51
|
Asano K, Suzuki T, Saito A, Wei FY, Ikeuchi Y, Numata T, Tanaka R, Yamane Y, Yamamoto T, Goto T, Kishita Y, Murayama K, Ohtake A, Okazaki Y, Tomizawa K, Sakaguchi Y, Suzuki T. Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease. Nucleic Acids Res 2019; 46:1565-1583. [PMID: 29390138 PMCID: PMC5829720 DOI: 10.1093/nar/gky068] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/23/2018] [Indexed: 12/21/2022] Open
Abstract
Modified uridine containing taurine, 5-taurinomethyluridine (τm5U), is found at the anticodon first position of mitochondrial (mt-)transfer RNAs (tRNAs). Previously, we reported that τm5U is absent in mt-tRNAs with pathogenic mutations associated with mitochondrial diseases. However, biogenesis and physiological role of τm5U remained elusive. Here, we elucidated τm5U biogenesis by confirming that 5,10-methylene-tetrahydrofolate and taurine are metabolic substrates for τm5U formation catalyzed by MTO1 and GTPBP3. GTPBP3-knockout cells exhibited respiratory defects and reduced mitochondrial translation. Very little τm5U34 was detected in patient's cells with the GTPBP3 mutation, demonstrating that lack of τm5U results in pathological consequences. Taurine starvation resulted in downregulation of τm5U frequency in cultured cells and animal tissues (cat liver and flatfish). Strikingly, 5-carboxymethylaminomethyluridine (cmnm5U), in which the taurine moiety of τm5U is replaced with glycine, was detected in mt-tRNAs from taurine-depleted cells. These results indicate that tRNA modifications are dynamically regulated via sensing of intracellular metabolites under physiological condition.
Collapse
Affiliation(s)
- Kana Asano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ayaka Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Tomoyuki Numata
- Biological Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Animal Medical Center, Fuchu, Tokyo 183-8509, Japan
| | - Yoshihisa Yamane
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Animal Medical Center, Fuchu, Tokyo 183-8509, Japan
| | - Takeshi Yamamoto
- Tamaki Laboratory, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie 519-0423, Japan
| | - Takanobu Goto
- Department of Chemistry & Biochemistry, National Institute of Technology, Numazu College, Numazu, Shizuoka 410-8501, Japan
| | - Yoshihito Kishita
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1240, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba 266-0007, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1240, Japan.,Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1240, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
52
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
53
|
Meseguer S, Navarro-González C, Panadero J, Villarroya M, Boutoual R, Sánchez-Alcázar JA, Armengod ME. The MELAS mutation m.3243A>G alters the expression of mitochondrial tRNA fragments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1433-1449. [PMID: 31195049 DOI: 10.1016/j.bbamcr.2019.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/26/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
Abstract
Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.
Collapse
Affiliation(s)
- Salvador Meseguer
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Carmen Navarro-González
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Joaquin Panadero
- Unidad de Genómica, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia 46026, Spain.
| | - Magda Villarroya
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Rachid Boutoual
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Jose Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - M-Eugenia Armengod
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) node 721, Madrid 28029, Spain.
| |
Collapse
|
54
|
de Crécy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM, Leidel SA, Bujnicki JM. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res 2019; 47:2143-2159. [PMID: 30698754 PMCID: PMC6412123 DOI: 10.1093/nar/gkz011] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
tRNA are post-transcriptionally modified by chemical modifications that affect all aspects of tRNA biology. An increasing number of mutations underlying human genetic diseases map to genes encoding for tRNA modification enzymes. However, our knowledge on human tRNA-modification genes remains fragmentary and the most comprehensive RNA modification database currently contains information on approximately 20% of human cytosolic tRNAs, primarily based on biochemical studies. Recent high-throughput methods such as DM-tRNA-seq now allow annotation of a majority of tRNAs for six specific base modifications. Furthermore, we identified large gaps in knowledge when we predicted all cytosolic and mitochondrial human tRNA modification genes. Only 48% of the candidate cytosolic tRNA modification enzymes have been experimentally validated in mammals (either directly or in a heterologous system). Approximately 23% of the modification genes (cytosolic and mitochondrial combined) remain unknown. We discuss these 'unidentified enzymes' cases in detail and propose candidates whenever possible. Finally, tissue-specific expression analysis shows that modification genes are highly expressed in proliferative tissues like testis and transformed cells, but scarcely in differentiated tissues, with the exception of the cerebellum. Our work provides a comprehensive up to date compilation of human tRNA modifications and their enzymes that can be used as a resource for further studies.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
- Cancer and Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Carl G Mangleburg
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
- Research Group for RNA Biochemistry, Institute of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
55
|
Sehin Y, Koshla O, Dacyuk Y, Zhao R, Ross R, Myronovskyi M, Limbach PA, Luzhetskyy A, Walker S, Fedorenko V, Ostash B. Gene ssfg_01967 (miaB) for tRNA modification influences morphogenesis and moenomycin biosynthesis in Streptomyces ghanaensis ATCC14672. MICROBIOLOGY (READING, ENGLAND) 2019; 165:233-245. [PMID: 30543507 PMCID: PMC7003650 DOI: 10.1099/mic.0.000747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
Streptomyces ghanaensis ATCC14672 is remarkable for its production of phosphoglycolipid compounds, moenomycins, which serve as a blueprint for the development of a novel class of antibiotics based on inhibition of peptidoglycan glycosyltransferases. Here we employed mariner transposon (Tn) mutagenesis to find new regulatory genes essential for moenomycin production. We generated a library of 3000 mutants which were screened for altered antibiotic activity. Our focus centred on a single mutant, HIM5, which accumulated lower amounts of moenomycin and was impaired in morphogenesis as compared to the parental strain. HIM5 carried the Tn insertion within gene ssfg_01967 for putative tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase, or MiaB, and led to a reduced level of thiomethylation at position 37 in the anticodon of S. ghanaensis transfer ribonucleic acid (tRNA). It is likely that the mutant phenotype of HIM5 stems from the way in which ssfg_01967::Tn influences translation of the rare leucine codon UUA in several genes for moenomycin production and life cycle progression in S. ghanaensis. This is the first report showing that quantitative changes in tRNA modification status in Streptomyces have physiological consequences.
Collapse
Affiliation(s)
- Yuliia Sehin
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| | - Oksana Koshla
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| | - Yuriy Dacyuk
- Department of Physics of the Earth, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, 318 College Dr, 404 Crosley Tower, Cincinnati OH 45221-0172, USA
| | - Robert Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, 318 College Dr, 404 Crosley Tower, Cincinnati OH 45221-0172, USA
| | - Maksym Myronovskyi
- Helmholtz Institute for Pharmaceutical Research Saarland Campus, Building C2.3, 66123 Saarbrucken, Germany
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, 318 College Dr, 404 Crosley Tower, Cincinnati OH 45221-0172, USA
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research Saarland Campus, Building C2.3, 66123 Saarbrucken, Germany
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| |
Collapse
|
56
|
Soler-Alfonso C, Pillai N, Cooney E, Mysore KR, Boyer S, Scaglia F. L-Cysteine supplementation prevents liver transplantation in a patient with TRMU deficiency. Mol Genet Metab Rep 2019; 19:100453. [PMID: 30740308 PMCID: PMC6355510 DOI: 10.1016/j.ymgmr.2019.100453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Early recognition of rare mitochondrial respiratory chain defects has become readily available with the routine use of whole exome sequencing. Patients with oxidative phosphorylation defects present with a heterogenous phenotype, often rapidly progressive, and lethal. Clinicians aim for prompt identification of the specific molecular defect to provide timely management, decrease morbidity, and potentially improve survival rates. More recently, bi-allelic pathogenic variants in the TRMU gene responsible for encoding the mitochondrial tRNA-specific 2-thiouridylase were found in a syndrome characterized by infantile hepatopathy due to a mitochondrial translation defect (OMIM# 613070). This nuclear encoded enzyme catalyzes the addition of a sulfur-containing thiol group to the wobble position of mitochondrial specific tRNAs. TRMU deficiency is characterized by a combined respiratory chain deficiency without associated mitochondrial DNA depletion. This mitochondrial tRNA-modifying enzyme requires sulfur for its activity. Previous cellular models have suggested supplementation with cysteine, one of the sulfur containing amino acids, may play a role in increasing thiouridylation levels of mt-tRNAs by increasing sulfur availability for TRMU activity. Cysteine is considered a conditional essential amino acid due to limited availability in infants caused by immature cystathionine gamma-lyase (cystathionase) enzyme activity. The potential benefit of L-cysteine supplementation in TRMU deficiency has been previously proposed to ameliorate the severity and insidious course of the disease. Here we report the clinical, biochemical, and genetic findings of two siblings presenting with hepatopathy associated with hyperlactatemia due to bi-allelic pathogenic variants in TRMU. One patient died due to related complications. The other case was diagnosed prenatally allowing early implementation of L-cysteine supplementation, recovery of liver function, and avoidance of liver transplantation.
Collapse
Affiliation(s)
- Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital, Houston, TX, United States
| | - Nishita Pillai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital, Houston, TX, United States
| | - Erin Cooney
- University of Texas Medical Branch, Galveston, TX, United States
| | - Krupa R Mysore
- Department of Pediatric Gastroenterology, Baylor College of Medicine, Houston, TX, United States
| | - Suzanne Boyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital, Houston, TX, United States
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital, Houston, TX, United States.,Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong SAR
| |
Collapse
|
57
|
Roles of Elongator Dependent tRNA Modification Pathways in Neurodegeneration and Cancer. Genes (Basel) 2018; 10:genes10010019. [PMID: 30597914 PMCID: PMC6356722 DOI: 10.3390/genes10010019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Transfer RNA (tRNA) is subject to a multitude of posttranscriptional modifications which can profoundly impact its functionality as the essential adaptor molecule in messenger RNA (mRNA) translation. Therefore, dynamic regulation of tRNA modification in response to environmental changes can tune the efficiency of gene expression in concert with the emerging epitranscriptomic mRNA regulators. Several of the tRNA modifications are required to prevent human diseases and are particularly important for proper development and generation of neurons. In addition to the positive role of different tRNA modifications in prevention of neurodegeneration, certain cancer types upregulate tRNA modification genes to sustain cancer cell gene expression and metastasis. Multiple associations of defects in genes encoding subunits of the tRNA modifier complex Elongator with human disease highlight the importance of proper anticodon wobble uridine modifications (xm⁵U34) for health. Elongator functionality requires communication with accessory proteins and dynamic phosphorylation, providing regulatory control of its function. Here, we summarized recent insights into molecular functions of the complex and the role of Elongator dependent tRNA modification in human disease.
