51
|
Lacombe RV, Sibéril S, Dimitrov JD. Immature and mature antibodies as defenders against cancer. Cell Mol Immunol 2023; 20:3-5. [PMID: 36369369 PMCID: PMC9794785 DOI: 10.1038/s41423-022-00951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robin V Lacombe
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sophie Sibéril
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
52
|
Huang H, Yang Y, Zhu Y, Chen H, Yang Y, Zhang L, Li W. Blood protein biomarkers in lung cancer. Cancer Lett 2022; 551:215886. [PMID: 35995139 DOI: 10.1016/j.canlet.2022.215886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Lung cancer has consistently ranked first as the cause of cancer-associated mortality. The 5-year survival rate has risen slowly, and the main obstacle to improving the prognosis of patients has been that lung cancer is usually diagnosed at an advanced or incurable stage. Thus, early detection and timely intervention are the most effective ways to reduce lung cancer mortality. Tumor-specific molecules and cellular elements are abundant in circulation, providing real-time information in a noninvasive and cost-effective manner during lung cancer development. These circulating biomarkers are emerging as promising tools for early detection of lung cancer and can be used to supplement computed tomography screening, as well as for prognosis prediction and treatment response monitoring. Serum and plasma are the main sources of circulating biomarkers, and protein biomarkers have been most extensively studied. In this review, we summarize the research progress on three most common types of blood protein biomarkers (tumor-associated antigens, autoantibodies, and exosomal proteins) in lung cancer. This review will potentially guide researchers toward a more comprehensive understanding of candidate lung cancer protein biomarkers in the blood to facilitate their translation to the clinic.
Collapse
Affiliation(s)
- Hong Huang
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yongfeng Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yihan Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongyu Chen
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Li Zhang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, China.
| |
Collapse
|
53
|
Cai R, Zhao F, Zhou H, Wang Z, Lin D, Huang L, Xie W, Chen J, Zhou L, Zhang N, Huang C. A tumor-associated autoantibody panel for the detection of non-small cell lung cancer. Front Oncol 2022; 12:1056572. [PMID: 36531074 PMCID: PMC9757608 DOI: 10.3389/fonc.2022.1056572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 09/02/2023] Open
Abstract
Lung cancer is the second most frequent malignancy and the leading cause of cancer-associated death worldwide. Compared with patients diagnosed at advanced disease stages, early detection of lung cancer significantly improved the 5-year survival rate from 3.3% to 48.8%, which highlights the importance of early detection. Although multiple technologies have been applied to the screening and early diagnosis of lung cancer so far, some limitations still exist so they could not fully suit the needs for clinical application. Evidence show that autoantibodies targeting tumor-associated antigens(TAAs) could be found in the sera of early-stage patients, and they are of great value in diagnosis. Methods, we identified and screened TAAs in early-stage non-small cell lung cancer(NSCLC) samples using the serological analysis of recombinant cDNA expression libraries(SEREX). We measured the levels of the 36 autoantibodies targeting TAAs obtained by preliminary screening via liquid chip technique in the training set(332 serum samples from early-stage NSCLC patients, 167 samples from patients with benign lung lesions, and 208 samples from patients with no obvious abnormalities in lungs), and established a binary logistic regression model based on the levels of 8 autoantibodies to distinguish NSCLC samples. Results, We validated the diagnostic efficacy of this model in an independent test set(163 serum samples from early-stage NSCLC patients, and 183 samples from patients with benign lung lesions), the model performed well in distinguishing NSCLC samples with an AUC of 0.8194. After joining the levels of 4 serum tumor markers into its independent variables, the final model reached an AUC of 0.8568, this was better than just using the 8 autoantibodies (AUC:0.8194) or the 4 serum tumor markers alone(AUC: 0.6948). In conclusion, we screened and identified a set of autoantibodies in the sera of early-stage NSCLC patients through SEREX and liquid chip technique. Based on the levels of 8 autoantibodies, we established a binary logistic regression model that could diagnose early-stage NSCLC with high sensitivity and specificity, and the 4 conventional serum tumor markers were also suggested to be effective supplements for the 8 autoantibodies in the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Ruijun Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Zhao
