3.3) mats were ascertained via the growth and neurite extension of mouse neuroblastoma x rat glioma hybrid cells (NG108-15) for 7 days. The longest neurite outgrowth of 300 μm was observed in the parallel direction of fibre alignment on laminin-coated electrospun SF and IPN (α = 2.3) mats which is the material with the lowest electron transfer resistance (Ret, ca. 330 Ω). These electrically conductive composites with aligned sub-micron fibres exhibit promise for axon guidance and also have the potential to be combined with electrical stimulation treatment as a further step for the effective regeneration of nerves.
Collapse
|
79
|
Li X, Zhang X, Hao M, Wang D, Jiang Z, Sun L, Gao Y, Jin Y, Lei P, Zhuo Y. The application of collagen in the repair of peripheral nerve defect. Front Bioeng Biotechnol 2022; 10:973301. [PMID: 36213073 PMCID: PMC9542778 DOI: 10.3389/fbioe.2022.973301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Collagen is a natural polymer expressed in the extracellular matrix of the peripheral nervous system. It has become increasingly crucial in peripheral nerve reconstruction as it was involved in regulating Schwann cell behaviors, maintaining peripheral nerve functions during peripheral nerve development, and being strongly upregulated after nerve injury to promote peripheral nerve regeneration. Moreover, its biological properties, such as low immunogenicity, excellent biocompatibility, and biodegradability make it a suitable biomaterial for peripheral nerve repair. Collagen provides a suitable microenvironment to support Schwann cells’ growth, proliferation, and migration, thereby improving the regeneration and functional recovery of peripheral nerves. This review aims to summarize the characteristics of collagen as a biomaterial, analyze its role in peripheral nerve regeneration, and provide a detailed overview of the recent advances concerning the optimization of collagen nerve conduits in terms of physical properties and structure, as well as the application of the combination with the bioactive component in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Hao
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| | - Yue Zhuo
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| |
Collapse
|
80
|
Zhang Z, Hao Z, Xian C, Fang Y, Cheng B, Wu J, Xia J. Neuro-bone tissue engineering: Multiple potential translational strategies between nerve and bone. Acta Biomater 2022; 153:1-12. [PMID: 36116724 DOI: 10.1016/j.actbio.2022.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
Numerous tissue regeneration paradigms show evident neurological dependence, including mammalian fingertip, skin, and bone regeneration. The mature skeleton is innervated by an abundant nervous system that infiltrates the developing axial and appendicular bones and maintains the stability of the systemic skeletal system by controlling blood flow, regulating bone metabolism, secreting neurotransmitters, and regulating stem cell behavior. In recent years, neurotization in tissue-engineered bone has been considered as a promising strategy to effectively overcome the challenge of vascularization and innervation regeneration in the central zone of "critical-sized bone defects" that conventional tissue-engineered scaffolds are unable to handle, however, further validation is needed in relevant clinical applications. Therefore, this study reviews the mechanisms by which the nervous system regulates bone metabolism and regeneration through a variety of neurogenic or non-neurogenic factors, as well as the recent progress and design strategies of neuralized tissue-engineered bone, to provide new ideas for further studies on subsequent neural bone tissue engineering. STATEMENT OF SIGNIFICANCE: The interaction of nerve and bone tissue during skeletal development and repair has attracted widespread attention, with emerging evidences highlighting the regulation of bone metabolism and regeneration by the nervous system, but the underlying mechanisms have not been elucidated. Thus, further applications of neuro-bone tissue engineering still needs careful consideration. In this review, we summarize the numerous neurogenic and non-neurogenic factors which are involved in bone repair and regeneration, and further explore the current status of their application and biomaterial design in neuro-bone tissue engineering, and finally discuss the challenge and prospective for neuro-bone tissue engineering to facilitate its further development.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhichao Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
81
|
Ye K, He A, Wu M, Qiu X, Chen Z, Yin J, Song Q, Huang Y, Xu K, Huang Y, Wei P. In vitro study of decellularized rat tissues for nerve regeneration. Front Neurol 2022; 13:986377. [PMID: 36188412 PMCID: PMC9520319 DOI: 10.3389/fneur.2022.986377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve injuries cause an absence or destruction of nerves. Decellularized nerves, acting as a replacement for autografts, have been investigated in the promotion of nerve repair and regeneration, always being incorporated with stem cells or growth factors. However, such a strategy is limited by size availability. The potential application in heterotopic transplantation of other decellularized tissues needs to be further explored. In this study, rat decellularized kidney (dK) was selected to be compared with decellularized peripheral nerve (dN), since dK has aboundant ECM components and growth factors. The PC-12 cells were cultured on dK and dN scaffolds, as shown in the similar behaviors of cell metabolism and viability, but have a more regular arrangement on dN compared to dK, indicating that the natural structure plays an important role in guiding cell extension. However, we found significant upregulation of axon–growth–associated genes and proteins of PC-12 cells in the dK group compared to the dN group by qRT-PCR, immunofluorescence, and western blotting. Furthermore, various neurotrophic factors and growth factors of acellular kidney and nerve were evaluated by ELISA assay. The lower expression of neurotrophic factors but higher expression of growth factors such as VEGF and HGF from dK suggests that axon growth and extension for PC-12 cells may be partially mediated by VEGF and HGF expression from decellularized kidney, which further points to a potential application in nerve repair and regeneration.
