51
|
Cheng H, Zhang Z, Zhang B, Zhang W, Wang J, Ni W, Miao Y, Liu J, Bi Y. Enhancement of Impaired Olfactory Neural Activation and Cognitive Capacity by Liraglutide, but Not Dapagliflozin or Acarbose, in Patients With Type 2 Diabetes: A 16-Week Randomized Parallel Comparative Study. Diabetes Care 2022; 45:1201-1210. [PMID: 35263425 DOI: 10.2337/dc21-2064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/11/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The comparative neuroprotective effects of different antidiabetes drugs have not been characterized in randomized controlled trials. Here, we investigated the therapeutic effects of liraglutide, dapagliflozin, or acarbose treatment on brain functional alterations and cognitive changes in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Thirty-six patients with type 2 diabetes inadequately controlled with metformin monotherapy were randomized to receive liraglutide, dapagliflozin, or acarbose treatment for 16 weeks. Brain functional MRI (fMRI) scan and a battery of cognitive assessments were evaluated pre- and postintervention in all subjects. RESULTS The 16-week treatment with liraglutide significantly enhanced the impaired odor-induced left hippocampal activation with Gaussian random field correction and improved cognitive subdomains of delayed memory, attention, and executive function (all P < 0.05), whereas dapagliflozin or acarbose did not. Structural equation modeling analysis demonstrated that such improvements of brain health and cognitive function could be partly ascribed to a direct effect of liraglutide on left hippocampal activation (β = 0.330, P = 0.022) and delayed memory (β = 0.410, P = 0.004) as well as to the metabolic ameliorations of reduced waist circumference, decreased body fat ratio, and elevated fasting insulin (all P < 0.05). CONCLUSIONS Our head-to-head study demonstrated that liraglutide enhanced impaired brain activation and restored impaired cognitive domains in patients with type 2 diabetes, whereas dapagliflozin and acarbose did not. The results expand the clinical application of liraglutide and provide a novel treatment strategy for individuals with diabetes and a high risk of cognitive decline.
Collapse
Affiliation(s)
- Haiyan Cheng
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.,Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhou Zhang
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jin Wang
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenyu Ni
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yingwen Miao
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiani Liu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.,Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
52
|
Yang Y, Zhao JJ, Yu XF. Expert Consensus on Cognitive Dysfunction in Diabetes. Curr Med Sci 2022; 42:286-303. [PMID: 35290601 DOI: 10.1007/s11596-022-2549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
The incidence of diabetes is gradually increasing in China, and diabetes and associated complications, such as cognitive dysfunction have gained much attention in recent time. However, the concepts, clinical treatment, and prevention of cognitive dysfunction in patients with diabetes remain unclear. The Chinese Society of Endocrinology investigated the current national and overseas situation of cognitive dysfunction associated with diabetes. Based on research both in China and other countries worldwide, the Expert Consensus on Cognitive Dysfunction in Diabetes was established to guide physicians in the comprehensive standardized management of cognitive dysfunction in diabetes and to improve clinical outcomes in Chinese patients. This consensus presents an overview, definition and classification, epidemiology and pathogenesis, risk factors, screening, diagnosis, differential diagnosis, treatment, and prevention of cognitive dysfunction in patients with diabetes.
Collapse
Affiliation(s)
- Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Jun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 25000, China.
| | - Xue-Feng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
53
|
Impairment of the autophagy-lysosomal pathway in Alzheimer's diseases: Pathogenic mechanisms and therapeutic potential. Acta Pharm Sin B 2022; 12:1019-1040. [PMID: 35530153 PMCID: PMC9069408 DOI: 10.1016/j.apsb.2022.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by memory loss and cognitive dysfunction. The accumulation of misfolded protein aggregates including amyloid beta (Aβ) peptides and microtubule associated protein tau (MAPT/tau) in neuronal cells are hallmarks of AD. So far, the exact underlying mechanisms for the aetiologies of AD have not been fully understood and the effective treatment for AD is limited. Autophagy is an evolutionarily conserved cellular catabolic process by which damaged cellular organelles and protein aggregates are degraded via lysosomes. Recently, there is accumulating evidence linking the impairment of the autophagy–lysosomal pathway with AD pathogenesis. Interestingly, the enhancement of autophagy to remove protein aggregates has been proposed as a promising therapeutic strategy for AD. Here, we first summarize the recent genetic, pathological and experimental studies regarding the impairment of the autophagy–lysosomal pathway in AD. We then describe the interplay between the autophagy–lysosomal pathway and two pathological proteins, Aβ and MAPT/tau, in AD. Finally, we discuss potential therapeutic strategies and small molecules that target the autophagy–lysosomal pathway for AD treatment both in animal models and in clinical trials. Overall, this article highlights the pivotal functions of the autophagy–lysosomal pathway in AD pathogenesis and potential druggable targets in the autophagy–lysosomal pathway for AD treatment.
Collapse
|
54
|
Liao W, Xu J, Li B, Ruan Y, Li T, Liu J. Deciphering the Roles of Metformin in Alzheimer's Disease: A Snapshot. Front Pharmacol 2022; 12:728315. [PMID: 35153733 PMCID: PMC8829062 DOI: 10.3389/fphar.2021.728315] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disease predominantly affecting millions of elderly people. To date, no effective therapy has been identified to reverse the progression of AD. Metformin, as a first-line medication for Type 2 Diabetes Mellitus (T2DM), exerts multiple beneficial effects on various neurodegenerative disorders, including AD. Evidence from clinical studies has demonstrated that metformin use contributes to a lower risk of developing AD and better cognitive performance, which might be modified by interactors such as diabetic status and APOE-ε4 status. Previous mechanistic studies have gradually unveiled the effects of metformin on AD pathology and pathophysiology, including neuronal loss, neural dysfunction, amyloid-β (Aβ) depositions, tau phosphorylation, chronic neuroinflammation, insulin resistance, impaired glucose metabolism and mitochondrial dysfunction. Current evidence remains ambiguous and even conflicting. Herein, we review the current state of knowledge concerning the mechanisms of metformin in AD pathology while summarizing current evidence from clinical studies.
