51
|
Zhu W, Huang H, Ming W, Zhang R, Gu Y, Bai Y, Liu X, Liu H, Liu Y, Gu W, Sun X. Delineating highly transcribed noncoding elements landscape in breast cancer. Comput Struct Biotechnol J 2023; 21:4432-4445. [PMID: 37731598 PMCID: PMC10507584 DOI: 10.1016/j.csbj.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
Highly transcribed noncoding elements (HTNEs) are critical noncoding elements with high levels of transcriptional capacity in particular cohorts involved in multiple cellular biological processes. Investigation of HTNEs with persistent aberrant expression in abnormal tissues could be of benefit in exploring their roles in disease occurrence and progression. Breast cancer is a highly heterogeneous disease for which early screening and prognosis are exceedingly crucial. In this study, we developed a HTNE identification framework to systematically investigate HTNE landscapes in breast cancer patients and identified over ten thousand HTNEs. The robustness and rationality of our framework were demonstrated via public datasets. We revealed that HTNEs had significant chromatin characteristics of enhancers and long noncoding RNAs (lncRNAs) and were significantly enriched with RNA-binding proteins as well as targeted by miRNAs. Further, HTNE-associated genes were significantly overexpressed and exhibited strong correlations with breast cancer. Ultimately, we explored the subtype-specific transcriptional processes associated with HTNEs and uncovered the HTNE signatures that could classify breast cancer subtypes based on the properties of hormone receptors. Our results highlight that the identified HTNEs as well as their associated genes play crucial roles in breast cancer progression and correlate with subtype-specific transcriptional processes of breast cancer.
Collapse
Affiliation(s)
- Wenyong Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wenlong Ming
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rongxin Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yu Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongde Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanjun Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
52
|
Wang T, Chen G, Zhang S, Li D, Wei G, Zhao X, Liu Y, Ding D, Zhang X. Steerable Microneedles Enabling Deep Delivery of Photosensitizers and CRISPR/Cas9 Systems for Effective Combination Cancer Therapy. NANO LETTERS 2023; 23:7990-7999. [PMID: 37595030 DOI: 10.1021/acs.nanolett.3c01914] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Although gene therapy has shown prospects in treating triple-negative breast cancer, it is insufficient to treat such a malignant tumor. Herein, nanoparticles (NPs)-embedded dissolving microneedles (IR780-PL/pFBXO44@MNs) with steerable and flectional property were developed to achieve the codelivery of FBXO44-targeted CRISPR/Cas9 plasmids (pFBXO44) and hydrophobic photosensitizers. For improved NP penetration in tumor tissue, collagenase@MNs were preapplied to degrade the tumor matrix. Under light irradiation, IR780 exhibited remarkable phototherapy, while the escape efficiency of NPs from lysosomes was improved. pFBXO44 was subsequently released in tumor cell cytoplasm via reducing the disulfide bonds of NPs, which could specifically knock out the FBXO44 gene to inhibit the migration and invasion of tumor cells. As a result, tumor cells were eradicated, and lung metastasis was effectively suppressed. This micelle-incorporated microneedle platform broadens the potential of combining gene editing and photo synergistic cancer therapy.
Collapse
Affiliation(s)
- Tong Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Gang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Shuangshuang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province 213003, China
| | - Guanjun Wei
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xiaomei Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Yang Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xuenong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
53
|
Freire J, García-Berbel P, Caramelo B, García-Berbel L, Ovejero VJ, Cadenas N, Azueta A, Gómez-Román J. Usefulness of COL11A1 as a Prognostic Marker of Tumor Infiltration. Biomedicines 2023; 11:2496. [PMID: 37760937 PMCID: PMC10526338 DOI: 10.3390/biomedicines11092496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Determining the infiltration of carcinomas is essential for the proper follow-up and treatment of cancer patients. However, it continues to be a diagnostic challenge for pathologists in multiple types of tumors. In previous studies (carried out in surgical specimens), the protein COL11A1 has been postulated as an infiltration marker mainly expressed in the extracellular matrix (ECM). We hypothesized that a differential expression of COL11A1 may exist in the peritumoral stroma of tumors that have acquired infiltrating properties and that it may be detected in the small biopsies usually available in normal clinical practice. MATERIAL AND METHODS In our study, we performed immunohistochemical staining in more than 350 invasive and noninvasive small samples obtained via core needle biopsy (CNB), colonoscopy, or transurethral resection of bladder tumor (TURBT) of breast, colorectal, bladder, and ovarian cancer. RESULTS Our results revealed that COL11A1 immunostaining had a sensitivity to classify the samples into infiltrative vs. noninfiltrative tumors of 94% (breast), 97% (colorectal), >90% (bladder), and 74% (ovarian); and a specificity of 97% (breast), 100% (colorectal), and >90% (bladder). In ovarian cancer, the negative predictive value (0.59) did not present improvement over the usual histopathological markers. In all samples tested, the cumulative sensitivity was 86% and the specificity 96% (p < 0.0001). CONCLUSIONS COL11A1-positive immunostaining in small biopsies of breast, colon, bladder and ovarian cancer is an accurate predictive marker of tumor infiltration that can be easily implemented in daily clinical practice.
Collapse
Affiliation(s)
- Javier Freire
- Pathology Department, University Hospital Marques de Valdecilla, Avda. Marqués de Valdecilla s/n, 39008 Santander, Spain
| | - Pilar García-Berbel
- Pathology and Molecular Pathology Unit, IDIVAL, Avenida Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Belén Caramelo
- Pathology and Molecular Pathology Unit, IDIVAL, Avenida Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Lucía García-Berbel
- Breast Unit, Gynecology Department, University Hospital Puerta del Mar. Av. Ana de Viya, 21, 11009 Cádiz, Spain
| | - Victor J. Ovejero
- Surgery Department, University Hospital Marques de Valdecilla, Avda. Marqués de Valdecilla s/n, 39008 Santander, Spain
| | - Nuria Cadenas
- El Alisal Health Center, Cantabrian Health Service, C. los Ciruelos, 48, 39011 Santander, Spain
| | - Ainara Azueta
- Pathology Department, University Hospital Marques de Valdecilla, Avda. Marqués de Valdecilla s/n, 39008 Santander, Spain
| | - Javier Gómez-Román
- Pathology Department, University Hospital Marques de Valdecilla, Avda. Marqués de Valdecilla s/n, 39008 Santander, Spain
| |
Collapse
|
54
|
Bhatt HN, Diwan R, Borrego EA, Pérez CAM, Varela-Ramirez A, Kumar R, Aguilera RJ, Nurunnabi M. A photothermal driven chemotherapy for the treatment of metastatic melanoma. J Control Release 2023; 361:314-333. [PMID: 37562554 PMCID: PMC10787601 DOI: 10.1016/j.jconrel.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Solid tumors are abnormal mass of tissue, which affects the organs based on its malignancy and leads to the dysfunction of the affected organs. The major problem associated with treatment of solid tumors is delivering anticancer therapeutics to the deepest layers/core of the solid tumor. Deposition of excessive extracellular matrix (ECM) hinders the therapeutics to travel towards the core of the tumor. Therefore, conventional anticancer therapeutics can only reduce the tumor size and that also for a limited duration, and tumor recurrence occurs once the therapy is discontinued. Additionally, by the time the cancer is diagnosed, the cancer cells already started affecting the major organs of the body such as lung, liver, spleen, kidney, and brain, due to their ability to metastasize and lung is the primary site for them to be infiltrated. To facilitate the anticancer therapeutics to penetrate the deeper layers of tumor, and to provide concurrent treatment of both the solid tumor and metastasis, we have designed and developed a Bimodal Light Assisted Skin Tumor and Metastasis Treatment (BLAST), which is a combination of photothermal and chemotherapeutic moieties. The BLAST is composed of 2D boron nitride (BN) nanosheet with adsorbed molecules of BCL-2 inhibitor, Navitoclax (NAVI) on its surface, that can breakdown excessive ECM network and thereby facilitate dissociation of the solid tumor. The developed BLAST was evaluated for its ability to penetrate solid tumors using 3D spheroids for the uptake, cytotoxicity, growth inhibition, reactive oxygen species (ROS) detection, penetration, and downregulation of proteins upon laser irradiation. The in vivo therapeutic studies on a skin cancer mice model revealed that the BLAST with and without laser were able to penetrate the solid tumor, reduce tumor volume in mice, dissociate the protein network, and prevent lung metastasis as confirmed by immunohistochemistry and western blot analysis. Post analysis of serum and blood components revealed the safety and efficacy of BLAST in mice. Hence, the developed BLAST holds strong promise in solid tumor treatment and metastasis prevention simultaneously.
Collapse
Affiliation(s)
- Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Edgar A Borrego
- Department of Biological Sciences, The University of Texas El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Carlos Alberto Martínez Pérez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450 Norte, Ciudad Juárez 32310, Mexico
| | - Armando Varela-Ramirez
- Department of Biological Sciences, The University of Texas El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Renato J Aguilera
- Department of Biological Sciences, The University of Texas El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
55
|
Gao J, Qin H, Wang F, Liu L, Tian H, Wang H, Wang S, Ou J, Ye Y, Peng F, Tu Y. Hyperthermia-triggered biomimetic bubble nanomachines. Nat Commun 2023; 14:4867. [PMID: 37567901 PMCID: PMC10421929 DOI: 10.1038/s41467-023-40474-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoparticle-based drug delivery systems have gained much attention in the treatment of various malignant tumors during the past decades. However, limited tumor penetration of nanodrugs remains a significant hurdle for effective tumor therapy due to the existing biological barriers of tumoral microenvironment. Inspired by bubble machines, here we report the successful fabrication of biomimetic nanodevices capable of in-situ secreting cell-membrane-derived nanovesicles with smaller sizes under near infrared (NIR) laser irradiation for synergistic photothermal/photodynamic therapy. Porous Au nanocages (AuNC) are loaded with phase transitable perfluorohexane (PFO) and hemoglobin (Hb), followed by oxygen pre-saturation and indocyanine green (ICG) anchored 4T1 tumor cell membrane camouflage. Upon slight laser treatment, the loaded PFO undergoes phase transition due to surface plasmon resonance effect produced by AuNC framework, thus inducing the budding of outer cell membrane coating into small-scale nanovesicles based on the pore size of AuNC. Therefore, the hyperthermia-triggered generation of nanovesicles with smaller size, sufficient oxygen supply and anchored ICG results in enhanced tumor penetration for further self-sufficient oxygen-augmented photodynamic therapy and photothermal therapy. The as-developed biomimetic bubble nanomachines with temperature responsiveness show great promise as a potential nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hong Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323020, China
| | - Juanfeng Ou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
56
|
Yan M, Chen Q, Liu T, Li X, Pei P, Zhou L, Zhou S, Zhang R, Liang K, Dong J, Wei X, Wang J, Terasaki O, Chen P, Gu Z, Jiang L, Kong B. Site-selective superassembly of biomimetic nanorobots enabling deep penetration into tumor with stiff stroma. Nat Commun 2023; 14:4628. [PMID: 37532754 PMCID: PMC10397308 DOI: 10.1038/s41467-023-40300-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/24/2023] [Indexed: 08/04/2023] Open
Abstract
Chemotherapy remains as the first-choice treatment option for triple-negative breast cancer (TNBC). However, the limited tumor penetration and low cellular internalization efficiency of current nanocarrier-based systems impede the access of anticancer drugs to TNBC with dense stroma and thereby greatly restricts clinical therapeutic efficacy, especially for TNBC bone metastasis. In this work, biomimetic head/hollow tail nanorobots were designed through a site-selective superassembly strategy. We show that nanorobots enable efficient remodeling of the dense tumor stromal microenvironments (TSM) for deep tumor penetration. Furthermore, the self-movement ability and spiky head markedly promote interfacial cellular uptake efficacy, transvascular extravasation, and intratumoral penetration. These nanorobots, which integrate deep tumor penetration, active cellular internalization, near-infrared (NIR) light-responsive release, and photothermal therapy capacities into a single nanodevice efficiently suppress tumor growth in a bone metastasis female mouse model of TNBC and also demonstrate potent antitumor efficacy in three different subcutaneous tumor models.