Collapse
Affiliation(s)
- Kai Ye
- School of Medicine, Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Miaoben Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Xiaodong Qiu
- Department of Surgery, Beilun Binhai New City Hospital, Ningbo, China
| | - Zhiwu Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Qinghua Song
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
| | - Yi Huang
- Medical Research Center, Ningbo First Hospital, Ningbo, China
| | - Kailei Xu
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Central Laboratory, Center for Medical and Engineering Innovation, Ningbo First Hospital, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Kailei Xu
| | - Yuye Huang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
- Central Laboratory, Center for Medical and Engineering Innovation, Ningbo First Hospital, Ningbo, China
- Yuye Huang
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
- *Correspondence: Peng Wei
| |
Collapse
|
82
|
Sun S, Lu D, Zhong H, Li C, Yang N, Huang B, Ni S, Li X. Donors for nerve transplantation in craniofacial soft tissue injuries. Front Bioeng Biotechnol 2022; 10:978980. [PMID: 36159691 PMCID: PMC9490317 DOI: 10.3389/fbioe.2022.978980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neural tissue is an important soft tissue; for instance, craniofacial nerves govern several aspects of human behavior, including the expression of speech, emotion transmission, sensation, and motor function. Therefore, nerve repair to promote functional recovery after craniofacial soft tissue injuries is indispensable. However, the repair and regeneration of craniofacial nerves are challenging due to their intricate anatomical and physiological characteristics. Currently, nerve transplantation is an irreplaceable treatment for segmental nerve defects. With the development of emerging technologies, transplantation donors have become more diverse. The present article reviews the traditional and emerging alternative materials aimed at advancing cutting-edge research on craniofacial nerve repair and facilitating the transition from the laboratory to the clinic. It also provides a reference for donor selection for nerve repair after clinical craniofacial soft tissue injuries. We found that autografts are still widely accepted as the first options for segmental nerve defects. However, allogeneic composite functional units have a strong advantage for nerve transplantation for nerve defects accompanied by several tissue damages or loss. As an alternative to autografts, decellularized tissue has attracted increasing attention because of its low immunogenicity. Nerve conduits have been developed from traditional autologous tissue to composite conduits based on various synthetic materials, with developments in tissue engineering technology. Nerve conduits have great potential to replace traditional donors because their structures are more consistent with the physiological microenvironment and show self-regulation performance with improvements in 3D technology. New materials, such as hydrogels and nanomaterials, have attracted increasing attention in the biomedical field. Their biocompatibility and stimuli-responsiveness have been gradually explored by researchers in the regeneration and regulation of neural networks.
Collapse
Affiliation(s)
- Sishuai Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hanlin Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| |
Collapse
|
83
|
Acellular nerve grafts supplemented with induced pluripotent stem cell-derived exosomes promote peripheral nerve reconstruction and motor function recovery. Bioact Mater 2022; 15:272-287. [PMID: 35356813 PMCID: PMC8935093 DOI: 10.1016/j.bioactmat.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Peripheral nerve injury is a great challenge in clinical work due to the restricted repair gap and weak regrowth ability. Herein, we selected induced pluripotent stem cells (iPSCs) derived exosomes to supplement acellular nerve grafts (ANGs) with the aim of restoring long-distance peripheral nerve defects. Human fibroblasts were reprogrammed into iPSCs through non-integrating transduction of Oct3/4, Sox2, Klf4, and c-Myc. The obtained iPSCs had highly active alkaline phosphatase expression and expressed Oct4, SSEA4, Nanog, Sox2, which also differentiated into all three germ layers in vivo and differentiated into mature peripheral neurons and Schwann cells (SCs) in vitro. After isolation and biological characteristics of iPSCs-derived exosomes, we found that numerous PKH26-labeled exosomes were internalized inside SCs through endocytotic pathway and exhibited a proliferative effect on SCs that were involved in the process of axonal regeneration and remyelination. After that, we prepared ANGs via optimized chemical extracted process to bridge 15 mm long-distance peripheral nerve gaps in rats. Owing to the promotion of iPSCs-derived exosomes, satisfactory regenerative outcomes were achieved including gait behavior analysis, electrophysiological assessment, and morphological analysis of regenerated nerves. Especially, motor function was restored with comparable to those achieved with nerve autografts and there were no significant differences in the fiber diameter and area of reinnervated muscle fibers. Taken together, our combined use of iPSCs-derived exosomes with ANGs demonstrates good promise to restore long-distance peripheral nerve defects, and thus represents a cell-free strategy for future clinical applications. IPSCs-derived exosomes provide a novel cell-free strategy with the regenerative power of iPSCs. ANGs supplemented with iPSCs-derived exosomes show enhanced peripheral repair and accelerated motor functional recovery. IPSCs-derived exosomes provide equivalent histological morphology to autologous nerve transplantation.
Collapse
|
84
|
Membrane Progesterone Receptor α (mPRα/PAQR7) Promotes Survival and Neurite Outgrowth of Human Neuronal Cells by a Direct Action and Through Schwann Cell-like Stem Cells. J Mol Neurosci 2022; 72:2067-2080. [PMID: 35974286 DOI: 10.1007/s12031-022-02057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
We recently showed that membrane progesterone receptor α (mPRα/PAQR7) promotes pro-regenerative effects in Schwann cell-like adipose stem cells (SCL-ASC), an alternative model to Schwann cells for the promotion of peripheral nerve regeneration. In this study, we investigated how mPRα activation with the mPR-specific agonist Org OD 02-0 in SCL-ASC affected regenerative parameters in two neuronal cell lines, IMR-32 and SH-SY-5Y. In a series of conditioned medium experiments, we found that mPR activation of SCL-ASC led to increased neurite outgrowth, protection from cell death and increased expression of peripheral nerve regeneration markers (CREB3, ATF3, GAP43) in neuronal cell lines. These effects were stronger than the ones observed with the conditioned medium from untreated SCL-ASC. The addition of Org OD 02-0 to the untreated cell medium mimicked the effects of mPR activation of SCL-ASC on cell death, but not on neurite outgrowth. Therefore, the effect of Org OD 02-0 on neurite outgrowth is SCL-ASC-dependent, while its effect on cell survivability is likely due to the direct activation of mPRs on neuronal cells. SCL-ASC transfection with mPRα siRNA showed that this isoform is responsible for the beneficial effect on neurite outgrowth. Further experiments showed that SCL-ASC-dependent outcomes likely involved the release of BDNF and IGF-2 from these cells. The beneficial mPRα effect on neurite outgrowth was confirmed in co-culture conditions. These findings strengthen the hypothesis that mPRα could play a pro-regenerative role in SCL-ASC and be a therapeutic target for the promotion of peripheral nerve regeneration.