Collapse
|
58
|
Yadav N, Jaber FL, Sharma Y, Gupta P, Viswanathan P, Gupta S. Efficient Reconstitution of Hepatic Microvasculature by Endothelin Receptor Antagonism in Liver Sinusoidal Endothelial Cells. Hum Gene Ther 2018; 30:365-377. [PMID: 30266073 DOI: 10.1089/hum.2018.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reconstitution of healthy endothelial cells in vascular beds offers opportunities for mechanisms in tissue homeostasis, organ regeneration, and correction of deficient functions. Liver sinusoidal endothelial cells express unique functions, and their transplantation is relevant for disease models and for cell therapy. As molecular targets for improving transplanted cell engraftment and proliferation will be highly significant, this study determined whether ETA/B receptor antagonism by the drug bosentan could overcome cell losses due to cell transplantation-induced cytotoxicity. Cell engraftment and proliferation assays were performed with healthy wild-type liver sinusoidal endothelial cells transplanted into the liver of dipeptidylpeptidase IV knockout mice. Transplanted cells were identified in tissues by enzyme histochemistry. Cells with prospective ETA/B antagonism engrafted significantly better in hepatic sinusoids. Moreover, these cells underwent multiple rounds of division under liver repopulation conditions. The gains of ETA/B antagonism resulted from benefits in cell viability and membrane integrity. Also, in bosentan-treated cells, mitochondrial homeostasis was better maintained with less oxidative stress and DNA damage after injuries. Intracellular effects of ETA/B antagonism were transduced by conservation of ataxia telangiectasia mutated protein, which directs DNA damage response. Therefore, ETA/B antagonism in donor cells will advance vascular reconstitution. Extensive experience with ETA/B antagonists will facilitate translation in people.
Collapse
Affiliation(s)
- Neelam Yadav
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,2 Department of Biochemistry, Dr. RML Avadh University, Faizabad, India
| | - Fadi Luc Jaber
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Yogeshwar Sharma
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Priya Gupta
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Preeti Viswanathan
- 3 Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, New York
| | - Sanjeev Gupta
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,4 Department of Pathology, Albert Einstein College of Medicine, Bronx, New York.,5 Marion Bessin Liver Research Center, Diabetes Center, Irwin S. and Sylvia Chanin Institute for Cancer Research, and Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
59
|
Oberbauer V, Schaefer MR. tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development. Genes (Basel) 2018; 9:genes9120607. [PMID: 30563140 PMCID: PMC6315542 DOI: 10.3390/genes9120607] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundant small non-coding RNAs that are crucially important for decoding genetic information. Besides fulfilling canonical roles as adaptor molecules during protein synthesis, tRNAs are also the source of a heterogeneous class of small RNAs, tRNA-derived small RNAs (tsRNAs). Occurrence and the relatively high abundance of tsRNAs has been noted in many high-throughput sequencing data sets, leading to largely correlative assumptions about their potential as biologically active entities. tRNAs are also the most modified RNAs in any cell type. Mutations in tRNA biogenesis factors including tRNA modification enzymes correlate with a variety of human disease syndromes. However, whether it is the lack of tRNAs or the activity of functionally relevant tsRNAs that are causative for human disease development remains to be elucidated. Here, we review the current knowledge in regard to tsRNAs biogenesis, including the impact of RNA modifications on tRNA stability and discuss the existing experimental evidence in support for the seemingly large functional spectrum being proposed for tsRNAs. We also argue that improved methodology allowing exact quantification and specific manipulation of tsRNAs will be necessary before developing these small RNAs into diagnostic biomarkers and when aiming to harness them for therapeutic purposes.
Collapse
Affiliation(s)
- Vera Oberbauer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
60
|
Zhang Q, Zhang L, Chen D, He X, Yao S, Zhang Z, Chen Y, Guan MX. Deletion of Mtu1 (Trmu) in zebrafish revealed the essential role of tRNA modification in mitochondrial biogenesis and hearing function. Nucleic Acids Res 2018; 46:10930-10945. [PMID: 30137487 PMCID: PMC6237746 DOI: 10.1093/nar/gky758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/14/2022] Open
Abstract
Mtu1(Trmu) is a highly conserved tRNA modifying enzyme responsible for the biosynthesis of τm5s2U at the wobble position of tRNAGln, tRNAGlu and tRNALys. Our previous investigations showed that MTU1 mutation modulated the phenotypic manifestation of deafness-associated mitochondrial 12S rRNA mutation. However, the pathophysiology of MTU1 deficiency remains poorly understood. Using the mtu1 knock-out zebrafish generated by CRISPR/Cas9 system, we demonstrated the abolished 2-thiouridine modification of U34 of mitochondrial tRNALys, tRNAGlu and tRNAGln in the mtu1 knock-out zebrafish. The elimination of this post-transcriptional modification mediated mitochondrial tRNA metabolisms, causing the global decreases in the levels of mitochondrial tRNAs. The aberrant mitochondrial tRNA metabolisms led to the impairment of mitochondrial translation, respiratory deficiencies and reductions of mitochondrial ATP production. These mitochondria dysfunctions caused the defects in hearing organs. Strikingly, mtu1-/- mutant zebrafish displayed the abnormal startle response and swimming behaviors, significant decreases in the sizes of saccular otolith and numbers of hair cells in the auditory and vestibular organs. Furthermore, mtu1-/- mutant zebrafish exhibited the significant reductions in the hair bundle densities in utricle, saccule and lagena. Therefore, our findings may provide new insights into the pathophysiology of deafness, which was manifested by the deficient modifications at wobble position of mitochondrial tRNAs.
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiao He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zengming Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
61
|
RNA modification landscape of the human mitochondrial tRNA Lys regulates protein synthesis. Nat Commun 2018; 9:3966. [PMID: 30262910 PMCID: PMC6160436 DOI: 10.1038/s41467-018-06471-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/06/2018] [Indexed: 01/15/2023] Open
Abstract
Post-transcriptional RNA modifications play a critical role in the pathogenesis of human mitochondrial disorders, but the mechanisms by which specific modifications affect mitochondrial protein synthesis remain poorly understood. Here we used a quantitative RNA sequencing approach to investigate, at nucleotide resolution, the stoichiometry and methyl modifications of the entire mitochondrial tRNA pool, and establish the relevance to human disease. We discovered that a N1-methyladenosine (m1A) modification is missing at position 58 in the mitochondrial tRNALys of patients with the mitochondrial DNA mutation m.8344 A > G associated with MERRF (myoclonus epilepsy, ragged-red fibers). By restoring the modification on the mitochondrial tRNALys, we demonstrated the importance of the m1A58 to translation elongation and the stability of selected nascent chains. Our data indicates regulation of post-transcriptional modifications on mitochondrial tRNAs is finely tuned for the control of mitochondrial gene expression. Collectively, our findings provide novel insight into the regulation of mitochondrial tRNAs and reveal greater complexity to the molecular pathogenesis of MERRF.
Collapse
|
62
|
Saudubray JM, Mochel F. The phenotype of adult versus pediatric patients with inborn errors of metabolism. J Inherit Metab Dis 2018; 41:753-756. [PMID: 29876767 DOI: 10.1007/s10545-018-0209-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Until recently, inborn errors of metabolism (IEM) were considered a pediatric specialty, as emphasized by the term "inborn," and the concept of adult onset IEM has only very recently reached the adult medical community. Still, an increasing number of adult onset IEM have now been recognized, as new metabolomics and molecular diagnostic techniques have become available. Here, we discuss possible mechanisms underlying phenotypic variability in adult versus children with IEM. Specifically, phenotypic severity and age of onset are expected to be modulated by differences in residual protein activity possibly driven by various genetic factors. Phenotypic variability may also occur in the context of similar protein expression, which suggests the intervention of environmental, ontogenic, and aging factors.
Collapse
Affiliation(s)
- Jean-Marie Saudubray
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France.
| | - Fanny Mochel
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France.
- Centre de Référence Neurométabolique Adulte, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
- Sorbonne Universités, UPMC-Paris 6, UMR S 1127 and Inserm U 1127, and CNRS UMR 7225, and ICM, 75013, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
63
|
Mitochondrial DNA transcription and translation: clinical syndromes. Essays Biochem 2018; 62:321-340. [PMID: 29980628 PMCID: PMC6056718 DOI: 10.1042/ebc20170103] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/15/2023]
Abstract
Diagnosing primary mitochondrial diseases is challenging in clinical practice. Although, defective oxidative phosphorylation (OXPHOS) is the common final pathway, it is unknown why different mtDNA or nuclear mutations result in largely heterogeneous and often tissue -specific clinical presentations. Mitochondrial tRNA (mt-tRNA) mutations are frequent causes of mitochondrial diseases both in children and adults. However numerous nuclear mutations involved in mitochondrial protein synthesis affecting ubiquitously expressed genes have been reported in association with very tissue specific clinical manifestations suggesting that there are so far unknown factors determining the tissue specificity in mitochondrial translation. Most of these gene defects result in histological abnormalities and multiple respiratory chain defects in the affected organs. The clinical phenotypes are usually early-onset, severe, and often fatal, implying the importance of mitochondrial translation from birth. However, some rare, reversible infantile mitochondrial diseases are caused by very specific defects of mitochondrial translation. An unbiased genetic approach (whole exome sequencing, RNA sequencing) combined with proteomics and functional studies revealed novel factors involved in mitochondrial translation which contribute to the clinical manifestation and recovery in these rare reversible mitochondrial conditions.
Collapse
|
64
|
Lin H, Miyauchi K, Harada T, Okita R, Takeshita E, Komaki H, Fujioka K, Yagasaki H, Goto YI, Yanaka K, Nakagawa S, Sakaguchi Y, Suzuki T. CO 2-sensitive tRNA modification associated with human mitochondrial disease. Nat Commun 2018; 9:1875. [PMID: 29760464 PMCID: PMC5951830 DOI: 10.1038/s41467-018-04250-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/16/2018] [Indexed: 12/21/2022] Open
Abstract
It has been generally thought that tRNA modifications are stable and static, and their frequencies are rarely regulated. N6-threonylcarbamoyladenosine (t6A) occurs at position 37 of five mitochondrial (mt-)tRNA species. We show that YRDC and OSGEPL1 are responsible for t6A37 formation, utilizing L-threonine, ATP, and CO2/bicarbonate as substrates. OSGEPL1-knockout cells exhibit respiratory defects and reduced mitochondrial translation. We find low level of t6A37 in mutant mt-tRNA isolated from the MERRF-like patient’s cells, indicating that lack of t6A37 results in pathological consequences. Kinetic measurements of t6A37 formation reveal that the Km value of CO2/bicarbonate is extremely high (31 mM), suggesting that CO2/bicarbonate is a rate-limiting factor for t6A37 formation. Consistent with this, we observe a low frequency of t6A37 in mt-tRNAs isolated from human cells cultured without bicarbonate. These findings indicate that t6A37 is regulated by sensing intracellular CO2/bicarbonate concentration, implying that mitochondrial translation is modulated in a codon-specific manner under physiological conditions. Transfer RNA modifications play critical roles in protein synthesis. Here the authors reveal the t6A37 tRNA modification is dynamically regulated by sensing intracellular CO2 concentration in mitochondria, implying metabolic regulation of protein synthesis.
