51
|
van der Klaauw AA, Croizier S, Mendes de Oliveira E, Stadler LKJ, Park S, Kong Y, Banton MC, Tandon P, Hendricks AE, Keogh JM, Riley SE, Papadia S, Henning E, Bounds R, Bochukova EG, Mistry V, O'Rahilly S, Simerly RB, Minchin JEN, Barroso I, Jones EY, Bouret SG, Farooqi IS. Human Semaphorin 3 Variants Link Melanocortin Circuit Development and Energy Balance. Cell 2019; 176:729-742.e18. [PMID: 30661757 PMCID: PMC6370916 DOI: 10.1016/j.cell.2018.12.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/28/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.
Collapse
Affiliation(s)
- Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Sophie Croizier
- The Saban Research Institute, Developmental Neuroscience Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Lukas K J Stadler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Soyoung Park
- The Saban Research Institute, Developmental Neuroscience Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Youxin Kong
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, Paris, France
| | - Matthew C Banton
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Panna Tandon
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, UK
| | - Audrey E Hendricks
- Wellcome Sanger Institute, Cambridge, UK; Department of Mathematical and Statistical Sciences, University of Colorado-Denver, Denver, CO 80204, USA
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Susanna E Riley
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, UK
| | - Sofia Papadia
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Elena G Bochukova
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vanisha Mistry
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Richard B Simerly
- The Saban Research Institute, Developmental Neuroscience Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, TN 37232-0615, USA
| | - James E N Minchin
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, UK
| | - Inês Barroso
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; Wellcome Sanger Institute, Cambridge, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; INSERM U1172, Jean-Pierre Aubert Research Center, Lille, France.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
52
|
James DM, Kozol RA, Kajiwara Y, Wahl AL, Storrs EC, Buxbaum JD, Klein M, Moshiree B, Dallman JE. Intestinal dysmotility in a zebrafish ( Danio rerio) shank3a;shank3b mutant model of autism. Mol Autism 2019; 10:3. [PMID: 30733854 PMCID: PMC6357389 DOI: 10.1186/s13229-018-0250-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background and aims Autism spectrum disorder (ASD) is currently estimated to affect more than 1% of the world population. For people with ASD, gastrointestinal (GI) distress is a commonly reported but a poorly understood co-occurring symptom. Here, we investigate the physiological basis for GI distress in ASD by studying gut function in a zebrafish model of Phelan-McDermid syndrome (PMS), a condition caused by mutations in the SHANK3 gene. Methods To generate a zebrafish model of PMS, we used CRISPR/Cas9 to introduce clinically related C-terminal frameshift mutations in shank3a and shank3b zebrafish paralogues (shank3abΔC). Because PMS is caused by SHANK3 haploinsufficiency, we assessed the digestive tract (DT) structure and function in zebrafish shank3abΔC+/− heterozygotes. Human SHANK3 mRNA was then used to rescue DT phenotypes in larval zebrafish. Results Significantly slower rates of DT peristaltic contractions (p < 0.001) with correspondingly prolonged passage time (p < 0.004) occurred in shank3abΔC+/− mutants. Rescue injections of mRNA encoding the longest human SHANK3 isoform into shank3abΔC+/− mutants produced larvae with intestinal bulb emptying similar to wild type (WT), but still deficits in posterior intestinal motility. Serotonin-positive enteroendocrine cells (EECs) were significantly reduced in both shank3abΔC+/− and shank3abΔC−/− mutants (p < 0.05) while enteric neuron counts and overall structure of the DT epithelium, including goblet cell number, were unaffected in shank3abΔC+/− larvae. Conclusions Our data and rescue experiments support mutations in SHANK3 as causal for GI transit and motility abnormalities. Reductions in serotonin-positive EECs and serotonin-filled ENS boutons suggest an endocrine/neural component to this dysmotility. This is the first study to date demonstrating DT dysmotility in a zebrafish single gene mutant model of ASD. Electronic supplementary material The online version of this article (10.1186/s13229-018-0250-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M James
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Robert A Kozol
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Yuji Kajiwara
- 2Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA.,5Denali Therapeutics, South San Francisco, CA USA
| | - Adam L Wahl
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Emily C Storrs
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Joseph D Buxbaum
- 2Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mason Klein
- 3Department of Physics, University of Miami, Coral Gables, FL USA
| | - Baharak Moshiree
- Division of Gastroenterology, Atrium Health, University of North Carolina, Charlotte, NC USA
| | - Julia E Dallman
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| |
Collapse
|
53
|
Wu L, Yuan W, Chen J, Zhou Z, Shu Y, Ji J, Liu Z, Tang Q, Zhang X, Shu X. Increased miR-214 expression suppresses cell migration and proliferation in Hirschsprung disease by interacting with PLAGL2. Pediatr Res 2019; 86:460-470. [PMID: 30822775 PMCID: PMC6768286 DOI: 10.1038/s41390-019-0324-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The miR-214 has been reported to be associated with various diseases, but its involvement in the pathophysiology of Hirschsprung disease (HSCR) is almost completely unexplored. METHODS In our study, we conducted a series of experiments to unravel the biological role of miR-214 in the pathophysiology of HSCR. qRT-PCR and western blotting were utilized to investigate the relative expression levels of miR-214, mRNAs, and proteins of related genes in colon tissues from 20 controls without HSCR and 24 patients with HSCR. The potential biological role of miR-214 in two cell lines (SKN-SH and SH-SY5Y) was assessed using the CCK8 assay, EdU staining, transwell assay, and flow cytometry. The dual-luciferase reporter assay was used to confirm PLAGL2 as a common target gene of miR-214. RESULTS All results suggested that miR-214 is upregulated in HSCR tissue samples compared with controls. Additionally, we found that miR-214 could inhibit cell proliferation and migration by directly downregulating the expression of PLAGL2, and the extent of the miR-214-mediated inhibitory effects could be rescued by a PLAGL2 overexpression plasmid. CONCLUSION Our results revealed that miR-214 is indeed involved in the pathophysiology of HSCR and suppresses cell proliferation and migration by directly downregulating PLAGL2 in cell models.
Collapse
Affiliation(s)
- Liang Wu
- 0000 0004 0368 7223grid.33199.31Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Wenzheng Yuan
- 0000 0004 0368 7223grid.33199.31Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,0000 0004 1758 2270grid.412632.0Present Address: Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Jinhuang Chen
- 0000 0004 0368 7223grid.33199.31Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zili Zhou
- 0000 0004 0368 7223grid.33199.31Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yan Shu
- 0000 0004 4677 3586grid.470508.eCollege of Clinical Medicine, Hubei University of Science and Technology, Xianning, 437100 China
| | - Jintong Ji
- 0000 0004 0368 7223grid.33199.31Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhengyi Liu
- 0000 0004 0368 7223grid.33199.31Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Qiang Tang
- 0000 0004 0368 7223grid.33199.31Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xudan Zhang
- 0000 0004 0368 7223grid.33199.31Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
54
|
Moore SW. Advances in understanding the association between Down syndrome and Hirschsprung disease (DS-HSCR). Pediatr Surg Int 2018; 34:1127-1137. [PMID: 30218169 DOI: 10.1007/s00383-018-4344-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
The clinical association between Trisomy 21 (Down syndrome) and aganglionosis (Hirschsprung disease; DS-HSCR) is well-established, being of the order of 5% and remains the most common congenital association with Hirschsprung disease. However, little consensus exists as to the possible etiologic and genetic factors influencing this association. Recent research has identified a number of levels at which development of the enteric nervous system is potentially affected in Trisomy 21. These include a decreased central pool of available neuroblasts for migration into the enteric nervous system, abnormal neuroblast type, poor synaptic nerve function and early germline gene-related influences on the migrating neuroblasts due to genetic mutations of a number of important developmental genes, and possible somatic mutations resulting from alterations in the local tissue microenvironment. In this paper, we review available evidence for this association. In addition, we provide evidence of both germline and somatic gene mutations suggesting causation. Although the picture is complex, recent associations between specific RET proto-oncogene variations have been shown to be significant in Down syndrome patients with Hirschsprung disease, as they probably interfere with vital RET functions in the development of the autonomic and enteric nervous systems, increasing the risk of disturbed normal function. In addition, we explore potential role of other facilitatory influence of other susceptibility genes as well as potential other chromosome 21 gene actions and the microenvironment on the Down syndrome gastro-intestinal tract. The various ways in which trisomy of chromosome influences the enteric nervous system are becoming clearer. The sum of these effects influences the outcome of surgery in Down syndrome patients with Hirschsprung Disease.
Collapse
Affiliation(s)
- S W Moore
- Division of Paediatric Surgery, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, South Africa.
| |
Collapse
|
55
|
Ke J, Zhu Y, Miao X. The advances of genetics research on Hirschsprung's disease. Pediatr Investig 2018; 2:189-195. [PMID: 32851260 PMCID: PMC7391411 DOI: 10.1002/ped4.12062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a rare and complex congenital disorder characterized by the absence of the enteric neurons in lower digestive tract with an incidence of 1/5 000. Affected infant usually suffer from severe constipation with megacolon and distended abdomen, and face long-term complications even after surgery. In the last 2 decades, great efforts and progresses have been made in understanding the genetics and molecular biological mechanisms that underlie HSCR. However, only a small fraction of the genetic risk can be explained by the identified mutations in the previously established genes. To search novel genetic alterations, new study designs with advanced technologies such as genome/exome-wide association studies (GWASs/EWASs) and next generation sequencing (NGS) on target genes or whole genome/exome, were applied to HSCR. In this review, we summaries the current development of the genetics researches on HSCR based on GWASs/EWASs and NGS, focusing on the newly discovered variants and genes, and their potential roles in HSCR pathogenesis.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan)WuhanChina
- Department of Epidemiology and BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan)WuhanChina
- Department of Epidemiology and BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan)WuhanChina
- Department of Epidemiology and BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
56
|
Combined Genetic Effects of RET and NRG1 Susceptibility Variants on Multifactorial Hirschsprung Disease in Indonesia. J Surg Res 2018; 233:96-99. [PMID: 30502294 DOI: 10.1016/j.jss.2018.07.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/02/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Specific genetic variants at RET (rs2435357) and NRG1 (rs7835688, rs16879552) are associated with Hirschsprung disease (HSCR) in Indonesia. This study aimed to investigate the additional effect of RET rs2506030 on these variants to determine its potential interactions in HSCR patients of Indonesian ancestry. METHODS Sixty HSCR patients and 122 non-HSCR controls were ascertained for this study and genotyped for RET rs2506030 using the TaqMan assay. RESULTS RET rs2506030 was associated with HSCR both by case-control analysis (odds ratio = 1.68; P = 0.043) and the transmission disequilibrium test (P = 0.034). Furthermore, individuals with five or six risk alleles at RET rs2506030, rs2435357 and NRG1 rs7835688 showed ∼45-fold higher HSCR risk than those with 0 or 1 or 2 risk alleles. CONCLUSIONS Disease risk of HSCR is increased by the combination of specific RET and NRG1 susceptibility variants.