Collapse
|
85
|
Qian T, Qiao P, Lu Y, Wang H. Transcription factor SS18L1 regulates the proliferation, migration and differentiation of Schwann cells in peripheral nerve injury. Front Vet Sci 2022; 9:936620. [PMID: 36046506 PMCID: PMC9420995 DOI: 10.3389/fvets.2022.936620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors bind to specific DNA sequences, modulate the transcription of target genes, and regulate various biological processes, including peripheral nerve regeneration. Our previous analysis showed that SS18L1, a gene encoding the transcription factor SS18-like protein 1, was differentially expressed in the distal sciatic nerve stumps after rat sciatic nerve transection injury, but its effect on peripheral nerve injury has not been reported. In the current study, we isolated and cultured primary Schwann cells, and examined the role of SS18L1 for the biological functions of the cells. Depletion of SS18L1 by siRNA in Schwann cells enhanced cell proliferation and inhibited cell migration, as determined by EdU assay and transwell migration assay, respectively. In addition, silencing of SS18L1 inhibited Schwann cell differentiation induced by HRG and cAMP. Bioinformatics analyses revealed an interaction network of SS18L1, including DF2, SMARCD1, SMARCA4, and SMARCE1, which may be implicated in the regulatory functions of SS18L1 on the proliferation, migration and differentiation of Schwann cells. In conclusion, our results revealed a temporal expression profile of SS18L1 in peripheral nerve injury and its potential roles during the process of nerve recovery.
Collapse
Affiliation(s)
- Tianmei Qian
- Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Pingping Qiao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yingnan Lu
- School of Overseas Education, Changzhou University, Changzhou, China
| | - Hongkui Wang
- Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
86
|
Quintero JE, Slevin JT, Gurwell JA, McLouth CJ, El Khouli R, Chau MJ, Guduru Z, Gerhardt GA, van Horne CG. Direct delivery of an investigational cell therapy in patients with Parkinson's disease: an interim analysis of feasibility and safety of an open-label study using DBS-Plus clinical trial design. BMJ Neurol Open 2022; 4:e000301. [PMID: 35949912 PMCID: PMC9295654 DOI: 10.1136/bmjno-2022-000301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
Objective To evaluate the interim feasibility, safety and clinical measures data of direct delivery of regenerating peripheral nerve tissue (PNT) to the substantia nigra (SN) in participants with Parkinson’s disease (PD). Methods Eighteen (13 men/5 women) participants were unilaterally implanted with PNT to the SN, contralateral to the most affected side during the same surgery they were receiving deep brain stimulation (DBS) surgery. Autologous PNT was collected from the sural nerve. Participants were followed for safety and clinical outcomes for 2 years (including off-state Unified Parkinson’s Disease Rating Scale (UPDRS) Part III assessments) with study visits every 6 months. Results All 18 participants scheduled to receive PNT implantation received targeted delivery to the SN in addition to their DBS. All subjects were discharged the following day except for two: post-op day 2; post-op day 3. The most common study-related adverse events were hypoaesthesia and hyperaesthesias to the lateral aspect of the foot and ankle of the biopsied nerve (6 of 18 participants experienced). Clinical measures did not identify any hastening of PD measures providing evidence of safety and tolerability. Off-state UPDRS Part III mean difference scores were reduced at 12 months compared with baseline (difference=−8.1, 95% CI −2.4 to −13.9 points, p=0.005). No complications involving dyskinesias were observed. Conclusions Targeting the SN for direct delivery of PNT was feasible with no serious adverse events related to the study intervention. Interim clinical outcomes show promising results meriting continued examination of this investigational approach. Trial registration number NCT02369003.
Collapse
Affiliation(s)
- Jorge E Quintero
- Neurosurgery, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neuroscience, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - John T Slevin
- Neurology, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neurology, VA Medical Center, Lexington, Kentucky, USA
| | - Julie A Gurwell
- Neurology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | - Riham El Khouli
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Monica J Chau
- Neurosurgery, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Zain Guduru
- Neurology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Greg A Gerhardt
- Neurosurgery, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neuroscience, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neurology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Craig G van Horne
- Neurosurgery, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neuroscience, University of Kentucky Medical Center, Lexington, Kentucky, USA
| |
Collapse
|
87
|
Liu B, Kong Y, Shi W, Kuss M, Liao K, Hu G, Xiao P, Sankarasubramanian J, Guda C, Wang X, Lei Y, Duan B. Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioact Mater 2022; 14:61-75. [PMID: 35310346 PMCID: PMC8892082 DOI: 10.1016/j.bioactmat.2021.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, anti-inflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. Our results demonstrated that hADMSC-SCs secreted more neurotrophic factors and other growth factors, compared to hADMSCs without differentiation. The dExo isolated from hADMSC-SCs protected rat SCs from oxidative stress and enhanced HUVEC migration and angiogenesis. Compared to uExo, dExo also had improved performances in downregulating pro-inflammatory gene expressions and cytokine secretions and promoting axonal growth of sensory neurons differentiated from human induced pluripotent stem cells. Furthermore, microRNA (miRNA) sequencing analysis revealed that exosomes and their parent cells shared some similarities in their miRNA profiles and exosomes displayed a distinct miRNA signature. Many more miRNAs were identified in dExo than in uExo. Several upregulated miRNAs, like miRNA-132-3p and miRNA-199b-5p, were highly related to neuroprotection, anti-inflammation, and angiogenesis. The dExo can effectively modulate various peripheral nerve-related cellular functions and is promising for cell-free biological therapeutics to enhance neural regeneration. Exosomes were isolated from hADMSCs with and without differentiation towards SC phenotype (i.e., dExo vs uExo). hADMSC-SCs secreted more growth factors compared to hADMSCs without differentiation. The dExo protected rat SCs from oxidative stress and enhanced endothelial cell migration and angiogenesis. dExo promoted axonal growth of sensory neurons differentiated from hiPSCs. miRNA sequencing analysis unveiled and compared the exosomal and cellular miRNA profiles.
