51
|
Yalçın B, Zhao L, Stofanko M, O'Sullivan NC, Kang ZH, Roost A, Thomas MR, Zaessinger S, Blard O, Patto AL, Sohail A, Baena V, Terasaki M, O'Kane CJ. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. eLife 2017; 6. [PMID: 28742022 PMCID: PMC5576921 DOI: 10.7554/elife.23882] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/24/2017] [Indexed: 01/17/2023] Open
Abstract
Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function. DOI:http://dx.doi.org/10.7554/eLife.23882.001 The way we move – from simple motions like reaching out to grab something, to playing the piano or dancing – is coordinated in our brain. These processes involve many regions and steps, in which nerve cells transport signals along projections known as axons. Axons rely on sophisticated ‘engineering’ to work properly over long distances and are vulnerable to diseases that disrupt their engineering. For example, in genetic diseases called ‘hereditary spastic paraplegias’, damages to the ‘distal’ end of axons – the end furthest from the nerve cell body – cause paralysis of the lower body. Axons have several internal structures that make sure everything works properly. One of these structures is the endoplasmic reticulum, which is a network of tubular membranes that runs lengthwise along the axon. It is known that spastic paraplegias are sometimes caused by mutations affecting proteins that help to build and shape the endoplasmic reticulum, for example, the proteins of the reticulon and REEP families. However, until now it was not known how the ER forms its network in the axons and if this is influenced by these proteins. To see whether reticulons and REEPs affect the shape of the endoplasmic reticulum, Yalçιn et al. used healthy fruit fly larvae, and genetically modified ones that lacked the proteins. The results show that in healthy flies, the tubular network runs continuously along the axons. When either reticulon or REEP proteins were removed, the distal axons contained less endoplasmic reticulum. In mutant fly larvae that lacked both protein families, the endoplasmic reticulum was more interrupted and contained more gaps than in normal larvae. Using high-magnification electron microscopy confirmed these findings, and showed that the tubules of the endoplasmic reticulum in mutant axons were larger, but fewer. A next step will be to test whether these mutations also affect how the axons work and communicate over long distances. A better knowledge of the role of the endoplasmic reticulum in axons will help us to understand how damages to it could affect hereditary spastic paraplegias and other degenerative conditions. DOI:http://dx.doi.org/10.7554/eLife.23882.002
Collapse
Affiliation(s)
- Belgin Yalçın
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Lu Zhao
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Martin Stofanko
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Niamh C O'Sullivan
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Zi Han Kang
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Annika Roost
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Matthew R Thomas
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sophie Zaessinger
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Blard
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Alex L Patto
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Anood Sohail
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Cahir J O'Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
52
|
Control of a Novel Spermatocyte-Promoting Factor by the Male Germline Sex Determination Factor PHF7 of Drosophila melanogaster. Genetics 2017; 206:1939-1949. [PMID: 28588035 DOI: 10.1534/genetics.117.199935] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
A key aspect of germ cell development is to establish germline sexual identity and initiate a sex-specific developmental program to promote spermatogenesis or oogenesis. Previously, we have identified the histone reader Plant Homeodomain Finger 7 (PHF7) as an important regulator of male germline identity. To understand how PHF7 directs sexual differentiation of the male germline, we investigated the downstream targets of PHF7 by combining transcriptome analyses, which reveal genes regulated by Phf7, with genomic profiling of histone H3K4me2, the chromatin mark that is bound by PHF7. Through these genomic experiments, we identify a novel spermatocyte factor Receptor Accessory Protein Like 1 (REEPL1) that can promote spermatogenesis and whose expression is kept off by PHF7 in the spermatogonial stage. Loss of Reepl1 significantly rescues the spermatogenesis defects in Phf7 mutants, indicating that regulation of Reepl1 is an essential aspect of PHF7 function. Further, increasing REEPL1 expression facilitates spermatogenic differentiation. These results indicate that PHF7 controls spermatogenesis by regulating the expression patterns of important male germline genes.
Collapse
|
53
|
Parodi L, Fenu S, Stevanin G, Durr A. Hereditary spastic paraplegia: More than an upper motor neuron disease. Rev Neurol (Paris) 2017; 173:352-360. [DOI: 10.1016/j.neurol.2017.03.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
|
54
|
Roda RH, Schindler AB, Blackstone C. De novo REEP2 missense mutation in pure hereditary spastic paraplegia. Ann Clin Transl Neurol 2017; 4:347-350. [PMID: 28491902 PMCID: PMC5420804 DOI: 10.1002/acn3.404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
Alterations in proteins that regulate endoplasmic reticulum morphology are common causes of hereditary spastic paraplegia (SPG1‐78, plus others). Mutations in the REEP1 gene that encodes an endoplasmic reticulum‐shaping protein are well‐known causes of SPG31, a common autosomal dominant spastic paraplegia. A closely‐related gene, REEP2, is mutated in SPG72, with both autosomal and recessive inheritances. Here, we report a patient with a pure hereditary spastic paraplegia due to a de novo missense mutation (c.119T > G, p.Met40Arg) in REEP2 at a highly‐conserved residue very close to another known pathogenic missense change. This represents only the second autosomal dominant SPG72 missense mutation reported.