Collapse
Affiliation(s)
- Huan Lin
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tai Harada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ryo Okita
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Eri Takeshita
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Hirofumi Komaki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kaoru Fujioka
- Department of Pediatrics, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Yamanashi, 409-3898, Japan
| | - Hideki Yagasaki
- Department of Pediatrics, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Yamanashi, 409-3898, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kaori Yanaka
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
65
|
Kamps R, Szklarczyk R, Theunissen TE, Hellebrekers DMEI, Sallevelt SCEH, Boesten IB, de Koning B, van den Bosch BJ, Salomons GS, Simas-Mendes M, Verdijk R, Schoonderwoerd K, de Coo IFM, Vanoevelen JM, Smeets HJM. Genetic defects in mtDNA-encoded protein translation cause pediatric, mitochondrial cardiomyopathy with early-onset brain disease. Eur J Hum Genet 2018; 26:537-551. [PMID: 29440775 PMCID: PMC5891491 DOI: 10.1038/s41431-017-0058-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 01/10/2023] Open
Abstract
This study aims to identify gene defects in pediatric cardiomyopathy and early-onset brain disease with oxidative phosphorylation (OXPHOS) deficiencies. We applied whole-exome sequencing in three patients with pediatric cardiomyopathy and early-onset brain disease with OXPHOS deficiencies. The brain pathology was studied by MRI analysis. In consanguineous patient 1, we identified a homozygous intronic variant (c.850-3A > G) in the QRSL1 gene, which was predicted to cause abnormal splicing. The variant segregated with the disease and affected the protein function, which was confirmed by complementation studies, restoring OXPHOS function only with wild-type QRSL1. Patient 2 was compound heterozygous for two novel affected and disease-causing variants (c.[253G > A];[938G > A]) in the MTO1 gene. In patient 3, we detected one unknown affected and disease-causing variants (c.2872C > T) and one known disease-causing variant (c.1774C > T) in the AARS2 gene. The c.1774C > T variant was present in the paternal copy of the AARS2 gene, the c.2872C > T in the maternal copy. All genes were involved in translation of mtDNA-encoded proteins. Defects in mtDNA-encoded protein translation lead to severe pediatric cardiomyopathy and brain disease with OXPHOS abnormalities. This suggests that the heart and brain are particularly sensitive to defects in mitochondrial protein synthesis during late embryonic or early postnatal development, probably due to the massive mitochondrial biogenesis occurring at that stage. If both the heart and brain are involved, the prognosis is poor with a likely fatal outcome at young age.
Collapse
Affiliation(s)
- Rick Kamps
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands
- School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Radek Szklarczyk
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands
| | - Tom E Theunissen
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Iris B Boesten
- Department of Clinical Genetics, MUMC, Maastricht, The Netherlands
| | - Bart de Koning
- Department of Clinical Genetics, MUMC, Maastricht, The Netherlands
| | | | - Gajja S Salomons
- Department of Clinical Chemistry, VU University Medical Center/Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Marisa Simas-Mendes
- Department of Clinical Chemistry, VU University Medical Center/Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Rob Verdijk
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Kees Schoonderwoerd
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Jo M Vanoevelen
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, MUMC, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands.
- School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
66
|
Bartsakoulia M, Mϋller JS, Gomez-Duran A, Yu-Wai-Man P, Boczonadi V, Horvath R. Cysteine Supplementation May be Beneficial in a Subgroup of Mitochondrial Translation Deficiencies. J Neuromuscul Dis 2018; 3:363-379. [PMID: 27854233 DOI: 10.3233/jnd-160178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mitochondrial encephalomyopathies are severe, relentlessly progressive conditions and there are very few effective therapies available to date. We have previously suggested that in two rare forms of reversible mitochondrial disease (reversible infantile respiratory chain deficiency and reversible infantile hepatopathy) supplementation with L-cysteine can improve mitochondrial protein synthesis, since cysteine is required for the 2-thiomodification of mitochondrial tRNAs. OBJECTIVES We studied whether supplementation with L-cysteine or N-acetyl-cysteine (NAC) results in any improvement of the mitochondrial function in vitro in fibroblasts of patients with different genetic forms of abnormal mitochondrial translation. METHODS We studied in vitro in fibroblasts of patients carrying the common m.3243A>G and m.8344A>G mutations or autosomal recessive mutations in genes affecting mitochondrial translation, whether L-cysteine or N-acetyl-cysteine supplementation have an effect on mitochondrial respiratory chain function. RESULTS Here we show that supplementation with L-cysteine, but not with N-acetyl-cysteine partially rescues the mitochondrial translation defect in vitro in fibroblasts of patients carrying the m.3243A>G and m.8344A>G mutations. In contrast, N-acetyl-cysteine had a beneficial effect on mitochondrial translation in TRMU and MTO1 deficient fibroblasts. CONCLUSIONS Our results suggest that L-cysteine or N-acetyl-cysteine supplementation may be a potential treatment for selected subgroups of patients with mitochondrial translation deficiencies. Further studies are needed to explore the full potential of cysteine supplementation as a treatment for patients with mitochondrial disease.
Collapse
Affiliation(s)
- Marina Bartsakoulia
- Wellcome Trust Mitochondrial Research Centre and the John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Juliane S Mϋller
- Wellcome Trust Mitochondrial Research Centre and the John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Aurora Gomez-Duran
- Wellcome Trust Mitochondrial Research Centre and the John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK.,Present address: Department of Clinical Neurosciences, Cambridge and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Patrick Yu-Wai-Man
- Wellcome Trust Mitochondrial Research Centre and the John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK.,Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Veronika Boczonadi
- Wellcome Trust Mitochondrial Research Centre and the John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Trust Mitochondrial Research Centre and the John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| |
Collapse
|
67
|
Viswanathan P, Sharma Y, Gupta P, Gupta S. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration. Cell Prolif 2018; 51:e12445. [PMID: 29504225 DOI: 10.1111/cpr.12445] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. MATERIALS AND METHODS Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. RESULTS In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. CONCLUSIONS Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure.
Collapse
Affiliation(s)
- Preeti Viswanathan
- Division of Pediatric Gastroenterology and Hepatology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Priya Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.,Marion Bessin Liver Research Center, Diabetes Center, Irwin S. and Sylvia Chanin Institute for Cancer Research, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
68
|
Defects in the mitochondrial-tRNA modification enzymes MTO1 and GTPBP3 promote different metabolic reprogramming through a HIF-PPARγ-UCP2-AMPK axis. Sci Rep 2018; 8:1163. [PMID: 29348686 PMCID: PMC5773609 DOI: 10.1038/s41598-018-19587-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Human proteins MTO1 and GTPBP3 are thought to jointly catalyze the modification of the wobble uridine in mitochondrial tRNAs. Defects in each protein cause infantile hypertrophic cardiomyopathy with lactic acidosis. However, the underlying mechanisms are mostly unknown. Using fibroblasts from an MTO1 patient and MTO1 silenced cells, we found that the MTO1 deficiency is associated with a metabolic reprogramming mediated by inactivation of AMPK, down regulation of the uncoupling protein 2 (UCP2) and transcription factor PPARγ, and activation of the hypoxia inducible factor 1 (HIF-1). As a result, glycolysis and oxidative phosphorylation are uncoupled, while fatty acid metabolism is altered, leading to accumulation of lipid droplets in MTO1 fibroblasts. Unexpectedly, this response is different from that triggered by the GTPBP3 defect, as GTPBP3-depleted cells exhibit AMPK activation, increased levels of UCP2 and PPARγ, and inactivation of HIF-1. In addition, fatty acid oxidation and respiration are stimulated in these cells. Therefore, the HIF-PPARγ-UCP2-AMPK axis is operating differently in MTO1- and GTPBP3-defective cells, which strongly suggests that one of these proteins has an additional role, besides mitochondrial-tRNA modification. This work provides new and useful information on the molecular basis of the MTO1 and GTPBP3 defects and on putative targets for therapeutic intervention.
Collapse
|
69
|
O'Byrne JJ, Tarailo-Graovac M, Ghani A, Champion M, Deshpande C, Dursun A, Ozgul RK, Freisinger P, Garber I, Haack TB, Horvath R, Barić I, Husain RA, Kluijtmans LAJ, Kotzaeridou U, Morris AA, Ross CJ, Santra S, Smeitink J, Tarnopolsky M, Wortmann SB, Mayr JA, Brunner-Krainz M, Prokisch H, Wasserman WW, Wevers RA, Engelke UF, Rodenburg RJ, Ting TW, McFarland R, Taylor RW, Salvarinova R, van Karnebeek CDM. The genotypic and phenotypic spectrum of MTO1 deficiency. Mol Genet Metab 2018; 123:28-42. [PMID: 29331171 PMCID: PMC5780301 DOI: 10.1016/j.ymgme.2017.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10). MATERIAL AND METHODS Thirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail. RESULTS For the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal, phenotype. These data suggest that complete loss of MTO1 is not viable. A ketogenic diet may have exerted a favourable effect on seizures in 2/5 patients. CONCLUSION MTO1 deficiency is lethal in some but not all cases, and a genotype-phenotype relation is suggested. Aside from lactic acidosis and cardiomyopathy, developmental delay and other phenotypic features affecting multiple organ systems are often present in these patients, suggesting a broader spectrum than hitherto reported. The diagnosis should be suspected on clinical features and the presence of markers of mitochondrial dysfunction in body fluids, especially low residual complex I, III and IV activity in muscle. Molecular confirmation is required and targeted genomic testing may be the most efficient approach. Although subjective clinical improvement was observed in a small number of patients on therapies such as ketogenic diet and dichloroacetate, no evidence-based effective therapy exists.
