51
|
Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet 2018; 138:831-846. [PMID: 30374660 DOI: 10.1007/s00439-018-1949-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
As new genes for A/M are identified in the genomic era, the number of syndromes associated with A/M has greatly expanded. In this review, we provide a brief synopsis of the clinical presentation and molecular genetic etiology of previously characterized pathways involved in A/M, including the Sex-determining region Y-box 2 (SOX2), Orthodenticle Homeobox 2 (OTX2) and Paired box protein-6 (PAX6) genes, and the Stimulated by retinoic acid gene 6 homolog (STRA6), Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3), and RA Receptor Beta (RARβ) genes that are involved in retinoic acid synthesis. Less common genetic causes of A/M, including genes involved in BMP signaling [Bone Morphogenetic Protein 4 (BMP4), Bone Morphogenetic Protein 7 (BMP7) and SPARC-related modular calcium-binding protein 1 (SMOC1)], genes involved in the mitochondrial respiratory chain complex [Holocytochrome c-type synthase (HCCS), Cytochrome C Oxidase Subunit 7B (COX7B), and NADH:Ubiquinone Oxidoreductase subunit B11 (NDUFB11)], the BCL-6 corepressor gene (BCOR), Yes-Associated Protein 1 (YAP1) and Transcription Factor AP-2 Alpha (TFAP2α), are more briefly discussed. We also review several recently described genes and pathways associated with A/M, including Smoothened (SMO) that is involved in Sonic hedgehog (SHH) signaling, Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) and Solute carrier family 25 member 24 (SLC25A24), emphasizing phenotype-genotype correlations and shared pathways where relevant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco Room RH384C, 1550 4th St, San Francisco, CA, 94143-2711, USA.
| |
Collapse
|
52
|
Duchatelet S, Boyden LM, Ishida-Yamamoto A, Zhou J, Guibbal L, Hu R, Lim YH, Bole-Feysot C, Nitschké P, Santos-Simarro F, de Lucas R, Milstone LM, Gildenstern V, Helfrich YR, Attardi LD, Lifton RP, Choate KA, Hovnanian A. Mutations in PERP Cause Dominant and Recessive Keratoderma. J Invest Dermatol 2018; 139:380-390. [PMID: 30321533 DOI: 10.1016/j.jid.2018.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/06/2023]
Abstract
Investigation of genetic determinants of Mendelian skin disorders has substantially advanced understanding of epidermal biology. Here we show that mutations in PERP, encoding a crucial component of desmosomes, cause both dominant and recessive human keratoderma. Heterozygosity for a C-terminal truncation, which produces a protein that appears to be unstably incorporated into desmosomes, causes Olmsted syndrome with severe periorificial and palmoplantar keratoderma in multiple unrelated kindreds. Homozygosity for an N-terminal truncation ablates expression and causes widespread erythrokeratoderma, with expansion of epidermal differentiation markers. Both exhibit epidermal hyperproliferation, immature desmosomes lacking a dense midline observed via electron microscopy, and impaired intercellular adhesion upon mechanical stress. Localization of other desmosomal components appears normal, which is in contrast to other conditions caused by mutations in genes encoding desmosomal proteins. These discoveries highlight the essential role of PERP in human desmosomes and epidermal homeostasis and further expand the heterogeneous spectrum of inherited keratinization disorders.
Collapse
Affiliation(s)
- Sabine Duchatelet
- Laboratory of Genetic Skin Diseases, INSERM Imagine Institute, Paris, France; University Paris Descartes, Paris, France
| | - Lynn M Boyden
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jing Zhou
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Laure Guibbal
- Laboratory of Genetic Skin Diseases, INSERM Imagine Institute, Paris, France; University Paris Descartes, Paris, France
| | - Ronghua Hu
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Young H Lim
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christine Bole-Feysot
- University Paris Descartes, Paris, France; Genomic Platform, INSERM Imagine Institute, Paris, France
| | - Patrick Nitschké
- University Paris Descartes, Paris, France; Bioinformatics Platform, INSERM Imagine Institute, Paris, France
| | | | - Raul de Lucas
- Department of Dermatology, Hospital Universitario La Paz, Madrid, Spain
| | - Leonard M Milstone
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Yolanda R Helfrich
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura D Attardi
- Departments of Radiation Oncology and Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Keith A Choate
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, INSERM Imagine Institute, Paris, France; University Paris Descartes, Paris, France; Department of Genetics, Necker-Enfants Malades Hospital, Paris, France.
| |
Collapse
|
53
|
|
54
|
Trasino SE, Tang XH, Shevchuk MM, Choi ME, Gudas LJ. Amelioration of Diabetic Nephropathy Using a Retinoic Acid Receptor β2 Agonist. J Pharmacol Exp Ther 2018; 367:82-94. [PMID: 30054312 DOI: 10.1124/jpet.118.249375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Vitamin A (VA) and its derivatives, known as retinoids, play critical roles in renal development through retinoic acid receptor β2 (RARβ2). Disruptions in VA signaling pathways are associated with the onset of diabetic nephropathy (DN). Despite the known role of RARβ2 in renal development, the effects of selective agonists for RARβ2 in a high-fat diet (HFD) model of DN are unknown. Here we examined whether AC261066 (AC261), a highly selective agonist for RARβ2, exhibited therapeutic effects in a HFD model of DN in C57BL/6 mice. Twelve weeks of AC261 administration to HFD-fed mice was well tolerated with no observable side effects. Compared with HFD-fed mice, HFD + AC261-treated mice had improved glycemic control and reductions in proteinuria and urine albumin-to-creatinine ratio. Several cellular hallmarks of DN were mitigated in HFD + AC261-treated mice, including reductions in tubule lipid droplets, podocyte (POD) effacement, endothelial cell collapse, mesangial expansion, and glomerular basement membrane thickening. Mesangial and tubule interstitial expression of the myofibroblast markers α-smooth muscle actin (α-SMA) and type IV collagen (Col-IV) was lower in HFD + AC261-treated mice compared with HFD alone. Ultrastructural and immunohistochemistry analyses showed that, compared with HFD-fed mice, HFD + AC261-treated mice showed preservation of POD foot process and slit-diaphragm morphology, an increase in the levels of slit-diagram protein podocin, and the transcription factor Wilms tumor-suppressor gene 1 in PODs. Given the need for novel DN therapies, our results warrant further studies of the therapeutic properties of AC261 in DN.