Collapse
Affiliation(s)
- Ricardo H Roda
- Neuromuscular Medicine Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland.,Neurogenetics Branch National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland
| | - Alice B Schindler
- Neurogenetics Branch National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland
| | - Craig Blackstone
- Neurogenetics Branch National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland
| |
Collapse
|
55
|
Branchu J, Boutry M, Sourd L, Depp M, Leone C, Corriger A, Vallucci M, Esteves T, Matusiak R, Dumont M, Muriel MP, Santorelli FM, Brice A, El Hachimi KH, Stevanin G, Darios F. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration. Neurobiol Dis 2017; 102:21-37. [PMID: 28237315 PMCID: PMC5391847 DOI: 10.1016/j.nbd.2017.02.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/10/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients. The Spg11 knockout mouse developed early-onset motor impairment and cognitive deficits. These behavioral deficits were associated with progressive brain atrophy with the loss of neurons in the primary motor cortex, cerebellum and hippocampus, as well as with accumulation of dystrophic axons in the corticospinal tract. Spinal motor neurons also degenerated and this was accompanied by fragmentation of neuromuscular junctions and muscle atrophy. This new Spg11 knockout mouse therefore recapitulates the full range of symptoms associated with SPG11 mutations observed in HSP, ALS and CMT patients. Examination of the cellular alterations observed in this model suggests that the loss of spatacsin leads to the accumulation of lipids in lysosomes by perturbing their clearance from these organelles. Altogether, our results link lysosomal dysfunction and lipid metabolism to neurodegeneration and pinpoint a critical role of spatacsin in lipid turnover. Spg11 knockout mouse recapitulates the motor and cognitive symptoms observed in patients. Spg11 knockout mouse presents neurodegeneration in cortex, cerebellum, hippocampus and spinal cord. Loss of spatacsin, the product of Spg11, leads to early lysosomal dysfunction. Loss of spatacsin promotes lipid accumulation in lysosomes.
Collapse
Affiliation(s)
- Julien Branchu
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Maxime Boutry
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Laura Sourd
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Marine Depp
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Céline Leone
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Alexandrine Corriger
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Maeva Vallucci
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Typhaine Esteves
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Raphaël Matusiak
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Magali Dumont
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Marie-Paule Muriel
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Filippo M Santorelli
- Molecular Medicine, IRCCS Stella Maris Foundation, Calambronne, I-56100 Pisa, Italy
| | - Alexis Brice
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Khalid Hamid El Hachimi
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France.
| | - Frédéric Darios
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France.
| |
Collapse
|
56
|
Arno G, Agrawal SA, Eblimit A, Bellingham J, Xu M, Wang F, Chakarova C, Parfitt DA, Lane A, Burgoyne T, Hull S, Carss KJ, Fiorentino A, Hayes MJ, Munro PM, Nicols R, Pontikos N, Holder GE, Asomugha C, Raymond FL, Moore AT, Plagnol V, Michaelides M, Hardcastle AJ, Li Y, Cukras C, Webster AR, Cheetham ME, Chen R. Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa. Am J Hum Genet 2016; 99:1305-1315. [PMID: 27889058 PMCID: PMC5142109 DOI: 10.1016/j.ajhg.2016.10.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.
Collapse
Affiliation(s)
- Gavin Arno
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Smriti A Agrawal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | - David A Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Sarah Hull
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Keren J Carss
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge CB2 0PT, UK
| | | | - Matthew J Hayes
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peter M Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ralph Nicols
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Graham E Holder
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - F Lucy Raymond
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK; Ophthalmology Department, UCSF School of Medicine, Koret Vision Center, San Francisco, CA 94133-0644, USA
| | - Vincent Plagnol
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | | | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | | | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA.
| |
Collapse
|
57
|
Abstract
Purpose of review To present emerging issues in neurometabolic disorders, with an emphasis on the diagnostic workup of patients with suspected neurometabolic disorders and some future challenges in the care for these patients. Recent findings Next-generation sequencing and next-generation metabolic screening increase the speed and yield of the diagnostic process in neurometabolic disorders. Furthermore, they deepen our insights into the underlying disease mechanisms. Care of adult patients with neurometabolic disorders is an expanding subspecialty, especially in internal medicine and neurology. Summary We briefly discuss some novel genetic and biochemical laboratory techniques and changing insights in the molecular basis of disease, and illustrate the importance of MRI pattern recognition in the diagnostic process. Furthermore, we discuss gene therapy that is cautiously entering the field, and pay attention to the new field of (transition of) care for adult patients with inborn errors of metabolism.