Collapse
|
57
|
Li Y, Zhou L, Lu C, Shen Q, Su Y, Zhi Z, Wu F, Zhang H, Wen Z, Chen G, Li H, Xia Y, Tang W. Long non-coding RNA FAL1 functions as a ceRNA to antagonize the effect of miR-637 on the down-regulation of AKT1 in Hirschsprung's disease. Cell Prolif 2018; 51:e12489. [PMID: 30062828 DOI: 10.1111/cpr.12489] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Emerged evidence demonstrates that long non-coding RNAs (lncRNAs) may play quintessential regulatory roles in the cellular processes, tumourigenesis and the development of disease. Though focally amplified lncRNA on chromosome 1 (FAL1) has been identified to have crucial functions in many diseases, its biological mechanism in the development of Hirschsprung's disease (HSCR) still remains unknown. MATERIALS AND METHODS The expression levels of FAL1 in HSCR aganglionic tissues and matched normal specimens were detected by quantitative real-time PCR (qRT-PCR). Cell proliferation and migration were detected by Cell Counting Kit-8 (CCK-8) assay, Ethynyl-deoxyuridine (EdU) assay and transwell assay relatively. Cell cycle and apoptosis were assessed using flow cytometer analysis. Moreover, the novel targets of FAL1 were confirmed with the help of bioinformatics analysis and dual-luciferase reporter assay. Western blot assay as well as RNA immunoprecipitation (RIP) assay was conducted to investigate the potential mechanism. RESULTS FAL1 expression was markedly down-regulated in HSCR aganglionic tissues and decreased FAL1 expression was associated with the diagnosis of HSCR. Cell functional analyses indicated that FAL1 overexpressing notably promoted cell proliferation and migration, while down-regulation of FAL1 suppressed cell proliferation and migration. Additionally, Flow cytometry assay demonstrated that knockdown of FAL1 induced markedly cell cycle stalled in the G0/G1 phase. Furthermore, FAL1 could positively regulate AKT1 expression by competitively binding to miR-637. CONCLUSIONS These results illuminated that FAL1 may work as a ceRNA to modulate AKT1 expression via competitively binding to miR-637 in HSCR, suggesting that it may be clinically valuable as a biomarker of HSCR.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Su
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengke Zhi
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zechao Wen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guanglin Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongxing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
58
|
Sribudiani Y, Chauhan RK, Alves MM, Petrova L, Brosens E, Harrison C, Wabbersen T, de Graaf BM, Rügenbrink T, Burzynski G, Brouwer RWW, van IJcken WFJ, Maas SM, de Klein A, Osinga J, Eggen BJL, Burns AJ, Brooks AS, Shepherd IT, Hofstra RMW. Identification of Variants in RET and IHH Pathway Members in a Large Family With History of Hirschsprung Disease. Gastroenterology 2018; 155:118-129.e6. [PMID: 29601828 DOI: 10.1053/j.gastro.2018.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by absence of enteric ganglia in the distal part of the gut. Variants in ret proto-oncogene (RET) have been associated with up to 50% of familial and 35% of sporadic cases. We searched for variants that affect disease risk in a large, multigenerational family with history of HSCR in a linkage region previously associated with the disease (4q31.3-q32.3) and exome wide. METHODS We performed exome sequencing analyses of a family in the Netherlands with 5 members diagnosed with HSCR and 2 members diagnosed with functional constipation. We initially focused on variants in genes located in 4q31.3-q32.3; however, we also performed an exome-wide analysis in which known HSCR or HSCR-associated gene variants predicted to be deleterious were prioritized for further analysis. Candidate genes were expressed in HEK293, COS-7, and Neuro-2a cells and analyzed by luciferase and immunoblot assays. Morpholinos were designed to target exons of candidate genes and injected into 1-cell stage zebrafish embryos. Embryos were allowed to develop and stained for enteric neurons. RESULTS Within the linkage region, we identified 1 putative splice variant in the lipopolysaccharide responsive beige-like anchor protein gene (LRBA). Functional assays could not confirm its predicted effect on messenger RNA splicing or on expression of the mab-21 like 2 gene (MAB21L2), which is embedded in LRBA. Zebrafish that developed following injection of the lrba morpholino had a shortened body axis and subtle gut morphological defects, but no significant reduction in number of enteric neurons compared with controls. Outside the linkage region, members of 1 branch of the family carried a previously unidentified RET variant or an in-frame deletion in the glial cell line derived neurotrophic factor gene (GDNF), which encodes a ligand of RET. This deletion was located 6 base pairs before the last codon. We also found variants in the Indian hedgehog gene (IHH) and its mediator, the transcription factor GLI family zinc finger 3 (GLI3). When expressed in cells, the RET-P399L variant disrupted protein glycosylation and had altered phosphorylation following activation by GDNF. The deletion in GDNF prevented secretion of its gene product, reducing RET activation, and the IHH-Q51K variant reduced expression of the transcription factor GLI1. Injection of morpholinos that target ihh reduced the number of enteric neurons to 13% ± 1.4% of control zebrafish. CONCLUSIONS In a study of a large family with history of HSCR, we identified variants in LRBA, RET, the gene encoding the RET ligand (GDNF), IHH, and a gene encoding a mediator of IHH signaling (GLI3). These variants altered functions of the gene products when expressed in cells and knockout of ihh reduced the number of enteric neurons in the zebrafish gut.
Collapse
Affiliation(s)
- Yunia Sribudiani
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rajendra K Chauhan
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lucy Petrova
- Department of Biology, Emory University, Atlanta, Georgia
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Colin Harrison
- Department of Biology, Emory University, Atlanta, Georgia
| | - Tara Wabbersen
- Department of Biology, Emory University, Atlanta, Georgia
| | - Bianca M de Graaf
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tim Rügenbrink
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Rutger W W Brouwer
- Erasmus Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan Osinga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alan J Burns
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Neural Development and Gastroenterology Units, UCL Institute of Child Health, London, UK
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Neural Development and Gastroenterology Units, UCL Institute of Child Health, London, UK.
| |
Collapse
|
59
|
Tang CS, Zhuang X, Lam WY, Ngan ESW, Hsu JS, Michelle YU, Man-Ting SO, Cherny SS, Ngo ND, Sham PC, Tam PK, Garcia-Barcelo MM. Uncovering the genetic lesions underlying the most severe form of Hirschsprung disease by whole-genome sequencing. Eur J Hum Genet 2018; 26:818-826. [PMID: 29483666 PMCID: PMC5974185 DOI: 10.1038/s41431-018-0129-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/02/2018] [Accepted: 02/13/2018] [Indexed: 11/08/2022] Open
Abstract
Hirschsprung disease (HSCR) is a complex birth defect characterized by the lack of ganglion cells along a variable length of the distal intestine. A large proportion of HSCR patients remain genetically unexplained. We applied whole-genome sequencing (WGS) on 9 trios where the probands are sporadically affected with the most severe form of the disorder and harbor no coding sequence variants affecting the function of known HSCR genes. We found de novo protein-altering variants in three intolerant to change genes-CCT2, VASH1, and CYP26A1-for which a plausible link with the enteric nervous system (ENS) exists. De novo single-nucleotide and indel variants were present in introns and non-coding neighboring regions of ENS-related genes, including NRG1 and ERBB4. Joint analysis with those inherited rare variants found under recessive and/or digenic models revealed both patient-unique and shared genetic features where rare variants were found to be enriched in the extracellular matrix-receptor (ECM-receptor) pathway (p = 3.4 × 10-11). Delineation of the genetic profile of each patient might help finding common grounds that could lead to the discovery of shared molecules that could be used as drug targets for the currently ongoing cell therapy effort which aims at providing an alternative to the surgical treatment.