Collapse
Affiliation(s)
- James J O'Byrne
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Maja Tarailo-Graovac
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada; Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia
| | - Aisha Ghani
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Michael Champion
- Department of Inherited Metabolic Disease, Guy's and St Thomas' NHS Foundation Trusts, Evelina London Children's Hospital, London, UK
| | - Charu Deshpande
- Clinical Genetics Unit, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Ali Dursun
- Hacettepe University, Faculty of Medicine, Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Riza K Ozgul
- Hacettepe University, Faculty of Medicine, Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, Germany
| | - Ian Garber
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Tobias B Haack
- Institute of Human Genetics, Technische Universität München, Munich, Germany; Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Rita Horvath
- John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ivo Barić
- University Hospital Center Zagreb & School of Medicine, University of Zagreb, Croatia
| | - Ralf A Husain
- Centre for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Leo A J Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Urania Kotzaeridou
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrew A Morris
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Saikat Santra
- Department of Clinical Inherited Metabolic Disorders, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, UK
| | - Jan Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Tarnopolsky
- Department of Pediatrics, Division of Neuromuscular and Neurometabolic Diseases, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Saskia B Wortmann
- Institute of Human Genetics, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany; Department of Pediatrics, Salzburger Landeskliniken (SALK), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes A Mayr
- Department of Pediatrics, Salzburger Landeskliniken (SALK), Paracelsus Medical University (PMU), Salzburg, Austria
| | | | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Udo F Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teck Wah Ting
- Genetics Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Ramona Salvarinova
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Clara D M van Karnebeek
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada; Departments of Pediatrics and Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
70
|
Garone C, D’Souza AR, Dallabona C, Lodi T, Rebelo-Guiomar P, Rorbach J, Donati MA, Procopio E, Montomoli M, Guerrini R, Zeviani M, Calvo SE, Mootha VK, DiMauro S, Ferrero I, Minczuk M. Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome. Hum Mol Genet 2017; 26:4257-4266. [PMID: 28973171 PMCID: PMC5886288 DOI: 10.1093/hmg/ddx314] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 02/02/2023] Open
Abstract
Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation.
Collapse
Affiliation(s)
- Caterina Garone
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Aaron R D’Souza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability - University of Parma, Parma 43121, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability - University of Parma, Parma 43121, Italy
| | - Pedro Rebelo-Guiomar
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4099-002, Portugal
| | - Joanna Rorbach
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Elena Procopio
- Metabolic Unit, A. Meyer Children's Hospital, Florence 50139, Italy
| | - Martino Montomoli
- Pediatric Neurology Unit and Laboratories, “A. Meyer” Children's Hospital, University of Florence, 50139, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, “A. Meyer” Children's Hospital, University of Florence, 50139, Italy
| | - Massimo Zeviani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Sarah E Calvo
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, and Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vamsi K Mootha
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, and Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ileana Ferrero
- Department of Chemistry, Life Sciences and Environmental Sustainability - University of Parma, Parma 43121, Italy
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
71
|
|
72
|
Meseguer S, Boix O, Navarro-González C, Villarroya M, Boutoual R, Emperador S, García-Arumí E, Montoya J, Armengod ME. microRNA-mediated differential expression of TRMU, GTPBP3 and MTO1 in cell models of mitochondrial-DNA diseases. Sci Rep 2017; 7:6209. [PMID: 28740091 PMCID: PMC5524753 DOI: 10.1038/s41598-017-06553-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/14/2017] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial diseases due to mutations in the mitochondrial (mt) DNA are heterogeneous in clinical manifestations but usually include OXPHOS dysfunction. Mechanisms by which OXPHOS dysfunction contributes to the disease phenotype invoke, apart from cell energy deficit, maladaptive responses to mitochondria-to-nucleus retrograde signaling. Here we used five different cybrid models of mtDNA diseases to demonstrate that the expression of the nuclear-encoded mt-tRNA modification enzymes TRMU, GTPBP3 and MTO1 varies in response to specific pathological mtDNA mutations, thus altering the modification status of mt-tRNAs. Importantly, we demonstrated that the expression of TRMU, GTPBP3 and MTO1 is regulated by different miRNAs, which are induced by retrograde signals like ROS and Ca2+ via different pathways. Our data suggest that the up- or down-regulation of the mt-tRNA modification enzymes is part of a cellular response to cope with a stoichiometric imbalance between mtDNA- and nuclear-encoded OXPHOS subunits. However, this miRNA-mediated response fails to provide full protection from the OXPHOS dysfunction; rather, it appears to aggravate the phenotype since transfection of the mutant cybrids with miRNA antagonists improves the energetic state of the cells, which opens up options for new therapeutic approaches.
Collapse
Affiliation(s)
- Salvador Meseguer
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Olga Boix
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Navarro-González
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Magda Villarroya
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Rachid Boutoual
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Sonia Emperador
- Universidad de Zaragoza - CIBERER (node 727)-Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - Elena García-Arumí
- Hospital Universitario Vall d'Hebron (Barcelona, Spain) and Biomedical Research Networking Centre for Rare Diseases CIBERER, node 701, Barcelona, Spain
| | - Julio Montoya
- Universidad de Zaragoza - CIBERER (node 727)-Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - M-Eugenia Armengod
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain. .,CIBERER node 721, Valencia, Spain.
| |
Collapse
|
73
|
Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses. PLoS Genet 2017; 13:e1006921. [PMID: 28732077 PMCID: PMC5544249 DOI: 10.1371/journal.pgen.1006921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 08/04/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell’s maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions. Post-transcriptional modification of tRNAs is a universal process, thought to be essential for optimizing the functions of tRNAs. In humans, defects in the modification at position 2 (performed by protein TRMU) and 5 (carried out by proteins GTPBP3 and MTO1) of the uridine located at the wobble position of mitochondrial tRNAs (mt-tRNAs) cause oxidative phosphorylation (OXPHOS) dysfunction, and lead to liver and heart failure, respectively. However, the underlying mechanisms leading to pathogenesis are not well-known, and hence there is no molecular explanation for the different clinical phenotypes. We use Caenorhabditis elegans to compare in the same animal model and genetic background the effects of inactivating the TRMU, GTPBP3 and MTO1 orthologues on the phenotype and gene expression pattern of nuclear and mitochondrial DNA. Our data show that C. elegans responds to mt-tRNA hypomodification by changing in a defect-specific manner the expression of nuclear and mitochondrial genes, which leads, in all single mutants, to a rescue of the OXPHOS dysfunction that is associated with a biological cost. Our work suggests that pathology may develop as a consequence of the cell’s maladaptive response to the hypomodification status of mt-tRNAs.
Collapse
|
74
|
Biosynthesis of Sulfur-Containing tRNA Modifications: A Comparison of Bacterial, Archaeal, and Eukaryotic Pathways. Biomolecules 2017; 7:biom7010027. [PMID: 28287455 PMCID: PMC5372739 DOI: 10.3390/biom7010027] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/12/2023] Open
Abstract
Post-translational tRNA modifications have very broad diversity and are present in all domains of life. They are important for proper tRNA functions. In this review, we emphasize the recent advances on the biosynthesis of sulfur-containing tRNA nucleosides including the 2-thiouridine (s2U) derivatives, 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Their biosynthetic pathways have two major types depending on the requirement of iron–sulfur (Fe–S) clusters. In all cases, the first step in bacteria and eukaryotes is to activate the sulfur atom of free l-cysteine by cysteine desulfurases, generating a persulfide (R-S-SH) group. In some archaea, a cysteine desulfurase is missing. The following steps of the bacterial s2U and s4U formation are Fe–S cluster independent, and the activated sulfur is transferred by persulfide-carrier proteins. By contrast, the biosynthesis of bacterial s2C and ms2A require Fe–S cluster dependent enzymes. A recent study shows that the archaeal s4U synthetase (ThiI) and the eukaryotic cytosolic 2-thiouridine synthetase (Ncs6) are Fe–S enzymes; this expands the role of Fe–S enzymes in tRNA thiolation to the Archaea and Eukarya domains. The detailed reaction mechanisms of Fe–S cluster depend s2U and s4U formation await further investigations.
Collapse
|
75
|
Dealing with an Unconventional Genetic Code in Mitochondria: The Biogenesis and Pathogenic Defects of the 5-Formylcytosine Modification in Mitochondrial tRNA Met. Biomolecules 2017; 7:biom7010024. [PMID: 28257121 PMCID: PMC5372736 DOI: 10.3390/biom7010024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/24/2017] [Indexed: 01/13/2023] Open
Abstract
Human mitochondria contain their own genome, which uses an unconventional genetic code. In addition to the standard AUG methionine codon, the single mitochondrial tRNA Methionine (mt-tRNAMet) also recognises AUA during translation initiation and elongation. Post-transcriptional modifications of tRNAs are important for structure, stability, correct folding and aminoacylation as well as decoding. The unique 5-formylcytosine (f5C) modification of position 34 in mt-tRNAMet has been long postulated to be crucial for decoding of unconventional methionine codons and efficient mitochondrial translation. However, the enzymes responsible for the formation of mitochondrial f5C have been identified only recently. The first step of the f5C pathway consists of methylation of cytosine by NSUN3. This is followed by further oxidation by ABH1. Here, we review the role of f5C, the latest breakthroughs in our understanding of the biogenesis of this unique mitochondrial tRNA modification and its involvement in human disease.
Collapse
|
76
|
Meng F, Cang X, Peng Y, Li R, Zhang Z, Li F, Fan Q, Guan AS, Fischel-Ghosian N, Zhao X, Guan MX. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation. J Biol Chem 2017; 292:2881-2892. [PMID: 28049726 DOI: 10.1074/jbc.m116.749374] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/15/2016] [Indexed: 11/06/2022] Open
Abstract
Nuclear modifier gene(s) was proposed to modulate the phenotypic expression of mitochondrial DNA mutation(s). Our previous investigations revealed that a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to tRNA modification interacts with 12S rRNA 1555A→G mutation to cause deafness. The A10S mutation resided at a highly conserved residue of the N-terminal sequence. It was hypothesized that the A10S mutation altered the structure and function of TRMU, thereby causing mitochondrial dysfunction. Using molecular dynamics simulations, we showed that the A10S mutation introduced the Ser10 dynamic electrostatic interaction with the Lys106 residue of helix 4 within the catalytic domain of TRMU. The Western blotting analysis displayed the reduced levels of TRMU in mutant cells carrying the A10S mutation. The thermal shift assay revealed the Tm value of mutant TRMU protein, lower than that of the wild-type counterpart. The A10S mutation caused marked decreases in 2-thiouridine modification of U34 of tRNALys, tRNAGlu and tRNAGln However, the A10S mutation mildly increased the aminoacylated efficiency of tRNAs. The altered 2-thiouridine modification worsened the impairment of mitochondrial translation associated with the m.1555A→G mutation. The defective translation resulted in the reduced activities of mitochondrial respiration chains. The respiratory deficiency caused the reduction of mitochondrial ATP production and elevated the production of reactive oxidative species. As a result, mutated TRMU worsened mitochondrial dysfunctions associated with m.1555A→G mutation, exceeding the threshold for expressing a deafness phenotype. Our findings provided new insights into the pathophysiology of maternally inherited deafness that was manifested by interaction between mtDNA mutation and nuclear modifier gene.