Collapse
Affiliation(s)
- Michèl A Willemsen
- Department of Pediatric Neurology, Donders Centre for Brain, Cognition and Behavior (MAW), and Department of Laboratory Medicine, Translational Metabolic Laboratory (RAW), Radboud University Medical Centre, Nijmegen, the Netherlands; and Department of Neuroradiology (IH), University of Heidelberg Medical Center, Germany
| | - Inga Harting
- Department of Pediatric Neurology, Donders Centre for Brain, Cognition and Behavior (MAW), and Department of Laboratory Medicine, Translational Metabolic Laboratory (RAW), Radboud University Medical Centre, Nijmegen, the Netherlands; and Department of Neuroradiology (IH), University of Heidelberg Medical Center, Germany
| | - Ron A Wevers
- Department of Pediatric Neurology, Donders Centre for Brain, Cognition and Behavior (MAW), and Department of Laboratory Medicine, Translational Metabolic Laboratory (RAW), Radboud University Medical Centre, Nijmegen, the Netherlands; and Department of Neuroradiology (IH), University of Heidelberg Medical Center, Germany
| |
Collapse
|
58
|
Di Fabio R, Storti E, Tessa A, Pierelli F, Morani F, Santorelli FM. Hereditary spastic paraplegia: pathology, genetics and therapeutic prospects. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1153964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
59
|
Willkomm L, Heredia R, Hoffmann K, Wang H, Voit T, Hoffman EP, Cirak S. Homozygous mutation in Atlastin GTPase 1 causes recessive hereditary spastic paraplegia. J Hum Genet 2016; 61:571-3. [PMID: 26888483 DOI: 10.1038/jhg.2016.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 01/09/2016] [Accepted: 01/15/2016] [Indexed: 01/14/2023]
Abstract
Hereditary spastic paraplegia (HSP) is an extremely heterogeneous disease caused by mutations of numerous genes leading to lower limb spasticity (pure forms) that can be accompanied by neurological symptoms (complex forms). Despite recent advances, many causal mutations in patients remain unknown. We identified a consanguineous family with the early-onset HSP. Whole-exome sequencing revealed homozygosity for a novel Atlastin GTPase 1 gene stop mutation in three affected siblings. Heterozygous parents and siblings were unaffected. This was unexpected as mutations in the Atlastin 1 gene are known to cause autosomal dominant HSP. But our study showed that Atlastin 1 mutations may cause autosomal recessively inherited paraplegia with an underlying loss-of-function mechanism. Hence, patients with recessive forms of HSP should also be tested for the Atlastin 1 gene.
Collapse
Affiliation(s)
- Lena Willkomm
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Raul Heredia
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Katrin Hoffmann
- Institute of Human Genetics, Martin-Luther-University Halle-Wittenberg, Halle an der Saale, Germany
| | - Haicui Wang
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Voit
- Institute of Myology, Pierre and Marie Curie University, UPMC-INSERM UMR 974, Paris, France
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Sebahattin Cirak
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Peadiatrics, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
60
|
Dong XL, Liu TH, Wang W, Pan CX, Wu YF, Du GY, Chen P, Lu C, Pan MH. BmREEPa Is a Novel Gene that Facilitates BmNPV Entry into Silkworm Cells. PLoS One 2015; 10:e0144575. [PMID: 26656276 PMCID: PMC4681539 DOI: 10.1371/journal.pone.0144575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/22/2015] [Indexed: 11/26/2022] Open
Abstract
We previously established two silkworm cell lines, BmN-SWU1 and BmN-SWU2, from Bombyx mori ovaries. BmN-SWU1 cells are susceptible while BmN-SWU2 cells are highly resistant to BmNPV infection. Interestingly, we found that the entry of BmNPV into BmN-SWU2 cells was largely inhibited. To explore the mechanism of this inhibition, in this study we used isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative protein expression profiling and identified 629 differentially expressed proteins between the two cell lines. Among them, we identified a new membrane protein termed BmREEPa. The gene encoding BmREEPa transcribes two splice variants; a 573 bp long BmREEPa-L encoding a protein with 190 amino acids and a 501 bp long BmREEPa-S encoding a protein with 166 amino acids. BmREEPa contains a conserved TB2/DP, HVA22 domain and three transmembrane domains. It is localized in the plasma membrane with a cytoplasmic C-terminus and an extracellular N-terminus. We found that limiting the expression of BmREEPa in BmN-SWU1 cells inhibited BmNPV entry, whereas over-expression of BmREEPa in BmN-SWU2 cells promoted BmNPV entry. Our results also indicated that BmREEPa can interact with GP64, which is the key envelope fusion protein for BmNPV entry. Taken together, the findings of our study revealed that BmREEPa is required for BmNPV to gain entry into silkworm cells, and may provide insights for the identification of BmNPV receptors.