Collapse
|
88
|
de Moura JA, de Morais J, Barbosa SMN, Ferreira MC, de Sousa Neto IV, Leite HR, Oliveira MX, Gaiad TP, Santos AP. Negative neuromuscular and functional repercussion of forced swimming after axonotmesis. J Exerc Rehabil 2022; 18:179-186. [PMID: 35846236 PMCID: PMC9271644 DOI: 10.12965/jer.2244150.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve injuries are cause of sensory disturbances and in functional abilities, and are associated personal and social costs. Strategies that maximize nerve regeneration and functional recovery are necessary, the exercise is an option. This study evaluated the effects of forced swimming exercise on neuromuscular histomorphometry and on functional recovery in a median nerve crush model. Sixteen Wistar rats underwent median nerve crush and were divided into control group (CG) and swimming group (SG). The forced swimming protocol started one week after the injury and was performed for 1 hr a day, 5 days per week, for 2 weeks. The rats swam with an overload of 5% and 10% of body weight in the first and second week, respectively. The functional recovery was assessed in three moments using the grasping test. On day 21, fragments of the median nerve and of the forearm flexors muscles were removed for histomorphometric analysis. The SG had functional recovery impaired (P<0.001) and presented lower myelinated fibers number, fiber and axon minimal diameter, myelin thickness and g-ratio in the proximal e distal segments of the median nerve (P<0.005) and area muscle fiber (P<0.005) than CG. Also, the SG presented a number of capillaries in the proximal segments of the median nerve greater than CG (P<0.005). The exercise protocol used in this study impaired the regeneration of the median nerve and negatively influenced the functional recovery.
Collapse
Affiliation(s)
- Júlia Araújo de Moura
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Jaqueline de Morais
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Samara Maria Neves Barbosa
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Marcílio Coelho Ferreira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | | | - Hércules Ribeiro Leite
- Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Murilo Xavier Oliveira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Thaís Peixoto Gaiad
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
- Corresponding author: Ana Paula Santos, Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, CEP 39100-000, Brazil,
| |
Collapse
|
89
|
Pothion H, Lihrmann I, Duclos C, Riou G, Cartier D, Boukhzar L, Lefranc B, Leprince J, Guérout N, Marie JP, Anouar Y. The SELENOT mimetic PSELT promotes nerve regeneration by increasing axonal myelination in a facial nerve injury model in female rats. J Neurosci Res 2022; 100:1721-1731. [PMID: 35730417 PMCID: PMC9545325 DOI: 10.1002/jnr.25098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 01/31/2023]
Abstract
Peripheral nerve injury (PNI) is frequent and many patients suffer lifelong disabilities in severe cases. Although the peripheral nervous system is able to regenerate, its potential is limited. In this study, we tested in a nerve regeneration model in rat the potential beneficial effect of a short mimetic peptide, named PSELT, which derives from SELENOT, an essential thioredoxin-like selenoprotein endowed with neuroprotective and antioxidant activities. For this purpose, the right facial nerve of female Long-Evans rats was axotomized then bridged with a free femoral vein interposition graft. PSELT (1 μM) was injected into the vein immediately and 48 h after the injury, and the effects observed were compared to those found after an end-to-end suture used as a gold standard treatment. Whisking behavior, electrophysiological potential, and histological analyses were performed 3 months after injury to determine the effects of these treatments. These analyses revealed that PSELT-treated animals exhibit a better motor recovery in terms of protraction amplitude and velocity of vibrissae compared to control and end-sutured nerve animal groups. Moreover, administration of PSELT following injury enhanced muscle innervation, axonal elongation, and myelination of newly formed nerve fibers. Altogether, these results indicate that a PSELT-based treatment is sufficient to enhance facial nerve myelination and regeneration and could represent a new therapeutic tool to treat PNI.