Collapse
Affiliation(s)
- Feilong Meng
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Xiaohui Cang
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Yanyan Peng
- the Institute of Genetics and.,the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ronghua Li
- the Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307
| | | | | | | | - Anna S Guan
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | - Nathan Fischel-Ghosian
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | | | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China, .,the Institute of Genetics and.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China.,the Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
77
|
Incidence of Primary Mitochondrial Disease in Children Younger Than 2 Years Presenting With Acute Liver Failure. J Pediatr Gastroenterol Nutr 2016; 63:592-597. [PMID: 27482763 PMCID: PMC5113754 DOI: 10.1097/mpg.0000000000001345] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mitochondrial liver disease (MLD), and in particular mitochondrial DNA (mtDNA) depletion syndrome (MDS) is an important cause of acute liver failure (ALF) in infancy. Early and accurate diagnosis is important because liver transplantation (LT) is often contraindicated. It is unclear which methods are the best to diagnose MLD in the setting of ALF. OBJECTIVE The aim of the study was to determine the incidence of MLD in children younger than 2 years with ALF and the utility of routine investigations to detect MLD. METHODS Thirty-nine consecutive infants with ALF were admitted to a single unit from 2009 to 2011. All were extensively investigated using an established protocol. Genes implicated in mitochondrial DNA depletion syndrome were sequenced in all cases and tissue mtDNA copy number measured where available. RESULTS Five infants (17%) had genetically proven MLD: DGUOK (n = 2), POLG (n = 2), and MPV17 (1). Four of these died, whereas 1 recovered. Two had normal muscle mtDNA copy number and 3 had normal muscle respiratory chain enzymes. An additional 8 children had low hepatic mtDNA copy number but pathogenic mutations were not detected. One of these developed fatal multisystemic disease after LT, whereas 5 who survived remain well without evidence of multisystemic disease up to 6 years later. Magnetic resonance spectroscopy did not distinguish between those with and without MLD. CONCLUSIONS Low liver mtDNA copy number may be a secondary phenomenon in ALF.Screening for mtDNA maintenance gene mutations may be the most efficient way to confirm MLD in ALF in the first 2 years of life.
Collapse
|
78
|
A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proc Natl Acad Sci U S A 2016; 113:12703-12708. [PMID: 27791189 DOI: 10.1073/pnas.1615732113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sulfur-containing nucleosides in transfer RNA (tRNAs) are present in all three domains of life; they have critical functions for accurate and efficient translation, such as tRNA structure stabilization and proper codon recognition. The tRNA modification enzymes ThiI (in bacteria and archaea) and Ncs6 (in archaea and eukaryotic cytosols) catalyze the formation of 4-thiouridine (s4U) and 2-thiouridine (s2U), respectively. The ThiI homologs were proposed to transfer sulfur via cysteine persulfide enzyme adducts, whereas the reaction mechanism of Ncs6 remains unknown. Here we show that ThiI from the archaeon Methanococcus maripaludis contains a [3Fe-4S] cluster that is essential for its tRNA thiolation activity. Furthermore, the archaeal and eukaryotic Ncs6 homologs as well as phosphoseryl-tRNA (Sep-tRNA):Cys-tRNA synthase (SepCysS), which catalyzes the Sep-tRNA to Cys-tRNA conversion in methanogens, also possess a [3Fe-4S] cluster similar to the methanogenic archaeal ThiI. These results suggest that the diverse tRNA thiolation processes in archaea and eukaryotic cytosols share a common mechanism dependent on a [3Fe-4S] cluster for sulfur transfer.
Collapse
|
79
|
Wu Y, Wei FY, Kawarada L, Suzuki T, Araki K, Komohara Y, Fujimura A, Kaitsuka T, Takeya M, Oike Y, Suzuki T, Tomizawa K. Mtu1-Mediated Thiouridine Formation of Mitochondrial tRNAs Is Required for Mitochondrial Translation and Is Involved in Reversible Infantile Liver Injury. PLoS Genet 2016; 12:e1006355. [PMID: 27689697 PMCID: PMC5045200 DOI: 10.1371/journal.pgen.1006355] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/08/2016] [Indexed: 12/26/2022] Open
Abstract
Reversible infantile liver failure (RILF) is a unique heritable liver disease characterized by acute liver failure followed by spontaneous recovery at an early stage of life. Genetic mutations in MTU1 have been identified in RILF patients. MTU1 is a mitochondrial enzyme that catalyzes the 2-thiolation of 5-taurinomethyl-2-thiouridine (τm5s2U) found in the anticodon of a subset of mitochondrial tRNAs (mt-tRNAs). Although the genetic basis of RILF is clear, the molecular mechanism that drives the pathogenesis remains elusive. We here generated liver-specific knockout of Mtu1 (Mtu1LKO) mice, which exhibited symptoms of liver injury characterized by hepatic inflammation and elevated levels of plasma lactate and AST. Mechanistically, Mtu1 deficiency resulted in a loss of 2-thiolation in mt-tRNAs, which led to a marked impairment of mitochondrial translation. Consequently, Mtu1LKO mice exhibited severe disruption of mitochondrial membrane integrity and a broad decrease in respiratory complex activities in the hepatocytes. Interestingly, mitochondrial dysfunction induced signaling pathways related to mitochondrial proliferation and the suppression of oxidative stress. The present study demonstrates that Mtu1-dependent 2-thiolation of mt-tRNA is indispensable for mitochondrial translation and that Mtu1 deficiency is a primary cause of RILF. In addition, Mtu1 deficiency is associated with multiple cytoprotective pathways that might prevent catastrophic liver failure and assist in the recovery from liver injury. Mitochondrial transfer tRNA (mt-tRNA) contains a variety of chemical modifications that are introduced post-transcriptionally. Three mt-tRNAs for Lys, Gln and Glu contain 5-taurinomethyl-2-thiouridine (τm5s2U) in their anticodons. It is known that the loss of 2-thiolation of τm5s2U is strongly associated with the development of reversible infantile liver failure (RILF) because pathogenic mutations of RILF were found in the MTU1 gene, which encodes an enzyme responsible for the 2-thiolation of τm5s2U. However, the molecular mechanism underlying RILF pathogenesis associated with a lack of MTU1 remains elusive. To understand the physiological function of MTU1 and its association with liver failure, we generated liver-specific Mtu1-deficient (Mtu1LKO) mice. Mtu1 deficiency abolished 2-thiouridine formation in the three mt-tRNAs. Loss of the 2-thiouridine modification resulted in a marked impairment of mitochondrial translation and abnormal mitochondrial structure. Consequently, the Mtu1LKO mice exhibited liver injury, which resembles the symptoms of RILF patients. Furthermore, mitochondrial dysfunction in Mtu1LKO mice induced mitochondrial biogenesis and suppressed oxidative stress. These findings elucidate the cellular and physiological functions of Mtu1 and provide a mouse model for understanding RILF pathogenesis.
Collapse
Affiliation(s)
- Yong Wu
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Layla Kawarada
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Fujimura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
80
|
Kremer L, L 'hermitte-Stead C, Lesimple P, Gilleron M, Filaut S, Jardel C, Haack T, Strom T, Meitinger T, Azzouz H, Tebib N, Ogier De Baulny H, Touati G, Prokisch H, Lombès A. Severe respiratory complex III defect prevents liver adaptation to prolonged fasting. J Hepatol 2016; 65:377-85. [PMID: 27151179 PMCID: PMC5640785 DOI: 10.1016/j.jhep.2016.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Next generation sequencing approaches have tremendously improved the diagnosis of rare genetic diseases. It may however be faced with difficult clinical interpretation of variants. Inherited enzymatic diseases provide an invaluable possibility to evaluate the function of the defective enzyme in human cell biology. This is the case for respiratory complex III, which has 11 structural subunits and requires several assembly factors. An important role of complex III in liver function is suggested by its frequent impairment in human cases of genetic complex III defects. METHODS We report the case of a child with complex III defect and acute liver dysfunction with lactic acidosis, hypoglycemia, and hyperammonemia. Mitochondrial activities were assessed in liver and fibroblasts using spectrophotometric assays. Genetic analysis was done by exome followed by Sanger sequencing. Functional complementation of defective fibroblasts was performed using lentiviral transduction followed by enzymatic analyses and expression assays. RESULTS Homozygous, truncating, mutations in LYRM7 and MTO1, two genes encoding essential mitochondrial proteins were found. Functional complementation of the complex III defect in fibroblasts demonstrated the causal role of LYRM7 mutations. Comparison of the patient's clinical history to previously reported patients with complex III defect due to nuclear DNA mutations, some actually followed by us, showed striking similarities allowing us to propose common pathophysiology. CONCLUSIONS Profound complex III defect in liver does not induce actual liver failure but impedes liver adaptation to prolonged fasting leading to severe lactic acidosis, hypoglycemia, and hyperammonemia, potentially leading to irreversible brain damage. LAY SUMMARY The diagnosis of rare genetic disease has been tremendously accelerated by the development of high throughput sequencing technology. In this paper we report the investigations that have led to identify LYRM7 mutations causing severe hepatic defect of respiratory complex III. Based on the comparison of the patient's phenotype with other cases of complex III defect, we propose that profound complex III defect in liver does not induce actual liver failure but impedes liver adaptation to prolonged fasting.