Collapse
Affiliation(s)
- Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, 200438, Shanghai, P. R. China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, 200032, Shanghai, P. R. China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, 200438, Shanghai, P. R. China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Peng Pei
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, 200438, Shanghai, P. R. China
| | - Lei Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, 200032, Shanghai, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, 200438, Shanghai, P. R. China
| | - Runhao Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, 200438, Shanghai, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, 200032, Shanghai, P. R. China
| | - Xunbin Wei
- Biomedical Engineering Department and Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Peking University, 100081, Beijing, P. R. China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310063, Hangzhou, P. R. China
| | - Osamu Terasaki
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310063, Hangzhou, P. R. China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, 200032, Shanghai, P. R. China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, 200438, Shanghai, P. R. China.
- Yiwu Research Institute of Fudan University, 322000, Yiwu, Zhejiang, P. R. China.
- Shandong Research Institute, Fudan University, 250103, Jinan, Shandong, P. R. China.
| |
Collapse
|
57
|
Yi X, Zhu J, Liu W, Peng L, Lu C, Sun P, Huang L, Nie X, Huang S, Guo T, Zhu Y. Proteome Landscapes of Human Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Mol Cell Proteomics 2023; 22:100604. [PMID: 37353004 PMCID: PMC10413158 DOI: 10.1016/j.mcpro.2023.100604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Liver cancer is among the top leading causes of cancer mortality worldwide. Particularly, hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA) have been extensively investigated from the aspect of tumor biology. However, a comprehensive and systematic understanding of the molecular characteristics of HCC and CCA remains absent. Here, we characterized the proteome landscapes of HCC and CCA using the data-independent acquisition (DIA) mass spectrometry (MS) method. By comparing the quantitative proteomes of HCC and CCA, we found several differences between the two cancer types. In particular, we found an abnormal lipid metabolism in HCC and activated extracellular matrix-related pathways in CCA. We next developed a three-protein classifier to distinguish CCA from HCC, achieving an area under the curve (AUC) of 0.92, and an accuracy of 90% in an independent validation cohort of 51 patients. The distinct molecular characteristics of HCC and CCA presented in this study provide new insights into the tumor biology of these two major important primary liver cancers. Our findings may help develop more efficient diagnostic approaches and new targeted drug treatments.
Collapse
Affiliation(s)
- Xiao Yi
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiang Zhu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key laboratory of Biological Targeted Therapy, The Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
| | - Li Peng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cong Lu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key laboratory of Biological Targeted Therapy, The Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingling Huang
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi'ang Huang
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key laboratory of Biological Targeted Therapy, The Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tiannan Guo
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Yi Zhu
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
58
|
Zhang X, Wang C, Yu J, Bu J, Ai F, Wang Y, Lin J, Zhu X. Extracellular vesicles in the treatment and diagnosis of breast cancer: a status update. Front Endocrinol (Lausanne) 2023; 14:1202493. [PMID: 37534210 PMCID: PMC10393036 DOI: 10.3389/fendo.2023.1202493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related death in women. Currently, the treatment of breast cancer is limited by the lack of effectively targeted therapy and patients often suffer from higher severity, metastasis, and resistance. Extracellular vesicles (EVs) consist of lipid bilayers that encapsulate a complex cargo, including proteins, nucleic acids, and metabolites. These bioactive cargoes have been found to play crucial roles in breast cancer initiation and progression. Moreover, EV cargoes play pivotal roles in converting mammary cells to carcinogenic cells and metastatic foci by extensively inducing proliferation, angiogenesis, pre-metastatic niche formation, migration, and chemoresistance. The present update review mainly discusses EVs cargoes released from breast cancer cells and tumor-derived EVs in the breast cancer microenvironment, focusing on proliferation, metastasis, chemoresistance, and their clinical potential as effective biomarkers.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Caizheng Wang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fulv Ai
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
59
|
Magna M, Hwang GH, McIntosh A, Drews-Elger K, Takabatake M, Ikeda A, Mera BJ, Kwak T, Miller P, Lippman ME, Hudson BI. RAGE inhibitor TTP488 (Azeliragon) suppresses metastasis in triple-negative breast cancer. NPJ Breast Cancer 2023; 9:59. [PMID: 37443146 DOI: 10.1038/s41523-023-00564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic cancer subtype, which is generally untreatable once it metastasizes. We hypothesized that interfering with the Receptor for Advanced Glycation End-products (RAGE) signaling with the small molecule RAGE inhibitors (TTP488/Azeliragon and FPS-ZM1) would impair TNBC metastasis and impair fundamental mechanisms underlying tumor progression and metastasis. Both TTP488 and FPS-ZM1 impaired spontaneous and experimental metastasis of TNBC models, with TTP488 reducing metastasis to a greater degree than FPS-ZM1. Transcriptomic analysis of primary xenograft tumor and metastatic tissue revealed high concordance in gene and protein changes with both drugs, with TTP488 showing greater potency against metastatic driver pathways. Phenotypic validation of transcriptomic analysis by functional cell assays revealed that RAGE inhibition impaired TNBC cell adhesion to multiple extracellular matrix proteins (including collagens, laminins, and fibronectin), migration, and invasion. Neither RAGE inhibitor impaired cellular viability, proliferation, or cell cycle in vitro. Proteomic analysis of serum from tumor-bearing mice revealed RAGE inhibition affected metastatic driver mechanisms, including multiple cytokines and growth factors. Further mechanistic studies by phospho-proteomic analysis of tumors revealed RAGE inhibition led to decreased signaling through critical BC metastatic driver mechanisms, including Pyk2, STAT3, and Akt. These results show that TTP488 impairs metastasis of TNBC and further clarifies the signaling and cellular mechanisms through which RAGE mediates metastasis. Importantly, as TTP488 displays a favorable safety profile in human studies, our study provides the rationale for evaluating TTP488 in clinical trials to treat or prevent metastatic TNBC.
Collapse
Affiliation(s)
- Melinda Magna
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Gyong Ha Hwang
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alec McIntosh
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Drews-Elger
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Masaru Takabatake
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Adam Ikeda
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barbara J Mera
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Taekyoung Kwak
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Philip Miller
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Marc E Lippman
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barry I Hudson
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
60
|
Wilkus-Adamczyk K, Brodaczewska K, Majewska A, Kieda C. Microenvironment commits breast tumor ECs to dedifferentiation by micro-RNA-200-b-3p regulation and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1125077. [PMID: 37261072 PMCID: PMC10229062 DOI: 10.3389/fcell.2023.1125077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Hypoxia shapes the tumor microenvironment, modulates distinct cell population activities, and activates pathological angiogenesis in cancer, where endothelial cells (ECs) are the most important players. This study aimed to evidence the influences of the tumor microenvironment on the global gene expression pattern characteristic for ECs and the distinct responses displayed by tumor-derived ECs in comparison to the healthy endothelium during endothelial to mesenchymal transition (EndMT) and its regulation by miR-200-b-3p. Methodology: Immortalized lines of ECs from the same patient with breast cancer, healthy breast tissue (HBH.MEC), and primary tumor (HBCa.MEC) were used. The experiments were performed in normoxia and hypoxia for 48 h. By using the wound healing test, we investigated the migration abilities of ECs. Global gene expression analysis with NGS was carried out to detect new pathways altered in pathological ECs and find the most changed miRNAs. The validation of NGS data from RNA and miRNA was estimated by qPCRs. Mimic miR-200b-3p was used in HBH.MEC, and the targets VEGF, Bcl2, ROCK2, and SP1 were checked. Results: Hypoxia influences EC migration properties in wound healing assays. In hypoxia, healthy ECs migrate slower than they do in normoxia, as opposed to HBCa.MEC, where no decreased migration ability is induced by hypoxia due to EndMT features. NGS data identified this process to be altered in cancer ECs through extracellular matrix (ECM) organization. The deregulated genes, validated by qPCR, included SPP1, ITGB6, COL4A4, ADAMST2, LAMA1, GAS6, PECAM1, ELN, FBLN2, COL6A3, and COL9A3. NGS also identified collagens, laminins, fibronectins, and integrins, as being deregulated in tumor-derived ECs. Moreover, the analysis of the 10 most intensively modified miRNAs, when breast tumor-derived ECs were compared to healthy ECs, shed light on miR-200b-3p, which is strongly upregulated in HBCa.MECs when compared to HBH.MECs. Discussion and conclusion: The pathological ECs differed significantly, both phenotypically and functionally, from the normal corresponding tissue, thus influencing their microenvironment cross-talk. The gene expression profile confirms the EndMT phenotype of tumor-derived ECs and migratory properties acquisition. Moreover, it indicates the role of miR-200b-3p, that is, regulating EndMT in pathological ECs and silencing several angiogenic growth factors and their receptors by directly targeting their mRNA transcripts.
Collapse
Affiliation(s)
- Kinga Wilkus-Adamczyk
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
- Center for Molecular Biophysics UPR 4301 CNRS, Orleans, France
| |
Collapse
|
61
|
Lin J, Ye S, Ke H, Lin L, Wu X, Guo M, Jiao B, Chen C, Zhao L. Changes in the mammary gland during aging and its links with breast diseases. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37184281 DOI: 10.3724/abbs.2023073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The functional capacity of organisms declines in the process of aging. In the case of breast tissue, abnormal mammary gland development can lead to dysfunction in milk secretion, a primary function, as well as the onset of various diseases, such as breast cancer. In the process of aging, the terminal duct lobular units (TDLUs) within the breast undergo gradual degeneration, while the proportion of adipose tissue in the breast continues to increase and hormonal levels in the breast change accordingly. Here, we review changes in morphology, internal structure, and cellular composition that occur in the mammary gland during aging. We also explore the emerging mechanisms of breast aging and the relationship between changes during aging and breast-related diseases, as well as potential interventions for delaying mammary gland aging and preventing breast disease.