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Haiying Zhou
- Department of Orthopaedics, AIR Force Hospital of Southern Theater Command of People's Liberation Army of China (PLA), Guangzhou, China
| | - Zengsong Wang
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Dang Lin
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Lu Huang
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
- School of Pharmacutical Sciences, Wuhan University, Wuhan, China
| | - Wenling Xie
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Jiawen Chen
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Lamei Zhou
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyuan Huang
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| |
Collapse
|
54
|
Ahn HR, Baek GO, Yoon MG, Son JA, Yoon JH, Cheong JY, Cho HJ, Kang HC, Eun JW, Kim SS. Hypomethylation-mediated upregulation of the WASF2 promoter region correlates with poor clinical outcomes in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:158. [PMID: 35477411 PMCID: PMC9047373 DOI: 10.1186/s13046-022-02365-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. Wiskott–Aldrich syndrome protein family member 2 (WASF2) is an integral member of the actin cytoskeleton pathway, which plays a crucial role in cell motility. In this study, we aimed to explore the role of WASF2 in HCC carcinogenesis and its regulatory mechanism. Methods WASF2 expression in HCC was analyzed using six public RNA-seq datasets and 66 paired tissues from patients with HCC. The role of WASF2 in normal hepatocyte cell phenotypes was evaluated using a WASF2 overexpression vector in vitro; it was evaluated in HCC cell phenotypes using small interfering RNA (siRNA) in vitro and in vivo. Epigenetic regulatory mechanism of WASF2 was assessed in the Cancer Genome Atlas liver hepatocellular carcinoma project (TCGA_LIHC) dataset and also validated in 38 paired HCC tissues. Site mutagenesis, bisulfite sequencing polymerase chain reaction (BSP), methylation-specific polymerase chain reaction (MSP), and quantitative MSP (qMSP) were used for evaluating WASF2 methylation status. Results WASF2 is overexpressed in HCC and is clinically correlated with its prognosis. WASF2 overexpression promoted normal hepatocyte proliferation. WASF2 inactivation decreased the viability, growth, proliferation, migration, and invasion of Huh-7 and SNU475 HCC cells by inducing G2/M phase arrest. This induced cell death and inhibited epithelial–mesenchymal transition, hindering actin polymerization. In addition, WASF2 knockdown using siWASF2 in a xenograft mouse model and a lung metastasis model exerted tumor suppressive effect. There was a negative correlation between WASF2 methylation status and mRNA expression. The methylation pattern of CpG site 2 (− 726 bp), located in the WASF2 promoter, plays an important role in the regulation of WASF2 expression. Furthermore, the cg242579 CpG island in the WASF2 5′ promoter region was hypomethylated in HCC compared to that in the matched non-tumor samples. Patients with high WASF2 methylation and low WASF2 expression displayed the highest overall survival. Conclusions WASF2 is overexpressed and hypomethylated in HCC and correlates with patient prognosis. WASF2 inactivation exerts anti-tumorigenic effects on HCC cells in vitro and in vivo, suggesting that WASF2 could be a potential therapeutic target for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02365-7.
Collapse
|
55
|
Heo CK, Lim WH, Park I, Choi YS, Lim KJ, Cho EW. Serum BRD2 autoantibody in hepatocellular carcinoma and its detection using mimotope peptide‑conjugated BSA. Int J Oncol 2022; 61:158. [PMID: 36321789 PMCID: PMC9635863 DOI: 10.3892/ijo.2022.5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Tumor‑associated (TA) autoantibodies are considered to be promising biomarkers for the early detection of cancer, prior to the development of clinical symptoms. In the present study, a novel TA autoantibody was detected, which may prove to be useful as a diagnostic marker of human HCC using an HBx‑transgenic (HBx‑tg) hepatocellular carcinoma (HCC) mouse model. Its target antigen was identified as the bromodomain‑containing protein 2 (BRD2), a transcriptional regulator that plays a pivotal role in the transcriptional control of diverse genes. BRD2 was upregulated in HCC tissues of the H‑ras12V‑tg mouse and human subjects, as demonstrated using western blotting or immunohistochemical analysis, with the BRD2 autoantibody. In addition, the truncated BRD2 reactive to the BRD2 autoantibody was detected in tumor cell‑derived exosomes, which possibly activated TA immune responses and the generation of