Collapse
Affiliation(s)
- Laura Kremer
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Caroline L 'hermitte-Stead
- Institut Cochin
Université Paris Descartes - Paris 5 - Université Sorbonne Paris Cité - Institut National de la Santé et de la Recherche Médicale - U1016Centre National de la Recherche Scientifique - UMR 810422 rue Méchain, 75014 Paris
| | - Pierre Lesimple
- Institut Cochin
Université Paris Descartes - Paris 5 - Université Sorbonne Paris Cité - Institut National de la Santé et de la Recherche Médicale - U1016Centre National de la Recherche Scientifique - UMR 810422 rue Méchain, 75014 Paris
| | - Mylène Gilleron
- Institut Cochin
Université Paris Descartes - Paris 5 - Université Sorbonne Paris Cité - Institut National de la Santé et de la Recherche Médicale - U1016Centre National de la Recherche Scientifique - UMR 810422 rue Méchain, 75014 Paris,Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique [CHU Pitié Salpêtrière]
Assistance publique - Hôpitaux de Paris (AP-HP) - CHU Pitié-Salpêtrière [APHP] - 47-83 Boulevard de l'Hôpital 75013 Paris
| | - Sandrine Filaut
- Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique [CHU Pitié Salpêtrière]
Assistance publique - Hôpitaux de Paris (AP-HP) - CHU Pitié-Salpêtrière [APHP] - 47-83 Boulevard de l'Hôpital 75013 Paris
| | - Claude Jardel
- Institut Cochin
Université Paris Descartes - Paris 5 - Université Sorbonne Paris Cité - Institut National de la Santé et de la Recherche Médicale - U1016Centre National de la Recherche Scientifique - UMR 810422 rue Méchain, 75014 Paris,Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique [CHU Pitié Salpêtrière]
Assistance publique - Hôpitaux de Paris (AP-HP) - CHU Pitié-Salpêtrière [APHP] - 47-83 Boulevard de l'Hôpital 75013 Paris
| | - Tobias Haack
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Tim Strom
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Thomas Meitinger
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Hatem Azzouz
- Service de Pédiatrie [La Rabta, Tunis]
Hopital La Rabta - Tunis - La Rabta Jebbari 1007 Tunis
| | - Neji Tebib
- Service de Pédiatrie [La Rabta, Tunis]
Hopital La Rabta - Tunis - La Rabta Jebbari 1007 Tunis
| | - Hélène Ogier De Baulny
- Service de neurologie pédiatrique et maladies métaboliques
Assistance publique - Hôpitaux de Paris (AP-HP) - Hôpital Robert Debré - Université Paris Diderot - Paris 7 - 48, boulevard Sérurier 75935 PARIS CEDEX 19
| | - Guy Touati
- Hépatologie et Maladies Héréditaires du Métabolisme
Hôpital Purpan, Toulouse - Centre de référence commun pour les maladies héréditaires du métabolisme - Hôpital des Enfants - 330, avenue de Grande-Bretagne - TSA 70034 - 31059 Toulouse cedex 9.
| | - Holger Prokisch
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Anne Lombès
- Inserm UMR 1016, Institut Cochin, Paris, France; CNRS UMR 8104, Institut Cochin, Paris, France; Université Paris V René Descartes, Institut Cochin, Paris, France.
| |
Collapse
|
81
|
Metodiev M, Thompson K, Alston C, Morris A, He L, Assouline Z, Rio M, Bahi-Buisson N, Pyle A, Griffin H, Siira S, Filipovska A, Munnich A, Chinnery P, McFarland R, Rötig A, Taylor R. Recessive Mutations in TRMT10C Cause Defects in Mitochondrial RNA Processing and Multiple Respiratory Chain Deficiencies. Am J Hum Genet 2016; 98:993-1000. [PMID: 27132592 PMCID: PMC4863561 DOI: 10.1016/j.ajhg.2016.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial disorders are clinically and genetically diverse, with mutations in mitochondrial or nuclear genes able to cause defects in mitochondrial gene expression. Recently, mutations in several genes encoding factors involved in mt-tRNA processing have been identified to cause mitochondrial disease. Using whole-exome sequencing, we identified mutations in TRMT10C (encoding the mitochondrial RNase P protein 1 [MRPP1]) in two unrelated individuals who presented at birth with lactic acidosis, hypotonia, feeding difficulties, and deafness. Both individuals died at 5 months after respiratory failure. MRPP1, along with MRPP2 and MRPP3, form the mitochondrial ribonuclease P (mt-RNase P) complex that cleaves the 5′ ends of mt-tRNAs from polycistronic precursor transcripts. Additionally, a stable complex of MRPP1 and MRPP2 has m1R9 methyltransferase activity, which methylates mt-tRNAs at position 9 and is vital for folding mt-tRNAs into their correct tertiary structures. Analyses of fibroblasts from affected individuals harboring TRMT10C missense variants revealed decreased protein levels of MRPP1 and an increase in mt-RNA precursors indicative of impaired mt-RNA processing and defective mitochondrial protein synthesis. The pathogenicity of the detected variants—compound heterozygous c.542G>T (p.Arg181Leu) and c.814A>G (p.Thr272Ala) changes in subject 1 and a homozygous c.542G>T (p.Arg181Leu) variant in subject 2—was validated by the functional rescue of mt-RNA processing and mitochondrial protein synthesis defects after lentiviral transduction of wild-type TRMT10C. Our study suggests that these variants affect MRPP1 protein stability and mt-tRNA processing without affecting m1R9 methyltransferase activity, identifying mutations in TRMT10C as a cause of mitochondrial disease and highlighting the importance of RNA processing for correct mitochondrial function.
Collapse
|
82
|
Lane M, Boczonadi V, Bachtari S, Gomez-Duran A, Langer T, Griffiths A, Kleinle S, Dineiger C, Abicht A, Holinski-Feder E, Schara U, Gerner P, Horvath R. Mitochondrial dysfunction in liver failure requiring transplantation. J Inherit Metab Dis 2016; 39:427-436. [PMID: 27053192 PMCID: PMC4851707 DOI: 10.1007/s10545-016-9927-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/10/2016] [Accepted: 03/10/2016] [Indexed: 01/14/2023]
Abstract
Liver failure is a heterogeneous condition which may be fatal and the primary cause is frequently unknown. We investigated mitochondrial oxidative phosphorylation in patients undergoing liver transplantation. We studied 45 patients who had liver transplantation due to a variety of clinical presentations. Blue native polyacrylamide gel electrophoresis with immunodetection of respiratory chain complexes I-V, biochemical activity of respiratory chain complexes II and IV and quantification of mitochondrial DNA (mtDNA) copy number were investigated in liver tissue collected from the explanted liver during transplantation. Abnormal mitochondrial function was frequently present in this cohort: ten of 40 patients (25 %) had a defect of one or more respiratory chain enzyme complexes on blue native gels, 20 patients (44 %) had low activity of complex II and/or IV and ten (22 %) had a reduced mtDNA copy number. Combined respiratory chain deficiency and reduced numbers of mitochondria were detected in all three patients with acute liver failure. Low complex IV activity in biliary atresia and complex II defects in cirrhosis were common findings. All six patients diagnosed with liver tumours showed variable alterations in mitochondrial function, probably due to the heterogeneity of the presenting tumour. In conclusion, mitochondrial dysfunction is common in severe liver failure in non-mitochondrial conditions. Therefore, in contrast to the common practice detection of respiratory chain abnormalities in liver should not restrict the inclusion of patients for liver transplantation. Furthermore, improving mitochondrial function may be targeted as part of a complex therapy approach in different forms of liver diseases.
Collapse
Affiliation(s)
- Maria Lane
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK
| | - Veronika Boczonadi
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK
| | - Sahar Bachtari
- Department of Paediatric Gastroenterology, University of Duisburg-Essen, Essen, Germany
| | - Aurora Gomez-Duran
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK
| | - Thorsten Langer
- Department for Neuropediatrics and Muscular Diseases, Center for Pediatrics and Adolescent Medicine University Medical Center Freiburg, Freiburg, Germany
| | - Alexandra Griffiths
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK
| | | | | | | | | | - Ulrike Schara
- Department of Paediatric Neurology, University of Duisburg-Essen, Essen, Germany
| | - Patrick Gerner
- Department of Paediatric Gastroenterology, University of Duisburg-Essen, Essen, Germany
- Paediatric Gastroenterology/Hepatology, University of Freiburg, Freiburg, Germany
| | - Rita Horvath
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK.
| |
Collapse
|
83
|
Frye RE, Cox D, Slattery J, Tippett M, Kahler S, Granpeesheh D, Damle S, Legido A, Goldenthal MJ. Mitochondrial Dysfunction may explain symptom variation in Phelan-McDermid Syndrome. Sci Rep 2016; 6:19544. [PMID: 26822410 PMCID: PMC4731780 DOI: 10.1038/srep19544] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/09/2015] [Indexed: 12/02/2022] Open
Abstract
Phelan-McDermid Syndrome (PMS), which is defined by a deletion within 22q13, demonstrates significant phenotypic variation. Given that six mitochondrial genes are located within 22q13, including complex I and IV genes, we hypothesize that mitochondrial complex activity abnormalities may explain phenotypic variation in PMS symptoms. Complex I, II, II + III and IV activity was measured in 51 PMS participants. Caretakers completed questionnaires and provided genetic information through the PMS foundation registry. Complex activity was abnormal in 59% of PMS participants. Abnormalities were found in complex I and IV but not complex II + III and II activity, consistent with disruption of genes within the 22q13 region. However, complex activity abnormalities were not related to specific gene deletions suggesting a "neighboring effect" of regional deletions on adjacent gene expression. A specific combination of symptoms (autism spectrum disorder, developmental regression, failure-to-thrive, exercise intolerance/fatigue) was associated with complex activity abnormalities. 64% of 106 individuals in the PMS foundation registry who did not have complex activity measured also endorsed this pattern of symptoms. These data suggest that mitochondrial abnormalities, specifically abnormalities in complex I and IV activity, may explain some phenotypic variation in PMS individuals. These results point to novel pathophysiology mechanisms and treatment targets for PMS patients.
Collapse
Affiliation(s)
- Richard E. Frye
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Devin Cox
- Kansas University Medical Center, Kansas City, Kansas, KS, USA
| | - John Slattery
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Marie Tippett
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Stephen Kahler
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Doreen Granpeesheh
- Center for Autism and Related Disorders, Inc., Woodland Hills, California, CA, USA
| | - Shirish Damle
- Drexel University College of Medicine, Department of Pediatrics, Neurology Section, St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| | - Agustin Legido
- Drexel University College of Medicine, Department of Pediatrics, Neurology Section, St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| | - Michael J. Goldenthal
- Drexel University College of Medicine, Department of Pediatrics, Neurology Section, St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| |
Collapse
|
84
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
85
|
Shigi N. Sulfur Modifications in tRNA: Function and Implications for Human Disease. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
86
|
Martínez-Zamora A, Meseguer S, Esteve JM, Villarroya M, Aguado C, Enríquez JA, Knecht E, Armengod ME. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier. PLoS One 2015; 10:e0144273. [PMID: 26642043 PMCID: PMC4671719 DOI: 10.1371/journal.pone.0144273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function.