Collapse
Affiliation(s)
- Hugo Pothion
- Normandie Univ, UNIROUEN, INSERM U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Normandie Univ, UNIROUEN, UR 3830, Groupe de Recherche sur l'Handicap Ventilatoire et Neurologique, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Fédération Hospitalo-Universitaire (FHU) Surface, Rouen, France
| | - Isabelle Lihrmann
- Normandie Univ, UNIROUEN, INSERM U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Celia Duclos
- Normandie Univ, UNIROUEN, UR 3830, Groupe de Recherche sur l'Handicap Ventilatoire et Neurologique, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Gaëtan Riou
- Normandie Univ, UNIROUEN, INSERM U1234, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Dorthe Cartier
- Normandie Univ, UNIROUEN, INSERM U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Loubna Boukhzar
- Normandie Univ, UNIROUEN, INSERM U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Benjamin Lefranc
- Normandie Univ, UNIROUEN, INSERM U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Normandie Univ, UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, INSERM U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Normandie Univ, UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Guérout
- Normandie Univ, UNIROUEN, UR 3830, Groupe de Recherche sur l'Handicap Ventilatoire et Neurologique, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Fédération Hospitalo-Universitaire (FHU) Surface, Rouen, France
| | - Jean-Paul Marie
- Normandie Univ, UNIROUEN, UR 3830, Groupe de Recherche sur l'Handicap Ventilatoire et Neurologique, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Fédération Hospitalo-Universitaire (FHU) Surface, Rouen, France.,Otorhinolaryngology and Head Neck Surgery Department, Rouen University Hospital, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,Fédération Hospitalo-Universitaire (FHU) Surface, Rouen, France
| |
Collapse
|
90
|
Li J, Li S, Wang Y, Shang A. Functional, morphological and molecular characteristics in a novel rat model of spinal sacral nerve injury-surgical approach, pathological process and clinical relevance. Sci Rep 2022; 12:10026. [PMID: 35705577 PMCID: PMC9200741 DOI: 10.1038/s41598-022-13254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Spinal sacral nerve injury represents one of the most serious conditions associated with many diseases such as sacral fracture, tethered cord syndrome and sacral canal tumor. Spinal sacral nerve injury could cause bladder denervation and detrusor underactivity. There is limited clinical experience resolving spinal sacral nerve injury associated detrusor underactivity patients, and thus the treatment options are also scarce. In this study, we established a spinal sacral nerve injury animal model for deeper understanding and further researching of this disease. Forty 8 w (week) old Sprague Dawley rats were included and equally divided into sham (n = 20) and crush group (n = 20). Bilateral spinal sacral nerves of rats were crushed in crush group, and sham group received same procedure without nerve crush. Comprehensive evaluations at three time points (1 w, 4 w and 6 w) were performed to comprehend the nature process of this disease. According to urodynamic test, ultrasonography and retrograde urography, we could demonstrate severe bladder dysfunction after spinal sacral nerve injury along the observation period compared with sham group. These functional changes were further reflected by histological examination (hematoxylin-eosin and Masson's trichrome staining) of microstructure of nerves and bladders. Immunostaining of nerve/bladder revealed schwann cell death, axon degeneration and collagen remodeling of bladder. Polymerase Chain Reaction results revealed vigorous nerve inflammation and bladder fibrosis 1 week after injury and inflammation/fibrosis returned to normal at 4 w. The CatWalk gait analysis was performed and there was no obvious difference between two groups. In conclusion, we established a reliable and reproducible model for spinal sacral nerve injury, this model provided an approach to evaluate the treatment strategies and to understand the pathological process of spinal sacral nerve injuries. It allowed us to understand how nerve degeneration and bladder fibrosis changed following spinal sacral nerve injury and how recovery could be facilitated by therapeutic options for further research.
Collapse
Affiliation(s)
- Junyang Li
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurosurgery, General Hospital of Chinese People Liberty Army, No. 28 Fuxing Road, Beijing, 100853, China
| | - Shiqiang Li
- The 80Th Group Army Hospital of Chinese People Liberty Army, Shandong, 261021, China
| | - Yu Wang
- Institute of Orthopedics, 4th, Chinese People Liberty Army General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, People's Republic of China
| | - Aijia Shang
- The School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Neurosurgery, General Hospital of Chinese People Liberty Army, No. 28 Fuxing Road, Beijing, 100853, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, People's Republic of China.
| |
Collapse
|
91
|
Mu X, Liu H, Yang S, Li Y, Xiang L, Hu M, Wang X. Chitosan Tubes Inoculated with Dental Pulp Stem Cells and Stem Cell Factor Enhance Facial Nerve-Vascularized Regeneration in Rabbits. ACS OMEGA 2022; 7:18509-18520. [PMID: 35694480 PMCID: PMC9178771 DOI: 10.1021/acsomega.2c01176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Facial nerve injury is a common clinical condition that leads to disfigurement and emotional distress in the affected individuals, and the recovery presents clinical challenges. Tissue engineering is the standard method to repair nerve defects. However, nerve regeneration is still not satisfactory because of poor neovascularization after implantation, especially for the long-segment nerve defects. In the current study, we aimed to investigate the potential of chitosan tubes inoculated with stem cell factor (SCF) and dental pulp stem cells (DPSCs) in facial nerve-vascularized regeneration. In the in vitro experiment, DPSCs were isolated, cultured, and then identified. The optimal concentration of SCF was screened by CCK8. Cytoskeleton and living-cell staining, migration, CCK8 test, and neural differentiation assays were performed, revealing that SCF promoted the biological activity of DPSCs. Surprisingly, SCF increased the neural differentiation of DPSCs. The migration and angiogenesis experiments were carried out to show that SCF promoted the angiogenesis and migration of human umbilical vein endothelial cells (HUVECs). In the facial nerve, 7 mm defects of New Zealand white rabbits, hematoxylin-eosin (HE), immunohistochemistry, toluidine blue staining, and transmission electron microscopy observation were performed at 12 weeks postsurgery to show more nerve fibers and better myelin sheath in the SCF + DPSC group. In addition, the whisker movements, Masson's staining, and western blot assays were performed, demonstrating functional repair and that the expression level of CD31 protein in the group SCF + DPSCs was relatively close to that in the group Autograft. In summary, chitosan tubes inoculated with SCF and DPSCs increased neurovascularization and provided an effective method for repairing facial nerve defects, indicating great promise for clinical application.