Collapse
Affiliation(s)
- Xiao-long Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Tai-hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cai-xia Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yun-fei Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guo-yu Du
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- * E-mail: (M-HP); (CL)
| | - Min-hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- * E-mail: (M-HP); (CL)
| |
Collapse
|
61
|
Yang Y, Liu W, Fang Z, Shi J, Che F, He C, Yao L, Wang E, Wu Y. A Newly Identified Missense Mutation in FARS2 Causes Autosomal-Recessive Spastic Paraplegia. Hum Mutat 2015; 37:165-9. [PMID: 26553276 DOI: 10.1002/humu.22930] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023]
Abstract
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by spasticity of the lower limbs due to pyramidal tract dysfunction. Here, we report that a missense homozygous mutation c.424G>T (p.D142Y) in the FARS2 gene, which encodes a mitochondrial phenylalanyl tRNA synthetase (mtPheRS), causes HSP in a Chinese consanguineous family by using combination of homozygous mapping and whole-exome sequencing. Immunohistochemical experiments were performed showing that the FARS2 protein was highly expressed in the Purkinje cells of rat cerebellum. The aminoacylation activity of mtPheRS was severely disrupted by the p.D142Y substitution in vitro not only in the first aminoacylation step but also in the last transfer step. Taken together, our results indicate that a missense mutation in FARS2 contributes to HSP, which has the clinical significance of the regulation of tRNA synthetases in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Yang
- Department of Biochemistry and Molecular Biology, Xi'an, Shaanxi, 710032, China.,Center for DNA Typing, Xi'an, Shaanxi, 710032, China
| | - Wei Liu
- Department of physiotherapy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhipeng Fang
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 710031, China
| | - Juan Shi
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 200032, China
| | - Fengyu Che
- Center for DNA Typing, Xi'an, Shaanxi, 710032, China
| | - Chunxia He
- Department of Biochemistry and Molecular Biology, Xi'an, Shaanxi, 710032, China.,Center for DNA Typing, Xi'an, Shaanxi, 710032, China
| | - Libo Yao
- Department of Biochemistry and Molecular Biology, Xi'an, Shaanxi, 710032, China
| | - Enduo Wang
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 710031, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Xi'an, Shaanxi, 710032, China.,Center for DNA Typing, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
62
|
Kumar KR, Blair NF, Sue CM. An Update on the Hereditary Spastic Paraplegias: New Genes and New Disease Models. Mov Disord Clin Pract 2015; 2:213-223. [PMID: 30838228 DOI: 10.1002/mdc3.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/24/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023] Open
Abstract
Aims The hereditary spastic paraplegias (HSPs) are a heterogeneous group of disorders characterized by spasticity in the lower limbs. We provide an overview of HSP with an emphasis on recent developments. Methods A PubMed search using the term "hereditary spastic paraplegia" and "hereditary spastic paraparesis" was conducted for a period from January 2012 to January 2015. We discuss and critique the major studies in the field over this 36-month period. Results A total of 346 publications were identified, of which 47 were selected for review. We provide an update of the common forms of HSP and include patient videos. We also discuss how next-generation sequencing (NGS) has led to the accelerated discovery of new HSP genes, including B4GALNT1,DDHD1, C19orf12,GBA2,TECPR2,DDHD2, C12orf65,REEP2, and IBA57. Moreover, a single study alone identified 18 previously unknown putative HSP genes and created a model for the protein interactions of HSP, called the "HSPome." Many of the newly reported genes cause rare, complicated, autosomal recessive forms of HSP. NGS also has important clinical applications by facilitating the molecular diagnosis of HSP. Furthermore, common genetic forms of HSP have been studied using new disease models, such as neurons derived from induced pluripotent stem cells. These models have been used to elucidate important disease mechanisms and have served as platforms to screen for candidate drug compounds. Conclusion The field of HSP research has been progressing at a rapid pace. The challenge remains in translating these advances into new targeted disease therapies.
