51
|
Dysregulated Circulating Apoptosis- and Autophagy-Related lncRNAs as Diagnostic Markers in Coronary Artery Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5517786. [PMID: 34513991 PMCID: PMC8426068 DOI: 10.1155/2021/5517786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/03/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Objective Increasing evidence emphasizes the implications of dysregulated apoptosis and autophagy cellular processes in coronary artery disease (CAD). Herein, we aimed to explore apoptosis- and autophagy-related long noncoding RNAs (lncRNAs) in peripheral blood of CAD patients. Methods The mRNA and lncRNA expression profiles were retrieved from the Gene Expression Omnibus (GEO) database. With ∣fold change | >1.5 and adjusted p value < 0.05, differentially expressed apoptosis- and autophagy-related mRNAs were screened between CAD and healthy blood samples. Also, differentially expressed lncRNAs were identified for CAD. Using the psych package, apoptosis- and autophagy-related lncRNAs were defined with Spearson's correlation analysis. Receiver operating characteristic (ROC) curves were conducted for the assessment of the diagnosed efficacy of these apoptosis- and autophagy-related lncRNAs. Results Our results showed that 24 apoptosis- and autophagy-related mRNAs were abnormally expressed in CAD than normal controls. 12 circulating upregulated and 1 downregulated apoptosis- and autophagy-related lncRNAs were identified for CAD. The ROCs confirmed that AC004485.3 (AUC = 0.899), AC004920.3 (AUC = 0.93), AJ006998.2 (AUC = 0.776), H19 (AUC = 0.943), RP5-902P8.10 (AUC = 0.956), RP5-1114G22.2 (AUC = 0.883), RP11-247A12.1 (AUC = 0.885), RP11-288L9.4 (AUC = 0.928), RP11-344B5.2 (AUC = 0.858), RP11-452C8.1 (AUC = 0.929), RP11-565A3.1 (AUC = 0.893), and XXbac-B33L19.4 (AUC = 0.932) exhibited good performance in differentiating CAD from healthy controls. Conclusion Collectively, our findings proposed that circulating apoptosis- and autophagy-related lncRNAs could become underlying diagnostic markers for CAD in clinical practice.
Collapse
|
52
|
Li T, Tu P, Bi J, Sun Y, Yu D, Wang J, Zhao B. LncRNA Miat knockdown alleviates endothelial cell injury through regulation of miR-214-3p/Caspase-1 signalling during atherogenesis. Clin Exp Pharmacol Physiol 2021; 48:1231-1238. [PMID: 34137063 DOI: 10.1111/1440-1681.13538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/23/2023]
Abstract
Atherosclerosis is a common problem in healthy people around the world. Long noncoding RNAs (lncRNAs) play important roles in atherosclerosis. Myocardial infarction-associated transcript (Miat) is a cardiovascular disease-associated lncRNA. Its role and mechanism in atherosclerosis is still not fully clarified. Our study aims to explore the role and mechanism of lncRNA Miat in atherosclerosis. The atherosclerosis models were established both in vitro and in vivo. Real-time PCR was used to measure the expression of lncRNA Miat, miR-214, Caspase-1 and IL-1β. Western blot was performed to detect the protein expression of Caspase-1. CCK-8 assay, Tunel staining, and flow cytometry analysis were conducted to detect proliferation and apoptosis of human aortic endothelial cells (HAECs), respectively. Oil red O staining and HE staining were used to evaluated the histological changes of the aorta. The results found that lncRNA Miat was upregulated in ox-LDL-induced atherosclerosis model in vitro. The inhibition of lncRNA Miat protects against ox-LDL-induced HAEC injury, presented as increased cell viability and decreased apoptosis. LncRNA Miat and miR-214 has binding site, and CASP1, which encodes Caspase-1, is a target of miR-214. The downregulation of lncRNA Miat increased the expression of miR-214-3p and decreased the expression of Caspase-1, as well as its downstream molecule IL-1β in HAECs. However, the inhibition of miR-214-3p attenuated the effect of lncRNA Miat downregulation on HAECs. Furthermore, the downregulation of lncRNA Miat alleviated atherosclerosis in ApoE-deficient mice. Correspondingly, the expression of miR-214-3p was upregulated and Caspase-1 was downregulated after knockdown of lncRNA Miat. In conclusion, downregulation of lncRNA Miat exerts a protective effect against atherosclerosis through the regulation miR-214-3p/Caspase-1 signalling pathway. Therefore, the inhibition of lncRNA Miat expression may be an effective strategy in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Peiyang Tu
- The College of Clinical Medicine, Hubei University of Science and Technology, Hubei, China
| | - Jianbo Bi
- Department of cardiology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Yanling Sun
- The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Dejun Yu
- The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Baoshan Zhao
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
53
|
Duan J, Shen T, Dong H, Han S, Li G. Association of the Expression Levels of Long-Chain Noncoding RNA TUG1 and Its Gene Polymorphisms with Knee Osteoarthritis. Genet Test Mol Biomarkers 2021; 25:102-110. [PMID: 33596137 DOI: 10.1089/gtmb.2020.0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective: To study the association of the expression levels of long noncoding RNA Taurine-upregulated gene 1 (lncRNA TUG1) and TUG1 polymorphisms with knee osteoarthritis (KOA). Materials and Methods: A total of 255 KOA patients and 255 controls from May 2017 to December 2019 were selected for the study. Sanger sequencing was conducted to detect the genotypes of the TUG1 rs5749201, rs7284767, and rs886471 loci in all study subjects. Unconditional logistic regression analysis was used to calculate odds ratios and 95% confidence intervals, and the associations between the TUG1 rs574901, rs7284767 and rs886471 loci and KOA risk were analyzed. Multifactor dimensionality reduction was used to analyze the interactions among alleles at the three TUG1 loci examined. Quantitative real-time polymerase chain reaction was used to evaluate the expression levels of TUG1 lncRNA in plasma. Results: A total of 255 KOA patients and 255 control subjects completed the study. After adjusting for the factors of gender, age, body mass index, smoking history, drinking history, and family history, we found that the carriers of the A allele of the TUG1 rs5749201 locus were 1.36 times more likely to develop KOA than the carriers of the T allele (95% confidence interval [CI] = 1.05-1.75, p = 0.02); the G allele of the rs7284767 locus was a protective factor for KOA (odds ratio [OR] = 0.71, 95% CI = 0.54-0.92, p = 0.01); and the allelic variation at rs886471 G > T led to an increased risk of KOA by 2.34 times (95% CI = 1.53-3.57, p < 0.01). We also found that the GAG haplotype for the three loci was significantly associated with the increased risk of KOA (OR = 2.77, 95% CI = 1.67-4.57, p < 0.01). There was no correlation found between the TUG1 rs886471, rs5749201, and rs7284767 single nucleotide polymorphisms loci and the severity of KOA. The allelic variation at TUG1 rs5749201 T > A, rs886471 T > G were associated with decreased levels of TUG1 lncRNA in the plasma of the subjects, while the allelic variation at rs7284767 A > G was associated with increased levels of TUG1 lncRNA in plasma (p = 0.01, p < 0.01, p < 0.01). Conclusion: Plasma TUG1 lncRNA levels and loci at the TUG1 rs5749201, rs7284767, and rs886471 loci are associated with KOA risk.
Collapse
Affiliation(s)
- Jiqiang Duan
- Department of Orthopedics, Zibo Central Hospital, Zibo, China
| | - Tiehui Shen
- Department of Orthopedics, Zibo Central Hospital, Zibo, China
| | - Hao Dong
- Department of Orthopedics, Zibo Central Hospital, Zibo, China
| | - Shiliang Han
- Department of Orthopedics, Zibo Central Hospital, Zibo, China
| | - Guo Li
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu, China
| |
Collapse
|
54
|
Wei M, Chen Y, Du W. LncRNA LINC00858 enhances cervical cancer cell growth through miR-3064-5p/ VMA21 axis. Cancer Biomark 2021; 32:479-489. [PMID: 34275889 DOI: 10.3233/cbm-200033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cervical cancer (CC) is the most common form of gynecological malignancy. Long intergenic non-protein coding RNA 858 (LINC00858) has been identified to participate in multiple cancers. However, the role and mechanism of LINC00858 in CC cells are still elusive. AIM The aim of this study is to explore the biological functions and mechanisms of LINC00858 in CC cells. METHODS RT-qPCR analysis was used to examine the expression of LINC00858 in CC cells. EdU and colony formation assay were utilized to assess cell proliferation. TUNEL assay and flow cytometry assay were conducted to assess cell apoptosis. The mechanism regarding LINC00858 was certified through RNA pull down, RIP and luciferase reporter assays. RESULTS The up-regulated LINC00858 was detected in CC cells. Reduction of LINC00858 effectively subdued CC cells proliferation and stimulated cell apoptosis. LINC00858 was determined to bind with miR-3064-5p and up-regulate VMA21 in CC cells. In rescue assays, miR-3064-5p down-regulation and VMA21 up-regulation were able to counteract the effect caused by LINC00858 decrease on CC cell proliferation and apoptosis. CONCLUSION LINC00858 enhances cell proliferation, while restraining cell apoptosis in CC through targeting miR-3064-5p/VMA21 axis, implying that LINC00858 may serve as a promising therapeutic target for CC.