Collapse
Affiliation(s)
- Wang Liao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuting Ruan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharm Sin B 2022; 12:511-531. [PMID: 35256932 PMCID: PMC8897048 DOI: 10.1016/j.apsb.2021.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
Collapse
Key Words
- ACE2, angiotensin I converting enzyme (peptidyl-dipeptidase A) 2
- AD, Alzheimer's disease
- ADP, adenosine diphosphate
- ADRD, AD-related dementias
- Aβ, amyloid β
- CSF, cerebrospinal fluid
- Circadian regulation
- DAMPs
- DAMPs, damage-associated molecular patterns
- Diabetes
- ER, estrogen receptor
- ETC, electron transport chain
- FCCP, trifluoromethoxy carbonylcyanide phenylhydrazone
- FPR-1, formyl peptide receptor 1
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide-1
- HBP, hexoamine biosynthesis pathway
- HTRA, high temperature requirement A
- Hexokinase biosynthesis pathway
- I3A, indole-3-carboxaldehyde
- IRF-3, interferon regulatory factor 3
- LC3, microtubule associated protein light chain 3
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAVS, mitochondrial anti-viral signaling
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- Mdivi-1, mitochondrial division inhibitor 1
- Microbiome
- Mitochondrial DNA
- Mitochondrial electron transport chain
- Mitochondrial quality control
- NLRP3, leucine-rich repeat (LRR)-containing protein (NLR)-like receptor family pyrin domain containing 3
- NOD, nucleotide-binding oligomerization domain
- NeuN, neuronal nuclear protein
- PET, fluorodeoxyglucose (FDG)-positron emission tomography
- PKA, protein kinase A
- POLβ, the base-excision repair enzyme DNA polymerase β
- ROS, reactive oxygen species
- Reactive species
- SAMP8, senescence-accelerated mice
- SCFAs, short-chain fatty acids
- SIRT3, NAD-dependent deacetylase sirtuin-3
- STING, stimulator of interferon genes
- STZ, streptozotocin
- SkQ1, plastoquinonyldecyltriphenylphosphonium
- T2D, type 2 diabetes
- TCA, Tricarboxylic acid
- TLR9, toll-like receptor 9
- TMAO, trimethylamine N-oxide
- TP, tricyclic pyrone
- TRF, time-restricted feeding
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP/AMP synthase
- hAPP, human amyloid precursor protein
- hPREP, human presequence protease
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- mtDNA, mitochondrial DNA
- αkG, alpha-ketoglutarate
Collapse
Affiliation(s)
- Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christy S. Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
56
|
Zhang B, Gao Y, Zhang X, Jiang J, Ren J, Wang S, Hu H, Zhao Y, Chen L, Zhao K, Dai F. Ultra-stable dextran conjugated prodrug micelles for oxidative stress and glycometabolic abnormality combination treatment of Alzheimer's disease. Int J Biol Macromol 2022; 203:430-444. [PMID: 35093435 DOI: 10.1016/j.ijbiomac.2022.01.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
Sophisticated nanomedicines are continually being developed, but big obstacles remain before they finish the drug release mission. The first challenge is rupture possibility of structure when infinite dilution, competitive reaction of electrolytes and protein in blood circulation. In addition, low responsive drug release efficiency in the lesion site remains the major challenge for clinical application of nanomedicine combination treatment. In this study, we discussed the opportunities for Alzheimer's disease (AD) combination therapy based on the thermodynamically ultra-stable dextran conjugated prodrug micelles. Dextran-nateglinide conjugated prodrug micelles (NA) and dextran-vitamin E succinate conjugated prodrug micelles (VES) presented ultra-low critical micelle concentration of ~10-5 mM and high physiological stability when challenged by NaCl, sodium dodecyl sulphate (SDS), dodecyl dimethyl benzyl ammonium chloride (DDBAC) and no rupture of structure happened. The NA/insulin polymer-drug conjugate micelles (NA/INS PDC) and VES/insulin polymer-drug conjugate micelles (VES/INS PDC) efficiently cleaved by reactive oxygen species (ROS), leading to over 80% release of the encapsulated and conjugated drugs. The combination of nateglinide and insulin, vitamin E succinate and insulin improved the glucose metabolism, reduced oxidative stress, improved the mitochondrial function and recovered the cognitive capacity of mice. This work demonstrated a paradigm for specific and high efficacy AD combination therapy.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yachai Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaolei Zhang
- Heibei Research Centre of Analysis and Testing, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jicheng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jian Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaoteng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haodong Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
57
|
Li Z, Zhang Y, Meng X, Li M, Cao W, Yang J, Xu X, Liu W, Li W, Cai Q, Wang S, Ma G, Liu Z, Huang G. A novel DPP-4 inhibitor Gramcyclin A attenuates cognitive deficits in APP/PS1/tau triple transgenic mice via enhancing brain GLP-1-dependent glucose uptake. Phytother Res 2022; 36:1297-1309. [PMID: 35088915 DOI: 10.1002/ptr.7387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 01/20/2023]
Abstract
Enhancing glucagon-like peptide 1 (GLP-1) signaling with a dipeptidyl peptidase IV (DPP-4) inhibitor might exert protective effects on Alzheimer's disease (AD). We found that intragastric administration of Gramcyclin A (10, 20 and 40 mg/kg), a novel DPP-4 inhibitor, for 3 months significantly reversed cognitive decline in APP/PS1/tau triple transgenic mice in a dose-dependent manner. Gramcyclin A treatment markedly reduced Aβ plaques as well as the insoluble and soluble forms of Aβ40 and Aβ42 in the hippocampus of APP/PS1/tau mice. Treatment with Gramcyclin A remarkedly decreased the level of microglia and suppressed neuroinflammation in the hippocampus of APP/PS1/tau mice. Moreover, Gramcyclin A treatment could increase brain glucose uptake in APP/PS1/tau mice, as detected by 18-fluoro-2-deoxyglucose (18 F-FDG) micro-positron emission tomography (micro-PET) imaging. Furthermore, Gramcyclin A significantly increased expression of glucagon-like peptide-1 (GLP-1), GLP-1R, proliferator-activated receptor gamma coactivator (PGC)-1α and glucose transporter 4 (GLUT4), and inhibited insulin receptor (IRS)-1 phosphorylation and tau hyperphosphorylation in the hippocampus of APP/PS1/tau mice. Collectively, Gramcyclin A conferred protective effects against AD via enhancing brain GLP-1-dependent glucose uptake. The DPP-4 inhibitor Gramcyclin A might be a potential therapeutic drug for AD.
Collapse
Affiliation(s)
- Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiangbao Meng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Weiwei Cao
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Junshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qian Cai
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Sicen Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
58
|
Laurindo LF, Barbalho SM, Guiguer EL, da Silva Soares de Souza M, de Souza GA, Fidalgo TM, Araújo AC, de Souza Gonzaga HF, de Bortoli Teixeira D, de Oliveira Silva Ullmann T, Sloan KP, Sloan LA. GLP-1a: Going beyond Traditional Use. Int J Mol Sci 2022; 23:739. [PMID: 35054924 PMCID: PMC8775408 DOI: 10.3390/ijms23020739] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a human incretin hormone derived from the proglucagon molecule. GLP-1 receptor agonists are frequently used to treat type 2 diabetes mellitus and obesity. However, the hormone affects the liver, pancreas, brain, fat cells, heart, and gastrointestinal tract. The objective of this study was to perform a systematic review on the use of GLP-1 other than in treating diabetes. PubMed, Cochrane, and Embase were searched, and the PRISMA guidelines were followed. Nineteen clinical studies were selected. The results showed that GLP-1 agonists can benefit defined off-medication motor scores in Parkinson's Disease and improve emotional well-being. In Alzheimer's disease, GLP-1 analogs can improve the brain's glucose metabolism by improving glucose transport across the blood-brain barrier. In depression, the analogs can improve quality of life and depression scales. GLP-1 analogs can also have a role in treating chemical dependency, inhibiting dopaminergic release in the brain's reward centers, decreasing withdrawal effects and relapses. These medications can also improve lipotoxicity by reducing visceral adiposity and decreasing liver fat deposition, reducing insulin resistance and the development of non-alcoholic fatty liver diseases. The adverse effects are primarily gastrointestinal. Therefore, GLP-1 analogs can benefit other conditions besides traditional diabetes and obesity uses.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marília 17500-000, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marília 17500-000, SP, Brazil
| | - Maricelma da Silva Soares de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Gabriela Achete de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Thiago Marques Fidalgo
- Department of Psychiatry, Federal University of São Paulo, R. Sena Madureira 04021-001, SP, Brazil;
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Heron F. de Souza Gonzaga
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia, Marília 17525-902, SP, Brazil;
| | - Thais de Oliveira Silva Ullmann
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Katia Portero Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA; (K.P.S.); (L.A.S.)
| | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA; (K.P.S.); (L.A.S.)
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
59
|
Li T, Cao HX, Ke D. Type 2 Diabetes Mellitus Easily Develops into Alzheimer's Disease via Hyperglycemia and Insulin Resistance. Curr Med Sci 2021; 41:1165-1171. [PMID: 34874485 DOI: 10.1007/s11596-021-2467-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
With the acceleration of population aging, the incidence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) is progressively increasing due to the age-relatedness of these two diseases. The association between T2DM and AD-like dementia is receiving much attention, and T2DM is reported to be a significant risk factor for AD. The aims of this review were to reveal the brain changes caused by T2DM as well as to explore the roles of hyperglycemia and insulin resistance in the development of AD.