autoantibodies. For the detection of the serum BRD2 autoantibody, epitope mimicries of autoantigenic BRD2 were screened from a random cyclic peptide CX<sub>7</sub>C library with the BRD2 autoantibody. A mimotope with the sequence of CTSVFLPHC, which was cyclized by one pair of cysteine residues, exhibited high affinity to the BRD2 autoantibody and competitively inhibited the binding of the autoantibody to the cellular BRD2 antigen. The use of this cyclic peptide as a capture antigen in human serum enzyme‑linked immunosorbent assay allowed the distinction of patients with HCC from healthy subjects with 64.41% sensitivity and 82.42% specificity (area under the ROC curve, 0.7761), which is superior to serum alpha‑fetoprotein (AFP; 35.83% sensitivity; 100% specificity; area under the ROC curve, 0.5337) for the diagnosis of HCC. In addition, the detection of the BRD2 autoantibody combined with other autoantibody biomarkers or AFP has increased the accuracy of HCC diagnosis, suggesting that the combinational detection of cancer biomarkers, including the BRD2 autoantibody, is a promising assay for HCC diagnosis.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Department of Functional Genomics, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Inseo Park
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yon-Sik Choi
- ProteomeTech Inc., Seoul 07528, Republic of Korea
| | - Kook-Jin Lim
- ProteomeTech Inc., Seoul 07528, Republic of Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Department of Functional Genomics, University of Science and Technology, Daejeon 34141, Republic of Korea,Correspondence to: Dr Eun-Wie Cho, Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, E-mail:
| |
Collapse
|
56
|
Autoantibody panel on small extracellular vesicles for the early detection of lung cancer. Clin Immunol 2022; 245:109175. [DOI: 10.1016/j.clim.2022.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
|
57
|
Banerjee A, Ray A, Barpanda A, Dash A, Gupta I, Nissa MU, Zhu H, Shah A, Duttagupta SP, Goel A, Srivastava S. Evaluation of autoantibody signatures in pituitary adenoma patients using human proteome arrays. Proteomics Clin Appl 2022; 16:e2100111. [PMID: 35939377 DOI: 10.1002/prca.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To identify the specific diagnostic biomarkers related to pituitary adenomas (PAs), we performed serological antibody profiles for three types of PAs, namely Acromegaly, Cushing's and Nonfunctional Pituitary Adenomas (NFPAs), using the human proteome (HuProt) microarray. This is the first study describing the serum autoantibody profile of PAs. EXPERIMENTAL DESIGN We performed serological autoantibody profiling of four healthy controls, four Acromegaly, three Cushing's and three NFPAs patient samples to obtain their autoantibody profiles, which were used for studying expression, interaction and altered biological pathways. Further, significant autoantibodies of PAs were compared with data available for glioma, meningioma and AAgAtlas for their specificity. RESULTS Autoantibody profile of PAs led to the identification of differentially expressed significant proteins such as AKNAD1 (AT-Hook Transcription Factor [AKNA] Domain Containing 1), NINJ1 (Nerve injury-induced protein 1), L3HYPDH (Trans-3-hydroxy-L-proline dehydratase), RHOG (Rho-related GTP-binding protein) and PTP4A1 (Protein Tyrosine Phosphatase Type IVA 1) in Acromegaly. Protein ABR (Active breakpoint cluster region-related protein), ST6GALNAC6 (ST6 N-acetylgalactosaminide alpha-2, 6-sialyltransferase 6), NOL3 (Nucleolar protein 3), ANXA8 (Annexin A8) and POLR2H (RNA polymerase II, I and III subunit H) showed an antigenic response in Cushing's patient's serum samples. Protein dipeptidyl peptidase 3 (DPP3) and reticulon-4 (RTN4) exhibited a very high antigenic response in NFPA patients. These proteins hold promise as potential autoantibody biomarkers in PAs.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ankita Dash
- Miranda House, University of Delhi, University Enclave, New Delhi, Delhi, India
| | - Ishika Gupta
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhidha Shah
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Siddhartha P Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Atul Goel
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
58
|
Ma H, Murphy C, Loscher CE, O’Kennedy R. Autoantibodies - enemies, and/or potential allies? Front Immunol 2022; 13:953726. [PMID: 36341384 PMCID: PMC9627499 DOI: 10.3389/fimmu.2022.953726] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 08/13/2023] Open
Abstract