Collapse
Affiliation(s)
- Min Wei
- Department of Gynecology, 1st Affiliated Hospital, Soochow University, Gusu District, Suzhou, Jiangsu, China.,Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Quanshan District, Xuzhou, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology, 1st Affiliated Hospital, Soochow University, Gusu District, Suzhou, Jiangsu, China
| | - Wensheng Du
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Quanshan District, Xuzhou, Jiangsu, China
| |
Collapse
|
55
|
Li P, Li Y, Chen L, Ma X, Yan X, Yan M, Qian B, Wang F, Xu J, Yin J, Xu G, Sun K. Long noncoding RNA uc003pxg.1 regulates endothelial cell proliferation and migration via miR‑25‑5p in coronary artery disease. Int J Mol Med 2021; 48:160. [PMID: 34212983 PMCID: PMC8262661 DOI: 10.3892/ijmm.2021.4993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be associated with the progression of coronary artery disease (CAD). In our previous study, the levels of lncRNA uc003pxg.1 were upregulated in patients with CAD compared with those in control subjects. However, the role and underlying mechanism of the effects of uc003pxg.1 in CAD remain unknown. Therefore, the aim of the present study was to investigate the expression pattern and biological function of uc003pxg.1 in CAD. First, uc003pxg.1 expression levels were assessed in peripheral blood mononuclear cells isolated from patients with CAD by reverse transcription‑quantitative (RT‑q)PCR. The results demonstrated that the levels of uc003pxg.1 were significantly upregulated (~4.6‑fold) in samples from 80 patients with CAD compared with those in 80 healthy subjects. Subsequently, the present study demonstrated that small interfering RNA‑mediated uc003pxg.1 knockdown inhibited human umbilical vein endothelial cell (HUVEC) proliferation and migration, which was analyzed using the Cell Counting Kit‑8, cell cycle, EdU and Transwell assays. Additionally, the results of RT‑qPCR and western blot analyses revealed that uc003pxg.1 regulated the mRNA and protein levels of cyclin D1 and cyclin‑dependent kinase. Through high‑throughput sequencing and dual‑luciferase reporter assays, the present study demonstrated that microRNA (miR)‑25‑5p was a downstream target of uc003pxg.1. Further experiments verified that uc003pxg.1 regulated HUVEC proliferation and migration via miR‑25‑5p. The results of the present study may enhance the current understanding of the role of lncRNA uc003pxg.1 in CAD.
Collapse
Affiliation(s)
- Ping Li
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Lu Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Xuexing Ma
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Xinxin Yan
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Meina Yan
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Buyun Qian
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Feng Wang
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Jingyi Xu
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Juan Yin
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Guidong Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| |
Collapse
|
56
|
Zhang C, Niu K, Lian P, Hu Y, Shuai Z, Gao S, Ge S, Xu T, Xiao Q, Chen Z. Pathological Bases and Clinical Application of Long Noncoding RNAs in Cardiovascular Diseases. Hypertension 2021; 78:16-29. [PMID: 34058852 DOI: 10.1161/hypertensionaha.120.16752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence has suggested that noncoding RNAs (ncRNAs) have vital roles in cardiovascular tissue homeostasis and diseases. As a main subgroup of ncRNAs, long ncRNAs (lncRNAs) have been reported to play important roles in lipid metabolism, inflammation, vascular injury, and angiogenesis. They have also been implicated in many human diseases including atherosclerosis, arterial remodeling, hypertension, myocardial injury, cardiac remodeling, and heart failure. Importantly, it was reported that lncRNAs were dysregulated in the development and progression of cardiovascular diseases (CVDs). A variety of studies have demonstrated that lncRNAs could influence gene expression at transcription, post-transcription, translation, and post-translation level. Particularly, emerging evidence has confirmed that the crosstalk among lncRNAs, mRNA, and miRNAs is an important underlying regulatory mechanism of lncRNAs. Nevertheless, the biological functions and molecular mechanisms of lncRNAs in CVDs have not been fully explored yet. In this review, we will comprehensively summarize the main findings about lncRNAs and CVDs, highlighting the most recent discoveries in the field of lncRNAs and their pathophysiological functions in CVDs, with the aim of dissecting the intrinsic association between lncRNAs and common risk factors of CVDs including hypertension, high glucose, and high fat. Finally, the potential of lncRNAs functioning as the biomarkers, therapeutic targets, as well as specific diagnostic and prognostic indicators of CVDs will be discussed in this review.
Collapse
Affiliation(s)
- Chengxin Zhang
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
| | - Kaiyuan Niu
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (K.N., Q.X.)
- Department of Otolaryngology, the third affiliated hospital of Anhui Medical University, China (K.N.)
| | - Panpan Lian
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, P.R. China (P.L.)
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, P.R. China (Y.H., T.X.)
| | - Ziqiang Shuai
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, P.R. China (S. Gao, Q.X.)
| | - Shenglin Ge
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, P.R. China (Y.H., T.X.)
| | - Qingzhong Xiao
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (K.N., Q.X.)
- Department of Pharmacology, Basic Medical College, Anhui Medical University, P.R. China (S. Gao, Q.X.)
| | - Zhaolin Chen
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Hospital, P.R. China (Z.C.)
| |
Collapse
|
57
|
Identifying a Serum Exosomal-Associated lncRNA/circRNA-miRNA-mRNA Network in Coronary Heart Disease. Cardiol Res Pract 2021; 2021:6682183. [PMID: 34258055 PMCID: PMC8249161 DOI: 10.1155/2021/6682183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/23/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Accumulating evidence supports the importance of noncoding RNAs and exosomes in coronary heart disease (CHD). However, exosomal-associated competing endogenous RNA- (ceRNA-) mediated regulatory mechanisms in CHD are largely unexplored. The present study aimed to explore exosomal-associated ceRNA networks in CHD. Methods Data from 6 CHD patients and 32 normal controls were downloaded from the ExoRBase database. CHD and normal controls were compared by screening differentially expressed mRNAs (DEMs), lncRNAs (DELs), and circRNAs (DECs) in serum exosomes. MicroRNAs (miRNAs) targeting DEMs were predicted using the Targetscan and miRanda databases, and miRNAs targeted by DELs and DECs were predicted using the miRcode and starBase databases, respectively. The biological functions and related signaling pathways of DEMs were analyzed using the David and KOBAS databases. Subsequently, a protein-protein interaction (PPI) network was established to screen out on which hub genes enrichment analyses should be performed, and a ceRNA network (lncRNA/circRNA-miRNA-mRNA) was constructed to elucidate ceRNA axes in CHD. Results A total of 312 DEMs, 43 DELs, and 85 DECs were identified between CHD patients and normal controls. Functional enrichment analysis showed that DEMs were significantly enriched in “chromatin silencing at rDNA,” “telomere organization,” and “negative regulation of gene expression, epigenetic.” PPI network analysis showed that 25 hub DEMs were closely related to CHD, of which ubiquitin C (UBC) was the most important. Hub genes were mainly enriched in “cellular protein metabolic process” functions. The exosomal-associated ceRNA regulatory network incorporated 48 DEMs, 73 predicted miRNAs, 10 DELs, and 15 DECs. The LncRNA/circRNA-miRNA-mRNA interaction axes (RPL7AP11/hsa-miR-17-5p/UBC and RPL7AP11/hsa-miR-20b-5p/UBC) were obtained from the network. Conclusions Our findings provide a novel perspective on the potential role of exosomal-associated ceRNA network regulation of the pathogenesis of CHD.
Collapse
|
58
|
Ye WC, Huang SF, Hou LJ, Long HJ, Yin K, Hu CY, Zhao GJ. Potential Therapeutic Targeting of lncRNAs in Cholesterol Homeostasis. Front Cardiovasc Med 2021; 8:688546. [PMID: 34179148 PMCID: PMC8224755 DOI: 10.3389/fcvm.2021.688546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Maintaining cholesterol homeostasis is essential for normal cellular and systemic functions. Long non-coding RNAs (lncRNAs) represent a mechanism to fine-tune numerous biological processes by controlling gene expression. LncRNAs have emerged as important regulators in cholesterol homeostasis. Dysregulation of lncRNAs expression is associated with lipid-related diseases, suggesting that manipulating the lncRNAs expression could be a promising therapeutic approach to ameliorate liver disease progression and cardiovascular disease (CVD). However, given the high-abundant lncRNAs and the poor genetic conservation between species, much work is required to elucidate the specific role of lncRNAs in regulating cholesterol homeostasis. In this review, we highlighted the latest advances in the pivotal role and mechanism of lncRNAs in regulating cholesterol homeostasis. These findings provide novel insights into the underlying mechanisms of lncRNAs in lipid-related diseases and may offer potential therapeutic targets for treating lipid-related diseases.