Collapse
Affiliation(s)
- Kishore R Kumar
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Nicholas F Blair
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Carolyn M Sue
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| |
Collapse
|
63
|
Coutelier M, Goizet C, Durr A, Habarou F, Morais S, Dionne-Laporte A, Tao F, Konop J, Stoll M, Charles P, Jacoupy M, Matusiak R, Alonso I, Tallaksen C, Mairey M, Kennerson M, Gaussen M, Schule R, Janin M, Morice-Picard F, Durand CM, Depienne C, Calvas P, Coutinho P, Saudubray JM, Rouleau G, Brice A, Nicholson G, Darios F, Loureiro JL, Zuchner S, Ottolenghi C, Mochel F, Stevanin G. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 2015; 138:2191-205. [PMID: 26026163 DOI: 10.1093/brain/awv143] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/04/2015] [Indexed: 12/30/2022] Open
Abstract
Hereditary spastic paraplegias are heterogeneous neurological disorders characterized by a pyramidal syndrome with symptoms predominantly affecting the lower limbs. Some limited pyramidal involvement also occurs in patients with an autosomal recessive neurocutaneous syndrome due to ALDH18A1 mutations. ALDH18A1 encodes delta-1-pyrroline-5-carboxylate synthase (P5CS), an enzyme that catalyses the first and common step of proline and ornithine biosynthesis from glutamate. Through exome sequencing and candidate gene screening, we report two families with autosomal recessive transmission of ALDH18A1 mutations, and predominant complex hereditary spastic paraplegia with marked cognitive impairment, without any cutaneous abnormality. More interestingly, we also identified monoallelic ALDH18A1 mutations segregating in three independent families with autosomal dominant pure or complex hereditary spastic paraplegia, as well as in two sporadic patients. Low levels of plasma ornithine, citrulline, arginine and proline in four individuals from two families suggested P5CS deficiency. Glutamine loading tests in two fibroblast cultures from two related affected subjects confirmed a metabolic block at the level of P5CS in vivo. Besides expanding the clinical spectrum of ALDH18A1-related pathology, we describe mutations segregating in an autosomal dominant pattern. The latter are associated with a potential trait biomarker; we therefore suggest including amino acid chromatography in the clinico-genetic work-up of hereditary spastic paraplegia, particularly in dominant cases, as the associated phenotype is not distinct from other causative genes.
Collapse
Affiliation(s)
- Marie Coutelier
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 5 Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, B-1200, Brussels, Belgium 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Cyril Goizet
- 7 Univ. Bordeaux, Laboratoire Maladies Rares: Génétique et Métabolisme, EA4576, F-33000, Bordeaux, France 8 CHU Pellegrin, Service de Génétique Médicale, F-33000, Bordeaux, France
| | - Alexandra Durr
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Florence Habarou
- 10 Metabolic Biochemistry Lab, Necker-Enfants Malades Hospital, APHP, F-75015; and University Paris Descartes, F-75006, Paris, France
| | - Sara Morais
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 12 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4150, Porto, Portugal 13 Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, P-4150, Porto, Portugal
| | - Alexandre Dionne-Laporte
- 14 Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Feifei Tao
- 15 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juliette Konop
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Marion Stoll
- 16 Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2138, Sydney, Australia
| | - Perrine Charles
- 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Maxime Jacoupy
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Raphaël Matusiak
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Isabel Alonso
- 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 12 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4150, Porto, Portugal 13 Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, P-4150, Porto, Portugal
| | - Chantal Tallaksen
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mathilde Mairey
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Marina Kennerson
- 16 Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2138, Sydney, Australia
| | - Marion Gaussen
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Rebecca Schule
- 15 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA 17 Centre for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, G-72074, Tübingen, Germany 18 German Centre of Neurodegenerative Diseases (DZNE), Eberhard-Karls-University, G-72074, Tübingen, Germany
| | - Maxime Janin
- 10 Metabolic Biochemistry Lab, Necker-Enfants Malades Hospital, APHP, F-75015; and University Paris Descartes, F-75006, Paris, France
| | - Fanny Morice-Picard
- 7 Univ. Bordeaux, Laboratoire Maladies Rares: Génétique et Métabolisme, EA4576, F-33000, Bordeaux, France 8 CHU Pellegrin, Service de Génétique Médicale, F-33000, Bordeaux, France
| | - Christelle M Durand
- 7 Univ. Bordeaux, Laboratoire Maladies Rares: Génétique et Métabolisme, EA4576, F-33000, Bordeaux, France
| | - Christel Depienne
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Patrick Calvas
- 19 Fédération de Neurologie et Service de Génétique Médicale, CHU de Toulouse, Hôpital Purpan, F-31059, Toulouse, France