Collapse
Affiliation(s)
- Junqiang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Shihui Ye
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Liang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Xia Wu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Mengfei Guo
- Huankui Academy, Nanchang University, Nanchang 330031, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- the Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| |
Collapse
|
62
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
63
|
Mahadik P, Patwardhan S. ECM stiffness-regulated exosomal thrombospondin-1 promotes tunneling nanotubes-based cellular networking in breast cancer cells. Arch Biochem Biophys 2023; 742:109624. [PMID: 37146866 DOI: 10.1016/j.abb.2023.109624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
Intercellular communication is pivotal in various stages of cancer progression. For smart and effective communication, cancer cells employ diverse modes of messaging that may be further fine-tuned by the microenvironmental changes. Extracellular matrix (ECM) stiffening due to excess deposition and crosslinking of collagen is one of the crucial tumor-microenvironmental changes that influence a plethora of cellular processes, including cell-cell communication. We herein studied the crosstalk between exosomes and tunneling nanotubes (TNT), the two distinct means of cell-cell communication under varying ECM-stiffness conditions. We show that exosomes promote the formation of tunneling nanotubes in breast cancer cells, which results in cellular internet. Interestingly, exosomes drastically increased the fraction of cells connected by TNT; however, they elicited no effect on the number of TNTs per pair of connected cells or the length of TNT. The observed pro-TNT effects of exosomes were found to be ECM-stiffness dependent. ECM-stiffness tuned exosomes were found to promote TNT formation predominantly via the 'cell dislodgment model'. At the molecular level, exosomal thrombospondin-1 was identified as a critical pro-TNT factor. These findings underline the influence of ECM stiffening on two diverse modes of cell communication and their interdependence, which may have significant implications in cancer biomedical research.
Collapse
Affiliation(s)
- Pratiksha Mahadik
- Patwardhan Lab, Advanced Centre for Treatment, Research and Education in Cancer, (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Sejal Patwardhan
- Patwardhan Lab, Advanced Centre for Treatment, Research and Education in Cancer, (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
64
|
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P, Ahn B. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond) 2023; 43:525-561. [PMID: 37005490 PMCID: PMC10174093 DOI: 10.1002/cac2.12416] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
Tumor development and metastasis are facilitated by the complex interactions between cancer cells and their microenvironment, which comprises stromal cells and extracellular matrix (ECM) components, among other factors. Stromal cells can adopt new phenotypes to promote tumor cell invasion. A deep understanding of the signaling pathways involved in cell-to-cell and cell-to-ECM interactions is needed to design effective intervention strategies that might interrupt these interactions. In this review, we describe the tumor microenvironment (TME) components and associated therapeutics. We discuss the clinical advances in the prevalent and newly discovered signaling pathways in the TME, the immune checkpoints and immunosuppressive chemokines, and currently used inhibitors targeting these pathways. These include both intrinsic and non-autonomous tumor cell signaling pathways in the TME: protein kinase C (PKC) signaling, Notch, and transforming growth factor (TGF-β) signaling, Endoplasmic Reticulum (ER) stress response, lactate signaling, Metabolic reprogramming, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and Siglec signaling pathways. We also discuss the recent advances in Programmed Cell Death Protein 1 (PD-1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte Activating Gene 3 (LAG3) immune checkpoint inhibitors along with the C-C chemokine receptor 4 (CCR4)- C-C class chemokines 22 (CCL22)/ and 17 (CCL17), C-C chemokine receptor type 2 (CCR2)- chemokine (C-C motif) ligand 2 (CCL2), C-C chemokine receptor type 5 (CCR5)- chemokine (C-C motif) ligand 3 (CCL3) chemokine signaling axis in the TME. In addition, this review provides a holistic understanding of the TME as we discuss the three-dimensional and microfluidic models of the TME, which are believed to recapitulate the original characteristics of the patient tumor and hence may be used as a platform to study new mechanisms and screen for various anti-cancer therapies. We further discuss the systemic influences of gut microbiota in TME reprogramming and treatment response. Overall, this review provides a comprehensive analysis of the diverse and most critical signaling pathways in the TME, highlighting the associated newest and critical preclinical and clinical studies along with their underlying biology. We highlight the importance of the most recent technologies of microfluidics and lab-on-chip models for TME research and also present an overview of extrinsic factors, such as the inhabitant human microbiome, which have the potential to modulate TME biology and drug responses.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of NeurologyThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicago, 60611ILUSA
| | - Fatima Khan
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Bhupender Verma
- Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and Ear InfirmaryHarvard Medical SchoolBoston, 02114MAUSA
| | - Priyanka Sinha
- Department of NeurologyMassGeneral Institute for Neurodegenerative DiseaseMassachusetts General Hospital, Harvard Medical SchoolCharlestown, 02129MAUSA
| | - Crismita C. Dmello
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan Francisco, 94143CAUSA
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| | - Byeong‐Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| |
Collapse
|
65
|
Xu C, Wang Y, Hong Y, Yao R, Wu L, Shen X, Qu Y, Zhang Z, Zhu W, Yang Y, Chen W, Zhou Y, Liang Z. Identification of genetic and immune signatures for the recurrence of HER2-positive breast cancer after trastuzumab-based treatment. Breast Cancer Res Treat 2023; 199:603-615. [PMID: 37084155 DOI: 10.1007/s10549-023-06931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE To determine the genetic and immune features associated with the recurrence of human epidermal growth factor receptor2-positive (HER2 +) breast cancer (BC) after trastuzumab-based treatment. METHODS A retrospective cohort study of 48 patients who received trastuzumab-based treatment was divided into recurrent and non-recurrent groups according to clinical follow-up. Baseline samples from all 48 patients were analyzed for genetic variation, HLA allele type, gene expression, and immune features, which were linked to HER2 + BC recurrence. Statistics included logistic regression models, Kaplan-Meier plots, and Univariate Cox proportional hazards models. RESULTS Compared with the non-recurrent group, the extracellular matrix-related pathway and 3 Hallmark gene sets were enriched in the recurrent group. The infiltration levels of immature B cells and activated B cells were significantly increased in the non-recurrent group, which correlated remarkably with improved overall survival (OS) in two other published gene expression datasets, including TCGA and METABRIC. In the TCGA cohort (n = 275), activated B cells (HR 0.23, 95%CI 0.13-0.43, p < 0.0001), and immature B cells (HR 0.26, 95%CI 0.12-0.59, p < 0.0001). In the METABRIC cohort (n = 236), activated B cells (HR 0.60, 95%CI 0.43-0.83, p = 0.002), and immature B cells (HR 0.65, 95%CI 0.47-0.91, p = 0.011). Cox regression suggested that immature B cells and activated B cells were protective factors for outcome OS. CONCLUSIONS Aberrant activation of multiple pathways and low baseline tumor-infiltrating B cells are related to HER2 + BC trastuzumab-based recurrence, which primarily affects the antitumor activity of trastuzumab.
Collapse
Affiliation(s)
- Chi Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Wang
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Yuanyuan Hong
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Ru Yao
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Wu
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Xi Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Qu
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Wei Zhu
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Weizhi Chen
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
66
|
Fröhlich E. The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening. Int J Mol Sci 2023; 24:ijms24087116. [PMID: 37108283 PMCID: PMC10139112 DOI: 10.3390/ijms24087116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes the spectrum of 3D breast cancer models, e.g., spheroids, organoids, breast cancer on a chip and bioprinted tissues. The generation of spheroids is relatively standardized and easy to perform. Microfluidic systems allow control over the environment and the inclusion of sensors and can be combined with spheroids or bioprinted models. The strength of bioprinting relies on the spatial control of the cells and the modulation of the extracellular matrix. Except for the predominant use of breast cancer cell lines, the models differ in stromal cell composition, matrices and fluid flow. Organoids are most appropriate for personalized treatment, but all technologies can mimic most aspects of breast cancer physiology. Fetal bovine serum as a culture supplement and Matrigel as a scaffold limit the reproducibility and standardization of the listed 3D models. The integration of adipocytes is needed because they possess an important role in breast cancer.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
67
|
Gou L, Yue GGL, Lee JKM, Puno PT, Lau CBS. Natural product Eriocalyxin B suppressed triple negative breast cancer metastasis both in vitro and in vivo. Biochem Pharmacol 2023; 210:115491. [PMID: 36898414 DOI: 10.1016/j.bcp.2023.115491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women, and its metastasis to distant organs accounts for the majority of death. Eriocalyxin B (Eri B), an ent-kaurane diterpenoid isolating from Isodon eriocalyx var. laxiflora, has previously been reported to have anti-tumor and anti-angiogenic effects in breast cancer. Here, we investigated the effect of Eri B on cell migration and adhesion in triple negative breast cancer (TNBC) cells, as well as aldehyde dehydrogenases 1 family member A1 (ALDH1A1) expression, colony- and sphere-formation in cancer stem cell (CSC) enriched MDA-MB-231 cells. The in vivo anti-metastatic activities of Eri B were determined in 3 different breast tumor-bearing mouse models. Our results indicated that Eri B inhibited TNBC cell migration and adhesion to extracellular matrix proteins, and also reduced ALDH1A1 expression and colony formation in CSC-enriched MDA-MB-231 cells. The metastasis-related pathways, such as epidermal growth factor receptor/ mitogen-activated protein kinase kinases 1/2/ extracellular regulated protein kinase signaling altered by Eri B was firstly shown in MDA-MB-231 cells. The potent anti-metastatic efficacies of Eri B were demonstrated in breast xenograft-bearing mice and syngeneic breast tumor-bearing mice. Gut microbiome analysis results revealed the change in the diversity and composition of microbiome after Eri B treatment, and the potential pathways that are involved in the anti-cancer efficacy of Eri B. In conclusion, Eri B was shown to inhibit breast cancer metastasis in both in vitro and in vivo models. Our findings further support the development of Eri B as an anti-metastatic agent for breast cancer.