Collapse
Affiliation(s)
- Wen-Chu Ye
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shi-Feng Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lian-Jie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Hai-Jiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Guo-Jun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
59
|
Bai J, Liu J, Fu Z, Feng Y, Wang B, Wu W, Zhang R. Silencing lncRNA AK136714 reduces endothelial cell damage and inhibits atherosclerosis. Aging (Albany NY) 2021; 13:14159-14169. [PMID: 34015766 PMCID: PMC8202876 DOI: 10.18632/aging.203031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Atherosclerosis correlates with ischemic cardio-cerebrovascular diseases such as coronary heart disease. Long non-coding RNAs (lncRNAs) can promote atherosclerosis. We investigated the role of the lncRNA AK136714 in atherosclerosis. Compared with the healthy group, lncRNA AK136714 expression was elevated in the plaque and plasma of the atherosclerosis patients in a GEO dataset. AK136714 silencing inhibited atherosclerosis formation in ApoE-/- mice. AK136714 silencing also protected the endothelial barrier and inhibited endothelial cell inflammation. In vitro assays showed that knockdown of AK136714 suppressed the inflammatory response and apoptosis in human umbilical vein endothelial cells (HUVECs). Moreover, AK136714 was found to bind directly to HuR to increase the mRNA stability of TNF-α, IL-1β and IL-6 mRNAs. In addition, AK136714 promoted the transcription of Bim. This study expands our understanding of the role of lncRNA AK136714 in atherosclerosis and provides potential drug targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jing Bai
- Department of Geriatrics, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Jianxia Liu
- Department of Nursing, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Zexian Fu
- Department of Scientific Research and Education, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Yuanyuan Feng
- Department of Stomatology, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Bing Wang
- Department of Dynamic electrocardiogram, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Wenjuan Wu
- Department of Breast, The Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Ruiying Zhang
- Department of Geriatrics, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| |
Collapse
|
60
|
Deng K, Ning X, Ren X, Yang B, Li J, Cao J, Chen J, Lu X, Chen S, Wang L. Transcriptome-wide N6-methyladenosine methylation landscape of coronary artery disease. Epigenomics 2021; 13:793-808. [PMID: 33876670 DOI: 10.2217/epi-2020-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To reveal transcriptome-wide N6-methyladenosine (m6A) methylome of coronary artery disease (CAD). Materials & methods: The m6A levels of RNA from peripheral blood mononuclear cells measured by colorimetry were significantly decreased in CAD cases. Transcriptome-wide m6A methylome profiled by methylated RNA immunoprecipitation sequencing (MeRIP-seq) identified differentially methylated m6A sites within both mRNAs and lncRNAs between CAD and control group. Results: Bioinformatic analysis indicated that differentially methylated genes were involved in the pathogenesis of atherosclerosis. MeRIP-quantitative real-time PCR assay confirmed the reliability of MeRIP-seq data. Finally, the rat carotid artery balloon injury model was performed to confirm the role of m6A demethylase FTO in neointima formation. Conclusion: Our study provided a resource of differentially methylated m6A profile for uncovering m6A biological functions in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Keyong Deng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Xiaotong Ning
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Xiaoxiao Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Bin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Jianxin Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Jie Cao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Jichun Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Shufeng Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Laiyuan Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| |
Collapse
|
61
|
Li P, Wu W, Zhang T, Wang Z, Li J, Zhu M, Liang Y, You W, Li K, Ding R, Huang B, Wu L, Duan W, Han Y, Li X, Tang X, Wang X, Shen H, Wang Q, Yan H, Xia X, Ji Y, Chen H. Implications of cardiac markers in risk-stratification and management for COVID-19 patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:158. [PMID: 33902676 PMCID: PMC8074282 DOI: 10.1186/s13054-021-03555-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 01/08/2023]
Abstract
Background COVID-19 has resulted in high mortality worldwide. Information regarding cardiac markers for precise risk-stratification is limited. We aim to discover sensitive and reliable early-warning biomarkers for optimizing management and improving the prognosis of COVID-19 patients. Methods A total of 2954 consecutive COVID-19 patients who were receiving treatment from the Wuhan Huoshenshan Hospital in China from February 4 to April 10 were included in this retrospective cohort. Serum levels of cardiac markers were collected after admission. Coronary artery disease diagnosis and survival status were recorded. Single-cell RNA-sequencing and bulk RNA-sequencing from different cohorts of non-COVID-19 were performed to analyze SARS-CoV-2 receptor expression. Results Among 2954 COVID-19 patients in the analysis, the median age was 60 years (50–68 years), 1461 (49.5%) were female, and 1515 (51.3%) were severe/critical. Compared to mild/moderate (1439, 48.7%) patients, severe/critical patients showed significantly higher levels of cardiac markers within the first week after admission. In severe/critical COVID-19 patients, those with abnormal serum levels of BNP (42 [24.6%] vs 7 [1.1%]), hs-TNI (38 [48.1%] vs 6 [1.0%]), α- HBDH (55 [10.4%] vs 2 [0.2%]), CK-MB (45 [36.3%] vs 12 [0.9%]), and LDH (56 [12.5%] vs 1 [0.1%]) had a significantly higher mortality rate compared to patients with normal levels. The same trend was observed in the ICU admission rate. Severe/critical COVID-19 patients with pre-existing coronary artery disease (165/1,155 [10.9%]) had more cases of BNP (52 [46.5%] vs 119 [16.5%]), hs-TNI (24 [26.7%] vs 9.6 [%], α- HBDH (86 [55.5%] vs 443 [34.4%]), CK-MB (27 [17.4%] vs 97 [7.5%]), and LDH (65 [41.9%] vs 382 [29.7%]), when compared with those without coronary artery disease. There was enhanced SARS-CoV-2 receptor expression in coronary artery disease compared with healthy controls. From regression analysis, patients with five elevated cardiac markers were at a higher risk of death (hazards ratio 3.4 [95% CI 2.4–4.8]). Conclusions COVID-19 patients with pre-existing coronary artery disease represented a higher abnormal percentage of cardiac markers, accompanied by high mortality and ICU admission rate. BNP together with hs-TNI, α- HBDH, CK-MB and LDH act as a prognostic biomarker in COVID-19 patients with or without pre-existing coronary artery disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03555-z.
Collapse
Affiliation(s)
- Pengping Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Ziyu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Mengyan Zhu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Wenhua You
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Kening Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Rong Ding
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Lingxiang Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Weiwei Duan
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hong Yan
- Laboratory Medicine Center, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Xinyi Xia
- COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China. .,Department of Laboratory Medicine & Blood Transfusion, Wuhan Huoshenshan Hospital, Wuhan, China. .,Joint Expert Group for COVID-19, Wuhan Huoshenshan Hospital, Wuhan, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China. .,Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
62
|
Long Noncoding RNAs in Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8889123. [PMID: 33884101 PMCID: PMC8041529 DOI: 10.1155/2021/8889123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022]
Abstract
Following an acute myocardial infarction, reperfusion therapy is currently the most effective way to save the ischemic myocardium; however, restoring blood flow may lead to a myocardial ischemia-reperfusion injury (MIRI). Recent studies have confirmed that long-chain noncoding RNAs (LncRNAs) play important roles in the pathophysiology of MIRIs. These LncRNA-mediated roles include cardiomyocyte apoptosis, autophagy, necrosis, oxidative stress, inflammation, mitochondrial dysfunction, and calcium overload, which are regulated through the expression of target genes. Thus, LncRNAs may be used as clinical diagnostic markers and therapeutic targets to treat or prevent MIRI. This review evaluates the research on LncRNAs involved in MIRIs and provides new ideas for preventing and treating this type of injury.
Collapse
|
63
|
Zhong Y, Chen L, Li J, Yao Y, Liu Q, Niu K, Ma Y, Xu Y. Integration of summary data from GWAS and eQTL studies identified novel risk genes for coronary artery disease. Medicine (Baltimore) 2021; 100:e24769. [PMID: 33725943 PMCID: PMC7982177 DOI: 10.1097/md.0000000000024769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/23/2021] [Indexed: 01/05/2023] Open
Abstract
Several genetic loci have been reported to be significantly associated with coronary artery disease (CAD) by multiple genome-wide association studies (GWAS). Nevertheless, the biological and functional effects of these genetic variants on CAD remain largely equivocal. In the current study, we performed an integrative genomics analysis by integrating large-scale GWAS data (N = 459,534) and 2 independent expression quantitative trait loci (eQTL) datasets (N = 1890) to determine whether CAD-associated risk single nucleotide polymorphisms (SNPs) exert regulatory effects on gene expression. By using Sherlock Bayesian, MAGMA gene-based, multidimensional scaling (MDS), functional enrichment, and in silico permutation analyses for independent technical and biological replications, we highlighted 4 susceptible genes (CHCHD1, TUBG1, LY6G6C, and MRPS17) associated with CAD risk. Based on the protein-protein interaction (PPI) network analysis, these 4 genes were found to interact with each other. We detected a remarkably altered co-expression pattern among these 4 genes between CAD patients and controls. In addition, 3 genes of CHCHD1 (P = .0013), TUBG1 (P = .004), and LY6G6C (P = .038) showed significantly different expressions between CAD patients and controls. Together, we provide evidence to support that these identified genes such as CHCHD1 and TUBG1 are indicative factors of CAD.
Collapse
Affiliation(s)
- Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine
| | | | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou
| | - Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou
| | - Kaimeng Niu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou
| | - Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine
- Zhejiang Chinese Medical University
| |
Collapse
|
64
|
Zeng Q, Cai J, Wan H, Zhao S, Tan Y, Zhang C, Qu S. PIWI-interacting RNAs and PIWI proteins in diabetes and cardiovascular disease: Molecular pathogenesis and role as biomarkers. Clin Chim Acta 2021; 518:33-37. [PMID: 33746016 DOI: 10.1016/j.cca.2021.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) is still one of the most significant diseases and is a considerable threat to human health globally. PIWI-interacting RNAs (piRNAs) are novel small noncoding RNAs (ncRNAs) traditionally considered to be specifically expressed in the germline of many animal species and involved in the maintenance of germline stem cells and spermatogenesis. Although little is known about the origin and action of piRNAs and PIWI proteins in somatic cells, these molecules are emerging as readily available biomarkers for the diagnosis and treatment of cardiac injury and multiform CVD. Accumulating evidence reveals that piRNAs and PIWI proteins are associated with some molecular and cellular pathways in CVD. Here, we summarize recent evidence and evaluate the molecular mechanism of the involvement of piRNAs and PIWI proteins in CVD.