| | - Paula Coutinho
- 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 12 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4150, Porto, Portugal 20 Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, P-4520-211, Santa Maria da Feira, Portugal
| | - Jean-Marie Saudubray
- 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Guy Rouleau
- 14 Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada 21 Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexis Brice
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Garth Nicholson
- 16 Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2138, Sydney, Australia
| | - Frédéric Darios
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - José L Loureiro
- 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 20 Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, P-4520-211, Santa Maria da Feira, Portugal
| | - Stephan Zuchner
- 15 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chris Ottolenghi
- 10 Metabolic Biochemistry Lab, Necker-Enfants Malades Hospital, APHP, F-75015; and University Paris Descartes, F-75006, Paris, France
| | - Fanny Mochel
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Giovanni Stevanin
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| |
Collapse
|
64
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
65
|
Elert-Dobkowska E, Hennings JC, Hübner CA, Beetz C. Multiplex ligation-dependent probe amplification for identification of correctly targeted murine embryonic stem cell clones. Anal Biochem 2015; 474:35-7. [PMID: 25615417 DOI: 10.1016/j.ab.2015.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
Abstract
Following locus-specific genome editing of mouse embryonic stem cells (ESCs), the identification of correctly targeted clones remains a challenge. We applied multiplex ligation-dependent probe amplification (MLPA) to screen for homologous recombination-based genomic integration of a knockout construct in which part of a gene is deleted. All candidate ESCs thereby identified were subsequently validated by conventional methods. Thus, MLPA represents a highly reliable as well as cost- and time-efficient alternative to currently applied methods such as Southern blotting and polymerase chain reaction (PCR)-based approaches. It is also applicable to knockin recombination strategies and compatible with the CRISPR/Cas9 system and other genome editing strategies.
Collapse
Affiliation(s)
- Ewelina Elert-Dobkowska
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747 Jena, Germany; Department of Genetics, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
66
|
Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet 2015; 134:511-38. [PMID: 25758904 PMCID: PMC4424374 DOI: 10.1007/s00439-015-1536-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSP) are rare neurodegenerative diseases sharing the degeneration of the corticospinal tracts as the main pathological characteristic. They are considered one of the most heterogeneous neurological disorders. All modes of inheritance have been described for the 84 different loci and 67 known causative genes implicated up to now. Recent advances in molecular genetics have revealed clinico-genetic heterogeneity of these disorders including their clinical and genetic overlap with other diseases of the nervous system. The systematic analysis of a large set of genes, including exome sequencing, is unmasking unusual phenotypes or inheritance modes associated with mutations in HSP genes and related genes involved in various neurological diseases. A new nosology may emerge after integration and understanding of these new data to replace the current classification. Collectively, functions of the known genes implicate the disturbance of intracellular membrane dynamics and trafficking as the consequence of alterations of cytoskeletal dynamics, lipid metabolism and organelle structures, which represent in fact a relatively small number of cellular processes that could help to find common curative approaches, which are still lacking.
Collapse
|
67
|
Ylikallio E, Kim D, Isohanni P, Auranen M, Kim E, Lönnqvist T, Tyynismaa H. Dominant transmission of de novo KIF1A motor domain variant underlying pure spastic paraplegia. Eur J Hum Genet 2015; 23:1427-30. [PMID: 25585697 DOI: 10.1038/ejhg.2014.297] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/05/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022] Open
Abstract
Variants in family 1 kinesin (KIF1A), which encodes a kinesin axonal motor protein, have been described to cause variable neurological manifestations. Recessive missense variants have led to spastic paraplegia, and recessive truncations to sensory and autonomic neuropathy. De novo missense variants cause developmental delay or intellectual disability, cerebellar atrophy and variable spasticity. We describe a family with father-to-son transmission of de novo variant in the KIF1A motor domain, in a phenotype of pure spastic paraplegia. Structural modeling of the predicted p.(Ser69Leu) amino acid change suggested that it impairs the stable binding of ATP to the KIF1A protein. Our study reports the first dominantly inherited KIF1A variant and expands the spectrum of phenotypes caused by heterozygous KIF1A motor domain variants to include pure spastic paraplegia. We conclude that KIF1A should be considered a candidate gene for hereditary paraplegias regardless of inheritance pattern.