Collapse
Affiliation(s)
- Leilei Gou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pema Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
68
|
Li L, Li J. Dimerization of Transmembrane Proteins in Cancer Immunotherapy. MEMBRANES 2023; 13:393. [PMID: 37103820 PMCID: PMC10143916 DOI: 10.3390/membranes13040393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Transmembrane proteins (TMEMs) are integrated membrane proteins that span the entire lipid bilayer and are permanently anchored to it. TMEMs participate in various cellular processes. Some TMEMs usually exist and perform their physiological functions as dimers rather than monomers. TMEM dimerization is associated with various physiological functions, such as the regulation of enzyme activity, signal transduction, and cancer immunotherapy. In this review, we focus on the dimerization of transmembrane proteins in cancer immunotherapy. This review is divided into three parts. First, the structures and functions of several TMEMs related to tumor immunity are introduced. Second, the characteristics and functions of several typical TMEM dimerization processes are analyzed. Finally, the application of the regulation of TMEM dimerization in cancer immunotherapy is introduced.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingying Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
69
|
Corder RD, Vachieri RB, Martin ME, Taylor DK, Fleming JM, Khan SA. Linear and nonlinear rheology of liberase-treated breast cancer tumors. Biomater Sci 2023; 11:2186-2199. [PMID: 36744734 PMCID: PMC10023448 DOI: 10.1039/d3bm00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular matrix (ECM) rigidity has been shown to increase the invasive properties of breast cancer cells, promoting transformation and metastasis through mechanotransduction. Reducing ECM stiffness via enzymatic digestion could be a promising approach to slowing breast cancer development by de-differentiation of breast cancer cells to less aggressive phenotypes and enhancing the effectiveness of existing chemotherapeutics via improved drug penetrance throughout the tumor. In this study, we examine the effects of injectable liberase (a blend of collagenase and thermolysin enzymes) treatments on the linear and nonlinear rheology of allograft 4T1 mouse mammary tumors. We perform two sets of in vivo mouse studies, in which either one or multiple treatment injections occur before the tumors are harvested for rheological analysis. The treatment groups in each study consist of a buffer control, free liberase enzyme in buffer, a thermoresponsive copolymer called LiquoGel (LQG) in buffer, and a combined, localized injection of LQG and liberase. All tumor samples exhibit gel-like linear rheological behavior with the elastic modulus significantly larger than the viscous modulus and both independent of frequency. Tumors that receive a single injection of localized liberase have significantly lower tumor volumes and lower tissue moduli at both the center and edge compared to buffer- and free liberase-injected control tumors, while tissue viscoelasticity remains relatively unaffected. Tumors injected multiple times with LQG and liberase also have lower tissue volumes but possess higher tissue moduli and lower viscoelasticities compared to the other treatment groups. We propose that a mechanotransductive mechanism could cause the formation of smaller but stiffer tumors after repeated, localized liberase injections. Large amplitude oscillatory shear (LAOS) experiments are also performed on tissues from the multiple injection study and the results are analyzed using MITlaos. LAOS analysis reveals that all 4T1 tumors from the multiple injection study exhibit nonlinear rheological behavior at high strains and strain rates. Examination of the Lissajous-Bowditch curves, Chebyshev coefficient ratios, elastic moduli, and dynamic viscosities demonstrate that the onset and type of nonlinear behavior is independent of treatment type and elastic modulus, suggesting that multiple liberase injections do not affect the nonlinear viscoelasticity of 4T1 tumors.
Collapse
Affiliation(s)
- Ria D Corder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Robert B Vachieri
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Megan E Martin
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| | - Darlene K Taylor
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Jodie M Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
70
|
Karrobi K, Tank A, Fuzail MA, Kalidoss M, Tilbury K, Zaman M, Ferruzzi J, Roblyer D. Fluorescence Lifetime Imaging Microscopy (FLIM) reveals spatial-metabolic changes in 3D breast cancer spheroids. Sci Rep 2023; 13:3624. [PMID: 36869092 PMCID: PMC9984376 DOI: 10.1038/s41598-023-30403-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer cells are mechanically sensitive to physical properties of the microenvironment, which can affect downstream signaling to promote malignancy, in part through the modulation of metabolic pathways. Fluorescence Lifetime Imaging Microscopy (FLIM) can be used to measure the fluorescence lifetime of endogenous fluorophores, such as the metabolic co-factors NAD(P)H and FAD, in live samples. We used multiphoton FLIM to investigate the changes in cellular metabolism of 3D breast spheroids derived from MCF-10A and MD-MB-231 cell lines embedded in collagen with varying densities (1 vs. 4 mg/ml) over time (Day 0 vs. Day 3). MCF-10A spheroids demonstrated spatial gradients, with the cells closest to the spheroid edge exhibiting FLIM changes consistent with a shift towards oxidative phosphorylation (OXPHOS) while the spheroid core had changes consistent with a shift towards glycolysis. The MDA-MB-231 spheroids had a large shift consistent with increased OXPHOS with a more pronounced change at the higher collagen concentration. The MDA-MB-231 spheroids invaded into the collagen gel over time and cells that traveled the farthest had the largest changes consistent with a shift towards OXPHOS. Overall, these results suggest that the cells in contact with the extracellular matrix (ECM) and those that migrated the farthest had changes consistent with a metabolic shift towards OXPHOS. More generally, these results demonstrate the ability of multiphoton FLIM to characterize how spheroids metabolism and spatial metabolic gradients are modified by physical properties of the 3D ECM.
Collapse
Affiliation(s)
- Kavon Karrobi
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Anup Tank
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | | | - Madhumathi Kalidoss
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Karissa Tilbury
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Muhammad Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Jacopo Ferruzzi
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
71
|
Zhao YX, Yang Z, Ma LB, Wang F, Wang Y, Xiang C. HIF1A overexpression predicts the high lymph node metastasis risk and indicates a poor prognosis in papillary thyroid cancer. Heliyon 2023; 9:e14714. [PMID: 36994412 PMCID: PMC10040699 DOI: 10.1016/j.heliyon.2023.e14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Objective To investigate the value of Hypoxia-inducible factor 1 A (HIF1A) in predicting lymph node metastasis (LNM) stage and clinical outcomes of papillary thyroid cancer (PTC) patients. Materials and methods The HIF1A gene expression analysis in PTC was performed by bioinformatics approaches followed by evaluating its protein level using immunohistochemistry analysis. The role of HIF1A in predicting the LNM stage was evaluated by logistic regression analysis, nomogram construction, and receiver operating characteristic (ROC) analysis. We performed survival analyses to determine its prognostic value. Enrichment analysis was conducted, and immune cell infiltration and stromal content were evaluated to examine the underlying mechanism of HIF1A in PTC. Results HIF1A transcription and protein levels were significantly high in PTC tissue (P < 0.05). Its overexpression predicted high LNM risk and unfavorable prognosis for PTC patients (P < 0.05). Cox regression analysis revealed HIF1A as an independent prognostic biomarker for the disease-free interval (DFI) (P < 0.01). In addition, HIF1A was positively related to tumor-suppressive immunity but was negatively correlated with anti-tumor immunity. HIF1A upregulation was also associated with increased stromal content. Conclusions HIF1A overexpression is an independent predictor for worse DFI in PTC. The HIF1A expression may affect the prognosis of PTC patients through immune- and stroma-related pathways. Our study provides new insight into the role of HIF1A in PTC biology and clinical management.
Collapse
Affiliation(s)
- Yong-xun Zhao
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Corresponding author. The Seventh Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou 730000, Gansu, China.
| | - Ze Yang
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li-bin Ma
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Fang Wang
- The Pathology Department, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yong Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Corresponding author. Department of Thyroid Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
72
|
Barreto RSN, Carvalho HJC, Matias GSS, Silva MGKC, Ribeiro RR, Campanelli TB, Rigoglio NN, Carreira ACO, Miglino MA. The extracellular matrix protein pattern in the canine neoplastic mammary gland. Tissue Cell 2023; 82:102050. [PMID: 36933273 DOI: 10.1016/j.tice.2023.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Extracellular matrix (ECM) proteins in the mammary gland provide structure and regulate its development and homeostasis. Alterations in its structure can regulate and support pathogenesis, like breast tumors. Aiming to identify the health and tumoral canine mammary ECM scaffold protein profile by immunohistochemistry, the decellularization process was carried out to remove the cellular content. Additionally, it was verified the influence of health and tumoral ECM on the attachment of health and tumoral cells. The types I, III, IV, and V structural collagens were scarce in the mammary tumor, and ECM fibers were disorganized. Vimentin and CD44 were more common in mammary tumor stroma, suggesting a role in cell migration that results in tumor progression. Elastin, fibronectin, laminin, vitronectin, and osteopontin were similarly detected under healthy and tumor conditions, providing the attachment of normal cells in healthy ECM, while tumoral cells were able to attach in tumoral ECM. The protein pattern demonstrates ECM alteration in canine mammary tumorigenesis, presenting new knowledge on mammary tumor ECM microenvironment.
Collapse
Affiliation(s)
- R S N Barreto
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270 Butantã, São Paulo, Brazil
| | - H J C Carvalho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270 Butantã, São Paulo, Brazil
| | - G S S Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270 Butantã, São Paulo, Brazil
| | - M G K C Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270 Butantã, São Paulo, Brazil
| | - R R Ribeiro
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270 Butantã, São Paulo, Brazil
| | - T B Campanelli
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270 Butantã, São Paulo, Brazil
| | - N N Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270 Butantã, São Paulo, Brazil
| | - A C O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270 Butantã, São Paulo, Brazil; Center for Natural and Human Sciences, Federal University of ABC, Av. dos Estados, 5001, Bairro Santa Terezinha, 09210-580 Santo André, Brazil
| | - M A Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508-270 Butantã, São Paulo, Brazil.
| |
Collapse
|
73
|
Zhang S, Liu D, Ning X, Zhang X, Lu Y, Zhang Y, Li A, Gao Z, Wang Z, Zhao X, Chen S, Cai Z. A Signature Constructed Based on the Integrin Family Predicts Prognosis and Correlates with the Tumor Microenvironment of Patients with Lung Adenocarcinoma. J Environ Pathol Toxicol Oncol 2023; 42:59-77. [PMID: 36749090 DOI: 10.1615/jenvironpatholtoxicoloncol.2022046232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
As an important element in regulating the tumor microenvironment (TME), integrin plays a key role in tumor progression. This study aimed to establish prognostic signatures to predict the overall survival and identify the immune landscape of patients with lung adenocarcinoma based on integrins. The Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD) and Gene Expression Omnibus datasets were used to obtain information on mRNA levels and clinical factors (GSE72094). The least absolute shrinkage and selection operator (LASSO) model was used to create a prediction model that included six integrin genes. The nomogram, risk score, and time-dependent receiver operating characteristic analysis all revealed that the signatures had a good prognostic value. The gene signatures may be linked to carcinogenesis and TME, according to a gene set enrichment analysis. The immunological and stromal scores were computed using the ESTIMATE algorithm, and the data revealed, the low-risk group had a higher score. We discovered that the B lymphocytes, plasma, CD4+ T, dendritic, and mast cells were much higher in the group with low-risk using the CiberSort. Inflammatory processes and several HLA family genes were upregulated in the low-risk group. The low-risk group with a better prognosis is more sensitive to immune checkpoint inhibitor medication, according to immunophenoscore (IPS) research. We found that the patients in the high-risk group were more susceptible to chemotherapy than other group patients, according to the prophetic algorithm. The gene signatures could accurately predict the prognosis, identify the immune status of patients with lung adenocarcinoma, and provide guidance for therapy.