Collapse
Affiliation(s)
- Xiaodan Mu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Huawei Liu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuhui Yang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yongfeng Li
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Xiang
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Hu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiumei Wang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
92
|
Nazeri N, Derakhshan MA, Mansoori K, Ghanbari H. Improvement of sciatic nerve regeneration by multichannel nanofibrous membrane-embedded electro-conductive conduits functionalized with laminin. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:50. [PMID: 35639181 PMCID: PMC9156509 DOI: 10.1007/s10856-022-06669-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Multichannel structures in the design of nerve conduits offer potential advantages for regeneration of damaged nerves. However, lack of biochemical cues and electrical stimulation could hamper satisfactory nerve regeneration. The aim of this study was to simultaneously evaluate the effects of topographical, biological, and electrical cues on sciatic nerve regeneration. Accordingly, a series of multichannel nerve conduit was made using longitudinally-aligned laminin-coated poly (lactic-co-glycolic acid) (PLGA)/carbon nanotubes (CNT) nanofibers (NF, mean diameter: 455 ± 362 nm) in the lumen and randomly-oriented polycaprolactone (PCL) NF (mean diameter: 340 ± 200 nm) on the outer surface. In vitro studies revealed that the materials were nontoxic and able to promote cell attachment and proliferation on nanofibers and on fibrin gel. To determine the influence of laminin as biological and CNT as electrical cues on nerve regeneration, either of hollow PCL conduits, PLGA NF-embedded, PLGA/CNT NF-embedded or laminin-coated PLGA/CNT NF-embedded PCL conduits were implanted in rats. A new surgery method was utilized and results were compared with an autograft. The results of motor and sensory tests in addition to histopathological examination of the regenerated nerves demonstrated the formation of nerve fibers in laminin-coated PLGA/CNT NF-embedded PCL conduits. Results suggested that these conduits have the potential to improve sciatic nerve regeneration. Graphical abstract.
Collapse
Affiliation(s)
- Niloofar Nazeri
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Derakhshan
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Korosh Mansoori
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
93
|
Metea M, Palmero-Soler E, Crum L. Preclinical nerve conduction: Nerve battery options for primate studies. J Pharmacol Toxicol Methods 2022; 116:107187. [PMID: 35636693 DOI: 10.1016/j.vascn.2022.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/23/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Electrophysiological neurodiagnostic tests of nerve conduction (NC) are key assays included in preclinical safety and toxicology programs to assess the peripheral neuropathy (PN) liability of a new drug. Despite their increased use, standardization of nerve conduction studies (NCS) is lacking in the preclinical space, with limited regulatory guidelines stipulating type and number of nerves or minimum combinations appropriate for each stage of drug development or indication. Detection of subtle peripheral toxicities depends on choosing appropriate nerve targets for testing, especially when functional changes remain above the lower limit of normal values. To support robust preclinical toxicology study designs, the current short communication provides options and recommendations for selecting peripheral nerves for clinically translatable nerve conduction batteries applicable to toxicology and gene therapy, with a focus on clinically translatable primate models. A comprehensive compilation of accessible nerve locations is offered including lower and upper extremity motor nerves, and sensory nerves with origin at multiple DRG levels. Rankings of technique difficulty and repeatability across serial collections are presented for each assay informed by serial nerve conduction from 500 adult primates. The goal of this communication is to support the standardization and preclinical implementation of this important assay.
Collapse
Affiliation(s)
- Monica Metea
- Preclinical Electrophysiology Consulting, LLC, Mattapoisett, MA, USA.
| | | | - Lucas Crum
- Preclinical Electrophysiology Consulting, LLC, Mattapoisett, MA, USA
| |
Collapse
|
94
|
Li LK, Huang WC, Hsueh YY, Yamauchi K, Olivares N, Davila R, Fang J, Ding X, Zhao W, Soto J, Hasani M, Novitch B, Li S. Intramuscular delivery of neural crest stem cell spheroids enhances neuromuscular regeneration after denervation injury. Stem Cell Res Ther 2022; 13:205. [PMID: 35578348 PMCID: PMC9109326 DOI: 10.1186/s13287-022-02877-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/28/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Muscle denervation from trauma and motor neuron disease causes disabling morbidities. A limiting step in functional recovery is the regeneration of neuromuscular junctions (NMJs) for reinnervation. Stem cells have the potential to promote these regenerative processes, but current approaches have limited success, and the optimal types of stem cells remain to be determined. Neural crest stem cells (NCSCs), as the developmental precursors of the peripheral nervous system, are uniquely advantageous, but the role of NCSCs in neuromuscular regeneration is not clear. Furthermore, a cell delivery approach that can maintain NCSC survival upon transplantation is critical. METHODS We established a streamlined protocol to derive, isolate, and characterize functional p75+ NCSCs from human iPSCs without genome integration of reprogramming factors. To enhance survival rate upon delivery in vivo, NCSCs were centrifuged in microwell plates to form spheroids of desirable size by controlling suspension cell density. Human bone marrow mesenchymal stem cells (MSCs) were also studied for comparison. NCSC or MSC spheroids were injected into the gastrocnemius muscle with denervation injury, and the effects on NMJ formation and functional recovery were investigated. The spheroids were also co-cultured with engineered neuromuscular tissue to assess effects on NMJ formation in vitro. RESULTS NCSCs cultured in spheroids displayed enhanced secretion of soluble factors involved in neuromuscular regeneration. Intramuscular transplantation of spheroids enabled long-term survival and retention of NCSCs, in contrast to the transplantation of single-cell suspensions. Furthermore, NCSC spheroids significantly improved functional recovery after four weeks as shown by gait analysis, electrophysiology, and the rate of NMJ innervation. MSC spheroids, on the other hand, had insignificant effect. In vitro co-culture of NCSC or MSC spheroids with engineered myotubes and motor neurons further evidenced improved innervated NMJ formation with NCSC spheroids. CONCLUSIONS We demonstrate that stem cell type is critical for neuromuscular regeneration and that NCSCs have a distinct advantage and therapeutic potential to promote reinnervation following peripheral nerve injury. Biophysical effects of spheroidal culture, in particular, enable long-term NCSC survival following in vivo delivery. Furthermore, synthetic neuromuscular tissue, or "tissues-on-a-chip," may offer a platform to evaluate stem cells for neuromuscular regeneration.