Collapse
Affiliation(s)
- Ting Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Xia Cao
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
60
|
Network Pharmacology-Based Study of the Underlying Mechanisms of Huangqi Sijunzi Decoction for Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6480381. [PMID: 34650613 PMCID: PMC8510793 DOI: 10.1155/2021/6480381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/22/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
Background Huangqi Sijunzi decoction (HQSJZD) is a commonly used conventional Chinese herbal medicine prescription for invigorating Qi, tonifying Yang, and removing dampness. Modern pharmacology and clinical applications of HQSJZD have shown that it has a certain curative effect on Alzheimer's disease (AD). Methods The active components and targets of HQSJZD were searched in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The genes corresponding to the targets were retrieved using UniProt and GeneCard database. The herb-compound-target network and protein-protein interaction (PPI) network were constructed by Cytoscape. The core targets of HQSJZD were analysed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The main active compounds of HQSJZD were docked with acetylcholinesterase (AChE). In vitro experiments were conducted to detect the inhibitory and neuroprotective effects of AChE. Results Compound-target network mainly contained 132 compounds and 255 corresponding targets. The main compounds contained quercetin, kaempferol, formononetin, isorhamnetin, hederagenin, and calycosin. Key targets contained AChE, PTGS2, PPARG, IL-1B, GSK3B, etc. There were 1708 GO items in GO enrichment analysis and 310 signalling pathways in KEGG, mainly including the cAMP signalling pathway, the vascular endothelial growth factor (VEGF) signalling pathway, serotonergic synapses, the calcium signalling pathway, type II diabetes mellitus, arginine and proline metabolism, and the longevity regulating pathway. Molecular docking showed that hederagenin and formononetin were the top 2 compounds of HQSJZD, which had a high affinity with AChE. And formononetin has a good neuroprotective effect, which can improve the oxidative damage of nerve cells. Conclusion HQSJZD was found to have the potential to treat AD by targeting multiple AD-related targets. Formononetin and hederagenin in HQSJZD may regulate multiple signalling pathways through AChE, which might play a therapeutic role in AD.
Collapse
|
61
|
Sim AY, Barua S, Kim JY, Lee YH, Lee JE. Role of DPP-4 and SGLT2 Inhibitors Connected to Alzheimer Disease in Type 2 Diabetes Mellitus. Front Neurosci 2021; 15:708547. [PMID: 34489627 PMCID: PMC8417940 DOI: 10.3389/fnins.2021.708547] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by memory loss and cognitive decline. Additionally, abnormal extracellular amyloid plaques accumulation and nerve damage caused by intracellular neurofibrillary tangles, and tau protein are characteristic of AD. Furthermore, AD is associated with oxidative stress, impaired mitochondrial structure and function, denormalization, and inflammatory responses. Recently, besides the amyloid β hypothesis, another hypothesis linking AD to systemic diseases has been put forth by multiple studies as a probable cause for AD. Particularly, type 2 diabetes mellitus (T2DM) and its features, including hyperinsulinemia, and chronic hyperglycemia with an inflammatory response, have been shown to be closely related to AD through insulin resistance. The brain cannot synthesize or store glucose, but it does require glucose, and the use of glucose in the brain is higher than that in any other organ in the mammalian body. One of the therapeutic drugs for T2DM, dipeptidyl peptidase-4 (DPP-4) inhibitor, suppresses the degradation of incretins, glucagon-like peptides and glucose-dependent insulinotropic peptide. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, recently used in T2DM treatment, have a unique mechanism of action via inhibition of renal glucose reabsorption, and which is different from the mechanisms of previously used medications. This manuscript reviews the pathophysiological relationship between the two diseases, AD and T2DM, and the pharmacological effects of therapeutic T2DM drugs, especially DPP-4 inhibitors, and SGLT2 inhibitors.
Collapse
Affiliation(s)
- A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
62
|
Poor SR, Ettcheto M, Cano A, Sanchez-Lopez E, Manzine PR, Olloquequi J, Camins A, Javan M. Metformin a Potential Pharmacological Strategy in Late Onset Alzheimer's Disease Treatment. Pharmaceuticals (Basel) 2021; 14:ph14090890. [PMID: 34577590 PMCID: PMC8465337 DOI: 10.3390/ph14090890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most devastating brain disorders. Currently, there are no effective treatments to stop the disease progression and it is becoming a major public health concern. Several risk factors are involved in the progression of AD, modifying neuronal circuits and brain cognition, and eventually leading to neuronal death. Among them, obesity and type 2 diabetes mellitus (T2DM) have attracted increasing attention, since brain insulin resistance can contribute to neurodegeneration. Consequently, AD has been referred to "type 3 diabetes" and antidiabetic medications such as intranasal insulin, glitazones, metformin or liraglutide are being tested as possible alternatives. Metformin, a first line antihyperglycemic medication, is a 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator hypothesized to act as a geroprotective agent. However, studies on its association with age-related cognitive decline have shown controversial results with positive and negative findings. In spite of this, metformin shows positive benefits such as anti-inflammatory effects, accelerated neurogenesis, strengthened memory, and prolonged life expectancy. Moreover, it has been recently demonstrated that metformin enhances synaptophysin, sirtuin-1, AMPK, and brain-derived neuronal factor (BDNF) immunoreactivity, which are essential markers of plasticity. The present review discusses the numerous studies which have explored (1) the neuropathological hallmarks of AD, (2) association of type 2 diabetes with AD, and (3) the potential therapeutic effects of metformin on AD and preclinical models.
Collapse
Affiliation(s)
- Saghar Rabiei Poor
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Sanchez-Lopez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Patricia Regina Manzine
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3467987, Chile;
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3467987, Chile;
- Correspondence: (A.C.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (A.C.); (M.J.)
| |
Collapse
|
63
|
Living with the enemy: from protein-misfolding pathologies we know, to those we want to know. Ageing Res Rev 2021; 70:101391. [PMID: 34119687 DOI: 10.1016/j.arr.2021.101391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Conformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed. Enemy-aggregating proteins may reside in these underdiagnosed AATD patients for many years before a pathology for AATD fully develops. In this perspective review, we hypothesize that the AAT protein could exert a new and previously unconsidered biological effect as an endogenous metal ion chelator that plays a significant role in essential metal ion homeostasis. In this respect, AAT polymorphism may cause an imbalance of metal ions, which could be correlated with the aggregation of amylin, tau, amyloid beta, and alpha synuclein proteins in type 2 diabetes mellitus (T2DM), Alzheimer's and Parkinson's diseases, respectively.
Collapse
|
64
|
Liu D, Wang Y, Jing H, Meng Q, Yang J. Novel DNA methylation loci and genes showing pleiotropic association with Alzheimer's dementia: a network Mendelian randomization analysis. Epigenetics 2021; 17:746-758. [PMID: 34461811 DOI: 10.1080/15592294.2021.1959735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Previous genome-wide association studies (GWAS) have identified potential genetic variants involved in the risk of Alzheimer's dementia, but their underlying biological interpretation remains largely unclear. In addition, the effects of DNA methylation and gene expression on Alzheimer's dementia are not well understood. A network summary data-based Mendelian randomization (SMR) analysis was performed integrating cis- DNA methylation quantitative trait loci (mQTL) /cis- gene expression QTL (eQTL) data in the brain and blood, as well as GWAS summarized data for Alzheimer's dementia to evaluate the pleiotropic associations of DNA methylation and gene expression with Alzheimer's dementia and to explore the complex mechanisms underpinning Alzheimer's dementia. After correction for multiple testing (false discovery rate [FDR] P < 0.05) and filtering using the heterogeneity in dependent instruments (HEIDI) test (PHEIDI>0.01), we identified dozens of DNA methylation sites and genes showing pleiotropic associations with Alzheimer's dementia. We found 22 and 16 potentially causal pathways of Alzheimer's dementia (i.e., SNP→DNA methylation→Gene expression→Alzheimer's dementia) in the brain and blood, respectively. Approximately two-thirds of the identified DNA methylation sites had an influence on gene expression and the expression of almost all the identified genes was regulated by DNA methylation. Our network SMR analysis provided evidence supporting the pleiotropic association of some novel DNA methylation sites and genes with Alzheimer's dementia and revealed possible causal pathways underlying the pathogenesis of Alzheimer's dementia. Our findings shed light on the role of DNA methylation in gene expression and in the development of Alzheimer's dementia.