Collapse
Affiliation(s)
- Clara Sm Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, Hong Kong
| | - Xuehan Zhuang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai-Yee Lam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Elly Sau-Wai Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jacob Shujui Hsu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Y U Michelle
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - S O Man-Ting
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Stacey S Cherny
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Paul Kh Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, Hong Kong
| | - Maria-Mercè Garcia-Barcelo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
60
|
Sittewelle M, Monsoro-Burq AH. AKT signaling displays multifaceted functions in neural crest development. Dev Biol 2018; 444 Suppl 1:S144-S155. [PMID: 29859890 DOI: 10.1016/j.ydbio.2018.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France
| | - Anne H Monsoro-Burq
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France; Institut Universitaire de France, F-75005 Paris, France.
| |
Collapse
|
61
|
Wang Y, Yan W, Wang J, Zhou Y, Chen J, Gu B, Cai W. Common genetic variants in GAL, GAP43 and NRSN1 and interaction networks confer susceptibility to Hirschsprung disease. J Cell Mol Med 2018; 22:3377-3387. [PMID: 29654647 PMCID: PMC6010875 DOI: 10.1111/jcmm.13612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/22/2018] [Indexed: 01/21/2023] Open
Abstract
Hirschsprung disease (HSCR) is a severe multifactorial genetic disorder. Microarray studies indicated GAL,GAP43 and NRSN1 might contribute to the altered risk in HSCR. Thus, we focused on genetic variations in GAL,GAP43 and NRSN1, and the gene‐gene interactions involved in HSCR susceptibility. We recruited a strategy combining case‐control study and MassArray system with interaction network analysis. For GAL,GAP43 and NRSN1, a total of 18 polymorphisms were assessed in 104 subjects with sporadic HSCR and 151 controls of Han Chinese origin. We found statistically significant differences between HSCR and control groups at 5 genetic variants. For each gene, the haplotypes combining all polymorphisms were the most significant. Based on SNPsyn, MDR and GeneMANIA analyses, we observed significant gene‐gene interactions among GAL,GAP43,NRSN1 and our previous identified RELN,GABRG2 and PTCH1. Our study for the first time indicates that genetic variants within GAL,GAP43 and NRSN1 and related gene‐gene interaction networks might be involved in the altered susceptibility to HSCR in the Han Chinese population, which might shed more light on HSCR pathogenesis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Weihui Yan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jun Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jie Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Beilin Gu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
62
|
Semaphorin 3C and Its Receptors in Cancer and Cancer Stem-Like Cells. Biomedicines 2018; 6:biomedicines6020042. [PMID: 29642487 PMCID: PMC6027460 DOI: 10.3390/biomedicines6020042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023] Open
Abstract
Neurodevelopmental programs are frequently dysregulated in cancer. Semaphorins are a large family of guidance cues that direct neuronal network formation and are also implicated in cancer. Semaphorins have two kinds of receptors, neuropilins and plexins. Besides their role in development, semaphorin signaling may promote or suppress tumors depending on their context. Sema3C is a secreted semaphorin that plays an important role in the maintenance of cancer stem-like cells, promotes migration and invasion, and may facilitate angiogenesis. Therapeutic strategies that inhibit Sema3C signaling may improve cancer control. This review will summarize the current research on the Sema3C pathway and its potential as a therapeutic target.
Collapse
|
63
|
Hirschsprung disease - integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 2018; 15:152-167. [PMID: 29300049 DOI: 10.1038/nrgastro.2017.149] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hirschsprung disease is defined by the absence of enteric neurons at the end of the bowel. The enteric nervous system (ENS) is the intrinsic nervous system of the bowel and regulates most aspects of bowel function. When the ENS is missing, there are no neurally mediated propulsive motility patterns, and the bowel remains contracted, causing functional obstruction. Symptoms of Hirschsprung disease include constipation, vomiting, abdominal distension and growth failure. Untreated disease usually causes death in childhood because bloodstream bacterial infections occur in the context of bowel inflammation (enterocolitis) or bowel perforation. Current treatment is surgical resection of the bowel to remove or bypass regions where the ENS is missing, but many children have problems after surgery. Although the anatomy of Hirschsprung disease is simple, many clinical features remain enigmatic, and diagnosis and management remain challenging. For example, the age of presentation and the type of symptoms that occur vary dramatically among patients, even though every affected child has missing neurons in the distal bowel at birth. In this Review, basic science discoveries are linked to clinical manifestations of Hirschsprung disease, including partial penetrance, enterocolitis and genetics. Insights into disease mechanisms that might lead to new prevention, diagnostic and treatment strategies are described.
Collapse
|
64
|
Ganz J. Gut feelings: Studying enteric nervous system development, function, and disease in the zebrafish model system. Dev Dyn 2018; 247:268-278. [PMID: 28975691 DOI: 10.1002/dvdy.24597] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
The enteric nervous system (ENS) is the largest part of the peripheral nervous system and is entirely neural crest-derived. It provides the intrinsic innervation of the gut, controlling different aspects of gut function, such as motility. In this review, we will discuss key points of Zebrafish ENS development, genes, and signaling pathways regulating ENS development, as well as contributions of the Zebrafish model system to better understand ENS disorders. During their migration, enteric progenitor cells (EPCs) display a gradient of developmental states based on their proliferative and migratory characteristics, and show spatiotemporal heterogeneity based on gene expression patterns. Many genes and signaling pathways that regulate the migration and proliferation of EPCs have been identified, but later stages of ENS development, especially steps of neuronal and glial differentiation, remain poorly understood. In recent years, Zebrafish have become increasingly important to test candidate genes for ENS disorders (e.g., from genome-wide association studies), to identify environmental influences on ENS development (e.g., through large-scale drug screens), and to investigate the role the gut microbiota play in ENS development and disease. With its unique advantages as a model organism, Zebrafish will continue to contribute to a better understanding of ENS development, function, and disease. Developmental Dynamics 247:268-278, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
65
|
Fadista J, Lund M, Skotte L, Geller F, Nandakumar P, Chatterjee S, Matsson H, Granström AL, Wester T, Salo P, Virtanen V, Carstensen L, Bybjerg-Grauholm J, Hougaard DM, Pakarinen M, Perola M, Nordenskjöld A, Chakravarti A, Melbye M, Feenstra B. Genome-wide association study of Hirschsprung disease detects a novel low-frequency variant at the RET locus. Eur J Hum Genet 2018; 26:561-569. [PMID: 29379196 DOI: 10.1038/s41431-017-0053-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hirschsprung disease (HSCR) is a congenital disorder with a population incidence of ~1/5000 live births, defined by an absence of enteric ganglia along variable lengths of the colon. HSCR genome-wide association studies (GWAS) have found common associated variants at RET, SEMA3, and NRG1, but they still fail to explain all of its heritability. To enhance gene discovery, we performed a GWAS of 170 cases identified from the Danish nationwide pathology registry with 4717 controls, based on 6.2 million variants imputed from the haplotype reference consortium panel. We found a novel low-frequency variant (rs144432435), which, when conditioning on the lead RET single-nucleotide polymorphism (SNP), was of genome-wide significance in the discovery analysis. This conditional association signal was replicated in a Swedish HSCR cohort with discovery plus replication meta-analysis conditional odds ratio of 6.6 (P = 7.7 × 10-10; 322 cases and 4893 controls). The conditional signal was, however, not replicated in two HSCR cohorts from USA and Finland, leading to the hypothesis that rs144432435 tags a rare haplotype present in Denmark and Sweden. Using the genome-wide complex trait analysis method, we estimated the SNP heritability of HSCR to be 88%, close to estimates based on classical family studies. Moreover, by using Lasso (least absolute shrinkage and selection operator) regression we were able to construct a genetic HSCR predictor with a area under the receiver operator characteristics curve of 76% in an independent validation set. In conclusion, we combined the largest collection of sporadic Hirschsprung cases to date (586 cases) to further elucidate HSCR's genetic architecture.
Collapse
Affiliation(s)
- João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
| | - Marie Lund
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Priyanka Nandakumar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sumantra Chatterjee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Matsson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Anna Löf Granström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Paediatric Surgery, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Wester
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Paediatric Surgery, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Perttu Salo
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Valtter Virtanen
- Pediatric Surgery, Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Lisbeth Carstensen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department of Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - David Michael Hougaard
- Department of Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Mikko Pakarinen
- Pediatric Surgery, Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Paediatric Surgery, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Karolinska institutet, Stockholm, Sweden
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
66
|
RET somatic mutations are underrecognized in Hirschsprung disease. Genet Med 2017; 20:770-777. [PMID: 29261189 DOI: 10.1038/gim.2017.178] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We aimed to determine the frequency of RET mosaicism in Hirschsprung disease (HSCR), test whether it has been underestimated, and to assess its contribution to HSCR risk. METHODS Targeted exome sequencing (n = 83) and RET single-gene screening (n = 69) were performed. Amplicon-based deep sequencing was applied on multiple tissue samples. TA cloning and sequencing were conducted for validation. RESULTS We identified eight de novo mutations in 152 patients (5.2%), of which six were pathogenic mosaic mutations. Two of these patients were somatic mosaics, with mutations detected in blood, colon, and saliva (mutant allele frequency: 35-44%). In addition, germ-line mosaicism was identified in four clinically unaffected subjects, each with an affected child, in multiple tissues (mutant allele frequency: 1-28%). CONCLUSION Somatic mutations of the RET gene are underrecognized in HSCR. Molecular investigation of the parents of patients with seemingly sporadic mutations is essential to determine recurrence risk in these families.
Collapse
|
67
|
Kapoor A, Auer DR, Lee D, Chatterjee S, Chakravarti A. Testing the Ret and Sema3d genetic interaction in mouse enteric nervous system development. Hum Mol Genet 2017; 26:1811-1820. [PMID: 28334784 DOI: 10.1093/hmg/ddx084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
For most multigenic disorders, clinical manifestation (penetrance) and presentation (expressivity) are likely to be an outcome of genetic interaction between multiple susceptibility genes. Here, using gene knockouts in mice, we evaluated genetic interaction between loss of Ret and loss of Sema3d, two Hirschsprung disease susceptibility genes. We intercrossed Ret and Sema3d double null heterozygotes to generate mice with the nine possible genotypes and assessed survival by counting various genotypes, myenteric plexus presence by acetylcholinesterase staining and embryonic day 12.5 (E12.5) intestine transcriptome by RNA-sequencing. Survival rates of Ret wild-type, null heterozygote and null homozygote mice at E12.5, birth and weaning were not influenced by the genotypes at Sema3d locus and vice versa. Loss of myenteric plexus was observed only in all Ret null homozygotes, irrespective of the genotypes at Sema3d locus, and Sema3d null heterozygote and homozygote mice had normal intestinal innervation. As compared with wild-type mice intestinal gene expression, loss of Ret in null homozygotes led to differential expression of ∼300 genes, whereas loss of Sema3d in null homozygotes had no major consequence and there was no evidence supporting major interaction between the two genes influencing intestine transcriptome. Overall, given the null alleles and phenotypic assays used, we did not find evidence for genetic interaction between Ret and Sema3d affecting survival, presence of myenteric plexus or intestine transcriptome.