Collapse
Affiliation(s)
- Steven E Trasino
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Xiao-Han Tang
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Maria M Shevchuk
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Mary E Choi
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Lorraine J Gudas
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| |
Collapse
|
55
|
Mutation of IPO13 causes recessive ocular coloboma, microphthalmia, and cataract. Exp Mol Med 2018; 50:1-11. [PMID: 29700284 PMCID: PMC5938035 DOI: 10.1038/s12276-018-0079-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 11/12/2022] Open
Abstract
Ocular coloboma is a developmental structural defect of the eye that often occurs as complex ocular anomalies. However, its genetic etiology remains largely unexplored. Here we report the identification of mutation (c.331C>T, p.R111C) in the IPO13 gene in a consanguineous family with ocular coloboma, microphthalmia, and cataract by a combination of whole-exome sequencing and homozygosity mapping. IPO13 encodes an importin-B family protein and has been proven to be associated with the pathogenesis of coloboma and microphthalmia. We found that Ipo13 was expressed in the cornea, sclera, lens, and retina in mice. Additionally, the mRNA expression level of Ipo13 decreased significantly in the patient compared with its expression in a healthy individual. Morpholino-oligonucleotide-induced knockdown of ipo13 in zebrafish caused dose-dependent microphthalmia and coloboma, which is highly similar to the ocular phenotypes in the patient. Moreover, both visual motor response and optokinetic response were impaired severely. Notably, these ocular phenotypes in ipo13-deficient zebrafish could be rescued remarkably by full-length ipo13 mRNA, suggesting that the phenotypes observed in zebrafish were due to insufficient ipo13 function. Altogether, our findings demonstrate, for the first time, a new role of IPO13 in eye morphogenesis and that loss of function of IPO13 could lead to ocular coloboma, microphthalmia, and cataract in humans and zebrafish. In-depth genomic analysis of the family of a young man with severe visual impairment reveals a new gene involved in eye development. Ocular coloboma encompasses various hereditary disorders in which the eyes form improperly. Many of the underlying genetic factors remain unidentified. Researchers led by Zi-Bing Jin at Wenzhou Medical University in China sequenced the genes of 28-year-old man with a recessive form of ocular coloboma. By comparing these genetic data against equivalent genome sequences from his healthy parents, Jin’s team identified a gene called IPO13 as the culprit. IPO13 has not been linked to human disease before, but the researchers demonstrated that switching off IPO13 expression in zebrafish embryos gave rise to underdeveloped eyes with defects in the iris and cornea. These findings give clinicians another potential indicator for early diagnosis of ocular coloboma.
Collapse
|
56
|
Plaisancié J, Ragge N, Dollfus H, Kaplan J, Lehalle D, Francannet C, Morin G, Colineaux H, Calvas P, Chassaing N. FOXE3
mutations: genotype-phenotype correlations. Clin Genet 2018; 93:837-845. [DOI: 10.1111/cge.13177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Affiliation(s)
- J. Plaisancié
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse; Toulouse France
- INSERM U1056; Université Toulouse III; Toulouse France
| | - N.K. Ragge
- Faculty of Health and Life Sciences; Oxford Brookes University; Oxford UK
- West Midlands Regional Genetics Service; Birmingham Women and Children’s NHS Foundation Trust; Birmingham UK
| | - H. Dollfus
- Centre de Référence pour les affections rares en génétique ophtalmologique; CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg; Strasbourg France
| | - J. Kaplan
- INSERM U1163; Génétique Ophtalmologique; Paris France
| | - D. Lehalle
- Centre de Génétique et Centre de Référence "Anomalies du Développement et Syndromes Malformatifs; Hôpital d'Enfants; Dijon France
| | - C. Francannet
- Service de Génétique Médicale; CHU Estaing; Clermont-Ferrand France
| | - G. Morin
- Service de génétique; Hôpital nord d’Amiens; Amiens France
| | - H. Colineaux
- Department of Epidemiology, Health Economics and Public Health; Toulouse University Hospital; France
- LEASP UMR1027, INSERM; Université Toulouse III; Toulouse France
| | - P. Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse; Toulouse France
- INSERM U1056; Université Toulouse III; Toulouse France
| | - N. Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse; Toulouse France
- INSERM U1056; Université Toulouse III; Toulouse France
| |
Collapse
|
57
|
Kammoun M, Brady P, De Catte L, Deprest J, Devriendt K, Vermeesch JR. Congenital diaphragmatic hernia as a part of Nance-Horan syndrome? Eur J Hum Genet 2018; 26:359-366. [PMID: 29358614 DOI: 10.1038/s41431-017-0032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
Nance-Horan syndrome is a rare X-linked developmental disorder characterized by bilateral congenital cataract, dental anomalies, facial dysmorphism, and intellectual disability. Here, we identify a patient with Nance-Horan syndrome caused by a new nonsense NHS variant. In addition, the patient presented congenital diaphragmatic hernia. NHS gene expression in murine fetal diaphragm was demonstrated, suggesting a possible involvement of NHS in diaphragm development. Congenital diaphragmatic hernia could result from NHS loss of function in pleuroperitoneal fold or in somites-derived muscle progenitor cells leading to an impairment of their cells migration.
Collapse
Affiliation(s)
- Molka Kammoun
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Paul Brady
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Luc De Catte
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Jan Deprest
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium.
| |
Collapse
|
58
|
Pasutto F, Flinter F, Rauch A, Reis A. Novel STRA6 null mutations in the original family described with Matthew-Wood syndrome. Am J Med Genet A 2017; 176:134-138. [PMID: 29168296 DOI: 10.1002/ajmg.a.38529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frances Flinter
- Department of Clinical Genetics, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
59
|
Berenguer M, Tingaud-Sequeira A, Colovati M, Melaragno MI, Bragagnolo S, Perez ABA, Arveiler B, Lacombe D, Rooryck C. A novel de novo mutation in MYT1, the unique OAVS gene identified so far. Eur J Hum Genet 2017; 25:1083-1086. [PMID: 28612832 PMCID: PMC5558169 DOI: 10.1038/ejhg.2017.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022] Open
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder characterized by hemifacial microsomia associated with ear, eyes and vertebrae malformations showing highly variable expressivity. Recently, MYT1, encoding the myelin transcription factor 1, was reported as the first gene involved in OAVS, within the retinoic acid (RA) pathway. Fifty-seven OAVS patients originating from Brazil were screened for MYT1 variants. A novel de novo missense variant affecting function, c.323C>T (p.(Ser108Leu)), was identified in MYT1, in a patient presenting with a severe form of OAVS. Functional studies showed that MYT1 overexpression downregulated all RA receptors genes (RARA, RARB, RARG), involved in RA-mediated transcription, whereas no effect was observed on CYP26A1 expression, the major enzyme involved in RA degradation, Moreover, MYT1 variants impacted significantly the expression of these genes, further supporting their pathogenicity. In conclusion, a third variant affecting function in MYT1 was identified as a cause of OAVS. Furthermore, we confirmed MYT1 connection to RA signaling pathway.