Collapse
Affiliation(s)
- Qian Zeng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Jiaodi Cai
- Department of Pathology, The Fourth Hospital of Changsha, Changsha, China
| | - Hengquan Wan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Simin Zhao
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Yao Tan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Chi Zhang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China.
| |
Collapse
|
65
|
Abstract
Long noncoding RNAs (lncRNAs) are a recently discovered class of RNA that have diverse intracellular regulatory and structural roles. Because of their wide assortment of functions, lncRNAs can have varied distributions in the nucleus and/or cytoplasm of a cell. However, even though tens of thousands of human lncRNAs have been identified, currently less than 3% have empirically validated functions. RNA knockdown is now a relatively commonplace laboratory technique used to functionally characterize an RNA. These techniques (most commonly antisense therapy and RNA interference) can even have therapeutic benefit to treat a wide variety of genetic or infectious diseases as evidenced by the several RNA knockdown reagents currently in clinical trials. This protocol describes the use of validated gapmer antisense oligonucleotides (ASOs) to knockdown human MALAT1, a nuclear-retained lncRNA that is upregulated in multiple cancer cells. Methods used include cationic lipid transfection into HeLa cells, RNA isolation, and RT-qPCR analysis of the RNA knockdown levels.
Collapse
|
66
|
Ma W, Zhao X, Xue N, Gao Y, Xu Q. The LINC01410/miR-122-5p/NDRG3 axis is involved in the proliferation and migration of osteosarcoma cells. IUBMB Life 2021; 73:705-717. [PMID: 33583123 DOI: 10.1002/iub.2452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE It is generally accepted that long noncoding RNAs (lncRNAs) function as vital regulators of tumor development and progression. Long intergenic non-coding RNA 1410 (LINC01410) is a newly discovered lncRNA, and its role in osteosarcoma (OS) is yet to be determined. MATERIALS AND METHODS The expression of LINC01410, microRNA-122-5p (miR-122-5p), and N-myc downstream-regulated gene 3 (NDRG3) in OS tissues was determined using reverse transcription-quantitative PCR. Interactions between LINC01410, miR-122-5p, and NDRG3 were predicted and verified using bioinformatics tools and luciferase assays. Cell proliferation, migration, and invasion were detected using cell counting Kit-8 and Transwell assays. RESULTS LINC01410 was overexpressed in OS tissues. Furthermore, it was confirmed that LINC01410 facilitated OS cell proliferation and migration. Our studies also showed that LINC01410 binds to miR-122-5p, and miR-122-5p binds to NDRG3. Finally, we observed that LINC01410 knockdown inhibited the proliferation, invasion, and migration of OS cells. Knockdown of LINC01410 resulted in the upregulation of miR-122-5p and downregulation of NDRG3. CONCLUSION Our results demonstrated that the LINC01410/miR-122-5p/NDRG3 axis is involved in the progression of OS.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Xue
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yun Gao
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qingxia Xu
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
67
|
Zhang S, Li L, Wang J, Zhang T, Ye T, Wang S, Xing D, Chen W. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516:100-110. [PMID: 33545111 DOI: 10.1016/j.cca.2021.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Coronary heart disease (CHD) with atherosclerosis is the leading cause of death worldwide. ABCA1 and ABCG1 promote cholesterol efflux to suppress foam cell generation and reduce atherosclerosis development. Long noncoding RNAs (lncRNAs) are emerging as a unique group of RNA transcripts that longer than 200 nucleotides and have no protein-coding potential. Many studies have found that lncRNAs regulate cholesterol efflux to influence atherosclerosis development. ABCA1 is regulated by different lncRNAs, including MeXis, GAS5, TUG1, MEG3, MALAT1, Lnc-HC, RP5-833A20.1, LOXL1-AS1, CHROME, DAPK1-IT1, SIRT1 AS lncRNA, DYNLRB2-2, DANCR, LeXis, LOC286367, and LncOR13C9. ABCG1 is also regulated by different lncRNAs, including TUG1, GAS5, RP5-833A20.1, DYNLRB2-2, ENST00000602558.1, and AC096664.3. Thus, various lncRNAs are associated with the roles of ABCA1 and ABCG1 on cholesterol efflux in atherosclerosis regulation. However, some lncRNAs play dual roles in ABCA1 expression and atherosclerosis, and the functions of some lncRNAs in atherosclerosis have not been investigated in vivo. In this article, we review the roles of lncRNAs in atherosclerosis and focus on new insights into lncRNAs associated with the roles of ABCA1 and ABCG1 on cholesterol efflux and the potential of these lncRNAs as novel therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Ting Ye
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| |
Collapse
|
68
|
Wang B, Wu J, Huang Q, Yuan X, Yang Y, Jiang W, Wen Y, Tang L, Sun H. Comprehensive Analysis of Differentially Expressed lncRNA, circRNA and mRNA and Their ceRNA Networks in Mice With Severe Acute Pancreatitis. Front Genet 2021; 12:625846. [PMID: 33584827 PMCID: PMC7876390 DOI: 10.3389/fgene.2021.625846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Severe acute pancreatitis (SAP) is an acute digestive system disease with high morbidity mortality and hospitalization rate worldwide, due to various causes and unknown pathogenesis. In recent years, a large number of studies have confirmed that non-coding RNAs (ncRNAs) play an important role in many cellular processes and disease occurrence. However, the underlying mechanisms based on the function of ncRNAs, including long noncoding RNA (lncRNA) and circular RNA (circRNA), in SAP remain unclear. In this study, we performed high-throughput sequencing on the pancreatic tissues of three normal mice and three SAP mice for the first time to describe and analyze the expression profiles of ncRNAs, including lncRNA and circRNA. Our results identified that 49 lncRNAs, 56 circRNAs and 1,194 mRNAs were differentially expressed in the SAP group, compared with the control group. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed lncRNAs and circRNAs, and found that the functions of the parental genes are enriched in the calcium-regulated signaling pathway, NF-κB signaling pathway, autophagy and protein digestion and absorption processes, which are closely related to the central events in pathogenesis of SAP. We also constructed lncRNA/circRNA-miRNA-mRNA networks to further explore their underlying mechanism and possible relationships in SAP. We found that in the competitive endogenous RNA (ceRNA) networks, differentially expressed lncRNAs and circRNAs are mainly involved in the apoptosis pathway and calcium signal transduction pathway. In conclusion, we found that lncRNAs and circRNAs play an important role in the pathogenesis of SAP, which may provide new insights in further exploring the pathogenesis of SAP and seek new targets for SAP.
Collapse
Affiliation(s)
- Bing Wang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Jun Wu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xiaohui Yuan
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Wen Jiang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China.,Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
69
|
Identification of Novel Long Noncoding RNAs and Their Role in Abdominal Aortic Aneurysm. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3502518. [PMID: 33415145 PMCID: PMC7769652 DOI: 10.1155/2020/3502518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/01/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022]
Abstract
Objective Long noncoding RNAs (lncRNAs) have emerged as critical molecular regulators in various diseases. However, the potential regulatory role of lncRNAs in the pathogenesis of abdominal aortic aneurysm (AAA) remains elusive. The aim of this study was to identify crucial lncRNAs associated with human AAA by comparing the lncRNA and mRNA expression profiles of patients with AAA with those of control individuals. Materials and Methods The expression profiles of lncRNAs and mRNAs were analyzed in five dilated aortic samples from AAA patients and three normal aortic samples from control individuals using microarray technology. Functional annotation of the screened lncRNAs based on the differentially expressed genes was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results Microarray results revealed 2046 lncRNAs and 1363 mRNAs. Functional enrichment analysis showed that the mRNAs significantly associated with AAA were enriched in the NOD-like receptor (NLR) and nuclear factor kappa-B (NF-κB) signaling pathways and in cell adhesion molecules (CAMs), which are closely associated with pathophysiological changes in AAA. The lncRNAs identified using microarray analysis were further validated using quantitative real-time polymerase chain reaction (qRT-PCR) analysis with 12 versus 11 aortic samples. Finally, three key lncRNAs (ENST00000566954, ENST00000580897, and T181556) were confirmed using strict validation. A coding-noncoding coexpression (CNC) network and a competing endogenous RNA (ceRNA) network were constructed to determine the interaction among the lncRNAs, microRNAs, and mRNAs based on the confirmed lncRNAs. Conclusions Our microarray profiling analysis and validation of significantly expressed lncRNAs between patients with AAA and control group individuals may provide new diagnostic biomarkers for AAA. The underlying regulatory mechanisms of the confirmed lncRNAs in AAA pathogenesis need to be determined using in vitro and in vivo experiments.