Autoantibodies are well known as potentially highly harmful antibodies which attack the host via binding to self-antigens, thus causing severe associated diseases and symptoms (e.g. autoimmune diseases). However, detection of autoantibodies to a range of disease-associated antigens has enabled their successful usage as important tools in disease diagnosis, prognosis and treatment. There are several advantages of using such autoantibodies. These include the capacity to measure their presence very early in disease development, their stability, which is often much better than their related antigen, and the capacity to use an array of such autoantibodies for enhanced diagnostics and to better predict prognosis. They may also possess capacity for utilization in therapy, in vivo. In this review both the positive and negative aspects of autoantibodies are critically assessed, including their role in autoimmune diseases, cancers and the global pandemic caused by COVID-19. Important issues related to their detection are also highlighted.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Caroline Murphy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Richard O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Research, Development and Innovation, Qatar Foundation, Doha, Qatar
- Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
59
|
Autoantibody against Tumor-Associated Antigens as Diagnostic Biomarkers in Hispanic Patients with Hepatocellular Carcinoma. Cells 2022; 11:cells11203227. [PMID: 36291095 PMCID: PMC9600682 DOI: 10.3390/cells11203227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Tumor-associated antigens (TAAs) have been investigated for many years as potential early diagnosis tools, especially for hepatocellular carcinoma (HCC). Nonetheless, very few studies have focused on the Hispanic HCC group that may be associated with distinct etiological risk factors. In the present study, we investigated novel anti-TAA autoantibodies as diagnostic biomarkers for Hispanic HCC patients. Methods: Novel TAA targets were identified by the serological proteome analysis (SERPA) and from differentially expressed HCC driver genes via bioinformatics. The autoantibody levels were validated by enzyme-linked immunosorbent assay (ELISA). Results: Among 19 potential TAA targets, 4 anti-TAA autoantibodies were investigated as potential diagnostic biomarkers with significantly high levels in Hispanic HCC sera, including DNA methyltransferase 3A (DNMT3A), p16, Hear shock protein 60 (Hsp60), and Heat shock protein A5 (HSPA5). The area under the ROC curve (AUC) value of the single autoantibodies varies from 0.7505 to 0.8885. After combining all 4 autoantibodies, the sensitivity of the autoantibody panel increased to 75% compared to the single one with the highest value of 45.8%. In a separate analysis of the Asian cohort, autoantibodies against HSPA5 and p16 showed significantly elevated levels in HCC compared to normal healthy controls, but not for DNMT3A or HSP60. Conclusion: Anti-DNMT3A, p16, HSPA5, and HSP60 autoantibodies have the potential to be diagnostic biomarkers for Hispanic HCC patients, of which DNMT3A and HSP60 might be exclusive for Hispanic HCC diagnosis.
Collapse
|
60
|
Li J, Liu M, Zhang X, Ji L, Yang T, Zhao Y, Wang Z, Liang F, Dai L. Plasma autoantibodies IgG and IgM to PD1/PDL1 as potential biomarkers and risk factors of lung cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04360-z. [PMID: 36127483 DOI: 10.1007/s00432-022-04360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022]
Abstract
Antibodies targeting programmed cell death-1 (PD1) and its ligand (PDL1) have transformed current cancer therapy while little is known about the expression of anti-PD1/PDL1 autoantibodies between lung cancer (LC) patients and normal controls (NC). The expression level of anti-PD1/PDL1 IgG and IgM was detected in plasma of 325 LC and 324 NC by indirect enzyme-linked immune sorbent assay (ELISA). Western blot and indirect immunofluorescence (IIF) were used to verify the ELISA results. The association analysis was used to evaluate the odds ratio (OR) of LC. The expression of anti-PD1/PDL1 IgG in LC samples was significantly higher than NC (P < 0.001 and P < 0.05, respectively). The positive rate of anti-PD1/PDL1 IgG in LC was significantly higher than NC and significant difference was also shown in LC samples of different clinical characteristics, such as clinical stage, nodules diameter, lymph node metastasis and distant metastasis (P < 0.001). Moreover, PD1/PDL1 expression in tissues showed no significant relation with that in plasma (P > 0.05). Anti-PD1/PDL1 IgG were the risk factors related to LC (OR (95% CI): 22.433 (5.426-92.745) and 5.051 (1.316-19.386)), while anti-PD1/PDL1 IgM were the risk factors for LC with ≤ 60 years (OR (95% CI): 6.122 (1.365-27.455) and 7.664 (1.715-34.251)) and anti-PD1 IgM was also the risk factor for male LC cases(OR (95% CI): 6.948 (1.076-44.868)). Plasma anti-PD1/PDL1 IgG and IgM might serve as potential biomarkers and risk predictors for LC.