Collapse
Affiliation(s)
- Marie Berenguer
- Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, University Bordeaux, Bordeaux, France
| | - Angele Tingaud-Sequeira
- Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, University Bordeaux, Bordeaux, France
| | - Mileny Colovati
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Maria I Melaragno
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Silvia Bragagnolo
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Ana B A Perez
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Benoit Arveiler
- Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, University Bordeaux, Bordeaux, France
- CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Bordeaux, France
| | - Didier Lacombe
- Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, University Bordeaux, Bordeaux, France
- CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Bordeaux, France
| | - Caroline Rooryck
- Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, University Bordeaux, Bordeaux, France
- CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Bordeaux, France
| |
Collapse
|
60
|
Kardon G, Ackerman KG, McCulley DJ, Shen Y, Wynn J, Shang L, Bogenschutz E, Sun X, Chung WK. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10:955-970. [PMID: 28768736 PMCID: PMC5560060 DOI: 10.1242/dmm.028365] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Congenital diaphragmatic hernias (CDHs) and structural anomalies of the diaphragm are a common class of congenital birth defects that are associated with significant morbidity and mortality due to associated pulmonary hypoplasia, pulmonary hypertension and heart failure. In ∼30% of CDH patients, genomic analyses have identified a range of genetic defects, including chromosomal anomalies, copy number variants and sequence variants. The affected genes identified in CDH patients include transcription factors, such as GATA4, ZFPM2, NR2F2 and WT1, and signaling pathway components, including members of the retinoic acid pathway. Mutations in these genes affect diaphragm development and can have pleiotropic effects on pulmonary and cardiac development. New therapies, including fetal endoscopic tracheal occlusion and prenatal transplacental fetal treatments, aim to normalize lung development and pulmonary vascular tone to prevent and treat lung hypoplasia and pulmonary hypertension, respectively. Studies of the association between particular genetic mutations and clinical outcomes should allow us to better understand the origin of this birth defect and to improve our ability to predict and identify patients most likely to benefit from specialized treatment strategies.
Collapse
Affiliation(s)
- Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kate G Ackerman
- Departments of Pediatrics (Critical Care) and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J McCulley
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Linshan Shang
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric Bogenschutz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wendy K Chung
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
61
|
Janesick A, Tang W, Nguyen TTL, Blumberg B. RARβ2 is required for vertebrate somitogenesis. Development 2017; 144:1997-2008. [PMID: 28432217 DOI: 10.1242/dev.144345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
During vertebrate somitogenesis, retinoic acid is known to establish the position of the determination wavefront, controlling where new somites are permitted to form along the anteroposterior body axis. Less is understood about how RAR regulates somite patterning, rostral-caudal boundary setting, specialization of myotome subdivisions or the specific RAR subtype that is required for somite patterning. Characterizing the function of RARβ has been challenging due to the absence of embryonic phenotypes in murine loss-of-function studies. Using the Xenopus system, we show that RARβ2 plays a specific role in somite number and size, restriction of the presomitic mesoderm anterior border, somite chevron morphology and hypaxial myoblast migration. Rarβ2 is the RAR subtype whose expression is most upregulated in response to ligand and its localization in the trunk somites positions it at the right time and place to respond to embryonic retinoid levels during somitogenesis. RARβ2 positively regulates Tbx3 a marker of hypaxial muscle, and negatively regulates Tbx6 via Ripply2 to restrict the anterior boundaries of the presomitic mesoderm and caudal progenitor pool. These results demonstrate for the first time an early and essential role for RARβ2 in vertebrate somitogenesis.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Weiyi Tang
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
62
|
Achermann JC, Schwabe J, Fairall L, Chatterjee K. Genetic disorders of nuclear receptors. J Clin Invest 2017; 127:1181-1192. [PMID: 28368288 DOI: 10.1172/jci88892] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Following the first isolation of nuclear receptor (NR) genes, genetic disorders caused by NR gene mutations were initially discovered by a candidate gene approach based on their known roles in endocrine pathways and physiologic processes. Subsequently, the identification of disorders has been informed by phenotypes associated with gene disruption in animal models or by genetic linkage studies. More recently, whole exome sequencing has associated pathogenic genetic variants with unexpected, often multisystem, human phenotypes. To date, defects in 20 of 48 human NR genes have been associated with human disorders, with different mutations mediating phenotypes of varying severity or several distinct conditions being associated with different changes in the same gene. Studies of individuals with deleterious genetic variants can elucidate novel roles of human NRs, validating them as targets for drug development or providing new insights into structure-function relationships. Importantly, human genetic discoveries enable definitive disease diagnosis and can provide opportunities to therapeutically manage affected individuals. Here we review germline changes in human NR genes associated with "monogenic" conditions, including a discussion of the structural basis of mutations that cause distinctive changes in NR function and the molecular mechanisms mediating pathogenesis.
Collapse
|
63
|
Plaisancie J, Calvas P, Chassaing N. Genetic Advances in Microphthalmia. J Pediatr Genet 2016; 5:184-188. [PMID: 27895970 DOI: 10.1055/s-0036-1592350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
Abstract
Congenital ocular anomalies such as anophthalmia and microphthalmia (AM) are severe craniofacial malformations in human. The etiologies of these ocular globe anomalies are diverse but the genetic origin appears to be a predominant cause. Until recently, genetic diagnosis capability was rather limited in AM patients and only a few genes were available for routine genetic testing. While some issues remain poorly understood, knowledge regarding the molecular basis of AM dramatically improved over the last years with the development of new molecular screening technologies. Thus, the genetic cause is now identifiable in more than 50% of patients with a severe bilateral eye phenotype and in around 30% of all AM patients taken together. Such advances in the knowledge of these genetic bases are important as they improve the quality of care, in terms of diagnosis, prognosis, and genetic counseling delivered to the patients and their families.