Collapse
Affiliation(s)
- LeeAnn K Li
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Wen-Chin Huang
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Yuan-Yu Hsueh
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ken Yamauchi
- Department of Neurobiology, University of California, Los Angeles, USA
| | - Natalie Olivares
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Raul Davila
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Jun Fang
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Xili Ding
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Weikang Zhao
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Jennifer Soto
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Mahdi Hasani
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA
| | - Bennett Novitch
- Department of Neurobiology, University of California, Los Angeles, USA
| | - Song Li
- Departments of Bioengineering and Department of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
95
|
Ma J, Li J, Hu S, Wang X, Li M, Xie J, Shi Q, Li B, Lafu S, Chen H. Collagen Modified Anisotropic PLA Scaffold as a base for Peripheral Nerve Regeneration. Macromol Biosci 2022; 22:e2200119. [PMID: 35526091 DOI: 10.1002/mabi.202200119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/28/2022] [Indexed: 11/09/2022]
Abstract
Reconstruction of damaged nerves remains a significant unmet challenge in clinical medicine. Topographical and mechanical stimulations play important roles to repair peripheral nerve injury. The synergistic effects of topography and mechanical rigidity may significantly accelerate nerve regeneration. In this work, we developed a nerve-guiding collagen/polylactic acid (PLA) electrospun scaffold to facilitate peripheral nerve repair. The obtained anisotropic PLA electrospun scaffolds simulated the directional arranged structure of nerve realistically and promoted axonal regeneration after sciatic nerve injury when compared with the isotropic PLA electrospun scaffolds. Moreover, the collagen-modified PLA electrospun scaffolds further provided sufficient mechanical support and favorable microenvironment for axon regeneration. In addition, we observed that collagen-modified PLA electrospun scaffolds facilitated the axon regeneration by regulating YAP molecular pathway. Taken together, we engineered collagen-modified anisotropic PLA electrospun scaffolds may be a potential candidate to combine topography and mechanical rigidity for peripheral nerve regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinjin Ma
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Sihan Hu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingran Wang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meimei Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jile Xie
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Qin Shi
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Saiji Lafu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Hao Chen
- Affiliated Hospital & Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
96
|
Pandunugrahadi M, Irianto KA, Sindrawati O. The Optimal Timing of Platelet-Rich Plasma (PRP) Injection for Nerve Lesion Recovery: A Preliminary Study. Int J Biomater 2022; 2022:9601547. [PMID: 35573271 PMCID: PMC9106496 DOI: 10.1155/2022/9601547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Without appropriate treatment, nerve injuries may result in permanent loss of function. Platelet-rich plasma (PRP) injection is found to help in nerve regeneration. PRP is a concentrated platelet derived from autologous blood with the potential to release various growth factors (GF) to promote nerve regeneration. This study aims to know the best time for PRP injection to promote nerve regeneration. Methods This is an experimental in vivo research using male New Zealand white rabbits in the randomized control group posttest only design. Samples were divided into 5 groups (1 control group and 4 treatment groups). The control group without PRP injection and treated groups injected immediately after nerve injury, 3 days, 7 days, and 14 days afterward. Nerve regeneration was evaluated by the histology specimen sacrificed on day 21. Inflammation cells and endoneurium vacuoles were counted as mean percentage of five nerve fragments in each injured nerve sample specimen. Result Inflammation cells and vacuole cells increased significantly when PRP was administered 3 days after injury (group 2) (respectively, 14 ± 6.7 and 56.6 ± 11.6) compared to all treatment groups (p < 0.005) (control group, respectively, 6 ± 2.6 and 15.7 ± 9.5). On the other hand, significantly lower endoneurium vacuoles and inflammation cells were found on "the day 14" sample group (respectively, 5 ± 1.3 and 5.2 ± 1.6) compared to all other groups (p < 0.005). Conclusion This study found that the best time for injecting PRP for nerve regeneration is 14 days after injury.
Collapse
Affiliation(s)
- Muhammad Pandunugrahadi
- Orthopaedic and Traumatology Department, Dr Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Komang Agung Irianto
- Orthopaedic and Traumatology Department, Dr Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Oen Sindrawati
- Pathologic Anatomy Department, Faculty of Medicine, Widya Mandala Catholic University, Surabaya, Indonesia
| |
Collapse
|
97
|
Su Q, Nasser MI, He J, Deng G, Ouyang Q, Zhuang D, Deng Y, Hu H, Liu N, Li Z, Zhu P, Li G. Engineered Schwann Cell-Based Therapies for Injury Peripheral Nerve Reconstruction. Front Cell Neurosci 2022; 16:865266. [PMID: 35602558 PMCID: PMC9120533 DOI: 10.3389/fncel.2022.865266] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Compared with the central nervous system, the adult peripheral nervous system possesses a remarkable regenerative capacity, which is due to the strong plasticity of Schwann cells (SCs) in peripheral nerves. After peripheral nervous injury, SCs de-differentiate and transform into repair phenotypes, and play a critical role in axonal regeneration, myelin formation, and clearance of axonal and myelin debris. In view of the limited self-repair capability of SCs for long segment defects of peripheral nerve defects, it is of great clinical value to supplement SCs in necrotic areas through gene modification or stem cell transplantation or to construct tissue-engineered nerve combined with bioactive scaffolds to repair such tissue defects. Based on the developmental lineage of SCs and the gene regulation network after peripheral nerve injury (PNI), this review summarizes the possibility of using SCs constructed by the latest gene modification technology to repair PNI. The therapeutic effects of tissue-engineered nerve constructed by materials combined with Schwann cells resembles autologous transplantation, which is the gold standard for PNI repair. Therefore, this review generalizes the research progress of biomaterials combined with Schwann cells for PNI repair. Based on the difficulty of donor sources, this review also discusses the potential of “unlimited” provision of pluripotent stem cells capable of directing differentiation or transforming existing somatic cells into induced SCs. The summary of these concepts and therapeutic strategies makes it possible for SCs to be used more effectively in the repair of PNI.