Collapse
|
70
|
Bonilauri B, Dallagiovanna B. Linking long noncoding RNAs (lncRNAs) and doping detection. Drug Test Anal 2020; 13:1068-1071. [PMID: 33119947 DOI: 10.1002/dta.2952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
In the fight against doping, efficient methods for detecting substances or biomarkers are still being improved. Indirect methods are an interesting alternative for the detection of substances misuse longitudinally. Here we shed lights the long non-coding RNAs (lncRNAs) as a possible biomarkers due to their characteristics such as tissue-specific expression and strict regulation.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute-FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute-FIOCRUZ-PR, Curitiba, Paraná, Brazil
| |
Collapse
|
71
|
Zhang YH, Pan X, Zeng T, Chen L, Huang T, Cai YD. Identifying the RNA signatures of coronary artery disease from combined lncRNA and mRNA expression profiles. Genomics 2020; 112:4945-4958. [PMID: 32919019 DOI: 10.1016/j.ygeno.2020.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/28/2020] [Accepted: 09/05/2020] [Indexed: 12/23/2022]
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disease. CAD research has greatly progressed during the past decade. mRNA is a traditional and popular pipeline to investigate various disease, including CAD. Compared with mRNA, lncRNA has better stability and thus may serve as a better disease indicator in blood. Investigating potential CAD-related lncRNAs and mRNAs will greatly contribute to the diagnosis and treatment of CAD. In this study, a computational analysis was conducted on patients with CAD by using a comprehensive transcription dataset with combined mRNA and lncRNA expression data. Several machine learning algorithms, including feature selection methods and classification algorithms, were applied to screen for the most CAD-related RNA molecules. Decision rules were also reported to provide a quantitative description about the effect of these RNA molecules on CAD progression. These new findings (CAD-related RNA molecules and rules) can help understand mRNA and lncRNA expression levels in CAD.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China.
| | - Tao Zeng
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
72
|
Probing the epigenetic signatures in subjects with coronary artery disease. Mol Biol Rep 2020; 47:6693-6703. [PMID: 32803503 DOI: 10.1007/s11033-020-05723-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022]
Abstract
Depletion of S-adenosyl methionine and 5-methyltetrahydrofolate; and elevation of total plasma homocysteine were documented in CAD patients, which might modulate the gene-specific methylation status and alter their expression. In this study, we have aimed to delineate CAD-specific epigenetic signatures by investigating the methylation and expression of 11 candidate genes i.e. ABCG1, LIPC, PLTP, IL-6, TNF-α, CDKN2A, CDKN2B, F2RL3, FGF2, P66 and TGFBR3. The methylation-specific PCR and qRT-PCR were used to assess the methylation status and the expression of candidate genes, respectively. CAD patients showed the upregulation of IL-6, TNF-α, CDKN2A, CDKN2B, F2RL3, FGF2, P66, and TGFBR3. Hypomethylation of CDKN2A loci was shown to increase risk for CAD by 1.79-folds (95% CI 1.22-2.63). Classification and regression tree (CART) model of gene expression showed increased risk for CAD with F2RL3 > 3.4-fold, while demonstrating risk reduction with F2RL3 < 3.4-fold and IL-6 < 7.7-folds. This CAD prediction model showed the excellent sensitivity (0.98, 95% CI 0.88-1.00), specificity (0.91, 95% CI 0.86-0.92), positive predictive value (0.82, 95% CI 0.75-0.84), and negative predictive value (0.99, 95% CI 0.94-1.00) with an overall accuracy of 92.8% (95% CI 87.0-94.1%). Folate and B12 deficiencies were observed in CAD cases, which were shown to contribute to hypomethylation and upregulation of the prime candidate genes i.e. CDKN2A and F2RL3. Early onset diabetes was associated with IL-6 and TNF-α hypomethylation and upregulation of CDKN2A. The expression of F2RL3 and IL-6 (or) hypomethylation status at CDKN2A locus are potential biomarkers in CAD risk prediction. Early epigenetic imprints of CAD were observed in early onset diabetes. Folate and B12 deficiencies are the contributing factors to these changes in CAD-specific epigenetic signatures.
Collapse
|
73
|
Zheng ML, Liu XY, Han RJ, Yuan W, Sun K, Zhong JC, Yang XC. Circulating exosomal long non-coding RNAs in patients with acute myocardial infarction. J Cell Mol Med 2020; 24:9388-9396. [PMID: 32649009 PMCID: PMC7417690 DOI: 10.1111/jcmm.15589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized in acute myocardial infarction (AMI). However, the regulatory role of exosomal long non-coding RNAs (lncRNAs) in AMI remains largely unclear. Exosomes were isolated from the plasma of AMI patients and controls, and the sequencing profiles and twice qRT-PCR validations of exosomal lncRNAs were performed. A total of 518 differentially expressed lncRNAs were detected over two-fold change, and 6 kinds of lncRNAs were strikingly elevated in AMI patients with top fold change and were selected to perform subsequent validation. In the two validations, lncRNAs ENST00000556899.1 and ENST00000575985.1 were significantly up-regulated in AMI patients compared with controls. ROC curve analysis revealed that circulating exosomal lncRNAs ENST00000556899.1 and ENST00000575985.1 yielded the area under the curve values of 0.661 and 0.751 for AMI, respectively. Moreover, ENST00000575985.1 showed more significant relationship with clinical parameters, including inflammatory biomarkers, prognostic indicators and myocardial damage markers. Multivariate logistic model exhibited positive association of ENST00000575985.1 with the risk of heart failure in AMI patients. In summary, our data demonstrated that circulating exosomal lncRNAs ENST00000556899.1 and ENST00000575985.1 are elevated in patients with AMI, functioning as potential biomarkers for predicting the prognosis of pateints with AMI.
Collapse
Affiliation(s)
- Mei-Li Zheng
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiao-Yan Liu
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Rui-Juan Han
- Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Yuan
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kai Sun
- Department of Radiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Jiu-Chang Zhong
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin-Chun Yang
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
74
|
Ye F, Zhang J, Zhang Q, Zhang J, Chen C. Preliminary study on the mechanism of long noncoding RNA SENCR regulating the proliferation and migration of vascular smooth muscle cells. J Cell Physiol 2020; 235:9635-9643. [PMID: 32401347 DOI: 10.1002/jcp.29775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/17/2023]
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are one of the key regulatory links of atherosclerosis (AS). Long noncoding RNAs (lncRNAs) are emerging as key regulators in AS development. In this study, we first assessed the expression level of smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) in the plasma of patients with coronary heart disease (CHD) and its predictive and diagnostic value. Second, we investigated the role of SENCR in the regulation network of human aortic-VSMCs (HA-VSMCs) proliferation and migration and determined its downstream regulatory mechanism. The results showed that SENCR was downregulated in the peripheral blood of CHD, and negatively related to the Gensini score. SENCR was enriched in HA-VSMCs and mainly distributed in cytoplasm. Overexpression of SENCR significantly inhibited HA-VSMCs proliferation, migration, and block cell cycle, while the knockdown of SENCR had the opposite effects. Moreover, bioinformatics analysis and luciferase reporter assay demonstrated that miR-4731-5p could directly bind to SENCR. Besides, we proved that FOXO3a inhibited HA-VSMCs proliferation and migration by binding to the 3'-untranslated region of miR-4731-5p. In summary, our research suggested that SENCR affects HA-VSMCs proliferation and migration via regulating the miR-4731-5p/FOXO3a pathway.
Collapse
Affiliation(s)
- Famin Ye
- CCU, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Jing Zhang
- CCU, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Qiaoling Zhang
- CCU, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Jingjing Zhang
- CCU, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Cheng Chen
- School of Life Science Department, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
75
|
Noncoding RNAs as Biomarkers for Acute Coronary Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3298696. [PMID: 32337239 PMCID: PMC7154975 DOI: 10.1155/2020/3298696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Acute coronary syndrome (ACS), consisting of acute myocardial infarction and unstable angina, is the most dangerous and fatal form of coronary heart disease. Acute coronary syndrome has sudden onset and rapid development, which may lead to malignant life-threatening conditions at any time. Therefore, early detection and diagnosis are critical for patients with ACS. Recent studies have found that noncoding RNA is of great significance in the diagnosis and treatment of cardiovascular diseases. In this review, we summarized recent data on circulating noncoding RNAs (including microRNA, long noncoding RNA, and circular RNA) as diagnostic and prognostic markers in ACS including acute myocardial infarction and unstable angina. Specifically, microRNAs (miRNAs) as diagnostic markers are divided into three types: miRNAs of increased expression in ACS, miRNAs of decreased expression in ACS, and miRNAs of contradictory expression in ACS. Moreover, we described these miRNAs of increased expression in ACS based on miRNAs family. This review may result in a great guidance of noncoding RNAs as biomarkers for ACS in clinical practice.
Collapse
|
76
|
Zhang Y, Li M, Han X. Icariin affects cell cycle progression and proliferation of human retinal pigment epithelial cells via enhancing expression of H19. PeerJ 2020; 8:e8830. [PMID: 32219038 PMCID: PMC7087489 DOI: 10.7717/peerj.8830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
Background Aberrant proliferation of retinal pigment epithelial (RPE) cells under pathologic condition results in the occurrence of proliferative vitreoretinopathy (PVR). Icariin (ICA)-a flavonol glucoside-has been shown to inhibit proliferation of many cell types, but the effect on RPE cells is unknown. This study aimed to clarify the inhibitory effects of ICA on RPE cells against platelet-derived growth factor (PDGF)-BB-induced cell proliferation, and discuss the regulatory function of H19 in RPE cells. Methods MTS assay was conducted to determine the effects of ICA on cell proliferation. Flow cytometry analysis was performed to detect cell cycle progression. Quantitative real-time PCR and western blot assay were used to measure the expression patterns of genes in RPE cells. Results ICA significantly suppressed PDGF-BB-stimulated RPE cell proliferation in a concentration-dependent manner. Moreover, since administration of ICA induced cell cycle G0/G1 phase arrest, the anti-proliferative activity of ICA may be due to G0/G1 phase arrest in RPE cells. At molecular levels, cell cycle regulators cyclin D1, CDK4, CDK6, p21 and p53 were modulated in response to treatment with ICA. Most importantly, H19 was positively regulated by ICA and H19 depletion could reverse the inhibitory effects of ICA on cell cycle progression and proliferation in PDGF-BB-stimulated RPE cells. Further mechanical explorations showed that H19 knockdown resulted in alternative expressions levels of cyclin D1, CDK4, CDK6, p21 and p53 under ICA treatment. Conclusions Our findings revealed that ICA was an effective inhibitor of PDGF-BB-induced RPE cell proliferation through affecting the expression levels of cell cycle-associated factors, and highlighted the potential application of ICA in PVR therapy. H19 was described as a target regulatory gene of ICA whose disruption may contribute to excessive proliferation of RPE cells, suggesting that modulation of H19 expression may be a novel therapeutic approach to treat PVR.