Collapse
Affiliation(s)
- Ana Martínez-Zamora
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Salvador Meseguer
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Juan M. Esteve
- Laboratory of Intracellular Protein Degradation and Rare Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Magda Villarroya
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Aguado
- Laboratory of Intracellular Protein Degradation and Rare Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Raras (CIBERER), node U721, Valencia, Spain
| | - J. Antonio Enríquez
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Erwin Knecht
- Laboratory of Intracellular Protein Degradation and Rare Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Raras (CIBERER), node U721, Valencia, Spain
| | - M.-Eugenia Armengod
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Raras (CIBERER), node U721, Valencia, Spain
- * E-mail:
| |
Collapse
|
87
|
Armengod ME, Meseguer S, Villarroya M, Prado S, Moukadiri I, Ruiz-Partida R, Garzón MJ, Navarro-González C, Martínez-Zamora A. Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes. RNA Biol 2015; 11:1495-507. [PMID: 25607529 DOI: 10.4161/15476286.2014.992269] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.
Collapse
Affiliation(s)
- M Eugenia Armengod
- a Laboratory of RNA Modification and Mitochondrial Diseases ; Centro de Investigación Príncipe Felipe ; Valencia , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Shippy DC, Fadl AA. RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Microb Pathog 2015; 89:100-7. [PMID: 26427881 DOI: 10.1016/j.micpath.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amin A Fadl
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
89
|
Shaheen R, Abdel-Salam GMH, Guy MP, Alomar R, Abdel-Hamid MS, Afifi HH, Ismail SI, Emam BA, Phizicky EM, Alkuraya FS. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Genome Biol 2015; 16:210. [PMID: 26416026 PMCID: PMC4587777 DOI: 10.1186/s13059-015-0779-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/14/2015] [Indexed: 04/13/2023] Open
Abstract
Background Primordial dwarfism is a state of extreme prenatal and postnatal growth deficiency, and is characterized by marked clinical and genetic heterogeneity. Results Two presumably unrelated consanguineous families presented with an apparently novel form of primordial dwarfism in which severe growth deficiency is accompanied by distinct facial dysmorphism, brain malformation (microcephaly, agenesis of corpus callosum, and simplified gyration), and severe encephalopathy with seizures. Combined autozygome/exome analysis revealed a novel missense mutation in WDR4 as the likely causal variant. WDR4 is the human ortholog of the yeast Trm82, an essential component of the Trm8/Trm82 holoenzyme that effects a highly conserved and specific (m7G46) methylation of tRNA. The human mutation and the corresponding yeast mutation result in a significant reduction of m7G46 methylation of specific tRNA species, which provides a potential mechanism for primordial dwarfism associated with this lesion, since reduced m7G46 modification causes a growth deficiency phenotype in yeast. Conclusion Our study expands the number of biological pathways underlying primordial dwarfism and adds to a growing list of human diseases linked to abnormal tRNA modification. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0779-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Michael P Guy
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Current address: Department of Chemistry, Northern Kentucky University, Highland Heights, KY, USA
| | - Rana Alomar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Hanan H Afifi
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Samira I Ismail
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Bayoumi A Emam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
90
|
Guy MP, Shaw M, Weiner CL, Hobson L, Stark Z, Rose K, Kalscheuer VM, Gecz J, Phizicky EM. Defects in tRNA Anticodon Loop 2'-O-Methylation Are Implicated in Nonsyndromic X-Linked Intellectual Disability due to Mutations in FTSJ1. Hum Mutat 2015; 36:1176-87. [PMID: 26310293 DOI: 10.1002/humu.22897] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/12/2015] [Indexed: 01/18/2023]
Abstract
tRNA modifications are crucial for efficient and accurate protein synthesis, and modification defects are frequently associated with disease. Yeast trm7Δ mutants grow poorly due to lack of 2'-O-methylated C32 (Cm32 ) and Gm34 on tRNA(Phe) , catalyzed by Trm7-Trm732 and Trm7-Trm734, respectively, which in turn results in loss of wybutosine at G37 . Mutations in human FTSJ1, the likely TRM7 homolog, cause nonsyndromic X-linked intellectual disability (NSXLID), but the role of FTSJ1 in tRNA modification is unknown. Here, we report that tRNA(Phe) from two genetically independent cell lines of NSXLID patients with loss-of-function FTSJ1 mutations nearly completely lacks Cm32 and Gm34 , and has reduced peroxywybutosine (o2yW37 ). Additionally, tRNA(Phe) from an NSXLID patient with a novel FTSJ1-p.A26P missense allele specifically lacks Gm34 , but has normal levels of Cm32 and o2yW37 . tRNA(Phe) from the corresponding Saccharomyces cerevisiae trm7-A26P mutant also specifically lacks Gm34 , and the reduced Gm34 is not due to weaker Trm734 binding. These results directly link defective 2'-O-methylation of the tRNA anticodon loop to FTSJ1 mutations, suggest that the modification defects cause NSXLID, and may implicate Gm34 of tRNA(Phe) as the critical modification. These results also underscore the widespread conservation of the circuitry for Trm7-dependent anticodon loop modification of eukaryotic tRNA(Phe) .
Collapse
Affiliation(s)
- Michael P Guy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Marie Shaw
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Catherine L Weiner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Lynne Hobson
- SA Pathology, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Katherine Rose
- Monash Health, Special Medicine Centre, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Vera M Kalscheuer
- Department Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin D14195, Germany
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| |
Collapse
|
91
|
Powell C, Kopajtich R, D’Souza AR, Rorbach J, Kremer L, Husain R, Dallabona C, Donnini C, Alston C, Griffin H, Pyle A, Chinnery P, Strom T, Meitinger T, Rodenburg R, Schottmann G, Schuelke M, Romain N, Haller R, Ferrero I, Haack T, Taylor R, Prokisch H, Minczuk M. TRMT5 Mutations Cause a Defect in Post-transcriptional Modification of Mitochondrial tRNA Associated with Multiple Respiratory-Chain Deficiencies. Am J Hum Genet 2015; 97:319-28. [PMID: 26189817 PMCID: PMC4573257 DOI: 10.1016/j.ajhg.2015.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/16/2015] [Indexed: 10/29/2022] Open
Abstract
Deficiencies in respiratory-chain complexes lead to a variety of clinical phenotypes resulting from inadequate energy production by the mitochondrial oxidative phosphorylation system. Defective expression of mtDNA-encoded genes, caused by mutations in either the mitochondrial or nuclear genome, represents a rapidly growing group of human disorders. By whole-exome sequencing, we identified two unrelated individuals carrying compound heterozygous variants in TRMT5 (tRNA methyltransferase 5). TRMT5 encodes a mitochondrial protein with strong homology to members of the class I-like methyltransferase superfamily. Both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory-chain-complex deficiencies in skeletal muscle, although the clinical presentation of the two affected subjects was remarkably different; one presented in childhood with failure to thrive and hypertrophic cardiomyopathy, and the other was an adult with a life-long history of exercise intolerance. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mitochondrial tRNA; this hypomodification was particularly prominent in skeletal muscle. Deficiency of the G37 modification was also detected in human cells subjected to TRMT5 RNAi. The pathogenicity of the detected variants was further confirmed in a heterologous yeast model and by the rescue of the molecular phenotype after re-expression of wild-type TRMT5 cDNA in cells derived from the affected individuals. Our study highlights the importance of post-transcriptional modification of mitochondrial tRNAs for faithful mitochondrial function.
Collapse
|
92
|
Mayr JA, Haack TB, Freisinger P, Karall D, Makowski C, Koch J, Feichtinger RG, Zimmermann FA, Rolinski B, Ahting U, Meitinger T, Prokisch H, Sperl W. Spectrum of combined respiratory chain defects. J Inherit Metab Dis 2015; 38:629-40. [PMID: 25778941 PMCID: PMC4493854 DOI: 10.1007/s10545-015-9831-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 01/22/2023]
Abstract
Inherited disorders of mitochondrial energy metabolism form a large and heterogeneous group of metabolic diseases. More than 250 gene defects have been reported to date and this number continues to grow. Mitochondrial diseases can be grouped into (1) disorders of oxidative phosphorylation (OXPHOS) subunits and their assembly factors, (2) defects of mitochondrial DNA, RNA and protein synthesis, (3) defects in the substrate-generating upstream reactions of OXPHOS, (4) defects in relevant cofactors and (5) defects in mitochondrial homeostasis. Deficiency of more than one respiratory chain enzyme is a common finding. Combined defects are found in 49 % of the known disease-causing genes of mitochondrial energy metabolism and in 57 % of patients with OXPHOS defects identified in our diagnostic centre. Combined defects of complexes I, III, IV and V are typically due to deficiency of mitochondrial DNA replication, RNA metabolism or translation. Defects in cofactors can result in combined defects of various combinations, and defects of mitochondrial homeostasis can result in a generalised decrease of all OXPHOS enzymes. Noteworthy, identification of combined defects can be complicated by different degrees of severity of each affected enzyme. Furthermore, even defects of single respiratory chain enzymes can result in combined defects due to aberrant formation of respiratory chain supercomplexes. Combined OXPHOS defects have a great variety of clinical manifestations in terms of onset, course severity and tissue involvement. They can present as classical encephalomyopathy but also with hepatopathy, nephropathy, haematologic findings and Perrault syndrome in a subset of disorders.
Collapse
Affiliation(s)
- Johannes A Mayr
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, Salzburg, 5020, Austria,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Van Haute L, Pearce SF, Powell CA, D’Souza AR, Nicholls TJ, Minczuk M. Mitochondrial transcript maturation and its disorders. J Inherit Metab Dis 2015; 38:655-80. [PMID: 26016801 PMCID: PMC4493943 DOI: 10.1007/s10545-015-9859-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 11/03/2022]
Abstract
Mitochondrial respiratory chain deficiencies exhibit a wide spectrum of clinical presentations owing to defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mitochondrial DNA (mtDNA) or mutations in nuclear genes coding for mitochondrially-targeted proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial biology including expression of mtDNA-encoded genes. Expression of the mitochondrial genes is extensively regulated at the post-transcriptional stage and entails nucleolytic cleavage of precursor RNAs, RNA nucleotide modifications, RNA polyadenylation, RNA quality and stability control. These processes ensure proper mitochondrial RNA (mtRNA) function, and are regulated by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes, leading to incorrect maturation of RNAs, are a cause of human mitochondrial disease. Additionally, mutations in mtDNA-encoded genes may also affect RNA maturation and are frequently associated with human disease. We review the current knowledge on a subset of nuclear-encoded genes coding for proteins involved in mitochondrial RNA maturation, for which genetic variants impacting upon mitochondrial pathophysiology have been reported. Also, primary pathological mtDNA mutations with recognised effects upon RNA processing are described.