Collapse
Affiliation(s)
- Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.,Centre for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Huiquan Jing
- School of Public Health, Capital Medical University, Beijing, China
| | - Qun Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
65
|
Hefner M, Baliga V, Amphay K, Ramos D, Hegde V. Cardiometabolic Modification of Amyloid Beta in Alzheimer's Disease Pathology. Front Aging Neurosci 2021; 13:721858. [PMID: 34497507 PMCID: PMC8419421 DOI: 10.3389/fnagi.2021.721858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, several studies have suggested that cardiometabolic disorders, such as diabetes, obesity, hypertension, and dyslipidemia, share strong connections with the onset of neurodegenerative disorders such as Parkinson's and Alzheimer's disease (AD). However, establishing a definitive link between medical disorders with coincident pathophysiologies is difficult due to etiological heterogeneity and underlying comorbidities. For this reason, amyloid β (Aβ), a physiological peptide derived from the sequential proteolysis of amyloid precursor protein (APP), serves as a crucial link that bridges the gap between cardiometabolic and neurodegenerative disorders. Aβ normally regulates neuronal synaptic function and repair; however, the intracellular accumulation of Aβ within the brain has been observed to play a critical role in AD pathology. A portion of Aβ is believed to originate from the brain itself and can readily cross the blood-brain barrier, while the rest resides in peripheral tissues that express APP required for Aβ generation such as the liver, pancreas, kidney, spleen, skin, and lungs. Consequently, numerous organs contribute to the body pool of total circulating Aβ, which can accumulate in the brain and facilitate neurodegeneration. Although the accumulation of Aβ corresponds with the onset of neurodegenerative disorders, the direct function of periphery born Aβ in AD pathophysiology is currently unknown. This review will highlight the contributions of individual cardiometabolic diseases including cardiovascular disease (CVD), type 2 diabetes (T2D), obesity, and non-alcoholic fatty liver disease (NAFLD) in elevating concentrations of circulating Aβ within the brain, as well as discuss the comorbid association of Aβ with AD pathology.
Collapse
Affiliation(s)
- Marleigh Hefner
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Vineet Baliga
- College of Arts and Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States
| | - Kailinn Amphay
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Daniela Ramos
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Vijay Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
66
|
Zhang H, Song B, Zhu W, Liu L, He X, Wang Z, An K, Cao W, Shi J, Wang S. Glucagon-like peptide-1 attenuated carboxymethyl lysine induced neuronal apoptosis via peroxisome proliferation activated receptor-γ. Aging (Albany NY) 2021; 13:19013-19027. [PMID: 34326274 PMCID: PMC8351674 DOI: 10.18632/aging.203351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/08/2021] [Indexed: 01/19/2023]
Abstract
Backgrounds and aims: The role of peroxisome proliferator activated receptor-γ (PPAR-γ) in neuronal apoptosis remains unclear. We aim to investigate the role of PPAR-γ in glucagon-like peptide-1 (GLP-1) alleviated neuronal apoptosis induced by carboxymethyl-lysine (CML). Materials and Methods: In vitro, PC12 cells were treated by CML/GLP-1. Moreover. the function of PPAR-γ was blocked by GW9662. In vivo, streptozotocin (STZ) was used to induce diabetic rats with neuronal apoptosis. The cognitive function of rats was observed by Morris water maze. Apoptosis was detected by TUNEL assay. Bcl2, Bax, PPAR-γ and receptor of GLP-1 (GLP-1R) were measured by western blotting or immunofluorescence. Results: In vitro experiment, CML triggered apoptosis, down-regulated GLP-1R and PPAR-γ. Moreover, GLP-1 not only alleviated the apoptosis, but also increased levels of PPAR-γ. GW9662 abolished the neuroprotective effect of GLP-1 on PC12 cells from apoptosis. Furthermore, GLP-1R promoter sequences were detected in the PPAR-γ antibody pulled mixture. GPL-1 levels decreased, while CML levels increased in diabetic rats, compared with control rats. Additionally, we observed elevated bax, decreased bcl2, GLP-1R and PPAR-γ in diabetic rats. Conclusions: GLP-1 could attenuate neuronal apoptosis induced by CML. Additionally, PPAR-γ involves in this process.
Collapse
Affiliation(s)
- Haoqiang Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Bing Song
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 1210001, Liaoning Province, China
| | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Lili Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 1210001, Liaoning Province, China
| | - Xiqiao He
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 1210001, Liaoning Province, China
| | - Zheng Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Wuyou Cao
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Jijing Shi
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
67
|
Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Failure of the Brain Glucagon-Like Peptide-1-Mediated Control of Intestinal Redox Homeostasis in a Rat Model of Sporadic Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1118. [PMID: 34356351 PMCID: PMC8301063 DOI: 10.3390/antiox10071118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal system may be involved in the etiopathogenesis of the insulin-resistant brain state (IRBS) and Alzheimer's disease (AD). Gastrointestinal hormone glucagon-like peptide-1 (GLP-1) is being explored as a potential therapy as activation of brain GLP-1 receptors (GLP-1R) exerts neuroprotection and controls peripheral metabolism. Intracerebroventricular administration of streptozotocin (STZ-icv) is used to model IRBS and GLP-1 dyshomeostasis seems to be involved in the development of neuropathological changes. The aim was to explore (i) gastrointestinal homeostasis in the STZ-icv model (ii) assess whether the brain GLP-1 is involved in the regulation of gastrointestinal redox homeostasis and (iii) analyze whether brain-gut GLP-1 axis is functional in the STZ-icv animals. Acute intracerebroventricular treatment with exendin-3(9-39)amide was used for pharmacological inhibition of brain GLP-1R in the control and STZ-icv rats, and oxidative stress was assessed in plasma, duodenum and ileum. Acute inhibition of brain GLP-1R increased plasma oxidative stress. TBARS were increased, and low molecular weight thiols (LMWT), protein sulfhydryls (SH), and superoxide dismutase (SOD) were decreased in the duodenum, but not in the ileum of the controls. In the STZ-icv, TBARS and CAT were increased, LMWT and SH were decreased at baseline, and no further increment of oxidative stress was observed upon central GLP-1R inhibition. The presented results indicate that (i) oxidative stress is increased in the duodenum of the STZ-icv rat model of AD, (ii) brain GLP-1R signaling is involved in systemic redox regulation, (iii) brain-gut GLP-1 axis regulates duodenal, but not ileal redox homeostasis, and iv) brain-gut GLP-1 axis is dysfunctional in the STZ-icv model.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| |
Collapse
|
68
|
The structural simplification of lysergic acid as a natural lead for synthesizing novel anti-Alzheimer agents. Bioorg Med Chem Lett 2021; 47:128205. [PMID: 34139326 DOI: 10.1016/j.bmcl.2021.128205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, projected to be the second leading cause of mortality by 2040. AD is characterized by a progressive impairment of memory leading to dementia and loss of ability to carry out daily functions. In addition to the deficiency of acetylcholine release in synapse, there are other mechanisms explaining the etiology of the disease. The most disputing ones are associated with the accumulation of damaged proteins β-amyloid (Aβ) and hyperphosphorylated tau outside and inside neurons, respectively. Lysergic acid derivatives have been shown to possess promising anti-Alzheimer effect. Moreover, lysergic acid structure encompasses the general structural requirements for acetylcholinesterase inhibition. In this study, sixteen analogues, derived from lysergic acid structure, were synthesized. Heck and Mannich reactions were carried out to 4-bromo indole nucleus to generate potentially active analogues. Some of them were subsequently cyclized by nitromethane and zinc reduction procedures. Some of these compounds showed neuroprotective and anti-inflammatory effects stronger than the currently used anti-Alzheimer drug; donepezil. Some of the synthesized com-pounds showed a noticeable acetylcholinesterase inhibition. Twelve molecular targets attributed with AD etiology were tested versus the synthesized compounds by in silico modeling. Docking scores of modeling were plotted against in vitro activity of the compounds. The one afforded the strongest positive correlation was ULK-1 which has a significant role in autophagy.
Collapse
|
69
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
70
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
71
|
Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer's disease. 3 Biotech 2021; 11:179. [PMID: 33927970 DOI: 10.1007/s13205-021-02738-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, also regarded as "type 3 diabetes" for the last few years because of the brain insulin resistance (IR) and dysregulation of insulin signaling in the brain, which can further promote pathological progression of AD. IRS-1/PI3K/Akt insulin signaling pathway disorder and its downstream cascade reaction are responsible for cognitive decline in the brain. In recent years, a growing number of studies has documented that dysregulation of insulin signaling is a key feature of AD and has crucial correlations with serine/tyrosine (Ser/Tyr) phosphorylation of insulin receptor substance-1(IRS-1). Phosphorylation of this protein has been identified as an important molecule involved in the process of amyloid-β (Aβ) deposition into senile plaques (SPs) and tau hyperphosphorylation into neurofibrillary tangles (NFTs). In this paper, we review the links between IRS-1 and the PI3K/Akt insulin signaling pathway, and highlight phosphorylated IRS-1 which negatively regulated by downstream effector of Akt such as mTOR, S6K, and JNK, among others in AD. Furthermore, anti-diabetic drugs including metformin, thiazolidinediones, and glucagon-like peptide-1 (GLP-1) analogue could modulate IRS-1 phosphorylation, brain IR, PI3K/Akt insulin signaling pathway, and other pathologic processes of AD. The above suggest that anti-diabetic drugs may be promising strategies for AD disease-modifying treatments.