Collapse
Affiliation(s)
- Jiaqi Li
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xue Zhang
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Longtao Ji
- BGI College, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ting Yang
- BGI College, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yutong Zhao
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhi Wang
- BGI College, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feifei Liang
- BGI College, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,BGI College, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
61
|
Intercellular communication in the tumour microecosystem: Mediators and therapeutic approaches for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166528. [PMID: 36007784 DOI: 10.1016/j.bbadis.2022.166528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the most common tumours worldwide, is one of the main causes of mortality in cancer patients. There are still numerous problems hindering its early diagnosis, which lead to late patients receiving treatment, and these problems need to be solved urgently. The tumour microecosystem is a complex network system comprising seven parts: the hypoxia niche, immune microenvironment, metabolic microenvironment, acidic niche, innervated niche, mechanical microenvironment, and microbial microenvironment. Intercellular communication is divided into direct contact and indirect communication. Direct contact communication includes gap junctions, tunneling nanotubes, and receptor-ligand interactions, whereas indirect communication includes exosomes, apoptotic vesicles, and soluble factors. Mechanical communication and cytoplasmic exchange are further means of intercellular communication. Intercellular communication mediates the crosstalk between the tumour microecosystem and the host as well as that between cells and cell-free components in the tumour microecosystem, causing changes in the tumour hallmarks of the HCC microecosystem such as changes in tumour proliferation, invasion, apoptosis, angiogenesis, metastasis, inflammatory response, gene mutation, immune escape, metabolic reprogramming, and therapeutic resistance. Here, we review the role of the above-mentioned intercellular communication in the HCC microecosystem and discuss the advantages of targeted intercellular communication in the clinical diagnosis and treatment of HCC. Finally, the current problems and prospects are discussed.
Collapse
|
62
|
Immune Biomarkers in Blood from Sarcoma Patients: A Pilot Study. Curr Oncol 2022; 29:5585-5603. [PMID: 36005179 PMCID: PMC9406743 DOI: 10.3390/curroncol29080441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The main role of the host immune system is to identify and eliminate cancer cells, which is a complex process, but it is not a fail-safe mechanism. Many sarcoma patients succumb to this disease despite treatments rendered. The aim of this pilot study was to compare the levels of CD4+ T-cells, T-regulatory (Treg) cells, and cytokines such as tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-17A (IL-17A), and transforming growth factor-beta-1 (TGF-β1) in peripheral blood leukocytes of sarcoma patients and healthy controls. For gene expression studies, total ribonucleic acid (RNA) was extracted from peripheral blood leukocytes and genes that were differentially regulated in peripheral blood leukocytes of sarcoma patients compared with healthy controls were determined using a commercial T-helper cell differentiation quantitative polymerase chain reaction (qPCR) array. Flow cytometer analysis was performed on blood samples from 26 sarcoma patients and 10 healthy controls to identify the levels of CD4+ T-cells and T-reg cells. The level of cytokines in plasma and culture supernatant were quantified using commercial enzyme-linked immunosorbent assay (ELISA) kits. A marked reduction in the percentage of CD4+ T-cells (p = 0.037) and levels of TNF-α (p = 0.004) and IFN-γ (0.010) was observed in sarcoma patients. Gene expression analysis showed five genes (homeobox A10 (HOXA10), GATA binding protein 3 (GATA3), prostaglandin D2 receptor 2 (PTGDR2), thymocyte selection associated high mobility group box (TOX), and C-C motif chemokine receptor 3 (CCR3)) were dysregulated (p < 0.05) in sarcoma patients. This study suggests that T-helper-1 immune responses are reduced in sarcoma patients.
Collapse
|
63
|
Reddy R, Mintz J, Golan R, Firdaus F, Ponce R, Van Booven D, Manoharan A, Issa I, Blomberg BB, Arora H. Antibody Diversity in Cancer: Translational Implications and Beyond. Vaccines (Basel) 2022; 10:vaccines10081165. [PMID: 35893814 PMCID: PMC9331493 DOI: 10.3390/vaccines10081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Patients with cancer tend to develop antibodies to autologous proteins. This phenomenon has been observed across multiple cancer types, including bladder, lung, colon, prostate, and melanoma. These antibodies potentially arise due to induced inflammation or an increase in self-antigens. Studies focusing on antibody diversity are particularly attractive for their diagnostic value considering antibodies are present at an early diseased stage, serum samples are relatively easy to obtain, and the prevalence of antibodies is high even when the target antigen is minimally expressed. Conversely, the surveillance of serum proteins in cancer patients is relatively challenging because they often show variability in expression and are less abundant. Moreover, an antibody’s presence is also useful as it suggests the relative immunogenicity of a given antigen. For these reasons, profiling antibodies’ responses is actively considered to detect the spread of antigens following immunotherapy. The current review focuses on expanding the knowledge of antibodies and their diversity, and the impact of antibody diversity on cancer regression and progression.