Collapse
Affiliation(s)
- Ashish Kapoor
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dallas R Auer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dongwon Lee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sumantra Chatterjee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
68
|
Tang CSM, Gui H, Kapoor A, Kim JH, Luzón-Toro B, Pelet A, Burzynski G, Lantieri F, So MT, Berrios C, Shin HD, Fernández RM, Le TL, Verheij JBGM, Matera I, Cherny SS, Nandakumar P, Cheong HS, Antiñolo G, Amiel J, Seo JM, Kim DY, Oh JT, Lyonnet S, Borrego S, Ceccherini I, Hofstra RMW, Chakravarti A, Kim HY, Sham PC, Tam PKH, Garcia-Barceló MM. Trans-ethnic meta-analysis of genome-wide association studies for Hirschsprung disease. Hum Mol Genet 2017; 25:5265-5275. [PMID: 27702942 DOI: 10.1093/hmg/ddw333] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/28/2016] [Indexed: 02/04/2023] Open
Abstract
Hirschsprung disease (HSCR) is the most common cause of neonatal intestinal obstruction. It is characterized by the absence of ganglia in the nerve plexuses of the lower gastrointestinal tract. So far, three common disease-susceptibility variants at the RET, SEMA3 and NRG1 loci have been detected through genome-wide association studies (GWAS) in Europeans and Asians to understand its genetic etiologies. Here we present a trans-ethnic meta-analysis of 507 HSCR cases and 1191 controls, combining all published GWAS results on HSCR to fine-map these loci and narrow down the putatively causal variants to 99% credible sets. We also demonstrate that the effects of RET and NRG1 are universal across European and Asian ancestries. In contrast, we detected a European-specific association of a low-frequency variant, rs80227144, in SEMA3 [odds ratio (OR) = 5.2, P = 4.7 × 10-10]. Conditional analyses on the lead SNPs revealed a secondary association signal, corresponding to an Asian-specific, low-frequency missense variant encoding RET p.Asp489Asn (rs9282834, conditional OR = 20.3, conditional P = 4.1 × 10-14). When in trans with the RET intron 1 enhancer risk allele, rs9282834 increases the risk of HSCR from 1.1 to 26.7. Overall, our study provides further insights into the genetic architecture of HSCR and has profound implications for future study designs.
Collapse
Affiliation(s)
- Clara Sze-Man Tang
- Department of Surgery.,Centre for Genomic Sciences.,Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong SAR, China
| | | | - Ashish Kapoor
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeong-Hyun Kim
- Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Anna Pelet
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Grzegorz Burzynski
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Courtney Berrios
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyoung Doo Shin
- Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea.,Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Thuy-Linh Le
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Joke B G M Verheij
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ivana Matera
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Stacey S Cherny
- Centre for Genomic Sciences.,Department of Psychiatry.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Priyanka Nandakumar
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 121-742, Republic of Korea
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Jeong-Meen Seo
- Division of Pediatric Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Dae-Yeon Kim
- Department of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jung-Tak Oh
- Department of Pediatric Surgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Robert M W Hofstra
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre UCL Institute of Child Health, London, UK
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Children's Hospital, Seoul 110-744, Republic of Korea
| | - Pak Chung Sham
- Centre for Genomic Sciences.,Department of Psychiatry.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Paul K H Tam
- Department of Surgery.,Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong SAR, China
| | | |
Collapse
|
69
|
Kim JH, Jung SM, Shin JG, Cheong HS, Seo JM, Kim DY, Oh JT, Kim HY, Jung K, Shin HD. Potential association between ITPKC genetic variations and Hirschsprung disease. Mol Biol Rep 2017; 44:307-313. [PMID: 28664405 DOI: 10.1007/s11033-017-4111-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/24/2017] [Indexed: 02/03/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital and complex disorder characterized by intestinal obstruction due to the absence of enteric neurons along variable lengths of the hindgut. Our recent genome-wide association study (GWAS) has revealed regional associations with HSCR at several loci of inositol-trisphosphate 3-kinase C (ITPKC). For fine mapping, we additionally selected and genotyped a total of 12 single nucleotide polymorphisms (SNPs) of ITPKC in 187 HSCR patients and 283 unaffected controls, and performed a further combined imputation analysis based on genotype data from this second stage of fine mapping and our previous GWAS stage, totaling 902 subjects (187 HSCR cases and 715 controls). As a result, several SNPs (minimum P = 0.004) and a haplotype (P = 0.02) were found to be significantly associated with HSCR. In further in silico analyses to ascertain the potential functions of the significant variants, the change from the common allele to the rare allele of the highly conserved nonsynonymous rs76785336 showed a difference in mRNA folding structure. In the case of intronic SNPs, rs2607420 with a high consensus value was predicted to be a new splice site. Although this study has limitations (such as lack of functional evaluations, small number of cases, and further need of replication in other cohorts), our findings suggest that genetic variants of ITPKC may have a potential association with HSCR susceptibility and/or developmental diseases related to enteric nervous system development.
Collapse
Affiliation(s)
- Jeong-Hyun Kim
- Research Institute for Basic Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Soo-Min Jung
- Department of Surgery, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Joong-Gon Shin
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, 04107, Republic of Korea
| | - Jeong-Meen Seo
- Division of Pediatric Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Dae-Yeon Kim
- Department of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jung-Tak Oh
- Department of Pediatric Surgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Kyuwhan Jung
- Department of Surgery, Jeju National University Hospital, Jeju, 63241, Republic of Korea
| | - Hyoung Doo Shin
- Research Institute for Basic Science, Sogang University, Seoul, 04107, Republic of Korea. .,Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
70
|
Di Zanni E, Adamo A, Belligni E, Lerone M, Martucciello G, Mattioli G, Pini Prato A, Ravazzolo R, Silengo M, Bachetti T, Ceccherini I. Common PHOX2B poly-alanine contractions impair RET gene transcription, predisposing to Hirschsprung disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1770-1777. [PMID: 28433712 DOI: 10.1016/j.bbadis.2017.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023]
Abstract
HSCR is a congenital disorder of the enteric nervous system, characterized by the absence of neurons along a variable length of the gut resulting from loss-of-function RET mutations. Congenital Central Hypoventilation Syndrome (CCHS) is a rare neurocristopathy characterized by impaired response to hypercapnia and hypoxemia caused by heterozygous mutations of the PHOX2B gene, mostly polyalanine (polyA) expansions but also missense, nonsense, and frameshift mutations, while polyA contractions are common in the population and believed neutral. HSCR associated CCHS can present in patients carrying PHOX2B mutations. Indeed, RET expression is orchestrated by different transcriptional factors among which PHOX2B, thus suggesting its possible role in HSCR pathogenesis. Following the observation of HSCR patients carrying in frame trinucleotide deletions within the polyalanine stretch in exon 3 (polyA contractions), we have verified the hypothesis that these PHOX2B variants do reduce its transcriptional activity, likely resulting in a down-regulation of RET expression and, consequently, favouring the development of the HSCR phenotype. Using proper reporter constructs, we show here that the in vitro transactivation of the RET promoter by different HSCR-associated PHOX2B polyA variants has resulted significantly lower compared to the effect of PHOX2B wild type protein. In particular, polyA contractions do induce a reduced transactivation of the RET promoter, milder compared to the severe polyA expansions associated with CCHS+HSCR, and correlated with the length of the deleted trait, with a more pronounced effect when contractions are larger.
Collapse
Affiliation(s)
- Eleonora Di Zanni
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Annalisa Adamo
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Elga Belligni
- Dipartimento Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Margherita Lerone
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Giuseppe Martucciello
- UOC Chirurgia, Istituto Giannina Gaslini, 16148 Genova, Italy; DiNOGMI, University of Genova, Genova, Italy
| | | | | | - Roberto Ravazzolo
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy; DiNOGMI, University of Genova, Genova, Italy
| | - Margherita Silengo
- Dipartimento Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Tiziana Bachetti
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | | |
Collapse
|
71
|
Roy-Carson S, Natukunda K, Chou HC, Pal N, Farris C, Schneider SQ, Kuhlman JA. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment. BMC Genomics 2017; 18:290. [PMID: 28403821 PMCID: PMC5389105 DOI: 10.1186/s12864-017-3653-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Motility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The goal of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development. Because ENS development is tightly linked to its environment, the transcriptional landscape of the cellular environment of the intestine was also analyzed. RESULTS Thousands of zebrafish intestines were manually dissected from a transgenic line expressing green fluorescent protein under the phox2b regulatory elements [Tg(phox2b:EGFP) w37 ]. Fluorescence-activated cell sorting was used to separate GFP-positive phox2b expressing ENS progenitor and derivatives from GFP-negative intestinal cells. RNA-seq was performed to obtain accurate, reproducible transcriptional profiles and the unbiased detection of low level transcripts. Analysis revealed genes and pathways that may function in ENS cell determination, genes that may be identifiers of different ENS subtypes, and genes that define the non-neural cellular microenvironment of the ENS. Differential expression analysis between the two cell populations revealed the expected neuronal nature of the phox2b expressing lineage including the enrichment for genes required for neurogenesis and synaptogenesis, and identified many novel genes not previously associated with ENS development. Pathway analysis pointed to a high level of G-protein coupled pathway activation, and identified novel roles for candidate pathways such as the Nogo/Reticulon axon guidance pathway in ENS development. CONCLUSION We report the comprehensive gene expression profiles of a lineage-specific population of enteric progenitors, their derivatives, and their microenvironment during normal enteric nervous system development. Our results confirm previously implicated genes and pathways required for ENS development, and also identify scores of novel candidate genes and pathways. Thus, our dataset suggests various potential mechanisms that drive ENS development facilitating characterization and discovery of novel therapeutic strategies to improve gastrointestinal disorders.