Collapse
|
72
|
Amanzadeh Jajin E, Esmaeili A, Rahgozar S, Noorbakhshnia M. Quercetin-Conjugated Superparamagnetic Iron Oxide Nanoparticles Protect AlCl 3-Induced Neurotoxicity in a Rat Model of Alzheimer's Disease via Antioxidant Genes, APP Gene, and miRNA-101. Front Neurosci 2021; 14:598617. [PMID: 33716639 PMCID: PMC7947204 DOI: 10.3389/fnins.2020.598617] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with cognitive impairment. Oxidative stress in neurons is considered as a reason for development of AD. Antioxidant agents such as quercetin slow down AD progression, but the usage of this flavonoid has limitations because of its low bioavailability. We hypothesized that quercetin-conjugated superparamagnetic iron oxide nanoparticles (QT-SPIONs) have a better neuroprotective effect on AD than free quercetin and regulates the antioxidant, apoptotic, and APP gene, and miRNA-101. In this study, male Wistar rats were subjected to AlCl3, AlCl3 + QT, AlCl3 + SPION, and AlCl3 + QT-SPION for 42 consecutive days. Behavioral tests and qPCR were used to evaluate the efficiency of treatments. Results of behavioral tests revealed that the intensity of cognitive impairment was decelerated at both the middle and end of the treatment period. The effect of QT-SPIONs on learning and memory deficits were closely similar to the control group. The increase in expression levels of APP gene and the decrease in mir101 led to the development of AD symptoms in rats treated with AlCl3 while these results were reversed in the AlCl3 + QT-SPIONs group. This group showed similar results with the control group. QT-SPION also decreased the expression levels of antioxidant enzymes along with increases in expression levels of anti-apoptotic genes. Accordingly, the antioxidant effect of QT-SPION inhibited progression of cognitive impairment via sustaining the balance of antioxidant enzymes in the hippocampus of AD model rats.
Collapse
Affiliation(s)
- Elnaz Amanzadeh Jajin
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
73
|
Sabbatinelli J, Ramini D, Giuliani A, Recchioni R, Spazzafumo L, Olivieri F. Connecting vascular aging and frailty in Alzheimer's disease. Mech Ageing Dev 2021; 195:111444. [PMID: 33539904 DOI: 10.1016/j.mad.2021.111444] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Aging plays an important role in the etiology of the most common age-related diseases (ARDs), including Alzheimer's disease (AD). The increasing number of AD patients and the lack of disease-modifying drugs warranted intensive research to tackle the pathophysiological mechanisms underpinning AD development. Vascular aging/dysfunction is a common feature of almost all ARDs, including cardiovascular (CV) diseases, diabetes and AD. To this regard, interventions aimed at modifying CV outcomes are under extensive investigation for their pleiotropic role in ameliorating and slowing down cognitive impairment in middle-life and elderly individuals. Evidence from observational and clinical studies confirm the notion that the earlier the interventions are conducted, the most favorable are the effects on cognitive function. Therefore, epidemiological research should focus on the early detection of deviations from a healthy cognitive aging trajectory, through the stratification of adult individuals according to the rate of aging. Here, we review the interplay between vascular and cognitive dysfunctions associated with aging, to disentangle the complex mechanisms underpinning the development and progression of neurodegenerative disorders, with a specific focus on AD.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Liana Spazzafumo
- Epidemiologic Observatory, Regional Health Agency, Regione Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
74
|
Homolak J, Perhoc AB, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Additional methodological considerations regarding optimization of the dose of intracerebroventricular streptozotocin A response to: "Optimization of intracerebroventricular streptozotocin dose for the induction of neuroinflammation and memory impairments in rats" by Ghosh et al., Metab Brain Dis 2020 July 21. Metab Brain Dis 2021; 36:97-102. [PMID: 33108579 DOI: 10.1007/s11011-020-00637-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023]
Abstract
A recent article by Ghosh et al. entitled "Optimization of intracerebroventricular streptozotocin dose for the induction of neuroinflammation and memory impairments in rats" provides an important new set of information on neuroinflammation and cognitive deficit in a rat model of sporadic Alzheimer's disease (sAD) based on intracerebroventricular administration of streptozotocin (STZ-icv) in Charles-Foster rats in the early post-treatment period of 21 days. This comment is supposed to supplement the aforementioned manuscript by providing additional perspective on important factors that should be taken into account in the process of optimization of the streptozotocin (STZ) dose for intracerebroventricular treatment, and provides a brief overview of possible sources of variation of experimental results reported by different groups working with STZ-icv rodent models.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
75
|
Li QX, Gao H, Guo YX, Wang BY, Hua RX, Gao L, Shang HW, Lu X, Xu JD. GLP-1 and Underlying Beneficial Actions in Alzheimer's Disease, Hypertension, and NASH. Front Endocrinol (Lausanne) 2021; 12:721198. [PMID: 34552561 PMCID: PMC8450670 DOI: 10.3389/fendo.2021.721198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
GLP-1 is derived from intestinal L cells, which takes effect through binding to GLP-1R and is inactivated by the enzyme dipeptidyl peptidase-4 (DPP-4). Since its discovery, GLP-1 has emerged as an incretin hormone for its facilitation in insulin release and reduction of insulin resistance (IR). However, GLP-1 possesses broader pharmacological effects including anti-inflammation, neuro-protection, regulating blood pressure (BP), and reducing lipotoxicity. These effects are interconnected to the physiological and pathological processes of Alzheimer's disease (AD), hypertension, and non-alcoholic steatohepatitis (NASH). Currently, the underlying mechanism of these effects is still not fully illustrated and a better understanding of them may help identify promising therapeutic targets of AD, hypertension, and NASH. Therefore, we focus on the biological characteristics of GLP-1, render an overview of the mechanism of GLP-1 effects in diseases, and investigate the potential of GLP-1 analogues for the treatment of related diseases in this review.
Collapse
Affiliation(s)
- Qiu-Xuan Li
- Clinical Medicine of “5+3” Program, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue-Xin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Rong-xuan Hua
- Clinical Medicine of “5+3” Program, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering. Capital Medical University, Beijing, China
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Lu
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
76
|
Abstract
Diabetes is on the rise across the globe affecting more than 463 million people and crucially increasing morbidities of diabetes-associated diseases. Urgent and immense actions are needed to improve diabetes prevention and treatment. Regarding the correlation of diabetes with many associated diseases, inhibition of the disease progression is more crucial than controlling symptoms. Currently, anti-diabetic drugs are accompanied by undesirable side-effects and target confined types of biomolecules. Thus, extensive research is demanding to identify novel disease mechanisms and molecular targets as probable candidates for effective treatment of diabetes. This review discusses the conventional molecule targets that have been applied for their therapeutic rationale in treatment of diabetes. Further, the emerging and prospective molecular targets for the future focus of library screenings are presented.
Collapse
Affiliation(s)
- Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
77
|
Octodon degus: a natural model of multimorbidity for ageing research. Ageing Res Rev 2020; 64:101204. [PMID: 33152453 DOI: 10.1016/j.arr.2020.101204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Integrating the multifactorial processes co-occurring in both physiological and pathological human conditions still remains one of the main challenges in translational investigation. Moreover, the impact of age-associated disorders has increased, which underlines the urgent need to find a feasible model that could help in the development of successful therapies. In this sense, the Octodon degus has been indicated as a 'natural' model in many biomedical areas, especially in ageing. This rodent shows complex social interactions and high sensitiveness to early-stressful events, which have been used to investigate neurodevelopmental processes. Interestingly, a high genetic similarity with some key proteins implicated in human diseases, such as apolipoprotein-E, β-amyloid or insulin, has been demonstrated. On the other hand, the fact that this animal is diurnal has provided important contribution in the field of circadian biology. Concerning age-related diseases, this rodent could be a good model of multimorbidity since it naturally develops cognitive decline, neurodegenerative histopathological hallmarks, visual degeneration, type II diabetes, endocrinological and metabolic dysfunctions, neoplasias and kidneys alterations. In this review we have collected and summarized the studies performed on the Octodon degus through the years that support its use as a model for biomedical research, with a special focus on ageing.