Collapse
Affiliation(s)
- Qisong Su
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Moussa Ide Nasser
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Jiaming He
- School of Basic Medical Science, Shandong University, Jinan, China
| | - Gang Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qing Ouyang
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Donglin Zhuang
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Haoyun Hu
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Nanbo Liu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhetao Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- *Correspondence: Ping Zhu,
| | - Ge Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- Ge Li,
| |
Collapse
|
98
|
Raman spectroscopy and sciatic functional index (SFI) after low-level laser therapy (LLLT) in a rat sciatic nerve crush injury model. Lasers Med Sci 2022; 37:2957-2971. [PMID: 35503388 DOI: 10.1007/s10103-022-03565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Axonotmesis causes sensorimotor and neurofunctional deficits, and its regeneration can occur slowly or not occur if not treated appropriately. Low-level laser therapy (LLLT) promotes nerve regeneration with the proliferation of myelinating Schwann cells to recover the myelin sheath and the production of glycoproteins for endoneurium reconstruction. This study aimed to evaluate the effects of LLLT on sciatic nerve regeneration after compression injury by means of the sciatic functional index (SFI) and Raman spectroscopy (RS). For this, 64 Wistar rats were divided into two groups according to the length of treatment: 14 days (n = 32) and 21 days (n = 32). These two groups were subdivided into four sub-groups of eight animals each (control 1; control 2; laser 660 nm; laser 808 nm). All animals had surgical exposure to the sciatic nerve, and only control 1 did not suffer nerve damage. To cause the lesion in the sciatic nerve, compression was applied with a Kelly clamp for 6 s. The evaluation of sensory deficit was performed by the painful exteroceptive sensitivity (PES) and neuromotor tests by the SFI. Laser 660 nm and laser 808 nm sub-groups were irradiated daily (100 mW, 40 s, energy density of 133 J/cm2). The sciatic nerve segment was removed for RS analysis. The animals showed accentuated sensory and neurofunctional deficit after injury and their rehabilitation occurred more effectively in the sub-groups treated with 660 nm laser. Control 2 sub-group did not obtain functional recovery of gait. The RS identified sphingolipids (718, 1065, and 1440 cm-1) and collagen (700, 852, 1004, 1270, and 1660 cm-1) as biomolecular characteristics of sciatic nerves. Principal component analysis revealed important differences among sub-groups and a directly proportional correlation with SFI, mainly in the sub-group laser 660 nm treated for 21 days. In the axonotmesis-type lesion model presented herein, the 660 nm laser was more efficient in neurofunctional recovery, and the Raman spectra of lipid and protein properties were attributed to the basic biochemical composition of the sciatic nerve.
Collapse
|
99
|
Yuan TY, Zhang J, Yu T, Wu JP, Liu QY. 3D Bioprinting for Spinal Cord Injury Repair. Front Bioeng Biotechnol 2022; 10:847344. [PMID: 35519617 PMCID: PMC9065470 DOI: 10.3389/fbioe.2022.847344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is considered to be one of the most challenging central nervous system injuries. The poor regeneration of nerve cells and the formation of scar tissue after injury make it difficult to recover the function of the nervous system. With the development of tissue engineering, three-dimensional (3D) bioprinting has attracted extensive attention because it can accurately print complex structures. At the same time, the technology of blending and printing cells and related cytokines has gradually been matured. Using this technology, complex biological scaffolds with accurate cell localization can be manufactured. Therefore, this technology has a certain potential in the repair of the nervous system, especially the spinal cord. So far, this review focuses on the progress of tissue engineering of the spinal cord, landmark 3D bioprinting methods, and landmark 3D bioprinting applications of the spinal cord in recent years.
Collapse
|
100
|
Zhang G, Huang J, Hao S, Zhang J, Zhou N. Radix Astragalus Polysaccharide Accelerates Angiogenesis by Activating AKT/eNOS to Promote Nerve Regeneration and Functional Recovery. Front Pharmacol 2022; 13:838647. [PMID: 35431954 PMCID: PMC9010722 DOI: 10.3389/fphar.2022.838647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury (PNI) results in loss of neural control and severe disabilities in patients. Promoting functional nerve recovery by accelerating angiogenesis is a promising neuroprotective treatment strategy. Here, we identified a bioactive Radix Astragalus polysaccharide (RAP) extracted from traditional Chinese medicine (TCM) as a potent enhancer of axonal regeneration and remyelination. Notably, RAP promoted functional recovery and delayed gastrocnemius muscle atrophy in a rat model of sciatic nerve crush injury. Further, RAP treatment may induce angiogenesis in vivo. Moreover, our in vitro results showed that RAP promotes endothelial cell (EC) migration and tube formation. Altogether, our results show that RAP can enhance functional recovery by accelerating angiogenesis, which was probably related to the activation of AKT/eNOS signaling pathway, thereby providing a polysaccharide-based therapeutic strategy for PNI.
Collapse
Affiliation(s)
- Geyi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinsheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Hao
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingchao Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Nan Zhou, ; Jingchao Zhang,
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Nan Zhou, ; Jingchao Zhang,
| |
Collapse
|