Collapse
Affiliation(s)
- Shusen Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China; The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Province Xingtai People's Hospital Postdoctoral Workstation, Xingtai, Hebei, China; Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dengxiang Liu
- Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Xuecong Ning
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Xiaochong Zhang
- Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Yuanyuan Lu
- Department of Anesthesiology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Yang Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Aimin Li
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Zhiguo Gao
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Zhihua Wang
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Xiaoling Zhao
- Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Shubo Chen
- Hebei Province Xingtai People's Hospital Postdoctoral Workstation, Xingtai, Hebei, China; Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Zhigang Cai
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| |
Collapse
|
74
|
Cadamuro F, Nicotra F, Russo L. 3D printed tissue models: From hydrogels to biomedical applications. J Control Release 2023; 354:726-745. [PMID: 36682728 DOI: 10.1016/j.jconrel.2023.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
The development of new advanced constructs resembling structural and functional properties of human organs and tissues requires a deep knowledge of the morphological and biochemical properties of the extracellular matrices (ECM), and the capacity to reproduce them. Manufacturing technologies like 3D printing and bioprinting represent valuable tools for this purpose. This review will describe how morphological and biochemical properties of ECM change in different tissues, organs, healthy and pathological states, and how ECM mimics with the required properties can be generated by 3D printing and bioprinting. The review describes and classifies the polymeric materials of natural and synthetic origin exploited to generate the hydrogels acting as "inks" in the 3D printing process, with particular emphasis on their functionalization allowing crosslinking and conjugation with signaling molecules to develop bio-responsive and bio-instructive ECM mimics.
Collapse
Affiliation(s)
- Francesca Cadamuro
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland.
| |
Collapse
|
75
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
76
|
Xu G, Wang H, Zhuang Y, Lin Q, Li Y, Cai Z, Lin G, Liu W. Identification of a ceRNA Network Driven by Copy Number Variations in Esophageal Cancer. J NIPPON MED SCH 2023; 90:426-438. [PMID: 38246614 DOI: 10.1272/jnms.jnms.2023_90-611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Copy number variation (CNV) is associated with progression of esophageal cancer (EC), a common gastrointestinal neoplasm. METHODS Using sequencing data, CNV data, and clinical data of EC transcriptome samples obtained from public databases, we performed differential expression analysis on sequencing data. Differentially expressed CNV-driven lncRNAs were screened using the chi-square test, and CNV-driven lncRNA-associated miRNAs and mRNAs were predicted. Cytoscape software was then used to construct ceRNA networks. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to investigate biological functions of mRNAs in the ceRNA network. Survival curves were plotted to explore correlations between lncRNAs in the ceRNA network and overall survival of CNV patients. Multiple databases were used to predict lncRNAs-related drugs. RESULTS A dysregulated lncRNA-associated ceRNA network driven by CNV in EC, including 11 lncRNAs, 11 miRNAs and 159 mRNAs, was constructed. Downstream enrichment of mRNAs was related to biological processes such as extracellular matrix organization, indicating that these mRNAs mainly participate in intercellular exchange between tumor cells. Additionally, expression of all lncRNAs in the ceRNA network, except LINC00950, LINC01270 and MIR181A1HG, was correlated with patients' CNV. In addition, none of the 11 lncRNAs was significantly correlated with overall survival of CNV patients. CH5424802 and PD-033299CNV mainly affected the RTK signaling pathway and the cell cycle of tumor cells via RP11-180N14.1 and RP11-273 G15.2 in the ceRNA network. CONCLUSIONS This study identified 11 CNV-driven lncRNAs that might affect EC development, 2 of which have promising effects if applied to drug treatment. These findings might assist in identifying novel treatments for EC.
Collapse
Affiliation(s)
- Guoxi Xu
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Huaishuai Wang
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Yixiang Zhuang
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Qiyi Lin
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Yinlin Li
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Zhicong Cai
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Gaofeng Lin
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| | - Weibo Liu
- Depertment of Gastrointestinal Surgery, Jinjiang Municipal Hospital
| |
Collapse
|
77
|
Subrahmanyam N, Yathavan B, Kessler J, Yu SM, Ghandehari H. HPMA copolymer-collagen hybridizing peptide conjugates targeted to breast tumor extracellular matrix. J Control Release 2023; 353:278-288. [PMID: 36244509 PMCID: PMC10799842 DOI: 10.1016/j.jconrel.2022.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 12/03/2022]
Abstract
The extracellular matrix (ECM) is dynamically involved in many aspects of cell growth and survival, and it plays an active role in cancer etiology. In comparison to healthy ECM, tumor associated ECM shows high collagen deposition and remodeling activity, which results in an increased amount of denatured collagen strands in tumor tissues. Capitalizing on this distinguishing feature, we developed tumor-localizing polymeric carriers that selectively bind to denatured collagen in the tumor ECM. We synthesized N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with their side chains conjugated to collagen hybridizing peptides (CHPs). HPMA copolymer-CHP conjugates exhibited selective affinity to denatured collagen and localized to tumors in an orthotopic MDA-MB-231 murine breast cancer model. The conjugates had increased tumor localization compared to copolymers with scrambled peptides in the side chains, as well as increased retention compared to free CHPs. Such conjugates show promise as carriers for ECM-acting drugs and imaging agents in the management of diseases characterized by high ECM remodeling activity.
Collapse
Affiliation(s)
- Nithya Subrahmanyam
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112 United States of America; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Bhuvanesh Yathavan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112 United States of America; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Julian Kessler
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - S Michael Yu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112 United States of America; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America.
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112 United States of America; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, United States of America; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America.
| |
Collapse
|
78
|
Identification of the Collagen Types Essential for Mammalian Breast Acinar Structures. Gels 2022; 8:gels8120837. [PMID: 36547361 PMCID: PMC9777629 DOI: 10.3390/gels8120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Modeling human breast tissue architecture is essential to study the pathophysiological conditions of the breast. We report that normal mammary epithelial cells grown in human breast extracellular matrix (ECM) hydrogel formed acini structurally similar to those of human and pig mammary tissues. Type I, II, III and V collagens were commonly identified in human, pig, and mouse breast ECM. Mammary epithelial cells formed acini on certain types or combinations of the four collagens at normal levels of breast tissue elasticity. Comparison of the collagen species in mouse normal breast and breast tumor ECM revealed common and distinct sets of collagens within the two types of tissues. Elevated expression of collagen type I alpha 1 chain (Col1a1) was found in mouse and human breast cancers. Collagen type XXV alpha 1 chain (Col25a1) was identified in mouse breast tumors but not in normal breast tissues. Our data provide strategies for modeling human breast pathophysiological structures and functions using native tissue-derived hydrogels and offer insight into the potential contributions of different collagen types in breast cancer development.
Collapse
|
79
|
Liu T, Liu C, Yan M, Zhang L, Zhang J, Xiao M, Li Z, Wei X, Zhang H. Single cell profiling of primary and paired metastatic lymph node tumors in breast cancer patients. Nat Commun 2022; 13:6823. [PMID: 36357424 PMCID: PMC9649678 DOI: 10.1038/s41467-022-34581-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
The microenvironment of lymph node metastasized tumors (LNMT) determines tumor progression and response to therapy, but a systematic study of LNMT is lacking. Here, we generate single-cell maps of primary tumors (PTs) and paired LNMTs in 8 breast cancer patients. We demonstrate that the activation, cytotoxicity, and proliferation of T cells are suppressed in LNMT compared with PT. CD4+CXCL13+ T cells in LNMT are more likely to differentiate into an exhausted state. Interestingly, LAMP3+ dendritic cells in LNMT display lower T cell priming and activating ability than in PT. Additionally, we identify a subtype of PLA2G2A+ cancer-associated fibroblasts enriched in HER2+ breast cancer patients that promotes immune infiltration. We also show that the antigen-presentation pathway is downregulated in malignant cells of the metastatic lymph node. Altogether, we characterize the microenvironment of LNMT and PT, which may shed light on the individualized therapeutic strategies for breast cancer patients with lymph node metastasis.
Collapse
Affiliation(s)
- Tong Liu
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Cheng Liu
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Meisi Yan
- grid.410736.70000 0001 2204 9268Department of Pathology, Harbin Medical University, Harbin, 150081 China
| | - Lei Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Jing Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Min Xiao
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhigao Li
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiaofan Wei
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Hongquan Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China ,grid.263488.30000 0001 0472 9649Department of Human Anatomy, Histology, and Embryology, Shenzhen University School of Medicine, Shenzhen, 518055 China
| |
Collapse
|
80
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
81
|
Redmond J, McCarthy HO, Buchanan P, Levingstone TJ, Dunne NJ. Development and characterisation of 3D collagen-gelatin based scaffolds for breast cancer research. BIOMATERIALS ADVANCES 2022; 142:213157. [PMID: 36279748 DOI: 10.1016/j.bioadv.2022.213157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
While 2D culture presents a useful tool for cancer research, it fails to replicate the tumor microenvironment as it lacks proper three-dimensional cell-cell/cell-matrix interactions, often resulting in exaggerated responses to therapeutic agents. 3D models that aim to overcome the issues associated with 2D culture research offer a new frontier for cancer research with cell growth, morphology and genetic properties that more closely match in vivo cancers. Herein, we aim to develop a collagen-based scaffold that supports the attachment and proliferation of breast cancer (BC) cells as a 3D culture model. Scaffolds were produced on a repeatable basis using a freeze-drying procedure. The constructs were highly porous (>99%) with homogenous pore sizes (150-300 μm) and an interconnected structure. The application of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC) crosslinking resulted in scaffolds with elastic moduli in the range of 1-2 kPa, mimicking cancerous breast tissue stiffness. Furthermore, the incorporation of gelatin into the scaffolds enabled the porosity, pore size and mechanical properties to be tailored, resulting in scaffolds with stiffness values that accurately replicate the stiffness of human BC extracellular matrix (ECM) (1.3-1.7 kPa). Scaffolds displayed high in vitro stability with 90% of mass remaining after 14 days of culture. The scaffolds were shown to be highly biocompatible, and capable of supporting the attachment, infiltration and proliferation of MCF7 breast cancer (BC) cells over +14 days. These results confirm the suitability of these scaffolds as culture models for BC cells. These collagen-based scaffolds offer significant potential for the exploration of aspects of BC, such as gene expression profiles and patterns, and for the assessment of the efficacy of therapeutic agents in treating BC.
Collapse
Affiliation(s)
- John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; School of Chemical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland
| | - Paul Buchanan
- School of Nursing and Human Science, Dublin City University, Collins Avenue, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland.
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
82
|
Niang DGM, Gaba FM, Diouf A, Hendricks J, Diallo RN, Niang MDS, Mbengue B, Dieye A. Galectin-3 as a biomarker in breast neoplasms: Mechanisms and applications in patient care. J Leukoc Biol 2022; 112:1041-1052. [PMID: 36125083 DOI: 10.1002/jlb.5mr0822-673r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Galectin-3 is a member of the lectin family encoded by the LGALS3 gene on chromosome 14. It is secreted by a wide range of immune cells and mammary tumor cells. Through its activity on the tumor microenvironment, in particular on tumor-infiltrating leukocytes, galectin-3 improves the proliferation, survival, and colonizing ability of mammary neoplastic cells. Consequently, galectin-3 expression in the tumor microenvironment could worsen therapeutic outcomes of breast neoplasms and become a biomarker and a therapeutic target in combined immunotherapy in breast neoplasms. There is a limited amount of information that is available on galectin-3 in breast cancer in Africa. In this review, we analyze how galectin-3 influences the tumor microenvironment and its potential as a biomarker and therapeutic target in breast neoplasms. We aim to emphasize the significance of investigating galectin-3 in breast neoplasms in Africa based on the results of studies conducted elsewhere.