Collapse
|
78
|
Ettcheto M, Busquets O, Espinosa-Jiménez T, Verdaguer E, Auladell C, Camins A. A Chronological Review of Potential Disease-Modifying Therapeutic Strategies for Alzheimer's Disease. Curr Pharm Des 2020; 26:1286-1299. [PMID: 32066356 DOI: 10.2174/1381612826666200211121416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/18/2019] [Indexed: 01/28/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is a neurodegenerative disorder that has become a worldwide health problem. This pathology has been classically characterized for its affectation on cognitive function and the presence of depositions of extracellular amyloid β-protein (Aβ) and intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein. To this day, no effective treatment has been developed. Multiple strategies have been proposed over the years with the aim of finding new therapeutic approaches, such as the sequestration of Aβ in plasma or the administration of anti-inflammatory drugs. Also, given the significant role of the insulin receptor in the brain in the proper maintenance of cognitive function, drugs focused on the amelioration of insulin resistance have been proposed as potentially useful and effective in the treatment of AD. In the present review, taking into account the molecular complexity of the disease, it has been proposed that the most appropriate therapeutic strategy is a combinatory treatment of several drugs that will regulate a wide spectrum of the described altered pathological pathways.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Sciences, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Sciences, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
79
|
Conte M, Sabbatinelli J, Chiariello A, Martucci M, Santoro A, Monti D, Arcaro M, Galimberti D, Scarpini E, Bonfigli AR, Giuliani A, Olivieri F, Franceschi C, Salvioli S. Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer's disease in comparison with healthy aging. GeroScience 2020; 43:985-1001. [PMID: 33131010 PMCID: PMC8110619 DOI: 10.1007/s11357-020-00287-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Fibroblast Growth Factor 21 (FGF21), Growth Differentiation Factor 15 (GDF15), and Humanin (HN) are mitochondrial stress-related mitokines, whose role in health and disease is still debated. In this study, we confirmed that their plasma levels are positively correlated with age in healthy subjects. However, when looking at patients with type 2 diabetes (T2D) or Alzheimer's disease (AD), two age-related diseases sharing a mitochondrial impairment, we found that GDF15 is elevated in T2D but not in AD and represents a risk factor for T2D complications, while FGF21 and HN are lower in AD but not in T2D. Moreover, FGF21 reaches the highest levels in centenarian' offspring, a model of successful aging. As a whole, these data indicate that (i) the adaptive mitokine response observed in healthy aging is lost in age-related diseases, (ii) a common expression pattern of mitokines does not emerge in T2D and AD, suggesting an unpredicted complexity and disease-specificity, and (iii) FGF21 emerges as a candidate marker of healthy aging.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy.
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Marina Arcaro
- Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, University of Milan, Milan, Italy
| | - Elio Scarpini
- Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, University of Milan, Milan, Italy
| | | | - Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
80
|
Jin Y, Zhao H, Hou Y, Song G. The effects of dipeptidyl peptidase-4 inhibitors and glucagon-like peptide 1 receptor agonists on cognitive functions in adults with type 2 diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol 2020; 57:1129-1144. [PMID: 32300876 DOI: 10.1007/s00592-020-01529-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022]
Abstract
AIMS The effects of dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors/DPP-4I) and glucagon-like peptide 1 receptor agonists (GLP-1 RA) on cognition in patients with type 2 diabetes mellitus (T2DM) remain controversial. We aimed to explore this clinical issue through a systematic review and meta-analysis. METHODS PubMed, EMBASE and the Cochrane Library were searched, and data were expressed as mean difference (MD) or hazard ratio (HR)/odds ratio (OR) with a 95% confidence interval (CI). Heterogeneity was assessed using the Chi-squared test and the I2 statistic. The study was registered with PROSPERO (ID: CRD42019138777). RESULTS Eleven studies (n = 304,258 T2DM patients) were included in our review. In the DPP-4I group, six studies were enrolled to estimate ΔMini-Mental State Examination (MMSE) scores from baseline to the final evaluations after DPP-4I treatment, which showed no statistical difference (MD 0.20; 95% CI - 0.75 to 1.15, p = 0.68). ΔMMSE scores in the DPP-4I group and the other antidiabetic groups were compared, revealing no statistical difference (MD 0.57; 95% CI - 0.05 to 1.19, p = 0.07). Two cohort studies were pooled to determine the HRs for dementia, showing a lower risk of dementia after DPP-4I treatment (HR 0.52; 95% CI 0.29-0.93, p = 0.03). In the GLP-1 analogs group, two studies were included, one of which revealed a downward trend in the risk of dementia after GLP-1 analog treatment, while the other revealed no significant difference after incretins treatment. CONCLUSIONS Currently there is not enough irrefutable evidence to support the hypothesis of positive effects of incretins on cognition. Further clinical studies need to be performed.
Collapse
Affiliation(s)
- Yuxin Jin
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Hang Zhao
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Yilin Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
81
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
82
|
Suresh J, Khor IW, Kaur P, Heng HL, Torta F, Dawe GS, Tai ES, Tolwinski NS. Shared signaling pathways in Alzheimer’s and metabolic disease may point to new treatment approaches. FEBS J 2020; 288:3855-3873. [DOI: 10.1111/febs.15540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | - Ing Wei Khor
- Department of Medicine Yong Loo Lin School of MedicineNational University of Singapore
| | - Prameet Kaur
- Science Division Yale‐ NUS College Singapore Singapore
| | - Hui Li Heng
- Department of Pharmacology Yong Loo Lin School of Medicine National University of Singapore, and Neurobiology Programme
- Life Sciences Institute National University of Singapore Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator Department of Biochemistry Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Gavin S. Dawe
- Department of Pharmacology Yong Loo Lin School of Medicine National University of Singapore, and Neurobiology Programme
- Life Sciences Institute National University of Singapore Singapore
| | - E Shyong Tai
- Department of Medicine Yong Loo Lin School of MedicineNational University of Singapore
- Division of Endocrinology National University HospitalNational University Health System
| | | |
Collapse
|
83
|
Crosstalk between obesity, diabetes, and alzheimer's disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev 2020; 62:101095. [PMID: 32535272 DOI: 10.1016/j.arr.2020.101095] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes are the most common metabolic disorders, which are strongly related to Alzheimer's disease (AD) in aging. Diabetes and obesity can lead to the accumulation of amyloid plaques, neurofibrillary tangles (NFTs), and other symptoms of AD through several pathways, including insulin resistance, hyperglycemia, hyperinsulinemia, chronic inflammation, oxidative stress, adipokines dysregulation, and vascular impairment. Currently, the use of polyphenols has been expanded in animal models and in-vitro studies because of their comparatively negligible adverse effects. Among them, quercetin (QT) is one of the most abundant polyphenolic flavonoids, which is present in fruits and vegetables and displays many biological, health-promoting effects in a wide range of diseases. The low bioavailability and poor solubility of QT have also led researchers to make various QT-involved nanoparticles (NPs) to overcome these limitations. In this paper, we review significant molecular mechanisms induced by diabetes and obesity that increase AD pathogenesis. Then, we summarize in vitro, in vivo, and clinical evidence regarding the anti-Alzheimer, anti-diabetic and anti-obesity effects of QT. Finally, QT in pure and combination form using NPs has been suggested as a promising therapeutic agent for future studies.