Collapse
Affiliation(s)
- Julie Plaisancie
- Department of Medical Genetics, Purpan University Hospital, Toulouse, France
| | - Patrick Calvas
- Department of Medical Genetics, Purpan University Hospital, Toulouse, France; U1056 INSERM-FRE 3742 CNRS-Université Toulouse III, Toulouse, France
| | - Nicolas Chassaing
- Department of Medical Genetics, Purpan University Hospital, Toulouse, France; U1056 INSERM-FRE 3742 CNRS-Université Toulouse III, Toulouse, France
| |
Collapse
|
64
|
Lopez E, Berenguer M, Tingaud-Sequeira A, Marlin S, Toutain A, Denoyelle F, Picard A, Charron S, Mathieu G, de Belvalet H, Arveiler B, Babin PJ, Lacombe D, Rooryck C. Mutations in MYT1, encoding the myelin transcription factor 1, are a rare cause of OAVS. J Med Genet 2016; 53:752-760. [PMID: 27358179 DOI: 10.1136/jmedgenet-2016-103774] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder involving first and second branchial arches derivatives, mainly characterised by asymmetric ear anomalies, hemifacial microsomia, ocular defects and vertebral malformations. Although numerous chromosomal abnormalities have been associated with OAVS, no causative gene has been identified so far. OBJECTIVES We aimed to identify the first causative gene for OAVS. METHODS As sporadic cases are mostly described in Goldenhar syndrome, we have performed whole exome sequencing (WES) on selected affected individuals and their unaffected parents, looking for de novo mutations. Candidate gene was tested through transient knockdown experiment in zebrafish using a morpholino-based approach. A functional test was developed in cell culture in order to assess deleterious consequences of mutations. RESULTS By WES, we identified a heterozygous nonsense mutation in one patient in the myelin transcription factor 1 (MYT1) gene. Further, we detected one heterozygous missense mutation in another patient among a cohort of 169 patients with OAVS. This gene encodes the MYT1. Functional studies by transient knockdown of myt1a, homologue of MYT1 in zebrafish, led to specific craniofacial cartilage alterations. Treatment with all-trans retinoic acid (RA), a known teratogenic agent causing OAVS, led to an upregulation of cellular endogenous MYT1 expression. Additionally, cellular wild-type MYT1 overexpression induced a downregulation of RA receptor β (RARB), whereas mutated MYT1 did not. CONCLUSION We report MYT1 as the first gene implicated in OAVS, within the RA signalling pathway.
Collapse
Affiliation(s)
- Estelle Lopez
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France
| | - Marie Berenguer
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France
| | - Angèle Tingaud-Sequeira
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France
| | - Sandrine Marlin
- Département de Génétique, Hôpital Universitaire Necker-Enfants-Malades, Centre de Référence des Surdités Génétiques, Paris, France
| | - Annick Toutain
- Service de Génétique, Hôpital Bretonneau, Centre Hospitalier Universitaire, Tours, France
| | - Françoise Denoyelle
- Service d'ORL pédiatrique et de chirurgie cervicofaciale, Hôpital Universitaire Necker-Enfants-Malades, Centre de Référence des malformations ORL rares, Paris, France
| | - Arnaud Picard
- Service de chirurgie maxillo-faciale, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sabine Charron
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France
| | - Guilaine Mathieu
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France
| | - Harmony de Belvalet
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France
| | - Benoit Arveiler
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France.,Service de Génétique Médicale, CHU de Bordeaux, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Bordeaux, France
| | - Patrick J Babin
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France
| | - Didier Lacombe
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France.,Service de Génétique Médicale, CHU de Bordeaux, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Bordeaux, France
| | - Caroline Rooryck
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Bordeaux, France.,Service de Génétique Médicale, CHU de Bordeaux, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Bordeaux, France
| |
Collapse
|
65
|
Jacquinet A, Millar D, Lehman A. Etiologies of uterine malformations. Am J Med Genet A 2016; 170:2141-72. [PMID: 27273803 DOI: 10.1002/ajmg.a.37775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Ranging from aplastic uterus (including Mayer-Rokitansky-Kuster-Hauser syndrome) to incomplete septate uterus, uterine malformations as a group are relatively frequent in the general population. Specific causes remain largely unknown. Although most occurrences ostensibly seem sporadic, familial recurrences have been observed, which strongly implicate genetic factors. Through the study of animal models, human syndromes, and structural chromosomal variation, several candidate genes have been proposed and subsequently tested with targeted methods in series of individuals with isolated, non-isolated, or syndromic uterine malformations. To date, a few genes have garnered strong evidence of causality, mainly in syndromic presentations (HNF1B, WNT4, WNT7A, HOXA13). Sequencing of candidate genes in series of individuals with isolated uterine abnormalities has been able to suggest an association for several genes, but confirmation of a strong causative effect is still lacking for the majority of them. We review the current state of knowledge about the developmental origins of uterine malformations, with a focus on the genetic variants that have been implicated or associated with these conditions in humans, and we discuss potential reasons for the high rate of negative results. The evidence for various environmental and epigenetic factors is also reviewed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adeline Jacquinet
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Center for Human Genetics, Centre Hospitalier Universitaire and University of Liège, Liège, Belgium
| | - Debra Millar
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
66
|
Chawla B, Schley E, Williams AL, Bohnsack BL. Retinoic Acid and Pitx2 Regulate Early Neural Crest Survival and Migration in Craniofacial and Ocular Development. ACTA ACUST UNITED AC 2016; 107:126-35. [PMID: 27175943 DOI: 10.1002/bdrb.21177] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Bahaar Chawla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Elisa Schley
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
67
|
Srour M, Caron V, Pearson T, Nielsen SB, Lévesque S, Delrue MA, Becker TA, Hamdan FF, Kibar Z, Sattler SG, Schneider MC, Bitoun P, Chassaing N, Rosenfeld JA, Xia F, Desai S, Roeder E, Kimonis V, Schneider A, Littlejohn RO, Douzgou S, Tremblay A, Michaud JL. Gain-of-Function Mutations inRARBCause Intellectual Disability with Progressive Motor Impairment. Hum Mutat 2016; 37:786-93. [DOI: 10.1002/humu.23004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Myriam Srour