Collapse
Affiliation(s)
- Yibing Zhang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Pharmacology and Toxicology, Jilin University School of Pharmaceutical Sciences, Changchun, China
| | - Xue Han
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
77
|
Bai Z, Li Y, Li Y, Pan J, Wang J, Fang F. Long noncoding RNA and messenger RNA abnormalities in pediatric sepsis: a preliminary study. BMC Med Genomics 2020; 13:36. [PMID: 32151258 PMCID: PMC7063742 DOI: 10.1186/s12920-020-0698-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background Sepsis represents a complex disease with dysregulated inflammatory response and high mortality rate. Long noncoding RNAs (lncRNAs) have been reported to play regulatory roles in a variety of biological processes. However, studies evaluating the function of lncRNAs in pediatric sepsis are scarce, and current knowledge of the role of lncRNAs in pediatric sepsis is still limited. The present study explored the expression patterns of both lncRNAs and mRNAs between pediatric sepsis patients and healthy controls based on a comprehensive microarray analysis. Methods LncRNA and mRNA microarray was used to detect the expression of lncRNAs and mRNAs in the septic and control groups. Aberrantly expressed mRNAs and lncRNAs identified were further interpreted by enrichment analysis, receiver operating characteristic (ROC) curve analysis, co-expression network analysis, and quantitative real-time PCR (qPCR). Results A total of 1488 differetially expressed lncRNAs and 1460 differentially expressed mRNAs were identified. A co-expression network of the identified lncRNAs and mRNAs was constructed. In this network, lncRNA lnc-RP11-1220 K2.2.1–7 is correlated with mRNA CXCR1 and CLEC4D; lncRNA lnc-ANXA3–2 is correlated with mRNA CLEC4D; lncRNA lnc-TRAPPC5–1 is correlated with mRNA DYSF and HLX; lncRNA lnc-ZNF638–1 is correlated with mRNA DYSF and HLX. Significantly different expressions between pediatric sepsis patients and controls were validated by qPCR for the 4 lncRNAs and 4 co-expressed mRNAs, validating the microarray results. Conclusions Our study contributes to a comprehensive understading of the involvment of lncRNAs and mRNAs in pediatric sepsis, which may guide subsequent experimental research. Furthermore, our study may also provide potential candidate lncRNAs and mRNAs for the diagnosis and treatment of pediatric sepsis.
Collapse
Affiliation(s)
- Zhenjiang Bai
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, China
| | - Yiping Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yanhong Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Nephrology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
78
|
Wang J, Cui M, Sun F, Zhou K, Fan B, Qiu JH, Chen FQ. HDAC inhibitor sodium butyrate prevents allergic rhinitis and alters lncRNA and mRNA expression profiles in the nasal mucosa of mice. Int J Mol Med 2020; 45:1150-1162. [PMID: 32124940 PMCID: PMC7053856 DOI: 10.3892/ijmm.2020.4489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Our previous study demonstrated that intranasal administration of histone deacetylase inhibitor sodium butyrate (NaB) exhibits therapeutic effects on a mouse model of allergic rhinitis (AR). However, whether NaB is effective on AR when administered orally and prophylactically, as well as its potential effects on gene expression, remained unknown. The present study aimed to investigate the preventive effect of NaB on AR when added to the diet of newly weaned mice and to evaluate the changes in long non-coding (lnc)RNA and mRNA expression profiles in the nasal mucosa. Mice were randomly divided into three groups as follows: i) Control (C) group, (no treatment); ii) AR group [treated with ovalbumin (OVA)]; and iii) NaB + AR group (treated with OVA and NaB). The NaB + AR group was administered NaB in their feed (30 g/kg chow), whereas the other two groups were fed normal feed between 3 and 6 weeks of age. At 7 weeks of age, OVA administration was initiated to induce AR in the AR and NaB + AR groups. Following model establishment, behavioral assessments, western blotting and gene expression analysis were performed. NaB exhibited a preventive effect in the murine AR model, diminished the increases in histone deacetylase 1 (HDAC1) and HDAC8 expression and increased OVA-induced acetylation of histone H3 at lysine 9. In addition, NaB increased the AR-associated low expression of interleukin 2 (IL-2), interferon γ and IL-17 and decreased the expression of IL-4, IL-5 and transforming growth factor β1. Gene Ontology and pathway analyses revealed the top 10 pathways among the groups. Octamer-binding transcription factor 1, ecotropic viral integration site 1 and paired box 4 were predicted to be target genes of lncRNA (NONMMUT057309). Thus, NaB may exhibit a preventive effect on AR. Additionally, the lncRNA and mRNA expression profiles in the nasal mucosa of mice with AR differed significantly following NaB treatment. These results may provide insights into the pathogenesis of AR and suggest new treatment targets.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Mu Cui
- School of Nursing, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Fei Sun
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ke Zhou
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bei Fan
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian-Hua Qiu
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fu-Quan Chen
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
79
|
Gao LY, Hao XL, Zhang L, Wan T, Liu JY, Cao J. Identification and characterization of differentially expressed lncRNA in 2,3,7,8-tetrachlorodibenzo- p-dioxin-induced cleft palate. Hum Exp Toxicol 2020; 39:748-761. [PMID: 31961203 DOI: 10.1177/0960327119899996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental pollutant and also a strong teratogen for cleft palate (CP). But up to now, the underlying molecular mechanisms of TCDD-induced CP are largely unknown. More recently, accumulating evidences are revealing important roles of long noncoding RNAs (lncRNAs) in all kinds of diseases including CP. However, the role and molecular mechanism of lncRNAs in TCDD-induced CP are still largely unexplored. Thus, identification of differentially expressed lncRNA (DEL) might help figuring out the mechanism of CP induced by TCDD. In this study, a CP offspring model of C57BL/6 female mice was generated by TCDD (64 µg/kg body weight) induce on embryo day 10 (E10). The incidence rate of CP was 100% in the TCDD group (105) after cervical dislocation on E16. Then, the high-throughput RNA sequencing (RNA-seq) was established to search a comprehensive profile of the lncRNAs. In addition, a coexpression network of lncRNA and messenger RNA (mRNA) was performed to discern potential mechanism. The result showed that 26,246 novel lncRNAs and 9635 known lncRNAs were screened out, and 413 lncRNA transcripts and 65 mRNA transcripts were identified as being significantly different between the CP group and control group. Notably, we found that there are seven lncRNAs that can target Smad1 and Smad5, which are key molecules of bone morphogenetic protein (BMP) signaling pathway, which suggested that they may be concerned with BMP signaling in TCDD-induced CP. In addition, some lncRNAs targeted the important molecules of Hippo and Wnt signaling pathways. These results suggested that characteristic lncRNA alterations may play a critical role in TCDD-induced CP, which provided a theoretical basis for further research.
Collapse
Affiliation(s)
- L-Y Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - X-L Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - L Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - T Wan
- School of Basic Medical, Jiujiang University, Jiujiang, People's Republic of China
| | - J-Y Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - J Cao
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
80
|
Qi H, Shen J, Zhou W. Up-regulation of long non-coding RNA THRIL in coronary heart disease: Prediction for disease risk, correlation with inflammation, coronary artery stenosis, and major adverse cardiovascular events. J Clin Lab Anal 2020; 34:e23196. [PMID: 31944373 PMCID: PMC7246374 DOI: 10.1002/jcla.23196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Objective This study aimed to investigate the role of long non‐coding RNA (lncRNA) THRIL in coronary heart disease (CHD) patients. Methods A total of 420 patients who underwent coronary arteriography due to suspected symptoms of CHD were enrolled, in which 220 were diagnosed as CHD and 200 were set as control subjects. LncRNA THRIL in plasma samples of CHD patients and control subjects was detected by reverse transcription‐quantitative polymerase chain reaction. Gensini score and biochemical indexes were evaluated in CHD patients and control subjects. Plasma inflammatory cytokines were detected, and major adverse cardiovascular events (MACE) were recorded in CHD patients. Results Both before and after adjustment by age/gender, lncRNA THRIL was increased in CHD patients compared with control subjects (both P < .001), and it well predicted enhanced CHD risk by receiver operating characteristic curves. For coronary artery stenosis, it was positively correlated with Gensini score (P < .001, r = .430). For clinical characteristics, lncRNA THRIL was positively correlated with diabetes mellitus occurrence (P < .001) and fasting blood glucose (FBG) level (P = .029, r = .147). For inflammation, it was positively associated with CRP (P < .001, r = .374), TNF‐α (P < .001, r = .249), IL‐1β (P = .001, r = .222), IL‐8 (P < .001, r = .254), and IL‐17 (P = .011, r = .172), while negatively correlated with IL‐10 (P < .001, r = −.244). For prognosis, lncRNA THRIL was positively associated with MACE accumulating rate (P = .037) in CHD patients. Conclusion Long non‐coding RNA THRIL was increased in CHD patients and well predicted elevated CHD risk. Moreover, it was correlated with enhanced coronary stenosis, systematic inflammation, FBG level, and MACE risk in CHD patients.