Collapse
|
84
|
Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut Microbiota and Dysbiosis in Alzheimer's Disease: Implications for Pathogenesis and Treatment. Mol Neurobiol 2020; 57:5026-5043. [PMID: 32829453 PMCID: PMC7541367 DOI: 10.1007/s12035-020-02073-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.,Departments of Laboratory Medicine and Pathology, Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Kangding Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, Beijing, 100085, China.
| |
Collapse
|
85
|
Wu Z, Zhan Y, Wang L, Tong J, Zhang L, Lin M, Jin X, Jiang L, Lou Y, Qiu Y. Identification of osalmid metabolic profile and active metabolites with anti-tumor activity in human hepatocellular carcinoma cells. Biomed Pharmacother 2020; 130:110556. [PMID: 32763815 DOI: 10.1016/j.biopha.2020.110556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDS Ribonucleotide reductase (RR) catalyzes the essential step in the formation of all four deoxynucleotides. Upregulated activity of RR plays an active role in tumor progression. As the regulatory subunit of RR, ribonucleotide reductase subunit M2 (RRM2) is regarded as one of the effective therapeutic targets for DNA replication-dependent diseases, such as cancers. Recent studies have revealed that osalmid significantly inhibits the activity of RRM2, but the metabolic profile of osalmid remains unknown. OBJECTIVE The aim of this study was to clarify the metabolic profile including metabolites, isoenzymes and metabolic pathways of osalmid. The anti-human hepatocellular carcinoma activity and mechanism of metabolites were further investigated. MATERIALS AND METHODS Ultra high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) was used for identifying metabolites and for characterizing phase I and phase II metabolic pathways with recombinant enzymes or in human liver microsomes of osalmid. The eHiTS docking system was used for potential RRM2 inhibitor screening among metabolites. Cytotoxicity assays were performed for evaluating cell proliferation inhibitory activity of metabolites. Cell cycle assays and cell apoptosis assays were assessed by flow cytometry. Western blotting analysis of RRM2, cyclin D1, p21, p53, phosphorylated p53, Bcl-2 and Bax was performed to explore the anti-hepatocellular carcinoma mechanism of the active metabolites. RESULTS Ten metabolites of osalmid were identified, and none of them have been reported previously. Hydroxylation, glucuronidation, sulfonation, acetylation and degradation were recognized as the main metabolic processes of osalmid. Isozymes of CYP1A2, CYP2C9, UGT1A1, UGT1A6, UGT1A9, UGT2B7 and UGT2B15 were involved in phase I and phase II metabolism of osalmid. Metabolites M7, M8 and M10 showed higher binding affinities with the RRM2 active site than osalmid. Metabolite M7 exhibited potent inhibitory activity to hepatocellular carcinoma cell lines by both competitive inhibition and down-regulation of RRM2. Moreover, M7 significantly induced cell cycle arrest and apoptosis by activating p53-related pathways. CONCLUSIONS The metabolic profile of osalmid was identified. M7 significantly inhibited human hepatocellular carcinoma progression by inhibiting RRM2 activity. Furthermore, M7 induced cell cycle arrest and apoptosis by activating p53-related signaling pathways.
Collapse
Affiliation(s)
- Zhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| | - Yaqiong Zhan
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| | - Li Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| | - Jiepeng Tong
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| | - Li Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| | - Mengjia Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| | - Xuehang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| | - Lushun Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| | - Yan Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, People's Republic of China.
| |
Collapse
|
86
|
Screening of Some Sulfonamide and Sulfonylurea Derivatives as Anti-Alzheimer’s Agents Targeting BACE1 and PPARγ. J CHEM-NY 2020. [DOI: 10.1155/2020/1631243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
In the last few decades, Alzheimer’s disease (AD) has emerged as a serious global problem, and it has been considered as the most common type of dementia. PPARγ and beta-secretase 1 (BACE1) are considered as potential targets for Alzheimer’s disease management. In the same time, sulfonylureas and sulfonamides have been confirmed to have PPARγ agonistic activity. Aiming to obtain new anti-AD agents, thirty-five compounds of sulfonamide and sulfonylurea derivatives having the same essential pharmacophoric features of the reported PPARγ agonists have been subjected to virtual screening. Docking studies revealed that five compounds (1, 2, 3, 4, and 5) have promising affinities to PPARγ. They were also docked into the binding site of BACE1. In addition, ADMET and physicochemical properties of these compounds were considered. Additionally, these compounds were further evaluated against BACE1 and PPARγ. Compound 2 showed IC50 value of 1.64 μM against BACE1 and EC50 value of 0.289 μM against PPARγ.
Collapse
|
87
|
Sell SL, Widen SG, Prough DS, Hellmich HL. Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases. PLoS One 2020; 15:e0234185. [PMID: 32502186 PMCID: PMC7274418 DOI: 10.1371/journal.pone.0234185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Early, ideally pre-symptomatic, recognition of common diseases (e.g., heart disease, cancer, diabetes, Alzheimer’s disease) facilitates early treatment or lifestyle modifications, such as diet and exercise. Sensitive, specific identification of diseases using blood samples would facilitate early recognition. We explored the potential of disease identification in high dimensional blood microRNA (miRNA) datasets using a powerful data reduction method: principal component analysis (PCA). Using Qlucore Omics Explorer (QOE), a dynamic, interactive visualization-guided bioinformatics program with a built-in statistical platform, we analyzed publicly available blood miRNA datasets from the Gene Expression Omnibus (GEO) maintained at the National Center for Biotechnology Information at the National Institutes of Health (NIH). The miRNA expression profiles were generated from real time PCR arrays, microarrays or next generation sequencing of biologic materials (e.g., blood, serum or blood components such as platelets). PCA identified the top three principal components that distinguished cohorts of patients with specific diseases (e.g., heart disease, stroke, hypertension, sepsis, diabetes, specific types of cancer, HIV, hemophilia, subtypes of meningitis, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, mild cognitive impairment, aging, and autism), from healthy subjects. Literature searches verified the functional relevance of the discriminating miRNAs. Our goal is to assemble PCA and heatmap analyses of existing and future blood miRNA datasets into a clinical reference database to facilitate the diagnosis of diseases using routine blood draws.
Collapse
Affiliation(s)
- Stacy L. Sell
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
88
|
Stanciu GD, Bild V, Ababei DC, Rusu RN, Cobzaru A, Paduraru L, Bulea D. Link Between Diabetes and Alzheimer's Disease due to the Shared Amyloid Aggregation and Deposition Involving both Neurodegenerative Changes and Neurovascular Damages. J Clin Med 2020; 9:jcm9061713. [PMID: 32503113 PMCID: PMC7357086 DOI: 10.3390/jcm9061713] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes and Alzheimer’s disease are two highly prevalent diseases among the aging population and have become major public health concerns in the 21st century, with a significant risk to each other. Both of these diseases are increasingly recognized to be multifactorial conditions. The terms “diabetes type 3” or “brain diabetes” have been proposed in recent years to provide a complete view of the potential common pathogenic mechanisms between these diseases. While insulin resistance or deficiency remains the salient hallmarks of diabetes, cognitive decline and non-cognitive abnormalities such as impairments in visuospatial function, attention, cognitive flexibility, and psychomotor speed are also present. Furthermore, amyloid aggregation and deposition may also be drivers for diabetes pathology. Here, we offer a brief appraisal of social impact and economic burden of these chronic diseases and provide insight into amyloidogenesis through considering recent advances of amyloid-β aggregates on diabetes pathology and islet amyloid polypeptide on Alzheimer’s disease. Exploring the detailed knowledge of molecular interaction between these two amyloidogenic proteins opens new opportunities for therapies and biomarker development.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Veronica Bild
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
- Correspondence: (V.B.); (L.P.)
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| | - Razvan Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| | - Alina Cobzaru
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| | - Luminita Paduraru
- Department Mother & Child Care, Division Neonatology, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (V.B.); (L.P.)
| | - Delia Bulea
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| |
Collapse
|
89
|
Chiba Y, Sugiyama Y, Nishi N, Nonaka W, Murakami R, Ueno M. Sodium/glucose cotransporter 2 is expressed in choroid plexus epithelial cells and ependymal cells in human and mouse brains. Neuropathology 2020; 40:482-491. [PMID: 32488949 PMCID: PMC7587001 DOI: 10.1111/neup.12665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) is now recognized as one of the risk factors for Alzheimer's disease (AD), and the disease‐modifying effects of anti‐diabetic drugs on AD have recently been attracting great attention. Sodium/glucose cotransporter 2 (SGLT2) inhibitors are a new class of anti‐diabetic drugs targeting the SGLT2/solute carrier family 5 member 2 (SLC5A2) protein, which is known to localize exclusively in the brush border membrane of early proximal tubules in the kidney. However, recent data suggest that it is also expressed in other tissues. In the present study, we investigated the expression of SGLT2/SLC5A2 in human and mouse brains. Immunohistochemical staining of paraffin sections from autopsied human brains and C3H/He mouse brains revealed granular cytoplasmic immunoreactivity in choroid plexus epithelial cells and ependymal cells. Immunoblot analysis of the membrane fraction of mouse choroid plexus showed distinct immunoreactive bands at 70 and 26 kDa. Band patterns around 70 kDa in the membrane fraction of the choroid plexus were different from those in the kidney. Reverse transcription‐polymerase chain reaction analysis confirmed the expression of Slc5a2 mRNA in the mouse choroid plexus. Our results provide in vivo evidence that SGLT2/SLC5A2 is expressed in cells facing the cerebrospinal fluid, in addition to early proximal tubular epithelial cells. These findings suggest that SGLT2 inhibitors may have another site of action in the brain. The effects of SGLT2 inhibitors on brain function and AD progression merit further investigation to develop better treatment options for DM patients.