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
- Department of Pediatrics; Neurology and Neurosurgery; McGill University; Montreal H3A 1A4 Canada
| | | | - Toni Pearson
- Department of Neurology; Icahn School of Medicine at Mount Sinai; New York New York 10029
| | | | - Sébastien Lévesque
- Division of Medical Genetics; Department of Pediatrics; Centre Hospitalier Universitaire de Sherbrooke; Sherbrooke J1H 5N4 Canada
| | - Marie-Ange Delrue
- Department of Pediatrics; Université de Montréal; Montreal H3T 1J4 Canada
| | - Troy A. Becker
- Division of Genetics and Metabolism; All Children's Hospital; St-Petersburg Florida 33701
| | - Fadi F. Hamdan
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
| | - Zoha Kibar
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
- Department of Neurosciences; Université de Montréal; Montreal H3T 1J4 Canada
| | | | | | - Pierre Bitoun
- Génétique Médicale; Hôpital Jean Verdier AP-HP; C.H.U. Paris Nord Bondy 93140 France
| | - Nicolas Chassaing
- Service de Génétique Médicale; Hôpital Purpan; CHU Toulouse Toulouse 31059 France
- Université Paul-Sabatier; Toulouse III, EA-4555 and Inserm U1056 Toulouse 31000 France
| | | | - Fan Xia
- Baylor College of Medicine; Houston Texas 77030
| | - Sonal Desai
- Department of Neurogenetics; Kennedy Krieger Institute; Baltimore Maryland 21205
| | | | - Virginia Kimonis
- Division of Genetics and Genomic Medicine; Univerity of California-Irvine Medical Center; Orange California 92868
| | - Adele Schneider
- Division of Genetics and Genomic Medicine; Univerity of California-Irvine Medical Center; Orange California 92868
| | | | - Sofia Douzgou
- Manchester Centre for Genomic Medicine; Central Manchester University Hospitals NHS Foundation Trust; MAHSC; Saint Mary's Hospital; Manchester M13 9WL UK
| | - André Tremblay
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
- Department of Obstetrics and Gynecology; Université de Montréal; Montreal H3T 1J4 Canada
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montreal H3T 1J4 Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine Research Center; Montréal H3T 1C5 Canada
- Department of Pediatrics; Université de Montréal; Montreal H3T 1J4 Canada
- Department of Neurosciences; Université de Montréal; Montreal H3T 1J4 Canada
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montreal H3T 1J4 Canada
| |
Collapse
|
68
|
Harel T, Yesil G, Bayram Y, Coban-Akdemir Z, Charng WL, Karaca E, Al Asmari A, Eldomery MK, Hunter JV, Jhangiani SN, Rosenfeld JA, Pehlivan D, El-Hattab AW, Saleh MA, LeDuc CA, Muzny D, Boerwinkle E, Gibbs RA, Chung WK, Yang Y, Belmont JW, Lupski JR. Monoallelic and Biallelic Variants in EMC1 Identified in Individuals with Global Developmental Delay, Hypotonia, Scoliosis, and Cerebellar Atrophy. Am J Hum Genet 2016; 98:562-570. [PMID: 26942288 DOI: 10.1016/j.ajhg.2016.01.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
The paradigm of a single gene associated with one specific phenotype and mode of inheritance has been repeatedly challenged. Genotype-phenotype correlations can often be traced to different mutation types, localization of the variants in distinct protein domains, or the trigger of or escape from nonsense-mediated decay. Using whole-exome sequencing, we identified homozygous variants in EMC1 that segregated with a phenotype of developmental delay, hypotonia, scoliosis, and cerebellar atrophy in three families. In addition, a de novo heterozygous EMC1 variant was seen in an individual with a similar clinical and MRI imaging phenotype. EMC1 encodes a member of the endoplasmic reticulum (ER)-membrane protein complex (EMC), an evolutionarily conserved complex that has been proposed to have multiple roles in ER-associated degradation, ER-mitochondria tethering, and proper assembly of multi-pass transmembrane proteins. Perturbations of protein folding and organelle crosstalk have been implicated in neurodegenerative processes including cerebellar atrophy. We propose EMC1 as a gene in which either biallelic or monoallelic variants might lead to a syndrome including intellectual disability and preferential degeneration of the cerebellum.
Collapse
Affiliation(s)
- Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Gozde Yesil
- Department of Medical Genetics, Bezmialem University, Istanbul 34093, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ali Al Asmari
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill V Hunter
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain 15258, United Arab Emirates
| | - Mohammed A Saleh
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Charles A LeDuc
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston TX 77030, USA
| |
Collapse
|
69
|
Chassaing N, Davis EE, McKnight KL, Niederriter AR, Causse A, David V, Desmaison A, Lamarre S, Vincent-Delorme C, Pasquier L, Coubes C, Lacombe D, Rossi M, Dufier JL, Dollfus H, Kaplan J, Katsanis N, Etchevers HC, Faguer S, Calvas P. Targeted resequencing identifies PTCH1 as a major contributor to ocular developmental anomalies and extends the SOX2 regulatory network. Genome Res 2016; 26:474-85. [PMID: 26893459 PMCID: PMC4817771 DOI: 10.1101/gr.196048.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/04/2016] [Indexed: 12/17/2022]
Abstract
Ocular developmental anomalies (ODA) such as anophthalmia/microphthalmia (AM) or anterior segment dysgenesis (ASD) have an estimated combined prevalence of 3.7 in 10,000 births. Mutations in SOX2 are the most frequent contributors to severe ODA, yet account for a minority of the genetic drivers. To identify novel ODA loci, we conducted targeted high-throughput sequencing of 407 candidate genes in an initial cohort of 22 sporadic ODA patients. Patched 1 (PTCH1), an inhibitor of sonic hedgehog (SHH) signaling, harbored an enrichment of rare heterozygous variants in comparison to either controls, or to the other candidate genes (four missense and one frameshift); targeted resequencing of PTCH1 in a second cohort of 48 ODA patients identified two additional rare nonsynonymous changes. Using multiple transient models and a CRISPR/Cas9-generated mutant, we show physiologically relevant phenotypes altering SHH signaling and eye development upon abrogation of ptch1 in zebrafish for which in vivo complementation assays using these models showed that all six patient missense mutations affect SHH signaling. Finally, through transcriptomic and ChIP analyses, we show that SOX2 binds to an intronic domain of the PTCH1 locus to regulate PTCH1 expression, findings that were validated both in vitro and in vivo. Together, these results demonstrate that PTCH1 mutations contribute to as much as 10% of ODA, identify the SHH signaling pathway as a novel effector of SOX2 activity during human ocular development, and indicate that ODA is likely the result of overactive SHH signaling in humans harboring mutations in either PTCH1 or SOX2.