Collapse
Affiliation(s)
- Doudou Georges Massar Niang
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Folly Mawulolo Gaba
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Adame Diouf
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Jacobus Hendricks
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, Limpopo province, South Africa
| | - Rokhaya Ndiaye Diallo
- Division of Human Genetics, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Maguette Deme Sylla Niang
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Babacar Mbengue
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Alioune Dieye
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| |
Collapse
|
83
|
Manjunath M, Nirgude S, Mhatre A, Vemuri SG, Nataraj M, Thumsi J, Choudhary B. Transcriptomic profiling of Indian breast cancer patients revealed subtype-specific mRNA and lncRNA signatures. Front Genet 2022; 13:932060. [PMID: 36386805 PMCID: PMC9641000 DOI: 10.3389/fgene.2022.932060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer-associated death in women. Despite the progress in therapeutic regimen, resistance and recurrence of breast cancer have affected the overall survival of patients. The present signatures, such as PAM50 and Oncotype DX, do not segregate the Indian breast samples based on molecular subtypes. This study aims at finding signatures of long noncoding RNA (lncRNA) and mRNA in Indian breast cancer patients using RNA-seq. We have analyzed the survival based on the menopausal and hormone status of 380 Indian breast cancer patients, and of these, we have sequenced and analyzed matched tumor–normal transcriptome of 17 (pre- and postmenopausal) Indian breast cancer patients representing six different subtypes, namely, four patients in triple-positive, three patients in estrogen receptor–positive (ER+ve), three patients in estrogen and progesterone receptors–positive (ER+ve, PR+ve), two patients in human epidermal growth factor receptor (Her2+ve), three patients in triple-negative, and one patient in ER+ve and Her2+ve subtypes. We have identified a 25 mRNA–27 lncRNA gene set, which segregated the subtypes in our data. A pathway analysis of the differentially expressed genes revealed downregulated ECM interaction and upregulated immune regulation, cell cycle, DNA damage response and repair, and telomere elongation in premenopausal women. Postmenopausal women showed downregulated metabolism, innate immune system, upregulated translation, sumoylation, and AKT2 activation. A Kaplan–Meier survival analysis revealed that menopausal status, grade of the tumor, and hormonal status displayed statistically significant effects (p < 0.05) on the risk of mortality due to breast cancer. Her2+ve patients showed low overall survival. One of the unique lncRNA-mRNA pairs specific to the EP-subtype, SNHG12 and EPB41, showed interaction, which correlates with their expression level; SNHG12 is downregulated and EPB41 is upregulated in EP samples.
Collapse
Affiliation(s)
- Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | - Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Division of Human Genetics,Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anisha Mhatre
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Sai G. Vemuri
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | | | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- *Correspondence: Bibha Choudhary,
| |
Collapse
|
84
|
Yan D, Ju X, Luo B, Guan F, He H, Yan H, Yuan J. Tumour stroma ratio is a potential predictor for 5-year disease-free survival in breast cancer. BMC Cancer 2022; 22:1082. [PMID: 36271354 PMCID: PMC9585868 DOI: 10.1186/s12885-022-10183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background The tumour–stroma ratio (TSR) is identified as a promising prognostic parameter for breast cancer, but the cutoff TSR value is mostly assessed by visual assessment, which lacks objective measurement. The aims of this study were to optimize the cutoff TSR value, and evaluate its prognosis value in patients with breast cancer both as continuous and categorical variables. Methods Major clinicopathological and follow-up data were collected for a series of patients with breast cancer. Tissue microarray images stained with cytokeratin immunohistochemistry were evaluated by automated quantitative image analysis algorithms to assess TSR. The potential cutoff point for TSR was optimized using maximally selected rank statistics. The association between TSR and 5-year disease-free survival (5-DFS) was assessed by Cox regression analysis. Kaplan–Meier analysis and log-rank test were used to assess the significance in survival analysis. Results The optimal cut-off TSR value was 33.5%. Using this cut-off point, categorical variable analysis found that low TSR (i.e., high stroma, TSR ≤ 33.5%) predicts poor outcomes for 5-DFS (hazard ratio [HR] = 2.82, 95% confidence interval [CI] = 1.81–4.40, P = 0.000). When TSR was considered as a continuous parameter, results showed that increased stroma content was associated with worse 5-DFS (HR = 1.71, 95% CI = 1.34–2.18, P = 0.000). Similar results were also obtained in three molecular subtypes in continuous and categorical variable analyses. Moreover, in the Kaplan–Meier analysis, log-rank test showed that low TSR displayed a worse 5-DFS than high TSR (P = 0.000). Similar results were also obtained in patients with triple-negative breast cancer, human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and luminal–HER2-negative breast cancer. Conclusion TSR is an independent predictor for 5-DFS in breast cancer with worse survival outcomes in low TSR. The prognostic value of TSR was also observed in other three molecular subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10183-5.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Xianli Ju
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Huihua He
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
85
|
Luo M, Chen X, Gao H, Yang F, Chen J, Qiao Y. Bacteria-mediated cancer therapy: A versatile bio-sapper with translational potential. Front Oncol 2022; 12:980111. [PMID: 36276157 PMCID: PMC9585267 DOI: 10.3389/fonc.2022.980111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria are important symbionts for humans, which sustain substantial influences on our health. Interestingly, some bastrains have been identified to have therapeutic applications, notably for antitumor activity. Thereby, oncologists have developed various therapeutic models and investigated the potential antitumor mechanisms for bacteria-mediated cancer therapy (BCT). Even though BCT has a long history and exhibits remarkable therapeutic efficacy in pre-clinical animal models, its clinical translation still lags and requires further breakthroughs. This review aims to focus on the established strains of therapeutic bacteria and their antitumor mechanisms, including the stimulation of host immune responses, direct cytotoxicity, the interference on cellular signal transduction, extracellular matrix remodeling, neoangiogenesis, and metabolism, as well as vehicles for drug delivery and gene therapy. Moreover, a brief discussion is proposed regarding the important future directions for this fantastic research field of BCT at the end of this review.
Collapse
Affiliation(s)
- Miao Luo
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyu Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Haojin Gao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| | - Yiting Qiao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| |
Collapse
|
86
|
Zhao X, Liu C, He X, Wang M, Zhang H, Cheng J, Wang H. Laminin-bound integrin α6β4 promotes non-small cell lung cancer progression via the activation of YAP/TAZ signaling pathway. Front Oncol 2022; 12:1015709. [PMID: 36276068 PMCID: PMC9583390 DOI: 10.3389/fonc.2022.1015709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Laminin is an extracellular matrix multidomain trimeric glycoprotein, that has a potential role in tumor progression. Here, we studied the effects of non-small cell lung cancer (NSCLC) cells interaction on laminin and explored the underlying mechanism of laminin associated NSCLC progression. Culture of A549 and NCI-1299 cells on 2D collagen gels (containing laminin) significantly promoted the proliferative and tumorigenic characteristics, as well as cell invasion of tumor cells in vitro. Consistently, comparing the clinical NSCLC tumor tissues, a poor overall survival was observed in patients with high laminin expression. Mechanistically, the expression of integrin α6β4 was required for the pro-tumor effects of laminin. Meanwhile, we showed that the downstream signaling of integrin α6β4, involved the focal adhesion kinase (FAK)/Yes-Associated Protein (YAP)/TAZ signaling pathway. The activation of FAK/YAP/TAZ signaling pathway induced by laminin was validated in tumor tissues from NSCLC patients. Suppression of integrin α6β4/FAK/YAP/TAZ signaling pathway efficiently suppressed the laminin-induced tumor growth, and strengthened the anticancer effects of chemotherapy, describing a novel target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuang Liu
- Department of Thoracic Surgery, The Fourth Central Hospital of Baoding City, Baoding, China
| | - Xu He
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Miao Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haoran Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingge Cheng
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongyan Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Hongyan Wang,
| |
Collapse
|
87
|
A pan-cancer analysis of matrisome proteins reveals CTHRC1 and a related network as major ECM regulators across cancers. PLoS One 2022; 17:e0270063. [PMID: 36190948 PMCID: PMC9529084 DOI: 10.1371/journal.pone.0270063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022] Open
Abstract
The extracellular matrix in the tumour microenvironment can regulate cancer cell growth and progression. A pan-cancer analysis of TCGA data from 30 cancer types, identified the top 5% of matrisome genes with amplifications or deletions in their copy number, that affect their expression and cancer survival. A similar analysis of matrisome genes in individual cancers identified CTHRC1 to be significantly altered. CTHRC1, a regulator of collagen synthesis, was identified as the most prominently upregulated matrisome gene of interest across cancers. Differential gene expression analysis identified 19 genes whose expression is increased with CTHRC1. STRING analysis of these genes classified them as ‘extracellular’, involved most prominently in ECM organization and cell adhesion. KEGG analysis showed their involvement in ECM-receptor and growth factor signalling. Cytohubba analysis of these genes revealed 13 hub genes, of which MMP13, POSTN, SFRP4, ADAMTS16 and FNDC1 were significantly altered in their expression with CTHRC1 and seen to affect survival across cancers. This could in part be mediated by their overlapping roles in regulating ECM (collagen or fibronectin) expression and organisation. In breast cancer tumour samples CTHRC1 protein levels are significantly upregulated with POSTN and MMP13, further supporting the need to evaluate their crosstalk in cancers.