Collapse
Affiliation(s)
- Sweta Roy-Carson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kevin Natukunda
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hsien-Chao Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present Address: National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Narinder Pal
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: North Central Regional Plant Introduction Station, 1305 State Ave, Ames, IA, 50014, USA
| | - Caitlin Farris
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: Pioneer Hi-Bred International, Johnson, IA, 50131, USA
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,642 Science II, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
72
|
Wang Z, Ding M, Qian N, Song B, Yu J, Tang J, Wang J. Decreased expression of semaphorin 3D is associated with genesis and development in colorectal cancer. World J Surg Oncol 2017; 15:67. [PMID: 28320475 PMCID: PMC5359842 DOI: 10.1186/s12957-017-1128-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
Background Semaphorin 3D (SEMA3D) plays important roles in the genesis and progress of many cancers. However, the relationship between SEMA3D and colorectal cancer (CRC) remains unknown. The aim of this study was to investigate whether SEMA3D can be used as a predictive marker for the diagnosis, metastasis, and prognosis of CRC by assessing the expression of SEMA3D in the tissues and serum of CRC patients. Methods Real-time quantitative polymerase chain reaction (qPCR) was used to measure the expression of SEMA3D mRNA in 100 CRC tissues and matched normal tissues. qPCR was also used to detect the expression of SEMA3D mRNA in the CRC cell line RKO. RKO cells were transfected with SEMA3D small-interring RNA (siRNA) to interfere with endogenous SEMA3D. The migratory ability of control and SEMA3D siRNA-transfected RKO cells was determined by transwell assays. Enzyme-linked immunosorbent assay (ELISA) was utilized to detect the levels of SEMA3D in the serum of 80 CRC patients and 100 normal healthy controls. The expression of SEMA3D in 215 CRC tissues was assessed using immunohistochemistry (IHC). Then, statistical analyses were adopted to assess SEMA3D protein levels and clinical pathological characteristics. Results The mRNA expression of SEMA3D was significantly lower in CRC tissues than in paired normal tissues (t = 5.027, P < 0.0001). Compared with normal healthy controls, the serum levels of SEMA3D were decreased significantly in CRC patients (t = 3.656, P = 0.0003). The expression of SEMA3D protein was linked to lymph node metastasis, and low expression led to lymph node metastasis (χ2 = 8.415, P = 0.004). The expression of SEMA3D in CRC tissues was a favorable prognostic factor. Patients with a higher expression of SEMA3D experienced longer survival (P = 0.002, log-rank [Mantel-Cox]; Kaplan-Meier). In addition, multivariate Cox’s proportional hazard model revealed that SEMA3D is an independent prognostic marker (hazard ratio [HR] 1.818, 95% CI 1.063–3.110, P = 0.029). Moreover, transwell assays showed that knocking down SEMA3D significantly increased RKO cell migration (t = 9.268, P = 0.0008). Conclusions SEMA3D might function as a tumor suppressor during the formation and development of CRC. SEMA3D might become a predictive marker for the diagnosis, metastasis, and prognosis of CRC and provide a novel target for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China
| | - Meiman Ding
- The Criminal Investigation Detachment of Jiaxing Public Security Bureau, Zhejiang, People's Republic of China
| | - Naiying Qian
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China
| | - Beifeng Song
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China
| | - Jiayin Yu
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China
| | - Jinlong Tang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jingyu Wang
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China.
| |
Collapse
|
73
|
Gui H, Schriemer D, Cheng WW, Chauhan RK, Antiňolo G, Berrios C, Bleda M, Brooks AS, Brouwer RWW, Burns AJ, Cherny SS, Dopazo J, Eggen BJL, Griseri P, Jalloh B, Le TL, Lui VCH, Luzón-Toro B, Matera I, Ngan ESW, Pelet A, Ruiz-Ferrer M, Sham PC, Shepherd IT, So MT, Sribudiani Y, Tang CSM, van den Hout MCGN, van der Linde HC, van Ham TJ, van IJcken WFJ, Verheij JBGM, Amiel J, Borrego S, Ceccherini I, Chakravarti A, Lyonnet S, Tam PKH, Garcia-Barceló MM, Hofstra RMW. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol 2017; 18:48. [PMID: 28274275 PMCID: PMC5343413 DOI: 10.1186/s13059-017-1174-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
Background Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have focused on ENS-related pathways and genes not fitting the current knowledge have thus often been ignored. We identify and validate novel HSCR genes using whole exome sequencing (WES), burden tests, in silico prediction, unbiased in vivo analyses of the mutated genes in zebrafish, and expression analyses in zebrafish, mouse, and human. Results We performed de novo mutation (DNM) screening on 24 HSCR trios. We identify 28 DNMs in 21 different genes. Eight of the DNMs we identified occur in RET, the main HSCR gene, and the remaining 20 DNMs reside in genes not reported in the ENS. Knockdown of all 12 genes with missense or loss-of-function DNMs showed that the orthologs of four genes (DENND3, NCLN, NUP98, and TBATA) are indispensable for ENS development in zebrafish, and these results were confirmed by CRISPR knockout. These genes are also expressed in human and mouse gut and/or ENS progenitors. Importantly, the encoded proteins are linked to neuronal processes shared by the central nervous system and the ENS. Conclusions Our data open new fields of investigation into HSCR pathology and provide novel insights into the development of the ENS. Moreover, the study demonstrates that functional analyses of genes carrying DNMs are warranted to delineate the full genetic architecture of rare complex diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1174-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongsheng Gui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Duco Schriemer
- Department of Neuroscience, section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - William W Cheng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Rajendra K Chauhan
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Guillermo Antiňolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Courtney Berrios
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Marta Bleda
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.,Department of Medicine, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Rutger W W Brouwer
- Erasmus Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alan J Burns
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Stacey S Cherny
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Joaquin Dopazo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Bart J L Eggen
- Department of Neuroscience, section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Binta Jalloh
- Department of Biology, Emory University, Atlanta, USA
| | - Thuy-Linh Le
- Laboratory of embryology and genetics of human malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Department of Genetics, Paris Descartes-Sorbonne Paris Cité University, Hôpital Necker-Enfants Malades (APHP), Paris, France
| | - Vincent C H Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Ivana Matera
- UOC Genetica Medica, Istituto Gaslini, Genoa, Italy
| | - Elly S W Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Anna Pelet
- Laboratory of embryology and genetics of human malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Department of Genetics, Paris Descartes-Sorbonne Paris Cité University, Hôpital Necker-Enfants Malades (APHP), Paris, France
| | - Macarena Ruiz-Ferrer
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Pak C Sham
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | | | - Man-Ting So
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Yunia Sribudiani
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Clara S M Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | | | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | | | - Joke B G M Verheij
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeanne Amiel
- Laboratory of embryology and genetics of human malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Department of Genetics, Paris Descartes-Sorbonne Paris Cité University, Hôpital Necker-Enfants Malades (APHP), Paris, France
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stanislas Lyonnet
- Laboratory of embryology and genetics of human malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Department of Genetics, Paris Descartes-Sorbonne Paris Cité University, Hôpital Necker-Enfants Malades (APHP), Paris, France
| | - Paul K H Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Maria-Mercè Garcia-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands. .,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| |
Collapse
|
74
|
Yang D, Yang J, Li S, Jiang M, Cao G, Yang L, Zhang X, Zhou Y, Li K, Tang ST. Effects of RET, NRG1 and NRG3 Polymorphisms in a Chinese Population with Hirschsprung Disease. Sci Rep 2017; 7:43222. [PMID: 28256518 PMCID: PMC5335705 DOI: 10.1038/srep43222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
The RET proto-oncogene was identified as a major locus involved in Hirschsprung disease (HSCR). A genome-wide association study (GWAS) and whole exome sequencing identified NRG1 and NRG3 as additional HSCR susceptibility loci. We investigated the effects of RET (rs2506030 and rs2435357), NRG1 (rs2439302, rs16879552 and rs7835688) and NRG3 (rs10748842, rs10883866 and rs6584400) polymorphisms in a Chinese population with HSCR. We assessed single nucleotide polymorphisms (SNPs) in the RET, NRG1 and NRG3 genes in a cohort of 362 sporadic HSCR patients and 1,448 normal controls using a TaqMan genotyping assay. Significant associations were found between HSCR risk and rs2506030, rs2435357, rs2439302 and rs7835688 (odds ratio [OR] 1.64, P = 1.72E-06; 2.97, P = 5.15E-33; 1.84, P = 9.36E-11; and 1.93, P = 1.88E-12, respectively). Two locus analyses of SNPs indicated increased disease risks of HSCR between NRG1 rs2439302 and RET rs2435357 or rs2506030. RET rs2506030 (GG genotype) and rs2435357 (TT genotype), in combination with NRG1 rs2439302 (GG genotype), were strongly associated with the highest risk of HSCR (OR = 56.53, P = 4.50E-07) compared with the two loci or a single SNP of either RET or NRG1. Our results support the association between genetic variation of RET and NRG1 and susceptibility to HSCR in the Chinese population.
Collapse
Affiliation(s)
- Dehua Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Yang
- Department of Pediatric Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Jiang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoqing Cao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xi Zhang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shao-Tao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
75
|
Cumulative Risk Impact of RET, SEMA3, and NRG1 Polymorphisms Associated With Hirschsprung Disease in Han Chinese. J Pediatr Gastroenterol Nutr 2017; 64:385-390. [PMID: 27203398 DOI: 10.1097/mpg.0000000000001263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Hirschsprung disease (HSCR) is a congenital aganglionosis of myenteric and submucosal plexuses affecting a variable length of the intestine. The incidence of HSCR is approximately 1 of 5000 live births; however, the risk shows remarkable individual variation caused by single nucleotide polymorphisms (SNPs) at the RET, SEMA3, and NRG1 loci. The present study investigated the effects of these variants on the disease development and phenotype in a Chinese population. METHODS In total, 6 SNPs were genotyped in a cohort consisting of 115 patients with HSCR and 117 unaffected controls using a TaqMan genotyping assay. Histological identification of the affected-segment length (short, long, or total colonic aganglionosis) was performed for all of the samples before DNA extraction. RESULTS Significant genetic risk was imparted by rs2435357 and rs2506030 at RET and by rs12707682 at SEMA3. In addition, the average cumulative risk score in the patients with HSCR was significantly higher than that in the controls. Through the assessment of risk alleles by effect size, individuals were classified into 3 weighted risk score groups: low (≤3), medium (4), and high (≥5). Individuals in the high group were significantly more susceptible to HSCR than those in the low group with an odds ratio of 7.7 (95% confidence interval 3.7-16.3). CONCLUSIONS Cumulative genetic risk varied >35-fold between newborns with zero and >5 accumulated susceptibility alleles. The SNPs rs2435357, rs2506030, and rs12707682 may be useful for stratifying the Chinese population into distinct risk groups.