Collapse
Affiliation(s)
- Haijun Qi
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Shen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenping Zhou
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
81
|
Shi H, Dong Z, Gao H. LncRNA TUG1 protects against cardiomyocyte ischaemia reperfusion injury by inhibiting HMGB1. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3511-3516. [PMID: 31432688 DOI: 10.1080/21691401.2018.1556214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this study was to investigate whether lncRNA TUG1 could mediate the progression of ischemia-reperfusion injury following acute myocardial infraction. Mouse cardiomyocytes HL-1 cells were subjected to oxygen glucose deprivation followed by reperfusion (OGD/R) to induce myocardial I/R injury. The expression of TUG1 was detected by real-time PCR. Overexpression or down expression of TUG1 was performed in mouse HL-1 cardiomyocytes. The myocardial cell viability and apoptosis were respectively detected. In addition, the expression levels of inflammatory factors, apoptosis-related proteins and HMGB1 proteins were detected. Besides, an inhibitor of HMGB1 was used to treat cells to verify the relationship between TUG1 and HMGB1 protein. The expression of TUG1 was significantly up-regulated in OGD/R-induced myocardial HL-1 cells. The overexpression of TUG1-induced inflammation and apoptosis in OGD-R-induced myocardial HL-1 cells. Knock down of TUG1 protected OGD/R-induced myocardial I/R injury by inhibiting HMGB1 expression. Suppression of lncRNA TUG1 may prevent myocardial I/R injury following acute myocardial infarction via inhibiting HMGB1 expression.
Collapse
Affiliation(s)
- Hanyu Shi
- Cadre Health Section, Qilu Hospital of Shandong University , Ji'nan , China
| | - Zhenhua Dong
- Department of Endocrinology, Jinan Central Hospital , Ji'nan , China
| | - Haiqing Gao
- Cadre Health Section, Qilu Hospital of Shandong University , Ji'nan , China
| |
Collapse
|
82
|
Shi H, Sun H, Li J, Bai Z, Wu J, Li X, Lv Y, Zhang G. Systematic analysis of lncRNA and microRNA dynamic features reveals diagnostic and prognostic biomarkers of myocardial infarction. Aging (Albany NY) 2020; 12:945-964. [PMID: 31927529 PMCID: PMC6977700 DOI: 10.18632/aging.102667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Analyses of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) implicated in myocardial infarction (MI) have increased our understanding of gene regulatory mechanisms in MI. However, it is not known how their expression fluctuates over the different stages of MI progression. In this study, we used time-series gene expression data to examine global lncRNA and miRNA expression patterns during the acute phase of MI and at three different time points thereafter. We observed that the largest expression peak for mRNAs, lncRNAs, and miRNAs occurred during the acute phase of MI and involved mainly protein-coding, rather than non-coding RNAs. Functional analysis indicated that the lncRNAs and miRNAs most sensitive to MI and most unstable during MI progression were usually related to fewer biological functions. Additionally, we developed a novel computational method for identifying dysregulated competing endogenous lncRNA-miRNA-mRNA triplets (LmiRM-CTs) during MI onset and progression. As a result, a new panel of candidate diagnostic biomarkers defined by seven lncRNAs was suggested to have high classification performance for patients with or without MI, and a new panel of prognostic biomarkers defined by two lncRNAs evidenced high discriminatory capability for MI patients who developed heart failure from those who did not.
Collapse
Affiliation(s)
- Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoran Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiayao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyi Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiuhong Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingli Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangde Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
83
|
Cardona-Monzonís A, García-Giménez JL, Mena-Mollá S, Pareja-Galeano H, de la Guía-Galipienso F, Lippi G, Pallardó FV, Sanchis-Gomar F. Non-coding RNAs and Coronary Artery Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:273-285. [PMID: 32285418 DOI: 10.1007/978-981-15-1671-9_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coronary artery disease (CAD) is the leading death cause worldwide. Non-coding RNA (ncRNA) are key regulators of genetic expression and thus can affect directly or indirectly the development and progression of different diseases. ncRNA can be classified in several types depending on the length or structure, as long non-coding RNA (lncRNA), microRNA (miRNA) and circularRNA (circRNA), among others. These types of RNA are present within cells or in circulation, and for this reason they have been used as biomarkers of different diseases, therefore revolutionizing precision medicine. Recent research studied the capability of circulating ncRNA to inform about CAD presence and predict the outcome of the disease. In this chapter we present a list of the miRNA, lncRNA and circRNA which are potential biomarkers of CAD.
Collapse
Affiliation(s)
- Alejandro Cardona-Monzonís
- Center for Biomedical Network Research-Instituto de Salud Carlos III. Department of Physiology, School of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research-Instituto de Salud Carlos III. Department of Physiology, School of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Salvador Mena-Mollá
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | | | | | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Federico V Pallardó
- Center for Biomedical Network Research-Instituto de Salud Carlos III. Department of Physiology, School of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
84
|
lncRNA-Triggered Macrophage Inflammaging Deteriorates Age-Related Diseases. Mediators Inflamm 2019; 2019:4260309. [PMID: 31949425 PMCID: PMC6942909 DOI: 10.1155/2019/4260309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Aging and age-related diseases (ARDs) share basic mechanisms largely involving inflammation. A chronic, low-grade, subclinical inflammation called inflammaging occurs during aging. Autophagy defects, oxidative stresses, senescence-associated secretory phenotypes (SASPs), and DNA damage generally contribute to inflammaging and are largely regulated by numerous lncRNA through two-level vicious cycles disrupting cellular homeostasis: (1) inflammaging and the cellular senescence cascade and (2) autophagy defects, oxidative stress, and the SASP cascade. SASPs and inflammasomes simultaneously cause inflammaging. This review discusses the involvement of macrophage inflammaging in various ARDs and its regulation via lncRNA. Among macrophages, this phenomenon potentially impairs its immunosurveillance and phagocytosis mechanisms, leading to decreased recognition and clearance of malignant and senescent cells. Moreover, SASPs extracellularly manifest to induce paracrine senescence. Macrophage senescence escalates to organ level malfunction, and the organism is more prone to ARDs. By targeting genes and proteins or functioning as competing endogenous RNA (ceRNA), lncRNA regulates different phenomena including inflammaging and ARDs. The detailed mechanism warrants further elucidation to obtain pathological evidence of ARDs and potential treatment approaches.
Collapse
|
85
|
System level characterization of small molecule drugs and their affected long noncoding RNAs. Aging (Albany NY) 2019; 11:12428-12451. [PMID: 31852840 PMCID: PMC6949102 DOI: 10.18632/aging.102581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) have multiple regulatory roles and are involved in many human diseases. A potential therapeutic strategy based on targeting lncRNAs was recently developed. To gain insight into the global relationship between small molecule drugs and their affected lncRNAs, we constructed a small molecule lncRNA network consisting of 1206 nodes (1033 drugs and 173 lncRNAs) and 4770 drug-lncRNA associations using LNCmap, which reannotated the microarray data from the Connectivity Map (CMap) database. Based on network biology, we found that the connected drug pairs tended to share the same targets, indications, and side effects. In addition, the connected drug pairs tended to have a similar structure. By inferring the functions of lncRNAs through their co-expressing mRNAs, we found that lncRNA functions related to the modular interface were associated with the mode of action or side effects of the corresponding connected drugs, suggesting that lncRNAs may directly/indirectly participate in specific biological processes after drug administration. Finally, we investigated the tissue-specificity of drug-affected lncRNAs and found that some kinds of drugs tended to have a broader influence (e.g. antineoplastic and immunomodulating drugs), whereas some tissue-specific lncRNAs (nervous system) tended to be affected by multiple types of drugs.
Collapse
|
86
|
Association between lncRNA and GCKR gene in type 2 diabetes mellitus. Clin Chim Acta 2019; 501:66-71. [PMID: 31756311 DOI: 10.1016/j.cca.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To screen long non-coding RNA (lncRNA) related to glucokinase regulatory protein gene (GCKR), its differential expression was analyzed in patients with Type 2 diabetes mellitus (T2DM) and control samples. The correlation of lncRNA with GCKR was verified and its potential value as a molecular marker of T2DM was assessed. METHODS Lymphocyte RNA was extracted from five patients with T2DM and five patients with non-T2DM. The expression profiles of circulating lncRNAs and mRNAs were obtained by microarray. Bioinformatics analysis was used to screen lncRNAs associated with the GCKR gene in 127 patients with T2DM and 130 patients with non-T2DM were selected. The expression levels of the GCKR gene and lncRNA (ENST00000588707.1 and TCONS_00004187) in the T2DM group and control group were verified by real-time PCR. Additionally, a correlation analysis was conducted. The value of circulating ENST00000588707.1 and TCONS_00004187 as biomarkers for the diagnosis of T2DM was performed by receiver operating characteristic curve analysis. RESULTS We identified 68 lncRNAs and 74 mRNAs differentially expressed from the expression profile. Compared with the control group, the expression levels of the GCKR gene and lncRNA ENST00000588707.1 and TCONS_00004187 in the T2DM group were significantly lower (P < 0.05). The correlation analysis revealed that ENST00000588707.1 and TCONS_00004187 were correlated with GCKR gene expression and glycolipid metabolism (P < 0.05). ROC analysis showed that the area under the curve value of ENST00000588707.1 between T2DM patients and non-T2DM patients was 0.816 (95% CI: 0.764-0.869, sensitivity 72.0%, specificity 80.3%) and the AUC value of TCONS_00004187 was 0.826 (95% CI: 0.774-0.879, sensitivity 81.6%, specificity 61.3%). CONCLUSION lncRNA ENST0000588707.1 and TCONS_00004187 could serve as potential biomarkers for T2DM, which could involve in glycolipid metabolism by regulating the GCKR gene.