Collapse
Affiliation(s)
| | - Sarah F. Pearce
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| | | | - Aaron R. D’Souza
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| | - Thomas J. Nicholls
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
94
|
Frye RE, Rose S, Slattery J, MacFabe DF. Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:27458. [PMID: 25956238 PMCID: PMC4425813 DOI: 10.3402/mehd.v26.27458] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) affects a significant number of individuals worldwide with the prevalence continuing to grow. It is becoming clear that a large subgroup of individuals with ASD demonstrate abnormalities in mitochondrial function as well as gastrointestinal (GI) symptoms. Interestingly, GI disturbances are common in individuals with mitochondrial disorders and have been reported to be highly prevalent in individuals with co-occurring ASD and mitochondrial disease. The majority of individuals with ASD and mitochondrial disorders do not manifest a primary genetic mutation, raising the possibility that their mitochondrial disorder is acquired or, at least, results from a combination of genetic susceptibility interacting with a wide range of environmental triggers. Mitochondria are very sensitive to both endogenous and exogenous environmental stressors such as toxicants, iatrogenic medications, immune activation, and metabolic disturbances. Many of these same environmental stressors have been associated with ASD, suggesting that the mitochondria could be the biological link between environmental stressors and neurometabolic abnormalities associated with ASD. This paper reviews the possible links between GI abnormalities, mitochondria, and ASD. First, we review the link between GI symptoms and abnormalities in mitochondrial function. Second, we review the evidence supporting the notion that environmental stressors linked to ASD can also adversely affect both mitochondria and GI function. Third, we review the evidence that enteric bacteria that are overrepresented in children with ASD, particularly Clostridia spp., produce short-chain fatty acid metabolites that are potentially toxic to the mitochondria. We provide an example of this gut–brain connection by highlighting the propionic acid rodent model of ASD and the clinical evidence that supports this animal model. Lastly, we discuss the potential therapeutic approaches that could be helpful for GI symptoms in ASD and mitochondrial disorders. To this end, this review aims to help better understand the underlying pathophysiology associated with ASD that may be related to concurrent mitochondrial and GI dysfunction.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Research Program, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA;
| | - Shannon Rose
- Autism Research Program, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John Slattery
- Autism Research Program, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Derrick F MacFabe
- Kilee Patchell-Evans Autism Research Group, Division of Developmental Disabilities, Departments of Psychology and Psychiatry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
95
|
Boczonadi V, Bansagi B, Horvath R. Reversible infantile mitochondrial diseases. J Inherit Metab Dis 2015; 38:427-35. [PMID: 25407320 DOI: 10.1007/s10545-014-9784-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/09/2014] [Accepted: 10/14/2014] [Indexed: 11/30/2022]
Abstract
Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | | | | |
Collapse
|
96
|
Powell CA, Nicholls TJ, Minczuk M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet 2015; 6:79. [PMID: 25806043 PMCID: PMC4354410 DOI: 10.3389/fgene.2015.00079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2015] [Indexed: 11/29/2022] Open
Abstract
The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes.
Collapse
Affiliation(s)
- Christopher A Powell
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Thomas J Nicholls
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Michal Minczuk
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| |
Collapse
|
97
|
|
98
|
Hepatic Copper Accumulation: A Novel Feature in Transient Infantile Liver Failure Due to TRMU Mutations? JIMD Rep 2015; 21:109-13. [PMID: 25665837 DOI: 10.1007/8904_2014_402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022] Open
Abstract
Defects in the mitochondrial respiratory chain can induce a heterogeneous range of clinical and biochemical manifestations. Hepatic involvement includes acute fulminant hepatic failure, microvesicular steatosis, neonatal non-alloimmune haemochromatosis and cirrhosis. Recently pathogenic mutations in tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) gene (OMIM 610230) have been demonstrated to cause transient infantile liver failure (OMIM 613070). The human TRMU gene encodes a mitochondrial protein, 5-methylaminomethyl-2-thiouridylate methyltransferase, whose molecular function is that of mitochondrial tRNA modification.We report an infant who presented with acute liver failure, in whom we observed hepatic copper intoxication and cirrhosis on liver biopsy. We postulate that the hepatic copper intoxication observed in our patient is most likely a secondary event associated with cholangiopathy. Periportal copper accumulation has been implicated in causing secondary mitochondrial dysfunction; the impact of copper accumulation in patients with TRMU mutations is unclear and warrants long-term clinical follow-up.
Collapse
|
99
|
Sasarman F, Thiffault I, Weraarpachai W, Salomon S, Maftei C, Gauthier J, Ellazam B, Webb N, Antonicka H, Janer A, Brunel-Guitton C, Elpeleg O, Mitchell G, Shoubridge EA. The 3' addition of CCA to mitochondrial tRNASer(AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1. Hum Mol Genet 2015; 24:2841-7. [PMID: 25652405 DOI: 10.1093/hmg/ddv044] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/02/2015] [Indexed: 11/14/2022] Open
Abstract
Addition of the trinucleotide cytosine/cytosine/adenine (CCA) to the 3' end of transfer RNAs (tRNAs) is essential for translation and is catalyzed by the enzyme TRNT1 (tRNA nucleotidyl transferase), which functions in both the cytoplasm and mitochondria. Exome sequencing revealed TRNT1 mutations in two unrelated subjects with different clinical features. The first presented with acute lactic acidosis at 3 weeks of age and developed severe developmental delay, hypotonia, microcephaly, seizures, progressive cortical atrophy, neurosensorial deafness, sideroblastic anemia and renal Fanconi syndrome, dying at 21 months. The second presented at 3.5 years with gait ataxia, dysarthria, gross motor regression, hypotonia, ptosis and ophthalmoplegia and had abnormal signals in brainstem and dentate nucleus. In subject 1, muscle biopsy showed combined oxidative phosphorylation (OXPHOS) defects, but there was no OXPHOS deficiency in fibroblasts from either subject, despite a 10-fold-reduction in TRNT1 protein levels in fibroblasts of the first subject. Furthermore, in normal controls, TRNT1 protein levels are 10-fold lower in muscle than in fibroblasts. High resolution northern blots of subject fibroblast RNA suggested incomplete CCA addition to the non-canonical mitochondrial tRNA(Ser(AGY)), but no obvious qualitative differences in other mitochondrial or cytoplasmic tRNAs. Complete knockdown of TRNT1 in patient fibroblasts rendered mitochondrial tRNA(Ser(AGY)) undetectable, and markedly reduced mitochondrial translation, except polypeptides lacking Ser(AGY) codons. These data suggest that the clinical phenotypes associated with TRNT1 mutations are largely due to impaired mitochondrial translation, resulting from defective CCA addition to mitochondrial tRNA(Ser(AGY)), and that the severity of this biochemical phenotype determines the severity and tissue distribution of clinical features.
Collapse
Affiliation(s)
- Florin Sasarman
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada, Division of Medical Genetics, Department of Pediatrics, and
| | - Isabelle Thiffault
- Division of Medical Genetics, Department of Pediatrics, and Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA and
| | - Woranontee Weraarpachai
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Steven Salomon
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Julie Gauthier
- Division of Medical Genetics, Department of Pediatrics, and
| | - Benjamin Ellazam
- Department of Pathology, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada
| | - Neil Webb
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada, Division of Medical Genetics, Department of Pediatrics, and
| | - Hana Antonicka
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Alexandre Janer
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Grant Mitchell
- Division of Medical Genetics, Department of Pediatrics, and
| | - Eric A Shoubridge
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada,
| |
Collapse
|
100
|
Janer A, van Karnebeek CD, Sasarman F, Antonicka H, Al Ghamdi M, Shyr C, Dunbar M, Stockler-Ispiroglu S, Ross CJ, Vallance H, Dionne J, Wasserman WW, Shoubridge EA. RMND1 deficiency associated with neonatal lactic acidosis, infantile onset renal failure, deafness, and multiorgan involvement. Eur J Hum Genet 2015; 23:1301-7. [PMID: 25604853 DOI: 10.1038/ejhg.2014.293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/17/2022] Open
Abstract
RMND1 is an integral inner membrane mitochondrial protein that assembles into a large 240 kDa complex to support translation of the 13 polypeptides encoded on mtDNA, all of which are essential subunits of the oxidative phosphorylation (OXPHOS) complexes. Variants in RMND1 produce global defects in mitochondrial translation and were first reported in patients with severe neurological phenotypes leading to mortality in the first months of life. Using whole-exome sequencing, we identified compound heterozygous RMND1 variants in a 4-year-old patient with congenital lactic acidosis, severe myopathy, hearing loss, renal failure, and dysautonomia. The levels of mitochondrial ribosome proteins were reduced in patient fibroblasts, causing a translation defect, which was rescued by expression of the wild-type cDNA. RMND1 was almost undetectable by immunoblot analysis in patient muscle and fibroblasts. BN-PAGE analysis showed a severe combined OXPHOS assembly defect that was more prominent in patient muscle than in fibroblasts. Immunofluorescence experiments showed that RMND1 localizes to discrete foci in the mitochondrial network, juxtaposed to RNA granules where the primary mitochondrial transcripts are processed. RMND1 foci were not detected in patient fibroblasts. We hypothesize that RMND1 acts to anchor or stabilize the mitochondrial ribosome near the sites where the mRNAs are matured, spatially coupling post-transcriptional handling mRNAs with their translation, and that loss of function variants in RMND1 are associated with a unique constellation of clinical phenotypes that vary with the severity of the mitochondrial translation defect.
Collapse
Affiliation(s)
- Alexandre Janer
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Clara Dm van Karnebeek
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver BC, Canada.,Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, BC Children's and Women's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Florin Sasarman
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hana Antonicka
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Malak Al Ghamdi
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Casper Shyr
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver BC, Canada.,Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, BC Children's and Women's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mary Dunbar
- Department of Pathology and Laboratory Medicine, Department of Pediatrics, BC Children's and Women's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Sylvia Stockler-Ispiroglu
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver BC, Canada
| | - Colin J Ross
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver BC, Canada.,Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, BC Children's and Women's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Hilary Vallance
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver BC, Canada.,Department of Pathology and Laboratory Medicine, Department of Pediatrics, BC Children's and Women's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Janis Dionne
- Division of Pediatric Nephrology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W Wasserman
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver BC, Canada.,Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, BC Children's and Women's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|