Collapse
Affiliation(s)
- Yoichi Chiba
- Department of Pathology and Host Defense, Kagawa University, Kagawa, Japan
| | | | - Nozomu Nishi
- Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Wakako Nonaka
- Department of Supportive and Promotive Medicine of the Municipal Hospital, Kagawa University, Kagawa, Japan.,Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Kagawa University, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Kagawa University, Kagawa, Japan
| |
Collapse
|
90
|
Song R, Xu H, Dintica CS, Pan KY, Qi X, Buchman AS, Bennett DA, Xu W. Associations Between Cardiovascular Risk, Structural Brain Changes, and Cognitive Decline. J Am Coll Cardiol 2020; 75:2525-2534. [PMID: 32439001 PMCID: PMC10061875 DOI: 10.1016/j.jacc.2020.03.053] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The impact of cardiovascular risk burden on cognitive trajectories and brain structure changes remains unclear. OBJECTIVES This study aimed to examine whether cardiovascular risk burden assessed by the Framingham General Cardiovascular Risk Score (FGCRS) is associated with cognitive decline and structural brain differences. METHODS Within the Rush Memory and Aging Project, 1,588 dementia-free participants (mean age: 79.5 years) were followed for up to 21 years. FGCRS was assessed at baseline and categorized into tertiles (lowest, middle, and highest). Episodic memory, semantic memory, working memory, visuospatial ability, and perceptual speed were assessed annually with a battery of 19 tests, from which composite scores were derived. A subsample (n = 378) of participants underwent magnetic resonance imaging. Structural total and regional brain volumes were estimated. Data were analyzed using linear mixed-effects models and linear regression models. RESULTS In all participants, FGCRS ranged from 4 to 28 (mean score: 15.6 ± 3.7). Compared with the lowest tertile of FGCRS, the highest tertile was associated with faster decline in global cognition (β = -0.019; 95% confidence interval [CI]: -0.035 to -0.003), episodic memory (β = -0.023; 95% CI: -0.041 to -0.004), working memory (β = -0.021; 95% CI: -0.035 to -0.007), and perceptual speed (β = -0.027; 95% CI: -0.042 to -0.011) over the follow-up. In magnetic resonance imaging data analyses, higher FGCRS was related to smaller volumes of the hippocampus (β = -0.021; 95% CI: -0.042 to -0.000), gray matter (β = -1.569; 95% CI: -2.757 to -0.382), and total brain (β = -1.588; 95% CI: -2.832 to -0.344), and greater volume of white matter hyperintensities (β = 0.035; 95% CI: 0.001 to 0.069). CONCLUSIONS Higher cardiovascular risk burden may predict decline in episodic memory, working memory, and perceptual speed and is associated with neurodegeneration and vascular lesions in the brain.
Collapse
Affiliation(s)
- Ruixue Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Hui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Christina S Dintica
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kuan-Yu Pan
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Xiuying Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China.
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Weili Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
91
|
Salvatore T, Pafundi PC, Morgillo F, Di Liello R, Galiero R, Nevola R, Marfella R, Monaco L, Rinaldi L, Adinolfi LE, Sasso FC. Metformin: An old drug against old age and associated morbidities. Diabetes Res Clin Pract 2020; 160:108025. [PMID: 31954752 DOI: 10.1016/j.diabres.2020.108025] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
Metformin represents a striking example of a "historical nemesis" of a drug. About 40 years after its marketing in Europe, once demonstrated its efficacy and safety, metformin was registered also in the U.S. A few years later, it has become a mainstay in T2DM treatment, according to all international Scientific Societies guidelines. Today, despite the advent of new innovative drugs, metformin still persists as a first-choice drug in T2DM. This success is largely justified. In fact, over the years, also positive effects on health increased. In particular, evidence has been accumulated on a beneficial impact against many other aging-related morbidities (obesity, metabolic syndrome, cardiovascular disease, cancer, cognitive decline and mortality). This literature review describes preclinical and clinical evidence favoring the "anti-aging" therapeutic potential of metformin outside of T2DM. The rationale to the use of metformin as part of a combined therapy in a variety of clinical settings, allowing for a reduction of the chemotherapy dose in cancer patients, has also been discussed. In particular, the focus was on metformin action on RAS/RAF/MAPK pathway. In the end, the real challenge for metformin could be to fully demonstrate beneficial effects on health even in non-diabetic subjects.
Collapse
Affiliation(s)
- Teresa Salvatore
- Unit of Internal Medicine, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini, 5, 80131 Naples, Italy.
| | - Pia Clara Pafundi
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Floriana Morgillo
- Division of Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini, 5, 80131 Naples, Italy.
| | - Raimondo Di Liello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini, 5, 80131 Naples, Italy.
| | - Raffaele Galiero
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Riccardo Nevola
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Raffaele Marfella
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Lucio Monaco
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luca Rinaldi
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luigi Elio Adinolfi
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Ferdinando Carlo Sasso
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| |
Collapse
|
92
|
Herrera JL, Ordoñez-Gutierrez L, Fabrias G, Casas J, Morales A, Hernandez G, Acosta NG, Rodriguez C, Prieto-Valiente L, Garcia-Segura LM, Wandosell FG, Alonso R. Ovarian Hormone-Dependent Effects of Dietary Lipids on APP/PS1 Mouse Brain. Front Aging Neurosci 2019; 11:346. [PMID: 31920626 PMCID: PMC6930904 DOI: 10.3389/fnagi.2019.00346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
The formation of senile plaques through amyloid-β peptide (Aβ) aggregation is a hallmark of Alzheimer’s disease (AD). Irrespective of its actual role in the synaptic alterations and cognitive impairment associated with AD, different therapeutic approaches have been proposed to reduce plaque formation. In rodents, daily intake of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs) is required for neural development, and there is experimental and epidemiological evidence that their inclusion in the diet has positive effects on several neurodegenerative diseases. Similarly, estradiol appears to reduce senile plaque formation in primary mouse cell cultures, human cortical neurons and mouse AD models, and it prevents Aβ toxicity in neural cell lines. We previously showed that differences in dietary n-6/n-3 LC-PUFAs ratios modify the lipid composition in the cerebral cortex of female mice and the levels of amyloid precursor protein (APP) in the brain. These effects depended in part on the presence of circulating estradiol. Here we explored whether this potentially synergistic action between diet and ovarian hormones may influence the progression of amyloidosis in an AD mouse model. Our results show that a diet with high n-3 LC-PUFA content, especially DHA (22:6n-3), reduces the hippocampal accumulation of Aβ1–40, but not amyloid Aβ1–42 in female APPswe/PS1 E9A mice, an effect that was counteracted by the loss of the ovaries and that depended on circulating estradiol. In addition, this interaction between dietary lipids and ovarian function also affects the composition of the brain lipidome as well as the expression of certain neuronal signaling and synaptic proteins. These findings provide new insights into how ovarian hormones and dietary composition affect the brain lipidome and amyloid burden. Furthermore, they strongly suggest that when designing dietary or pharmacological strategies to combat human neurodegenerative diseases, hormonal and metabolic status should be specifically taken into consideration as it may affect the therapeutic response.
Collapse
Affiliation(s)
- Jose Luis Herrera
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Gemma Fabrias
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Josefina Casas
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Araceli Morales
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Guadalberto Hernandez
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Nieves G Acosta
- Departamento de Biología Animal, Edafología y Geología, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Covadonga Rodriguez
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Luis M Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Rafael Alonso
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|