Collapse
|
87
|
Expression profiles and potential functions of long non-coding RNA in stable angina pectoris patients from Uyghur population of China. Biosci Rep 2019; 39:BSR20190364. [PMID: 31413167 PMCID: PMC6722491 DOI: 10.1042/bsr20190364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/05/2019] [Accepted: 08/09/2019] [Indexed: 12/04/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt that are involved in cardiovascular diseases (CVDs). To determine whether lncRNAs are involved in stable angina pectoris (SAP), we analysed the expression profile of lncRNAs and mRNAs on a genome-wide scale in SAP of Uyghur population. Five pairs of SAP patients and healthy controls were screened by an Agilent microarray (human lncRNA + mRNA Array V4.0). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the lncRNA expression levels in 50 SAP and 50 controls. Data analyses were performed using R and Bioconductor. A total of 1871 up- and 231 down-regulated lncRNAs were identified to be differentially expressed in the peripheral blood mononuclear cells (PBMCs). Microarray analysis results identified the lncRNAs NR_037652.1, ENST00000607654.1, ENST00000589524.1 and uc004bhb.3, which were confirmed by qRT-PCR. Among screened lncRNAs, the annotation result of their co-expressed mRNAs showed that the most significantly related pathways were the NF-κB signalling pathway, apoptosis and the p53 signalling pathway, while the main significantly related diseases were the cholesterol, calcium and coronary disease. Our study indicated that clusters of lncRNAs were significantly differentially expressed between SAP patients and matched controls. These lncRNAs may play a significant role in SAP development and could serve as biomarkers and potential targets for the future treatment of SAP.
Collapse
|
88
|
Li Y, Li J, Zhang P, Jiang X, Pan Z, Zheng W, Lin H. LncRNA-LET relieves hypoxia-induced injury in H9c2 cells through regulation of miR-138. J Cell Biochem 2019; 121:259-268. [PMID: 31222827 DOI: 10.1002/jcb.29146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Ischemic heart disease (IHD) is a common cardiovascular disease, occurs when coronary artery blood circularity cannot match with the heart's need. The present work attempted to study the effects of long noncoding RNA (lncRNA) low expression in tumor (LET) on the progression of IHD. H9c2 cells were injured by hypoxia to mimic a cell model of IHD. The effects of lncRNA-LET on hypoxia-injured H9c2 cells were tested by using cell counting kit-8 assay, flow cytometry, and Western blot analysis. MicroRNA-138 (miR-138) expression was tested by a quantitative real-time polymerase chain reaction, and the expression of c-Jun N-terminal kinase (JNK) and p38MAPK (p38-mitogen-activated protein kinase) proteins was measured by Western blot analysis. We found that hypoxia exposure significantly repressed the viability of H9c2 cells, and induced apoptosis. Meanwhile, phosphorylation of JNK and p38MAPK was enhanced by hypoxia. The expression of lncRNA-LET was repressed by hypoxia. Overexpression of lncRNA-LET attenuated hypoxia-induced injury in H9c2 cells. Moreover, miR-138 was a downstream effector of lncRNA-LET, that miR-138 was highly expressed in lncRNA-LET-overexpressed cell. The cardioprotective effects of lncRNA-LET were abolished when miR-138 was silenced. In conclusion, this study revealed the cardioprotective function of lncRNA-LET. lncRNA-LET conferred its cardioprotective effects possibly via upregulation of miR-138 and thus repressing the JNK and p38MAPK pathways.
Collapse
Affiliation(s)
- Yugeng Li
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Jianwei Li
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Pengzhen Zhang
- Department of Interventional Therapy, Qingdao Hiser Medical Center, Qingdao, China
| | - Xiaoying Jiang
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Zhenrui Pan
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Wenjian Zheng
- Department of Cadre Healthcare, Qingdao Hiser Medical Center, Qingdao, China
| | - Hongli Lin
- Department of Cadre Healthcare, Qingdao Hiser Medical Center, Qingdao, China
| |
Collapse
|
89
|
Mongelli A, Martelli F, Farsetti A, Gaetano C. The Dark That Matters: Long Non-coding RNAs as Master Regulators of Cellular Metabolism in Non-communicable Diseases. Front Physiol 2019; 10:369. [PMID: 31191327 PMCID: PMC6539782 DOI: 10.3389/fphys.2019.00369] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs are pivotal for many cellular functions, such as splicing, gene regulation, chromosome structure, and hormone-like activity. Here, we will report about the biology and the general molecular mechanisms associated with long non-coding RNAs (lncRNAs), a class of >200 nucleotides-long ribonucleic acid sequences, and their role in chronic non-transmissible diseases. In particular, we will summarize knowledge about some of the best-characterized lncRNAs, such as H19 and MALAT1, and how they regulate carbohydrate and lipid metabolism as well as protein synthesis and degradation. Evidence is discussed about how lncRNAs expression might affect cellular and organismal metabolism and whether their modulation could provide ground for the development of innovative treatments.
Collapse
Affiliation(s)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Antonella Farsetti
- Institute of Cell Biology and Neurobiology, National Research Council, Università Cattolica di Roma, Rome, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, ICS Maugeri S.p.A., Pavia, Italy
| |
Collapse
|
90
|
Wang W, Wang Y, Piao H, Li B, Huang M, Zhu Z, Li D, Wang T, Xu R, Liu K. Circular RNAs as potential biomarkers and therapeutics for cardiovascular disease. PeerJ 2019; 7:e6831. [PMID: 31119072 PMCID: PMC6511224 DOI: 10.7717/peerj.6831] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are genetic regulators that were earlier considered as "junk". In contrast to linear RNAs, they have covalently linked ends with no polyadenylated tails. CircRNAs can act as RNA-binding proteins, sequestering agents, transcriptional regulators, as well as microRNA sponges. In addition, it is reported that some selected circRNAs are transformed into functional proteins. These RNA molecules always circularize through covalent bonds, and their presence has been demonstrated across species. They are usually abundant and stable as well as evolutionarily conserved in tissues (liver, lung, stomach), saliva, exosomes, and blood. Therefore, they have been proposed as the "next big thing" in molecular biomarkers for several diseases, particularly in cancer. Recently, circRNAs have been investigated in cardiovascular diseases (CVD) and reported to play important roles in heart failure, coronary artery disease, and myocardial infarction. Here, we review the recent literature and discuss the impact and the diagnostic and prognostic values of circRNAs in CVD.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Maoxun Huang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Dan Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Rihao Xu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
91
|
Cai C, Zhu H, Ning X, Li L, Yang B, Chen S, Wang L, Lu X, Gu D. LncRNA ENST00000602558.1 regulates ABCG1 expression and cholesterol efflux from vascular smooth muscle cells through a p65-dependent pathway. Atherosclerosis 2019; 285:31-39. [PMID: 31003090 DOI: 10.1016/j.atherosclerosis.2019.04.204] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Long non-coding RNAs (lncRNAs) have proven to be involved in the progression of atherosclerosis and dyslipidemia. In addition, vascular smooth muscle cells (VSMCs) phenotype switching, including VSMCs-derived foam cells formation, plays a key role in the pathogenesis of atherosclerosis. LncRNA ENST00000602558.1, one of the differentially expressed lncRNAs between coronary artery disease (CAD) patients and healthy controls identified by our previous study, was located to TG and HDL susceptibility loci, but its role and underlying mechanism in the pathogenesis of atherosclerosis remain unclear. The present study aims to explore the role and underlying mechanism of ENST00000602558.1 in the regulation of cholesterol efflux from VSMCs. METHODS ABCG1 mRNA and protein expression in VSMCs was detected using qRT-PCR and Western blot, respectively. ABCG1-mediated cholesterol efflux to HDL from VSMCs was measured by means of NBD-cholesterol fluorescence intensity. The binding of ENST00000602558.1 to p65 and p65 to ABCG1 promoter region was detected by RNA immunoprecipitation (RIP) assay and chromatin immunoprecipitation (ChIP) assay, respectively. RESULTS Overexpression of ENST00000602558.1 downregulated ABCG1 mRNA and protein expression, while knockdown of ENST00000602558.1 upregulated ABCG1 mRNA and protein expression. Consistently, ENST00000602558.1 overexpression decreased ABCG1-mediated cholesterol efflux to HDL from VSMCs by 30.38% (p < 0.001), and knockdown of ENST00000602558.1 increased ABCG1-mediated cholesterol efflux to HDL from VSMCs by 30.41% (p = 0.001). In addition to cholesterol efflux, overexpression of ENST00000602558.1 increased lipid accumulation and TC/TG levels, while knockdown of ENST00000602558.1 decreased lipid accumulation and TC/TG levels in VSMCs. Furthermore, we confirmed that ENST00000602558.1 regulated ABCG1 expression and ABCG1-mediated cholesterol efflux from VSMCs through binding to p65. CONCLUSIONS In conclusion, ENST00000602558.1 played an important role in mediating cholesterol efflux to HDL from VSMCs by regulating ABCG1 expression through binding to p65.
Collapse
Affiliation(s)
- Can Cai
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Huijuan Zhu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Xiaotong Ning
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Lin Li
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Bin Yang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Laiyuan Wang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China.
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China.
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| |
Collapse
|
92
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|