Collapse
|
76
|
Moore SW. Advances in understanding functional variations in the Hirschsprung disease spectrum (variant Hirschsprung disease). Pediatr Surg Int 2017; 33:285-298. [PMID: 27988850 DOI: 10.1007/s00383-016-4038-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
Hirschsprung disease (HSCR) is a fairly well understood congenital, genetically based functional obstruction due to the congenital absence of ganglion cells in the distal bowel. However, although over 90% of Hirschsprung cases conform to the normally accepted histological diagnostic criteria, it has become increasingly clear that in addition to HSCR, there is a group of functional disturbances relating to a number of other congenital neurodysplastic conditions causing some degree of gastrointestinal tract malfunction. Although these represent a variety of possibly separate conditions of the enteric nervous system, this spectrum it would appear to be also influenced by similar developmental processes. The term "variant Hirschsprung" is commonly used to describe these conditions, but ganglion cells are mostly present if abnormal in number and distribution. These conditions are a problem group being amongst the most difficult to diagnose and treat with possible practical and legal consequences. The problem appears to be possibly one of definition which has proven difficult in the relative paucity of normal values, especially when correlated to age and gestation. It is the purpose of this paper to review the current position on these conditions and to explore possible shared common pathogenetic and genetic mechanisms. This article explores those conditions where a similar pathogenetic mechanisms to HSCR can be demonstrated (e.g. hypoganglionosis) as well as other neural features, which appear to represent separate conditions possibly linked to certain syndromes.
Collapse
Affiliation(s)
- S W Moore
- Division of Paediatric Surgery, Faculty of Medicine, University of Stellenbosch, P.O. Box 19063, Tygerberg, 7505, South Africa.
| |
Collapse
|
77
|
Moore SW. Genetic impact on the treatment & management of Hirschsprung disease. J Pediatr Surg 2017; 52:218-222. [PMID: 28003043 DOI: 10.1016/j.jpedsurg.2016.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND The identification of Hirschsprung's disease (HD) as a genetic condition has been a major step forward in understanding the development of the enteric nervous system and conditions arising from ganglion cell maldevelopment. METHOD A study of the role of genetics in HD was carried out based on previously published findings from more than 400 cases of HD. RESULTS There are at least 7 pertinent clinical questions related to HD which were further investigated. These included: diagnosis, familial recurrence, long segment and total colonic aganglionosis, syndromic associations, the question of HD-associated enterocolitis, potential causes of postoperative obstructive symptoms after successful surgery, and the apparent low prevalence in premature infants. This review aimed at evaluating the most important concepts of where we have got to in our understanding of where genetic solutions/directions to these clinical problems might lie. Possible genetic reasons for the low prevalence in premature infants was also considered and the possible plasticity of the ENS at that stage as a potential "door of hope" in the future management of HD. CONCLUSION The study of genetics has made a massive contribution to the understanding and management of HD. It opens a "door of hope" to the future management of the condition. LEVEL OF EVIDENCE Level V.
Collapse
Affiliation(s)
- Sam W Moore
- Department of Paediatric Surgery, University of Stellenbosch, Faculty of Medicine and Health Sciences, Cape Town, South Africa.
| |
Collapse
|
78
|
Abstract
Although the zebrafish was initially developed as a model system to study embryonic development, it has gained increasing attention as an advantageous system to investigate human diseases, including intestinal disorders. Zebrafish embryos develop rapidly, and their digestive system is fully functional and visible by 5days post fertilization. There is a large degree of homology between the intestine of zebrafish and higher vertebrate organisms in terms of its cellular composition and function as both a digestive and immune organ. Furthermore, molecular pathways regulating injury and immune responses are highly conserved. In this chapter, we provide an overview of studies addressing developmental and physiological processes relevant to human intestinal disease. These studies include those related to congenital disorders, host-microbiota interactions, inflammatory diseases, motility disorders, and intestinal cancer. We also highlight the utility of zebrafish to functionally validate candidate genes identified through mutational analyses and genome-wide association studies, and discuss methodologies to investigate the intestinal biology that are unique to zebrafish.
Collapse
Affiliation(s)
- X Zhao
- University of Pennsylvania, Philadelphia, PA, United States
| | - M Pack
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
79
|
Sergi CM, Caluseriu O, McColl H, Eisenstat DD. Hirschsprung's disease: clinical dysmorphology, genes, micro-RNAs, and future perspectives. Pediatr Res 2017; 81:177-191. [PMID: 27682968 DOI: 10.1038/pr.2016.202] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/05/2016] [Indexed: 01/17/2023]
Abstract
On the occasion of the 100th anniversary of Dr. Harald Hirschsprung's death, there is a worldwide significant research effort toward identifying and understanding the role of genes and biochemical pathways involved in the pathogenesis as well as the use of new therapies for the disease harboring his name (Hirschsprung disease, HSCR). HSCR (aganglionic megacolon) is a frequent diagnostic and clinical challenge in perinatology and pediatric surgery, and a major cause of neonatal intestinal obstruction. HSCR is characterized by the absence of ganglia of the enteric nervous system, mostly in the distal gastrointestinal tract. This review focuses on current understanding of genes and pathways associated with HSCR and summarizes recent knowledge related to micro RNAs (miRNAs) and HSCR pathogenesis. While commonly sporadic, Mendelian patterns of inheritance have been described in syndromic cases with HSCR. Although only half of the patients with HSCR have mutations in specific genes related to early embryonic development, recent pathway-based analysis suggests that gene modules with common functions may be associated with HSCR in different populations. This comprehensive profile of functional gene modules may serve as a useful resource for future developmental, biochemical, and genetic studies providing insights into the complex nature of HSCR.
Collapse
Affiliation(s)
- Consolato Maria Sergi
- Department of Orthopedics, Wuhan University of Science and Technology, Hubei, P.R. China.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Oana Caluseriu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Hunter McColl
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
80
|
A Novel Zebrafish ret Heterozygous Model of Hirschsprung Disease Identifies a Functional Role for mapk10 as a Modifier of Enteric Nervous System Phenotype Severity. PLoS Genet 2016; 12:e1006439. [PMID: 27902697 PMCID: PMC5130169 DOI: 10.1371/journal.pgen.1006439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Hirschsprung disease (HSCR) is characterized by absence of enteric neurons from the distal colon and severe intestinal dysmotility. To understand the pathophysiology and genetics of HSCR we developed a unique zebrafish model that allows combined genetic, developmental and in vivo physiological studies. We show that ret mutant zebrafish exhibit cellular, physiological and genetic features of HSCR, including absence of intestinal neurons, reduced peristalsis, and varying phenotype expressivity in the heterozygous state. We perform live imaging experiments using a UAS-GAL4 binary genetic system to drive fluorescent protein expression in ENS progenitors. We demonstrate that ENS progenitors migrate at reduced speed in ret heterozygous embryos, without changes in proliferation or survival, establishing this as a principal pathogenic mechanism for distal aganglionosis. We show, using live imaging of actual intestinal movements, that intestinal motility is severely compromised in ret mutants, and partially impaired in ret heterozygous larvae, and establish a clear correlation between neuron position and organised intestinal motility. We exploited the partially penetrant ret heterozygous phenotype as a sensitised background to test the influence of a candidate modifier gene. We generated mapk10 loss-of-function mutants, which show reduced numbers of enteric neurons. Significantly, we show that introduction of mapk10 mutations into ret heterozygotes enhanced the ENS deficit, supporting MAPK10 as a HSCR susceptibility locus. Our studies demonstrate that ret heterozygous zebrafish is a sensitized model, with many significant advantages over existing murine models, to explore the pathophysiology and complex genetics of HSCR. Hirschsprung Disease (HSCR) is a common congenital intestinal motility disorder diagnosed at birth by absence of enteric neurons in the distal gut, leading to intestinal obstruction that requires life-saving surgery. HSCR exhibits complex inheritance patterns and its genetic basis is not fully understood. Although well studied by human geneticists, and modelled using mouse, significant questions remain about the cellular and genetic causes of the disease and the relationship between neuron loss and defective intestinal motility. Here we use accessible, transparent zebrafish to address these outstanding questions. We establish that ret mutant zebrafish display key features of HSCR, including absence of intestinal neurons, reduced gut motility and varying phenotype expressivity. Using live imaging, possible in zebrafish but not in mouse, we demonstrate that decreased migration speed of enteric neuron progenitors colonising the gut is the principal defect leading to neuron deficits. By direct examination of gut motility in zebrafish larvae, we establish a clear correlation between neurons and motility patterns. Finally, we show that mapk10 mutations worsen the enteric neuron deficit of ret mutants, indicating that mutations in MAPK10 may increase susceptibility to HSCR. We show many benefits of modelling human genetic diseases in zebrafish and advance our understanding of HSCR.
Collapse
|
81
|
Gunadi, Makhmudi A, Agustriani N, Rochadi. Effects of SEMA3 polymorphisms in Hirschsprung disease patients. Pediatr Surg Int 2016; 32:1025-1028. [PMID: 27469503 DOI: 10.1007/s00383-016-3953-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Recently, genetic markers within a locus on 7q21.11 containing the SEMA3A, SEMA3C, and SEMA3D genes were reported to be associated with Hirschsprung disease (HSCR). Here, we investigated three polymorphisms, rs1583147, rs12707682, and rs11766001, at this locus to determine their potential contributions to the susceptibility of Indonesian HSCR patients. METHODS Three variants were analyzed in 60 non-syndromic HSCR patients and 118 ethnicity-matched controls for association studies by genotyping. RESULTS The risk allele frequencies of SEMA3 rs12707682 (allele C) and rs1583147 (allele T) is higher in cases, 53 and 23 %, than in controls, at 42 and 13 %, respectively. However, these frequency differences were not statistically significant with p value of 0.06 and 0.023, respectively. These findings were consistent with transmission disequilibrium test results with p values of 0.041 and 0.11 for rs12707682 and rs1583147, respectively. Furthermore, the frequencies of SEMA3 rs11766001 risk allele in HSCR cases and controls were 1.7 and 0.8 %, respectively. CONCLUSIONS SEMA3 rs12707682 and rs1583147 variants are not common risk factors for HSCR in Indonesia. The rarity of the SEMA3 rs11766001 polymorphism in Indonesian population might be due to a founder effect.