Collapse
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Pirjo Isohanni
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Child Neurology, Children's Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
68
|
Hübner CA, Kurth I. Membrane-shaping disorders: a common pathway in axon degeneration. ACTA ACUST UNITED AC 2014; 137:3109-21. [PMID: 25281866 DOI: 10.1093/brain/awu287] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurons with long projections are particularly liable to damage, which is reflected by a large group of hereditary neurodegenerative disorders that primarily affect these neurons. In the group of hereditary spastic paraplegias motor axons of the central nervous system degenerate, while distal pure motor neuropathies, Charcot-Marie-Tooth disorders and the group of hereditary sensory and autonomic neuropathies are characterized by degeneration of peripheral nerve fibres. Because the underlying pathologies share many parallels, the disorders are also referred to as axonopathies. A large number of genes has been associated with axonopathies and one of the emerging subgroups encodes membrane-shaping proteins with a central reticulon homology domain. Association of these proteins with lipid bilayers induces positive membrane curvature and influences the architecture of cellular organelles. Membrane-shaping proteins closely cooperate and directly interact with each other, but their structural features and localization to distinct subdomains of organelles suggests mutually exclusive roles. In some individuals a mutation in a shaping protein can result in upper motor neuron dysfunction, whereas in other patients it can lead to a degeneration of peripheral neurons. This suggests that membrane-shaping disorders might be considered as a continuous disease-spectrum of the axon.
Collapse
Affiliation(s)
- Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
69
|
Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014; 261:518-39. [PMID: 24954637 DOI: 10.1016/j.expneurol.2014.06.011] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurological disorders characterized by pathophysiologic hallmark of length-dependent distal axonal degeneration of the corticospinal tracts. The prominent features of this pathological condition are progressive spasticity and weakness of the lower limbs. To date, 72 spastic gait disease-loci and 55 spastic paraplegia genes (SPGs) have been identified. All modes of inheritance (autosomal dominant, autosomal recessive, and X-linked) have been described. Recently, a late onset spastic gait disorder with maternal trait of inheritance has been reported, as well as mutations in genes not yet classified as spastic gait disease. Several cellular processes are involved in its pathogenesis, such as membrane and axonal transport, endoplasmic reticulum membrane modeling and shaping, mitochondrial function, DNA repair, autophagy, and abnormalities in lipid metabolism and myelination processes. Moreover, recent evidences have been found about the impairment of endosome membrane trafficking in vesicle formation and about the involvement of oxidative stress and mtDNA polymorphisms in the onset of the disease. Interactome networks have been postulated by bioinformatics and biological analyses of spastic paraplegia genes, which would contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Temistocle Lo Giudice
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Federica Lombardi
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Filippo Maria Santorelli
- Unità Operativa Complessa di Medicina Molecolare, Neurogenetica e Malattie Neurodegenerative, IRCCS Stella Maris, Pisa, Italy
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|
70
|
Gerondopoulos A, Bastos RN, Yoshimura SI, Anderson R, Carpanini S, Aligianis I, Handley MT, Barr FA. Rab18 and a Rab18 GEF complex are required for normal ER structure. ACTA ACUST UNITED AC 2014; 205:707-20. [PMID: 24891604 PMCID: PMC4050724 DOI: 10.1083/jcb.201403026] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ancestral Rab GTPase Rab18 and both subunits of the Rab3GAP complex are mutated in the human neurological and developmental disorder Warburg Micro syndrome. Here, we demonstrate that the Rab3GAP complex is a specific Rab18 guanine nucleotide exchange factor (GEF). The Rab3GAP complex localizes to the endoplasmic reticulum (ER) and is necessary for ER targeting of Rab18. It is also sufficient to promote membrane recruitment of Rab18. Disease-associated point mutations of conserved residues in either the Rab3GAP1 (T18P and E24V) or Rab3GAP2 (R426C) subunits result in loss of the Rab18 GEF and membrane-targeting activities. Supporting the view that Rab18 activity is important for ER structure, in the absence of either Rab3GAP subunit or Rab18 function, ER tubular networks marked by reticulon 4 were disrupted, and ER sheets defined by CLIMP-63 spread out into the cell periphery. Micro syndrome is therefore a disease characterized by direct loss of Rab18 function or loss of Rab18 activation at the ER by its GEF Rab3GAP.
Collapse
Affiliation(s)
| | | | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Rachel Anderson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK
| | - Sarah Carpanini
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, Scotland, UK
| | - Irene Aligianis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland, UK
| | - Mark T Handley
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland, UK
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK
| |
Collapse
|
71
|
Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GMH, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, El Din Mahmoud IG, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L, Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu P, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 2014; 343:506-511. [PMID: 24482476 PMCID: PMC4157572 DOI: 10.1126/science.1247363] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.