Collapse
Affiliation(s)
- Nicolas Chassaing
- CHU Toulouse, Service de Génétique Médicale, Hôpital Purpan, 31059 Toulouse, France; Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; Inserm U1056, 31000 Toulouse, France
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA; Department of Pediatrics and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Kelly L McKnight
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Adrienne R Niederriter
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Alexandre Causse
- Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; CHU Toulouse, Service d'Ophtalmologie, Hôpital Purpan, 31059 Toulouse, France
| | - Véronique David
- Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, Faculté de Médecine, 35043 Rennes, France; Laboratoire de Génétique Moléculaire, CHU Pontchaillou, 35043 Rennes Cedex, France
| | - Annaïck Desmaison
- Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France
| | - Sophie Lamarre
- Université de Toulouse; INSA, UPS, INP, LISBP, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France; Plateforme Biopuces de la Génopole de Toulouse Midi Pyrénées, INSA/DGBA 135, 31077 Toulouse, France
| | | | - Laurent Pasquier
- Service de Génétique Clinique, Hôpital Sud, 35200 Rennes, France
| | - Christine Coubes
- Service de Génétique Médicale, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France
| | - Didier Lacombe
- Service de Génétique Médicale, Hôpital Pellegrin, 33076 Bordeaux Cedex, France; Université Bordeaux Segalen, Laboratoire MRGM, 33076 Bordeaux, France
| | - Massimiliano Rossi
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, 69677 Bron, France; INSERM U1028 UMR CNRS 5292, UCBL, CRNL TIGER Team, 69677 Bron Cedex, France
| | - Jean-Louis Dufier
- Service d'Ophtalmologie, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Helene Dollfus
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Josseline Kaplan
- INSERM U781 & Department of Genetics, Paris Descartes University, 75015 Paris, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA; Department of Pediatrics and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Heather C Etchevers
- Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; INSERM, UMR_S910, Aix-Marseille University, Faculté de Médecine, 13385 Marseille, France
| | | | - Patrick Calvas
- CHU Toulouse, Service de Génétique Médicale, Hôpital Purpan, 31059 Toulouse, France; Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; Inserm U1056, 31000 Toulouse, France
| |
Collapse
|
70
|
Liu C, Widen SA, Williamson KA, Ratnapriya R, Gerth-Kahlert C, Rainger J, Alur RP, Strachan E, Manjunath SH, Balakrishnan A, Floyd JA, Li T, Waskiewicz A, Brooks BP, Lehmann OJ, FitzPatrick DR, Swaroop A. A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma. Hum Mol Genet 2016; 25:1382-91. [PMID: 26908622 DOI: 10.1093/hmg/ddw020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/18/2016] [Indexed: 12/15/2022] Open
Abstract
Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt-Frizzled (FZD) signaling in ocular development and directly implicate WNT-FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma.
Collapse
Affiliation(s)
- Chunqiao Liu
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Sonya A Widen
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Kathleen A Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich, Frauenklinikstrasse 24, Zurich 8091, Switzerland
| | - Joe Rainger
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ramakrishna P Alur
- Unit on Pediatric, Developmental, and Genetic Eye Disease, National Eye Institute, 10 Center Drive, Bethesda, MD 20892, USA
| | - Erin Strachan
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Souparnika H Manjunath
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Archana Balakrishnan
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - James A Floyd
- Welcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and
| | | | - Tiansen Li
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Andrew Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9,
| | - Brian P Brooks
- Unit on Pediatric, Developmental, and Genetic Eye Disease, National Eye Institute, 10 Center Drive, Bethesda, MD 20892, USA
| | - Ordan J Lehmann
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB, Canada T6G 2H7, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK,
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,
| |
Collapse
|
71
|
Marcadier JL, Mears AJ, Woods EA, Fisher J, Airheart C, Qin W, Beaulieu CL, Dyment DA, Innes AM, Curry CJ. A novel mutation in two Hmong families broadens the range of STRA6-related malformations to include contractures and camptodactyly. Am J Med Genet A 2015; 170A:11-8. [PMID: 26373900 DOI: 10.1002/ajmg.a.37389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/13/2015] [Indexed: 11/06/2022]
Abstract
PDAC (also termed Matthew Wood) syndrome is a rare, autosomal recessive disorder characterized by pulmonary hypoplasia/aplasia, diaphragmatic defects, bilateral anophthalmia, and cardiac malformations. The disorder is caused by mutations in STRA6, an important regulator of vitamin A and retinoic acid metabolism. We describe six cases from four families of Hmong ancestry, seen over a 30 years period in California. These include: (i) consanguineous siblings with a combination of bilateral anophthalmia, diaphragmatic abnormalities, truncus arteriosus, and/or pulmonary agenesis/hypoplasia; (ii) a singleton fetus with bilateral anophthalmia, pulmonary agenesis, cardiac malformation, and renal hypoplasia; (iii) a sibling pair with a combination of antenatal contractures, camptodactyly, fused palpebral fissures, pulmonary agenesis, and/or truncus arteriosus; (iv) a fetus with bilateral anophthalmia, bushy eyebrows, pulmonary agenesis, heart malformation, and abnormal hand positioning. The phenotypic spectrum of PDAC syndrome has until now not included contractures or camptodactyly. Sequencing of STRA6 in unrelated members of families three and four identified a novel, shared homozygous splice site alteration (c.113 + 3_4delAA) that is predicted to be pathogenic. We hypothesize this may represent a unique disease allele in the Hmong. We also provide a focused review of all published PDAC syndrome cases with confirmed or inferred STRA6 mutations, illustrating the phenotypic and molecular variability that characterizes this disorder.
Collapse
Affiliation(s)
- Julien L Marcadier
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Alan J Mears
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jamie Fisher
- Genetic Medicine Central California, Fresno, California
| | - Cory Airheart
- Community Perinatology Medical Group, Fresno, California
| | - Wen Qin
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Chandree L Beaulieu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | - Cynthia J Curry
- Genetic Medicine Central California, Fresno, California.,Department of Pediatrics, University of California, San Francisco, California
| | | |
Collapse
|
72
|
Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6. MEMBRANES 2015; 5:425-53. [PMID: 26343735 PMCID: PMC4584289 DOI: 10.3390/membranes5030425] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
Vitamin A has biological functions as diverse as sensing light for vision, regulating stem cell differentiation, maintaining epithelial integrity, promoting immune competency, regulating learning and memory, and acting as a key developmental morphogen. Vitamin A derivatives have also been used in treating human diseases. If vitamin A is considered a drug that everyone needs to take to survive, evolution has come up with a natural drug delivery system that combines sustained release with precise and controlled delivery to the cells or tissues that depend on it. This "drug delivery system" is mediated by plasma retinol binding protein (RBP), the principle and specific vitamin A carrier protein in the blood, and STRA6, the cell-surface receptor for RBP that mediates cellular vitamin A uptake. The mechanism by which the RBP receptor absorbs vitamin A from the blood is distinct from other known cellular uptake mechanisms. This review summarizes recent progress in elucidating the fundamental molecular mechanism mediated by the RBP receptor and multiple newly discovered catalytic activities of this receptor, and compares this transport system with retinoid transport independent of RBP/STRA6. How to target this new type of transmembrane receptor using small molecules in treating diseases is also discussed.