Collapse
|
88
|
Lee HJ, Gari MK, Inman DR, Rosenkrans ZT, Burkel BM, Olson AP, Engle JW, Hernandez R, Ponik SM, Kwon GS. Multimodal imaging demonstrates enhanced tumor exposure of PEGylated FUD peptide in breast cancer. J Control Release 2022; 350:284-297. [PMID: 35995299 PMCID: PMC9841600 DOI: 10.1016/j.jconrel.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/23/2023]
Abstract
In breast cancer, the extracellular matrix (ECM) undergoes remodeling and changes the tumor microenvironment to support tumor progression and metastasis. Fibronectin (FN) assembly is an important step in the regulation of the tumor microenvironment since the FN matrix precedes the deposition of various other ECM proteins, controls immune cell infiltration, and serves as a reservoir for cytokines and growth factors. Therefore, FN is an attractive target for breast cancer therapy and imaging. Functional Upstream Domain (FUD) is a 6-kDa peptide targeting the N-terminal 70-kDa domain of FN, which is critical for fibrillogenesis. FUD has previously been shown to function as an anti-fibrotic peptide both in vitro and in vivo. In this work, we conjugated the FUD peptide with 20-kDa of PEG (PEG-FUD) and demonstrated its improved tumor exposure compared to non-PEGylated FUD in a murine breast cancer model via multiple imaging modalities. Importantly, PEG-FUD peptide retained a nanomolar binding affinity for FN and maintained in vitro plasma stability for up to 48 h. Cy5-labeled PEG-FUD bound to exogenous or endogenous FN assembled by fibroblasts. The in vivo fluorescence imaging with Cy5-labeled FUD and FUD conjugates demonstrated that PEGylation of the FUD peptide enhanced blood exposure after subcutaneous (SC) injection and significantly increased accumulation of FUD peptide in 4T1 mammary tumors. Intravital microscopy confirmed that Cy5-labeled PEG-FUD deposited mostly in the extravascular region of the tumor microenvironment after SC administration. Lastly, positron emission tomography/computed tomography imaging showed that 64Cu-labeled PEG-FUD preferentially accumulated in the 4T1 tumors with improved tumor uptake compared to 64Cu-labeled FUD (48 h: 1.35 ± 0.05 vs. 0.59 ± 0.03 %IA/g, P < 0.001) when injected intravenously (IV). The results indicate that PEG-FUD targets 4T1 breast cancer with enhanced tumor retention compared to non-PEGylated FUD, and biodistribution profiles of PEG-FUD after SC and IV injection may guide the optimization of PEG-FUD as a therapeutic and/or imaging agent for use in vivo.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, Wisconsin, 53705, USA
| | - Metti K. Gari
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, Wisconsin, 53705, USA
| | - David R. Inman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, Wisconsin, 53705, USA
| | - Zachary T. Rosenkrans
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Brian M. Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, Wisconsin, 53705, USA
| | - Aeli P. Olson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Jonathan W. Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Reinier Hernandez
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA,Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA,Carbone Cancer Center, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, Wisconsin, 53705, USA,Carbone Cancer Center, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| | - Glen S. Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, Wisconsin, 53705, USA,Carbone Cancer Center, University of Wisconsin - Madison, Madison, Wisconsin, 53705, USA
| |
Collapse
|
89
|
Hamel KM, King CT, Cavalier MB, Liimatta KQ, Rozanski GL, King TA, Lam M, Bingham GC, Byrne CE, Xing D, Collins-Burow BM, Burow ME, Belgodere JA, Bratton MR, Bunnell BA, Martin EC. Breast Cancer-Stromal Interactions: Adipose-Derived Stromal/Stem Cell Age and Cancer Subtype Mediated Remodeling. Stem Cells Dev 2022; 31:604-620. [PMID: 35579936 PMCID: PMC9595652 DOI: 10.1089/scd.2021.0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 10/18/2022] Open
Abstract
Adipose tissue is characterized as an endocrine organ that acts as a source of hormones and paracrine factors. In diseases such as cancer, endocrine and paracrine signals from adipose tissue contribute to cancer progression. Young individuals with estrogen receptor-alpha positive (ER-α+) breast cancer (BC) have an increased resistance to endocrine therapies, suggesting that alternative estrogen signaling is activated within these cells. Despite this, the effects of stromal age on the endocrine response in BC are not well defined. To identify differences between young and aged ER-α+ breast tumors, RNA sequencing data were obtained from The Cancer Genome Atlas. Analysis revealed enrichment of matrix and paracrine factors in young (≤40 years old) patients compared to aged (≥65 years old) tumor samples. Adipose-derived stromal/stem cells (ASCs) from noncancerous lipoaspirate of young and aged donors were evaluated for alterations in matrix production and paracrine secreted factors to determine if the tumor stroma could alter estrogen signaling. Young and aged ASCs demonstrated comparable proliferation, differentiation, and matrix production, but exhibited differences in the expression levels of inflammatory cytokines (Interferon gamma, interleukin [IL]-8, IL-10, Tumor necrosis factor alpha, IL-2, and IL-6). Conditioned media (CM)-based experiments showed that young ASC donor age elevated endocrine response in ER-α+ BC cell lines. MCF-7 ER-α+ BC cell line treated with secreted factors from young ASCs had enhanced ER-α regulated genes (PGR and SDF-1) compared to MCF-7 cells treated with aged ASC CM. Western blot analysis demonstrated increased activation levels of p-ER ser-167 in the MCF-7 cell line treated with young ASC secreted factors. To determine if ER-α+ BC cells heightened the cytokine release in ASCs, ASCs were stimulated with MCF-7-derived CM. Results demonstrated no change in growth factors or cytokines when treated with the ER-α+ secretome. In contrast to ER-α+ CM, the ER-α negative MDA-MB-231 derived CM demonstrated increased stimulation of pro-inflammatory cytokines in ASCs. While there was no observed change in the release of selected paracrine factors, MCF-7 cells did induce matrix production and a pro-adipogenic lineage commitment. The adipogenesis was evident by increased collagen content through Sirius Red/Fast Green Collagen stain, lipid accumulation evident by Oil Red O stain, and significantly increased expression in PPARγ mRNA expression. The data from this study provide evidence suggesting more of a subtype-dependent than an age-dependent difference in stromal response to BC, suggesting that this signaling is not heightened by reciprocal signals from ER-α+ BC cell lines. These results are important in understanding the mechanisms of estrogen signaling and the dynamic and reciprocal nature of cancer cell-stromal cell crosstalk that can lead to tumor heterogeneity and variance in response to therapy.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Connor T. King
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Maryn B. Cavalier
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Grace L. Rozanski
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Timothy A. King
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Meggie Lam
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Grace C. Bingham
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - C. Ethan Byrne
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Diensn Xing
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bridgette M. Collins-Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E. Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Bruce A. Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
90
|
Identification of Survival-Related Genes in Acute Myeloid Leukemia (AML) Based on Cytogenetically Normal AML Samples Using Weighted Gene Coexpression Network Analysis. DISEASE MARKERS 2022; 2022:5423694. [PMID: 36212177 PMCID: PMC9537620 DOI: 10.1155/2022/5423694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
The prognosis of acute myeloid leukemia (AML) remains a challenge. In this study, we applied the weighted gene coexpression network analysis (WGCNA) to find survival-specific genes in AML based on 42 adult CN-AML samples from The Cancer Genome Atlas (TCGA) database. Eighteen hub genes (ABCA13, ANXA3, ARG1, BTNL8, C11orf42, CEACAM1, CEACAM3, CHI3L1, CRISP2, CYP4F3, GPR84, HP, LTF, MMP8, OLR1, PADI2, RGL4, and RILPL1) were found to be related to AML patient survival time. We then compared the hub gene expression levels between AML peripheral blood (PB) samples (
) and control healthy whole blood samples (
). Seventeen of the hub genes showed lower expression levels in AML PB samples. The gene expression analysis was also done among AML BM (bone marrow) samples of different stages: diagnosis (
), posttreatment (
), and recurrent (
) stages. The results showed a significant increase of ANXA3, CEACM1, RGL4, RILPL1, and HP in posttreatment samples compared to diagnosis and/or recurrent samples. Transcription factor (TF) prediction of the hub genes suggested LTF as the top hit, overlapping 10 hub genes, while LTF itself is just one of the hub genes. Also, 3671 correlation links were shown between 128 mRNAs and 209 lncRNAs found in survival time-related modules. Generally, we identified candidate mRNA biomarkers based on CN-AML data which can be extensively used in AML prognosis. In addition, we mapped their potential regulatory mechanisms with correlated lncRNAs, providing new insights into potential targets for therapies in AML.
Collapse
|
91
|
Chen X, Feng J, Chen W, Shao S, Chen L, Wan H. Small extracellular vesicles: from promoting pre-metastatic niche formation to therapeutic strategies in breast cancer. Cell Commun Signal 2022; 20:141. [PMID: 36096820 PMCID: PMC9465880 DOI: 10.1186/s12964-022-00945-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the most common cancer in females, and to date, the mortality rate of breast cancer metastasis cannot be ignored. The metastasis of breast cancer is a complex, staged process, and the pattern of metastatic spread is not random. The pre-metastatic niche, as an organ-specific home for metastasis, is a favourable environment for tumour cell colonization. As detection techniques improve, the role of the pre-metastatic niche in breast cancer metastasis is being uncovered. sEVs (small extracellular vesicles) can deliver cargo, which is vital for the formation of pre-metastatic niches. sEVs participate in multiple aspects of creating a distant microenvironment to promote tumour invasion, including the secretion of inflammatory molecules, immunosuppression, angiogenesis and enhancement of vascular permeability, as well as regulation of the stromal environment. Here, we discuss the multifaceted mechanisms through which breast cancer-derived sEVs contribute to pre-metastatic niches. In addition, sEVs as biomarkers and antimetastatic therapies are also discussed, particularly their use in transporting exosomal microRNAs. The study of sEVs may provide insight into immunotherapy and targeted therapies for breast cancer, and we also provide an overview of their potential role in antitumour metastasis. Video Abstract
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Jiamei Feng
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Weili Chen
- Department of Breast, Yueyang Hospital Integated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Shijun Shao
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Wan
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China.
| |
Collapse
|
92
|
Tian Q, Gao H, Ma Y, Zhu L, Zhou Y, Shen Y, Wang B. The regulatory roles of T helper cells in distinct extracellular matrix characterization in breast cancer. Front Immunol 2022; 13:871742. [PMID: 36159822 PMCID: PMC9493030 DOI: 10.3389/fimmu.2022.871742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Background Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The ECM has been recognized as an important determinant of breast cancer progression and prognosis. Recent studies have revealed a strong link between ECM remodeling and immune cell infiltration in a variety of tumor types. However, the landscape and specific regulatory mechanisms between ECM and immune microenvironment in breast cancer have not been fully understood. Methods Using genomic data and clinical information of breast cancer patients obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we conducted an extensive multi-omics analysis to explore the heterogeneity and prognostic significance of the ECM microenvironment. Masson and Sirius red staining were applied to quantify the contents of collagen in the ECM microenvironment. Tissue immunofluorescence (IF) staining was applied to identify T helper (Th) cells. Results We classified breast cancer patients into two ECM-clusters and three gene-clusters by consensus clustering. Significant heterogeneity in prognosis and immune cell infiltration have been found in these distinct clusters. Specifically, in the ECM-cluster with better prognosis, the expression levels of Th2 and regulatory T (Treg) cells were reduced, while the Th1, Th17 and T follicular helper (Tfh) cells-associated activities were significantly enhanced. The correlations between ECM characteristics and Th cells infiltration were then validated by clinical tissue samples from our hospital. The ECM-associated prognostic model was then constructed by 10 core prognostic genes and stratified breast cancer patients into two risk groups. Kaplan-Meier analysis showed that the overall survival (OS) of breast cancer patients in the high-risk group was significantly worse than that of the low-risk group. The risk scores for breast cancer patients obtained from our prognostic model were further confirmed to be associated with immune cell infiltration, tumor mutation burden (TMB) and stem cell indexes. Finally, the half-maximal inhibitory concentration (IC50) values of antitumor agents for patients in different risk groups were calculated to provide references for therapy targeting distinct ECM characteristics. Conclusion Our findings identify a novel strategy for breast cancer subtyping based on the ECM characterization and reveal the regulatory roles of Th cells in ECM remodeling. Targeting ECM remodeling and Th cells hold potential to be a therapeutic alternative for breast cancer in the future.