Collapse
Affiliation(s)
- Gunadi
- Pediatric Surgery Division, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia.
| | - Akhmad Makhmudi
- Pediatric Surgery Division, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Nunik Agustriani
- Pediatric Surgery Division, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Rochadi
- Pediatric Surgery Division, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| |
Collapse
|
82
|
Chatterjee S, Kapoor A, Akiyama JA, Auer DR, Lee D, Gabriel S, Berrios C, Pennacchio LA, Chakravarti A. Enhancer Variants Synergistically Drive Dysfunction of a Gene Regulatory Network In Hirschsprung Disease. Cell 2016; 167:355-368.e10. [PMID: 27693352 DOI: 10.1016/j.cell.2016.09.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidence that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashish Kapoor
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer A Akiyama
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dallas R Auer
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dongwon Lee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Courtney Berrios
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Len A Pennacchio
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
83
|
Su L, Zhang Z, Gan L, Jiang Q, Xiao P, Zou J, Li Q, Jiang H. Deregulation of the planar cell polarity genes CELSR3 and FZD3 in Hirschsprung disease. Exp Mol Pathol 2016; 101:241-248. [PMID: 27619161 DOI: 10.1016/j.yexmp.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/16/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of intrinsic ganglion cells in the lower intestine. Genetic factors in the pathogenesis of this disease are under active investigation. As core genes in the planar cell polarity pathway, Celsr3 and Fzd3 are believed to play vital roles in the development of the murine enteric nervous system. The potential association of CELSR3 and FZD3 with the development of HSCR in humans, however, is still unknown. We determined the genotypes of eight CELSR3 and FZD3 polymorphisms in 113 patients. Furthermore, target gene sequencing was used to search for rare mutations in the planar cell polarity genes. The mRNA and protein expression of CELSR3 and FZD3 were explored in patients with HSCR. Class III β-tubulin in colon tissue samples was examined to elucidate enteric innervation patterns. We observed a significant association between the FZD3 rs17059206 polymorphism and HSCR susceptibility (p<0.001). In addition, five rare mutations in CELSR3 were identified in six patients with HSCR. Upregulation of CELSR3 mRNA expression was detected in 80% of aganglionic segments; a similar increase was found for FZD3 protein expression in 81.8% of aganglionic tissues, compared with the ganglionic segments. Immunohistochemical staining on tissue sections revealed obvious excess expression of both molecules in the mucosal layer. The neurite patterns were highly disorganized in the aganglionic bowel segments, with a marked reduction in the prominence of TUJ1 bundles in number, thickness, and length. Our results showed that deregulation of the planar cell polarity genes CELSR3 and FZD3 might disrupt the enteric innervation pattern and consequently contribute to the susceptibility to HSCR.
Collapse
Affiliation(s)
- Lin Su
- Reproductive Medicine Center, 105 Hospital of People's Liberation Army, Hefei, Anhui, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Liang Gan
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Qian Jiang
- Department of Medical Genetics, Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Jizhen Zou
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China.
| | - Hong Jiang
- Reproductive Medicine Center, 105 Hospital of People's Liberation Army, Hefei, Anhui, China.
| |
Collapse
|
84
|
Brosens E, Burns AJ, Brooks AS, Matera I, Borrego S, Ceccherini I, Tam PK, García-Barceló MM, Thapar N, Benninga MA, Hofstra RMW, Alves MM. Genetics of enteric neuropathies. Dev Biol 2016; 417:198-208. [PMID: 27426273 DOI: 10.1016/j.ydbio.2016.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
Abstract
Abnormal development or disturbed functioning of the enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, is associated with the development of neuropathic gastrointestinal motility disorders. Here, we review the underlying molecular basis of these disorders and hypothesize that many of them have a common defective biological mechanism. Genetic burden and environmental components affecting this common mechanism are ultimately responsible for disease severity and symptom heterogeneity. We believe that they act together as the fulcrum in a seesaw balanced with harmful and protective factors, and are responsible for a continuum of symptoms ranging from neuronal hyperplasia to absence of neurons.
Collapse
Affiliation(s)
- Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Alan J Burns
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ivana Matera
- UOC Medical Genetics, Istituto Giannina Gaslini, Genova, Italy
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Paul K Tam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine of the University of Hong Kong, Hong Kong, China
| | - Maria-Mercè García-Barceló
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Marc A Benninga
- Pediatric Gastroenterology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
85
|
Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev Biol 2016; 417:139-57. [PMID: 27370713 DOI: 10.1016/j.ydbio.2016.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, intestinal aganglionosis) is a multigenic disorder with variable penetrance and severity that has a general population incidence of 1/5000 live births. Studies using animal models have contributed to our understanding of the developmental origins of HSCR and the genetic complexity of this disease. This review summarizes recent progress in understanding control of enteric nervous system (ENS) development through analyses in mouse models. An overview of signaling pathways that have long been known to control the migration, proliferation and differentiation of enteric neural progenitors into and along the developing gut is provided as a framework for the latest information on factors that influence enteric ganglia formation and maintenance. Newly identified genes and additional factors beyond discrete genes that contribute to ENS pathology including regulatory sequences, miRNAs and environmental factors are also introduced. Finally, because HSCR has become a paradigm for complex oligogenic diseases with non-Mendelian inheritance, the importance of gene interactions, modifier genes, and initial studies on genetic background effects are outlined.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM, U955, Equipe 6, F-94000 Creteil, France; Universite Paris-Est, UPEC, F-94000 Creteil, France.
| | - E Michelle Southard-Smith
- Vanderbilt University Medical Center, Department of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
86
|
Heanue TA, Shepherd IT, Burns AJ. Enteric nervous system development in avian and zebrafish models. Dev Biol 2016; 417:129-38. [PMID: 27235814 DOI: 10.1016/j.ydbio.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.
Collapse
Affiliation(s)
| | | | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
87
|
Griseri P, Garrone O, Lo Sardo A, Monteverde M, Rusmini M, Tonissi F, Merlano M, Bruzzi P, Lo Nigro C, Ceccherini I. Genetic and epigenetic factors affect RET gene expression in breast cancer cell lines and influence survival in patients. Oncotarget 2016; 7:26465-79. [PMID: 27034161 PMCID: PMC5041993 DOI: 10.18632/oncotarget.8417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
Germline and somatic mutations play a crucial role in breast cancer (BC), driving the initiation, progression, response to therapy and outcome of the disease. Hormonal therapy is limited to patients with tumors expressing steroid hormone receptors, such as estrogen receptor (ER), nevertheless resistance often limits its success.The RET gene is known to be involved in neurocristopathies such as Hirschsprung disease and Multiple Endocrine Neoplasia type 2, in the presence of loss-of-function and gain-of-function mutations, respectively. More recently, RET over-expression has emerged as a new player in ER-positive (ER+) BC, and as a potential target to enhance sensitivity and avoid resistance to tamoxifen therapy.Therefore, targeting the RET pathway may lead to new therapies in ER+ BC. To this end, we have investigated the molecular mechanisms which underlie RET overexpression and its possible modulation in two BC cell lines, MCF7 and T47D, showing different RET expression levels. Moreover, we have carried out a pilot association study in 93 ER+ BC patients. Consistent with the adverse role of RET over-expression in BC, increased overall survival was observed in carriers of the variant allele of SNP rs2435357, a RET polymorphism already known to be associated with reduced RET expression.
Collapse
Affiliation(s)
- Paola Griseri
- UOC Medical Genetics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Ornella Garrone
- Unit of Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | | | - Martino Monteverde
- Laboratory of Cancer Genetics and Translational Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Marta Rusmini
- UOC Medical Genetics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Federica Tonissi
- Laboratory of Cancer Genetics and Translational Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Marco Merlano
- Unit of Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Paolo Bruzzi
- Clinical Epidemiology, IRCCS AUO San Martino IST, Genoa, Italy
| | - Cristiana Lo Nigro
- Laboratory of Cancer Genetics and Translational Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | | |
Collapse
|
88
|
Burns AJ, Goldstein AM, Newgreen DF, Stamp L, Schäfer KH, Metzger M, Hotta R, Young HM, Andrews PW, Thapar N, Belkind-Gerson J, Bondurand N, Bornstein JC, Chan WY, Cheah K, Gershon MD, Heuckeroth RO, Hofstra RMW, Just L, Kapur RP, King SK, McCann CJ, Nagy N, Ngan E, Obermayr F, Pachnis V, Pasricha PJ, Sham MH, Tam P, Vanden Berghe P. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 2016; 417:229-51. [PMID: 27059883 DOI: 10.1016/j.ydbio.2016.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022]
Abstract
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
Collapse
Affiliation(s)
- Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald F Newgreen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia
| | - Lincon Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karl-Herbert Schäfer
- University of Applied Sciences, Kaiserlautern, Germany; Clinic of Pediatric Surgery, University Hospital Mannheim, University Heidelberg, Germany
| | - Marco Metzger
- Fraunhofer-Institute Interfacial Engineering and Biotechnology IGB Translational Centre - Würzburg branch and University Hospital Würzburg - Tissue Engineering and Regenerative Medicine (TERM), Würzburg, Germany
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jaime Belkind-Gerson
- Division of Gastroenterology, Hepatology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School, Boston, USA
| | - Nadege Bondurand
- INSERM U955, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France; Université Paris-Est, UPEC, F-94000 Créteil, France
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kathryn Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York 10032, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Robert M W Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Germany
| | - Raj P Kapur
- Department of Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sebastian K King
- Department of Paediatric and Neonatal Surgery, The Royal Children's Hospital, Melbourne, Australia
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elly Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Florian Obermayr
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, D-72076 Tübingen, Germany
| | | | | | - Mai Har Sham
- Department of Biochemistry, The University of Hong Kong, Hong Kong
| | - Paul Tam
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Belgium
| |
Collapse
|
89
|
Zebrafish as a model for understanding enteric nervous system interactions in the developing intestinal tract. Methods Cell Biol 2016; 134:139-64. [PMID: 27312493 DOI: 10.1016/bs.mcb.2016.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The enteric nervous system (ENS) forms intimate connections with many other intestinal cell types, including immune cells and bacterial consortia resident in the intestinal lumen. In this review, we highlight contributions of the zebrafish model to understanding interactions among these cells. Zebrafish is a powerful model for forward genetic screens, several of which have uncovered genes previously unknown to be important for ENS development. More recently, zebrafish has emerged as a model for testing functions of genes identified in human patients or large-scale human susceptibility screens. In several cases, zebrafish studies have revealed mechanisms connecting intestinal symptoms with other, seemingly unrelated disease phenotypes. Importantly, chemical library screens in zebrafish have provided startling new insights into potential effects of common drugs on ENS development. A key feature of the zebrafish model is the ability to rear large numbers of animals germ free or in association with only specific bacterial species. Studies utilizing these approaches have demonstrated the importance of bacterial signals for normal intestinal development. These types of studies also show how luminal bacteria and the immune system can contribute to inflammatory processes that can feedback to influence ENS development. The excellent optical properties of zebrafish embryos and larvae, coupled with the ease of generating genetically marked cells of both the host and its resident bacteria, allow visualization of multiple intestinal cell types in living larvae and should promote a more in-depth understanding of intestinal cell interactions, especially interactions between other intestinal cell types and the ENS.