Collapse
|
73
|
Reis LM, Semina EV. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma. ACTA ACUST UNITED AC 2015; 105:96-113. [PMID: 26046913 DOI: 10.1002/bdrc.21097] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
74
|
Slavotinek AM, Garcia ST, Chandratillake G, Bardakjian T, Ullah E, Wu D, Umeda K, Lao R, Tang PLF, Wan E, Madireddy L, Lyalina S, Mendelsohn BA, Dugan S, Tirch J, Tischler R, Harris J, Clark MJ, Chervitz S, Patwardhan A, West JM, Ursell P, de Alba Campomanes A, Schneider A, Kwok PY, Baranzini S, Chen RO. Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. Clin Genet 2015; 88:468-73. [PMID: 25457163 DOI: 10.1111/cge.12543] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/09/2014] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
Abstract
Anophthalmia/microphthalmia (A/M) is a genetically heterogeneous birth defect for which the etiology is unknown in more than 50% of patients. We used exome sequencing with the ACE Exome(TM) (Personalis, Inc; 18 cases) and UCSF Genomics Core (21 cases) to sequence 28 patients with A/M and four patients with varied developmental eye defects. In the 28 patients with A/M, we identified de novo mutations in three patients (OTX2, p.(Gln91His), RARB, p.Arg387Cys and GDF6, p.Ala249Glu) and inherited mutations in STRA6 in two patients. In patients with developmental eye defects, a female with cataracts and cardiomyopathy had a de novo COL4A1 mutation, p.(Gly773Arg), expanding the phenotype associated with COL4A1 to include cardiomyopathy. A male with a chorioretinal defect, microcephaly, seizures and sensorineural deafness had two PNPT1 mutations, p.(Ala507Ser) and c.401-1G>A, and we describe eye defects associated with this gene for the first time. Exome sequencing was efficient for identifying mutations in pathogenic genes for which there is no clinical testing available and for identifying cases that expand phenotypic spectra, such as the PNPT1 and COL4A1-associated disorders described here.
Collapse
Affiliation(s)
- A M Slavotinek
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.,Program in Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | | | | | - T Bardakjian
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - E Ullah
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.,Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - D Wu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - K Umeda
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - R Lao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - P L-F Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - E Wan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - L Madireddy
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - S Lyalina
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - B A Mendelsohn
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - S Dugan
- Division of Medical Genetics, Children's Hospitals & Clinics, Minneapolis, MN, USA
| | - J Tirch
- Personalis, Inc., Menlo Park, CA, USA
| | | | - J Harris
- Personalis, Inc., Menlo Park, CA, USA
| | - M J Clark
- Personalis, Inc., Menlo Park, CA, USA
| | | | | | - J M West
- Personalis, Inc., Menlo Park, CA, USA
| | - P Ursell
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - A de Alba Campomanes
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - A Schneider
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - P-Y Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - S Baranzini
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - R O Chen
- Personalis, Inc., Menlo Park, CA, USA
| |
Collapse
|
75
|
Abstract
Congenital diaphragmatic hernia (CDH) is a moderately prevalent birth defect that, despite advances in neonatal care, is still a significant cause of infant death, and surviving patients have significant morbidity. The goal of ongoing research to elucidate the genetic causes of CDH is to develop better treatment and ultimately prevention. CDH is a complex developmental defect that is etiologically heterogeneous. This review summarizes the recurrent genetic causes of CDH including aneuploidies, chromosome copy number variants, and single gene mutations. It also discusses strategies for genetic evaluation and genetic counseling in an era of rapidly evolving technologies in clinical genetic diagnostics.
Collapse
Affiliation(s)
| | | | - Wendy K. Chung
- Corresponding author. Address: Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, 1150 St Nicholas Avenue, Room 620, New York, NY 10032, USA. Tel.: +1 212-851-5313; fax: +1 212-851-5306. (W.K. Chung)
| |
Collapse
|
76
|
A homozygous loss-of-function variant in MYH11 in a case with megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur J Hum Genet 2014; 23:1266-8. [PMID: 25407000 PMCID: PMC4538215 DOI: 10.1038/ejhg.2014.256] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022] Open
Abstract
Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is characterized by marked dilatation of the bladder and microcolon and decreased intestinal peristalsis. Recent studies indicate that heterozygous variants in ACTG2, which codes for a smooth muscle actin, cause MMIHS. However, such variants do not explain MMIHS cases that show an autosomal recessive mode of inheritance. We performed exome sequencing in a newborn with MMIHS and prune belly phenotype whose parents are consanguineous and identified a homozygous variant (c.3598A>T: p.Lys1200Ter) in MYH11, which codes for the smooth muscle myosin heavy chain. Previous studies showed that loss of Myh11 function in mice causes a bladder and intestinal phenotype that is highly reminiscent of MMIHS. All together, these observations strongly suggest that loss-of-function variants in MYH11 cause MMIHS. The documentation of variants in ACTG2 and MYH11 thus points to the involvement of the contractile apparatus of the smooth muscle in MMIHS. Interestingly, dominant-negative variants in MYH11 have previously been shown to cause thoracic aortic aneurism and dilatation. Different mechanisms of MYH11 disruption may thus lead to distinct patterns of smooth muscle dysfunction.