Collapse
Affiliation(s)
- Gaia Novarino
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ali G. Fenstermaker
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo 12311, Egypt
| | - Matan Hofree
- Department of Computer Science and Engineering and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer L. Silhavy
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D. Heiberg
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mostafa Abdellateef
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Basak Rosti
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric Scott
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lobna Mansour
- Department of Pediatric Neurology, Neurometabolic Unit, Cairo University Children’s Hospital, Cairo 406, Egypt
| | - Amira Masri
- Division of Child Neurology, Department of Pediatrics, University of Jordan, Amman 11942, Jordan
| | - Hulya Kayserili
- Istanbul University, Istanbul Medical Faculty, Medical Genetics Department, 34093 Istanbul, Turkey
| | - Jumana Y. Al-Aama
- Department of Genetic Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ghada M. H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo 12311, Egypt
| | | | - Majdi Kara
- Department of Pediatrics, Tripoli Children’s Hospital, Tripoli, Libya
| | - Bulent Kara
- Kocaeli University, Medical Faculty, Department of Pediatric Neurology, 41380 Umuttepe, Kocaeli, Turkey
| | - Bita Bozorgmehri
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics Division, Department of Pediatrics, Hamad Medical Corporation, Doha 3050, Qatar
| | - Faezeh Mojahedi
- Mashhad Medical Genetic Counseling Center, 91767 Mashhad, Iran
| | - Iman Gamal El Din Mahmoud
- Department of Pediatric Neurology, Neurometabolic Unit, Cairo University Children’s Hospital, Cairo 406, Egypt
| | - Naima Bouslam
- Université Mohammed V Souissi, Equipe de Recherchéde Maladies Neurodégéneratives (ERMN) and Centre de Recherche en Épidémiologie Clinique et Essais Thérapeutiques (CRECET), 6402 Rabat, Morocco
| | - Ahmed Bouhouche
- Université Mohammed V Souissi, Equipe de Recherchéde Maladies Neurodégéneratives (ERMN) and Centre de Recherche en Épidémiologie Clinique et Essais Thérapeutiques (CRECET), 6402 Rabat, Morocco
| | - Ali Benomar
- Université Mohammed V Souissi, Equipe de Recherchéde Maladies Neurodégéneratives (ERMN) and Centre de Recherche en Épidémiologie Clinique et Essais Thérapeutiques (CRECET), 6402 Rabat, Morocco
| | - Sylvain Hanein
- Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225; UPMC Univ Paris VI UMR_S975, 75013 Paris, France
| | - Laure Raymond
- Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225; UPMC Univ Paris VI UMR_S975, 75013 Paris, France
| | - Sylvie Forlani
- Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225; UPMC Univ Paris VI UMR_S975, 75013 Paris, France
| | - Massimo Mascaro
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laila Selim
- Department of Pediatric Neurology, Neurometabolic Unit, Cairo University Children’s Hospital, Cairo 406, Egypt
| | - Nabil Shehata
- Department of Pediatrics and Neonatology, Saudi German Hospital, Post Office Box 84348, Riyadh, Kingdom of Saudi Arabia
| | - Nasir Al-Allawi
- Department of Pathology, School of Medicine, University of Dohuk, Dohuk, Iraq
| | - P.S. Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Matloob Azam
- Department of Pediatrics and Child Neurology, Wah Medical College, Wah Cantt, Pakistan
| | - Murat Gunel
- Department of Genetics and Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ahmet Caglayan
- Department of Genetics and Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kaya Bilguvar
- Department of Genetics and Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Aslihan Tolun
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey
| | - Mahmoud Y. Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo 12311, Egypt
| | - Jana Schroth
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily G. Spencer
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rasim O. Rosti
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Naiara Akizu
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Keith K. Vaux
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anide Johansen
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alice A. Koh
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hisham Megahed
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo 12311, Egypt
| | - Alexandra Durr
- Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225; UPMC Univ Paris VI UMR_S975, 75013 Paris, France
- Assistance Publique–Hôpitaux de Paris, Fédération de Génétique, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Alexis Brice
- Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225; UPMC Univ Paris VI UMR_S975, 75013 Paris, France
- Assistance Publique–Hôpitaux de Paris, Fédération de Génétique, Pitié-Salpêtrière Hospital, 75013 Paris, France
- Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France
| | - Giovanni Stevanin
- Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225; UPMC Univ Paris VI UMR_S975, 75013 Paris, France
- Assistance Publique–Hôpitaux de Paris, Fédération de Génétique, Pitié-Salpêtrière Hospital, 75013 Paris, France
- Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France
- Laboratoire de Neurogénétique, Ecole Pratique des Hautes Etudes, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France
| | - Stacy B. Gabriel
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Trey Ideker
- Department of Computer Science and Engineering and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph G. Gleeson
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|