Collapse
|
90
|
Young HM, Stamp LA, Hofstra RMW. Hirschsprung Disease and Activation of Hedgehog Signaling via GLI1-3 Mutations. Gastroenterology 2015; 149:1672-5. [PMID: 26526715 DOI: 10.1053/j.gastro.2015.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Robert M W Hofstra
- Department of Clinical Genetics, University of Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
91
|
Soret R, Mennetrey M, Bergeron KF, Dariel A, Neunlist M, Grunder F, Faure C, Silversides DW, Pilon N. A collagen VI-dependent pathogenic mechanism for Hirschsprung's disease. J Clin Invest 2015; 125:4483-96. [PMID: 26571399 DOI: 10.1172/jci83178] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a severe congenital anomaly of the enteric nervous system (ENS) characterized by functional intestinal obstruction due to a lack of intrinsic innervation in the distal bowel. Distal innervation deficiency results from incomplete colonization of the bowel by enteric neural crest cells (eNCCs), the ENS precursors. Here, we report the generation of a mouse model for HSCR--named Holstein--that contains an untargeted transgenic insertion upstream of the collagen-6α4 (Col6a4) gene. This insertion induces eNCC-specific upregulation of Col6a4 expression that increases total collagen VI protein levels in the extracellular matrix (ECM) surrounding both the developing and the postnatal ENS. Increased collagen VI levels during development mainly result in slower migration of eNCCs. This appears to be due to the fact that collagen VI is a poor substratum for supporting eNCC migration and can even interfere with the migration-promoting effects of fibronectin. Importantly, for a majority of patients in a HSCR cohort, the myenteric ganglia from the ganglionated region are also specifically surrounded by abundant collagen VI microfibrils, an outcome accentuated by Down syndrome. Collectively, our data thus unveil a clinically relevant pathogenic mechanism for HSCR that involves cell-autonomous changes in ECM composition surrounding eNCCs. Moreover, as COL6A1 and COL6A2 are on human Chr.21q, this mechanism is highly relevant to the predisposition of patients with Down syndrome to HSCR.
Collapse
|
92
|
Luzón-Toro B, Gui H, Ruiz-Ferrer M, Sze-Man Tang C, Fernández RM, Sham PC, Torroglosa A, Kwong-Hang Tam P, Espino-Paisán L, Cherny SS, Bleda M, Enguix-Riego MDV, Dopazo J, Antiñolo G, García-Barceló MM, Borrego S. Exome sequencing reveals a high genetic heterogeneity on familial Hirschsprung disease. Sci Rep 2015; 5:16473. [PMID: 26559152 PMCID: PMC4642299 DOI: 10.1038/srep16473] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
Hirschsprung disease (HSCR; OMIM 142623) is a developmental disorder characterized by aganglionosis along variable lengths of the distal gastrointestinal tract, which results in intestinal obstruction. Interactions among known HSCR genes and/or unknown disease susceptibility loci lead to variable severity of phenotype. Neither linkage nor genome-wide association studies have efficiently contributed to completely dissect the genetic pathways underlying this complex genetic disorder. We have performed whole exome sequencing of 16 HSCR patients from 8 unrelated families with SOLID platform. Variants shared by affected relatives were validated by Sanger sequencing. We searched for genes recurrently mutated across families. Only variations in the FAT3 gene were significantly enriched in five families. Within-family analysis identified compound heterozygotes for AHNAK and several genes (N = 23) with heterozygous variants that co-segregated with the phenotype. Network and pathway analyses facilitated the discovery of polygenic inheritance involving FAT3, HSCR known genes and their gene partners. Altogether, our approach has facilitated the detection of more than one damaging variant in biologically plausible genes that could jointly contribute to the phenotype. Our data may contribute to the understanding of the complex interactions that occur during enteric nervous system development and the etiopathology of familial HSCR.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Hongsheng Gui
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Macarena Ruiz-Ferrer
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Clara Sze-Man Tang
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Pak-Chung Sham
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ana Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Laura Espino-Paisán
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Stacey S Cherny
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Marta Bleda
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - María Del Valle Enguix-Riego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Joaquín Dopazo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Functional Genomics Node, (INB) at CIPF, Valencia, Spain
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - María-Mercé García-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| |
Collapse
|
93
|
Luzón-Toro B, Espino-Paisán L, Fernández RM, Martín-Sánchez M, Antiñolo G, Borrego S. Next-generation-based targeted sequencing as an efficient tool for the study of the genetic background in Hirschsprung patients. BMC MEDICAL GENETICS 2015; 16:89. [PMID: 26437850 PMCID: PMC4595130 DOI: 10.1186/s12881-015-0235-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/23/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND The development of next-generation sequencing (NGS) technologies has a great impact in the human variation detection given their high-throughput. These techniques are particularly helpful for the evaluation of the genetic background in disorders of complex genetic etiology such as Hirschsprung disease (HSCR). The purpose of this study was the design of a panel of HSCR associated genes as a rapid and efficient tool to perform genetic screening in a series of patients. METHODS We have performed NGS-based targeted sequencing (454-GS Junior) using a panel containing 26 associated or candidate genes for HSCR in a group of 11 selected HSCR patients. RESULTS The average percentage of covered bases was of 97%, the 91.4% of the targeted bases were covered with depth above 20X and the mean coverage was 422X. In addition, we have found a total of 13 new coding variants and 11 new variants within regulatory regions among our patients. These outcomes allowed us to re-evaluate the genetic component associated to HSCR in these patients. CONCLUSIONS Our validated NGS panel constitutes an optimum method for the identification of new variants in our patients. This approach could be used for a fast, reliable and more thorough genetic screening in future series of patients.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Laura Espino-Paisán
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Raquel Ma Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Marta Martín-Sánchez
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
94
|
Swaminathan M, Oron AP, Chatterjee S, Piper H, Cope-Yokoyama S, Chakravarti A, Kapur RP. Intestinal Neuronal Dysplasia-Like Submucosal Ganglion Cell Hyperplasia at the Proximal Margins of Hirschsprung Disease Resections. Pediatr Dev Pathol 2015; 18:466-76. [PMID: 26699691 PMCID: PMC4809533 DOI: 10.2350/15-07-1675-oa.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal neuronal dysplasia type B (IND) denotes an increased proportion of hyperplastic submucosal ganglia, as resolved histochemically in 15-μm-thick frozen sections. IND has been reported proximal to the aganglionic segment in patients with Hirschsprung disease (HSCR) and is putatively associated with a higher rate of postsurgical dysmotility. We developed and validated histological criteria to diagnose IND-like submucosal ganglion cell hyperplasia (IND-SH) in paraffin sections and used the approach to study the incidence and clinical and/or genetic associations of IND-SH at the proximal margins of HSCR pull-through resection specimens. Full-circumference paraffin sections from the proximal margins of 64 HSCR colonic pull-through specimens and 24 autopsy controls were immunostained for neuron-specific Hu antigen, and nucleated ganglion cells in each submucosal ganglion were counted. In controls, an age-related decline in the relative abundance of "giant" ganglia (≥7 nucleated Hu-positive [Hu+] ganglion cells) was observed. A conservative diagnostic threshold for IND-SH (control mean ± 3× standard deviation) was derived from 15 controls less than 25 weeks of age. No control exceeded this threshold, whereas in the same age range, IND-SH was observed at the proximal margins in 15% (7 of 46) of HSCR resections, up to 15 cm proximal to the aganglionic segment. No significant correlation was observed between IND-SH and length of or distance from the aganglionic segment, sex, trisomy 21, RET or SEMA3C/D polymorphisms, or clinical outcome, but analysis of more patients, with better long-term follow-up will be required to clarify the significance of this histological phenotype.
Collapse
Affiliation(s)
| | | | - Sumantra Chatterjee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine ,Balimore, MD
| | - Hannah Piper
- University of Texas Southwestern, Children's Health, Dallas, TX
| | | | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine ,Balimore, MD
| | - Raj P. Kapur
- Seattle Children's Research Institute, Seattle, WA,University of Washington, Pathology, Seattle, WA
| |
Collapse
|