Collapse
|
77
|
Rainger J, Pehlivan D, Johansson S, Bengani H, Sanchez-Pulido L, Williamson KA, Ture M, Barker H, Rosendahl K, Spranger J, Horn D, Meynert A, Floyd JAB, Prescott T, Anderson CA, Rainger JK, Karaca E, Gonzaga-Jauregui C, Jhangiani S, Muzny DM, Seawright A, Soares DC, Kharbanda M, Murday V, Finch A, Gibbs RA, van Heyningen V, Taylor MS, Yakut T, Knappskog PM, Hurles ME, Ponting CP, Lupski JR, Houge G, FitzPatrick DR. Monoallelic and biallelic mutations in MAB21L2 cause a spectrum of major eye malformations. Am J Hum Genet 2014; 94:915-23. [PMID: 24906020 PMCID: PMC4121478 DOI: 10.1016/j.ajhg.2014.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022] Open
Abstract
We identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.Arg51Cys]) in unrelated children with bilateral anophthalmia, intellectual disability, and rhizomelic skeletal dysplasia. c.152G>A (p.Arg51His) segregated with autosomal-dominant bilateral colobomatous microphthalmia in a large multiplex family. The fourth heterozygous mutation (c.145G>A [p.Glu49Lys]) affected an amino acid within two residues of Arg51 in an adult male with bilateral colobomata. In a fifth family, a homozygous mutation (c.740G>A [p.Arg247Gln]) altering a different region of the protein was identified in two male siblings with bilateral retinal colobomata. In mouse embryos, Mab21l2 showed strong expression in the developing eye, pharyngeal arches, and limb bud. As predicted by structural homology, wild-type MAB21L2 bound single-stranded RNA, whereas this activity was lost in all altered forms of the protein. MAB21L2 had no detectable nucleotidyltransferase activity in vitro, and its function remains unknown. Induced expression of wild-type MAB21L2 in human embryonic kidney 293 cells increased phospho-ERK (pERK1/2) signaling. Compared to the wild-type and p.Arg247Gln proteins, the proteins with the Glu49 and Arg51 variants had increased stability. Abnormal persistence of pERK1/2 signaling in MAB21L2-expressing cells during development is a plausible pathogenic mechanism for the heterozygous mutations. The phenotype associated with the homozygous mutation might be a consequence of complete loss of MAB21L2 RNA binding, although the cellular function of this interaction remains unknown.
Collapse
Affiliation(s)
- Joe Rainger
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, 604B, Houston, TX 77030, USA
| | - Stefan Johansson
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Jonas Liesvei 65, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Hemant Bengani
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Luis Sanchez-Pulido
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Kathleen A Williamson
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Mehmet Ture
- Department of Medical Genetics, University of Uludag, 16120 Bursa, Turkey
| | - Heather Barker
- Edinburgh Cancer Research Centre, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Karen Rosendahl
- Paediatric Radiology Department, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Denise Horn
- Institut für Medizinische Genetik, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany
| | - Alison Meynert
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - James A B Floyd
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Trine Prescott
- Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Carl A Anderson
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jacqueline K Rainger
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, 604B, Houston, TX 77030, USA
| | - Claudia Gonzaga-Jauregui
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, 604B, Houston, TX 77030, USA
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX 77030, USA
| | - Anne Seawright
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Dinesh C Soares
- Centre for Genomics and Experimental Medicine, Medical Research Council Institute Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Mira Kharbanda
- Clinical Genetics, Southern General Hospital, Glasgow G51 4TF, UK
| | - Victoria Murday
- Clinical Genetics, Southern General Hospital, Glasgow G51 4TF, UK
| | - Andrew Finch
- Edinburgh Cancer Research Centre, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, 604B, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX 77030, USA
| | - Veronica van Heyningen
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Martin S Taylor
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | - Tahsin Yakut
- Department of Medical Genetics, University of Uludag, 16120 Bursa, Turkey
| | - Per M Knappskog
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Jonas Liesvei 65, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Chris P Ponting
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, 604B, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX 77030, USA
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Jonas Liesvei 65, 5021 Bergen, Norway
| | - David R FitzPatrick
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK.
| |
Collapse
|
78
|
Williamson KA, FitzPatrick DR. The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur J Med Genet 2014; 57:369-80. [PMID: 24859618 DOI: 10.1016/j.ejmg.2014.05.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Microphthalmia, anophthalmia and coloboma (MAC) are distinct phenotypes that represent a continuum of structural developmental eye defects. In severe bilateral cases (anophthalmia or severe microphthalmia) the genetic cause is now identifiable in approximately 80 percent of cases, with de novo heterozygous loss-of-function mutations in SOX2 or OTX2 being the most common. The genetic cause of other forms of MAC, in particular isolated coloboma, remains unknown in the majority of cases. This review will focus on MAC phenotypes that are associated with mutation of the genes SOX2, OTX2, PAX6, STRA6, ALDH1A3, RARB, VSX2, RAX, FOXE3, BMP4, BMP7, GDF3, GDF6, ABCB6, ATOH7, C12orf57, TENM3 (ODZ3), and VAX1. Recently reported mutation of the SALL2 and YAP1 genes are discussed in brief. Clinical and genetic features were reviewed in a total of 283 unrelated MAC cases or families that were mutation-positive from these 20 genes. Both the relative frequency of mutations in MAC cohort screens and the level of confidence in the assignment of disease-causing status were evaluated for each gene.
Collapse
Affiliation(s)
- Kathleen A Williamson
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David R FitzPatrick
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
79
|
Deml B, Reis LM, Maheshwari M, Griffis C, Bick D, Semina EV. Whole exome analysis identifies dominant COL4A1 mutations in patients with complex ocular phenotypes involving microphthalmia. Clin Genet 2014; 86:475-81. [PMID: 24628545 DOI: 10.1111/cge.12379] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/14/2022]
Abstract
Anophthalmia/microphthalmia (A/M) is a developmental ocular malformation defined as complete absence or reduction in size of the eye. A/M is a heterogenous disorder with numerous causative genes identified; however, about half the cases lack a molecular diagnosis. We undertook whole exome sequencing in an A/M family with two affected siblings, two unaffected siblings, and unaffected parents; the ocular phenotype was isolated with only mild developmental delay/learning difficulties reported and a normal brain magnetic resonance imaging (MRI) in the proband at 16 months. No pathogenic mutations were identified in 71 known A/M genes. Further analysis identified a shared heterozygous mutation in COL4A1, c.2317G>A, p.(Gly773Arg) that was not seen in the unaffected parents and siblings. Analysis of 24 unrelated A/M exomes identified a novel c.2122G>A, p.(Gly708Arg) mutation in an additional patient with unilateral microphthalmia, bilateral microcornea and Peters anomaly; the mutation was absent in the unaffected mother and the unaffected father was not available. Mutations in COL4A1 have been linked to a spectrum of human disorders; the most consistent feature is cerebrovascular disease with variable ocular anomalies, kidney and muscle defects. This study expands the spectrum of COL4A1 phenotypes and indicates screening in patients with A/M regardless of MRI findings or presumed inheritance pattern.
Collapse
Affiliation(s)
- B Deml
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|