Collapse
Affiliation(s)
- Qi Tian
- Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Gao
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingying Ma
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lizhe Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Zhou
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanwei Shen
- Department of Surgery Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Yanwei Shen, ; Bo Wang,
| | - Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yanwei Shen, ; Bo Wang,
| |
Collapse
|
93
|
Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Transl Res 2022; 247:117-136. [PMID: 34844003 DOI: 10.1016/j.trsl.2021.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
A deeper knowledge of the functional versatility and dynamic nature of the ECM has improved the understanding of cancer biology. Translational Significance: This work provides an in-depth view of the importance of the ECM to develop more mimetic breast cancer models, which aim to recreate the components and architecture of tumor microenvironment. Special focus is placed on decellularized matrices derived from tissue and cell culture, both in procurement and applications, as they have achieved great success in cancer research and pharmaceutical sector. The extracellular matrix (ECM) is increasingly recognized as a master regulator of cell behavior and response to breast cancer (BC) treatment. During BC progression, the mammary gland ECM is remodeled and altered in the composition and organization. Accumulated evidence suggests that changes in the composition and mechanics of ECM, orchestrated by tumor-stromal interactions along with ECM remodeling enzymes, are actively involved in BC progression and metastasis. Understanding how specific ECM components modulate the tumorigenic process has led to an increased interest in the development of biomaterial-based biomimetic ECM models to recapitulate key tumor characteristics. The decellularized ECMs (dECMs) have emerged as a promising in vitro 3D tumor model, whose recent advances in the processing and application could become the biomaterial by excellence for BC research and the pharmaceutical industry. This review offers a detailed view of the contribution of ECM in BC progression, and highlights the application of dECM-based biomaterials as promising personalized tumor models that more accurately mimic the tumorigenic mechanisms of BC and the response to treatment. This will allow the design of targeted therapeutic approaches adapted to the specific characteristics of each tumor that will have a great impact on the precision medicine applied to BC patients.
Collapse
Affiliation(s)
- Marta Tamayo-Angorrilla
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
94
|
Díaz ECG, Lee AG, Sayles LC, Feria C, Sweet-Cordero EA, Yang F. A 3D Osteosarcoma Model with Bone-Mimicking Cues Reveals a Critical Role of Bone Mineral and Informs Drug Discovery. Adv Healthc Mater 2022; 11:e2200768. [PMID: 35767377 PMCID: PMC10162498 DOI: 10.1002/adhm.202200768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/10/2022] [Indexed: 01/27/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone cancer for which survival has not improved over three decades. While biomaterials have been widely used to engineer 3D soft-tissue tumor models, the potential of engineering 3D biomaterials-based OS models for comprehensive interrogation of OS pathology and drug discovery remains untapped. Bone is characterized by high mineral content, yet the role of bone mineral in OS progression and drug response remains unknown. Here, a microribbon-based OS model with bone-mimicking compositions is developed to elucidate the role of 3D culture and hydroxyapatite in OS signaling and drug response. The results reveal that hydroxyapatite in 3D is critical to support retention of OS signaling and drug resistance similar to patient tissues and mouse orthotopic tumors. The physiological relevance of this 3D model is validated using four established OS cell lines, seven patient-derived xenograft (PDX) cell lines and two animal models. Integrating 3D OS PDX models with RNA-sequencing identified 3D-specific druggable target, which predicts drug response in mouse orthotopic model. These results establish microribbon-based 3D OS models as a novel experimental tool to enable discovery of novel therapeutics that would be otherwise missed with 2D model and may serve as platforms to study patient-specific OS heterogeneity and drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Alex G. Lee
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, USA
| | - Leanne C. Sayles
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, USA
| | - Criselle Feria
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - E. Alejandro Sweet-Cordero
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
95
|
Bunnell BA, Martin EC, Matossian MD, Brock CK, Nguyen K, Collins-Burow B, Burow ME. The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer. Cancer Metastasis Rev 2022; 41:549-573. [PMID: 35999486 DOI: 10.1007/s10555-022-10063-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Margarite D Matossian
- Department of Microbiology, Immunology and Genetics, University of Chicago, IL, Chicago, USA
| | - Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bridgette Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
96
|
Cuellar-Vite L, Weber-Bonk KL, Abdul-Karim FW, Booth CN, Keri RA. Focal Adhesion Kinase Provides a Collateral Vulnerability That Can Be Leveraged to Improve mTORC1 Inhibitor Efficacy. Cancers (Basel) 2022; 14:3374. [PMID: 35884439 PMCID: PMC9323520 DOI: 10.3390/cancers14143374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The PI3K/AKT/mTORC1 pathway is a major therapeutic target for many cancers, particularly breast cancer. Everolimus is an mTORC1 inhibitor used in metastatic estrogen receptor-positive (ER+) and epidermal growth factor receptor 2-negative (HER2-) breast cancer. However, mTORC1 inhibitors have limited efficacy in other breast cancer subtypes. We sought to discover collateral sensitivities to mTORC1 inhibition that could be exploited to improve therapeutic response. Using a mouse model of breast cancer that is intrinsically resistant to mTORC1 inhibition, we found that rapamycin alters the expression of numerous extracellular matrix genes, suggesting a potential role for integrins/FAK in controlling mTORC1-inhibitor efficacy. FAK activation was also inversely correlated with rapamycin response in breast cancer cell lines. Supporting its potential utility in patients, FAK activation was observed in >50% of human breast cancers. While blocking FAK in mouse models of breast cancer that are highly responsive to rapamycin had no impact on tumor growth, FAK inhibition sensitized rapamycin-resistant tumors to mTORC1 inhibition. These data reveal an innate dependency on FAK when mTORC1 signaling is lost in tumors that are resistant to mTORC1 inhibitors. They also suggest a precision medicine approach to improving mTORC1 inhibitor efficacy in resistant cancers by suppressing FAK signaling.
Collapse
Affiliation(s)
- Leslie Cuellar-Vite
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Kristen L. Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Fadi W. Abdul-Karim
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (F.W.A.-K.); (C.N.B.)
| | - Christine N. Booth
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (F.W.A.-K.); (C.N.B.)
| | - Ruth A. Keri
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of General Medical Sciences-Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
97
|
Blanco-Fernandez B, Rey-Vinolas S, Bağcı G, Rubi-Sans G, Otero J, Navajas D, Perez-Amodio S, Engel E. Bioprinting Decellularized Breast Tissue for the Development of Three-Dimensional Breast Cancer Models. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29467-29482. [PMID: 35735173 PMCID: PMC9264314 DOI: 10.1021/acsami.2c00920] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.
Collapse
|
98
|
Fibronectin Functions as a Selective Agonist for Distinct Toll-like Receptors in Triple-Negative Breast Cancer. Cells 2022; 11:cells11132074. [PMID: 35805158 PMCID: PMC9265717 DOI: 10.3390/cells11132074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs). Using two triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, we show that FnEDA and FnIII-1c induce the pro-tumorigenic cytokine, IL-8, by serving as agonists for TLR5 and TLR2, the canonical receptors for bacterial flagellin and lipoprotein, respectively. We also find that FnIII-1c is not recognized by MDA-MB-468 cells but is recognized by MDA-MB-231 cells, suggesting a cell type rather than ligand specific utilization of TLRs. As IL-8 plays a major role in the progression of TNBC, these studies suggest that tumor-induced structural changes in the fibronectin matrix promote an inflammatory microenvironment conducive to metastatic progression.
Collapse
|
99
|
Investigation of the Mechanism of hsa_circ_000 1429 Adsorbed miR-205 to Regulate KDM4A and Promote Breast Cancer Metastasis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4657952. [PMID: 35833065 PMCID: PMC9239777 DOI: 10.1155/2022/4657952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 01/16/2023]
Abstract
This study investigates the mechanism of hsa_circ_0001429 adsorbing miR-205 and regulating the expression of KDM4A to promote breast cancer metastasis and its mechanism. Mammary epithelial cells MCF-10A and human breast cancer cell lines BT474, SKBr-3, ZR-75-30, and MCF7 are cultured, and the mRNA expressions of hsa_circ_000 1429, miR-205, and KDM4A are detected by qRT-PCR; hsa_circ_000 1429 binds to miR-205, and miR-205 targets KDM4A. RIP verifies that hsa_circ_000 1429 binds to AGO2; RNA pull down results prove that hsa_circ_000 1429 binds to miR-205; MTT detects cell proliferation; transwell assay detects cell migration and invasion ability; flow cytometry detects cell apoptosis rate. The expressions of KDM4A, migration, and invasion-related factors, N-cadherin and MMP-9 protein, are detected by blot. hsa_circ_000 1429 may upregulate the KDM4A gene by adsorbing miR-205. Therefore, it will promote the proliferation, migration, and invasion of breast cancer cells and inhibit their apoptosis.
Collapse
|
100
|
Vahala D, Choi YS. Modelling the Tumor Microenvironment: Recapitulating Nano- and Micro-Scale Properties that Regulate Tumor Progression. Front Cell Dev Biol 2022; 10:908799. [PMID: 35800896 PMCID: PMC9254080 DOI: 10.3389/fcell.2022.908799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer remains a significant burden with 1 in 8 women affected and metastasis posing a significant challenge for patient survival. Disease progression involves remodeling of the extracellular matrix (ECM). In breast cancer, tissue stiffness increases owing to an increase in collagen production by recruited cancer-associated fibroblasts (CAFs). These stromal modifications are notable during primary tumor growth and have a dualistic action by creating a hard capsule to prevent penetration of anti-cancer therapies and forming a favorable environment for tumor progression. Remodeling of the tumor microenvironment immediately presented to cells can include changes in protein composition, concentration and structural arrangement and provides the first mechanical stimuli in the metastatic cascade. Not surprisingly, metastatic cancer cells possess the ability to mechanically adapt, and their adaptability ensures not only survival but successful invasion within altered environments. In the past decade, the importance of the microenvironment and its regulatory role in diseases have gained traction and this is evident in the shift from plastic culture to the development of novel biomaterials that mimic in vivo tissue. With these advances, elucidations can be made into how ECM remodeling and more specifically, altered cell-ECM adhesions, regulate tumor growth and cancer cell plasticity. Such enabling tools in mechanobiology will identify fundamental mechanisms in cancer progression that eventually help develop preventative and therapeutic treatment from a clinical perspective. This review will focus on current platforms engineered to mimic the micro and nano-properties of the tumor microenvironment and subsequent understanding of mechanically regulated pathways in cancer.
Collapse
|