Collapse
Affiliation(s)
- Raghuram Reddy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Roei Golan
- College of Medicine, Florida State University, Tallahassee FL 32304, USA;
| | - Fakiha Firdaus
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
| | - Roxana Ponce
- Department of Biology, Florida International University, Miami, FL 33199, USA;
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33143, USA; (D.V.B.); (I.I.)
| | - Aysswarya Manoharan
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
| | - Isabelle Issa
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33143, USA; (D.V.B.); (I.I.)
| | - Bonnie B. Blomberg
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33143, USA; (D.V.B.); (I.I.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
64
|
[Clinical Value of Autoantibody Prognostic Markers in Tumor Immune Checkpoint
Inhibitor Therapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:534-540. [PMID: 35899453 PMCID: PMC9346161 DOI: 10.3779/j.issn.1009-3419.2022.101.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Serum autoantibody markers have the advantages of easy specimen acquisition, simple detection technology and dynamic real-time monitoring. With the wide application of immune checkpoint inhibitors in the treatment of malignant tumors, autoantibody markers in predicting tumor immune checkpoint inhibitors efficacy and forecasting irAEs (immune related adverse events) show good prediction of potential. This review mainly focused on the progress of autoantibody markers in the prediction of therapeutic effect and the monitoring of irAE in tumor immunotherapy.
.
Collapse
|
65
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
66
|
Li C, Wang H, Jiang Y, Fu W, Liu X, Zhong R, Cheng B, Zhu F, Xiang Y, He J, Liang W. Advances in lung cancer screening and early detection. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0690. [PMID: 35535966 PMCID: PMC9196057 DOI: 10.20892/j.issn.2095-3941.2021.0690] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is associated with a heavy cancer-related burden in terms of patients' physical and mental health worldwide. Two randomized controlled trials, the US-National Lung Screening Trial (NLST) and Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON), indicated that low-dose CT (LDCT) screening results in a statistically significant decrease in mortality in patients with lung cancer, LDCT has become the standard approach for lung cancer screening. However, many issues in lung cancer screening remain unresolved, such as the screening criteria, high false-positive rate, and radiation exposure. This review first summarizes recent studies on lung cancer screening from the US, Europe, and Asia, and discusses risk-based selection for screening and the related issues. Second, an overview of novel techniques for the differential diagnosis of pulmonary nodules, including artificial intelligence and molecular biomarker-based screening, is presented. Third, current explorations of strategies for suspected malignancy are summarized. Overall, this review aims to help clinicians understand recent progress in lung cancer screening and alleviate the burden of lung cancer.
Collapse
Affiliation(s)
- Caichen Li
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Huiting Wang
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Yu Jiang
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Wenhai Fu
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Xiwen Liu
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Bo Cheng
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Feng Zhu
- Department of Internal Medicine, Detroit Medical Center Sinai-Grace Hospital, Detroit, Michigan 48235, USA
| | - Yang Xiang
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Jianxing He
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
- Department of Oncology, the First People’s Hospital of Zhaoqing, Zhaoqing 526020, China
| |
Collapse
|
67
|
Zappala F, Higbee-Dempsey E, Jang B, Miller J, Yan L, Minutolo NG, Rosado González GT, Tsourkas A, Ozdemir BA. Rapid, site-specific labeling of "off-the-shelf" and native serum autoantibodies with T cell-redirecting domains. SCIENCE ADVANCES 2022; 8:eabn4613. [PMID: 35522741 PMCID: PMC9075798 DOI: 10.1126/sciadv.abn4613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Extensive antibody engineering and cloning is typically required to generate new bispecific antibodies. Made-to-order genes, advanced expression systems, and high-efficiency cloning can simplify and accelerate this process, but it still can take months before a functional product is realized. We developed a simple method to site-specifically and covalently attach a T cell-redirecting domain to any off-the-shelf, human immunoglobulin G (IgG) or native IgG isolated from serum. No antibody engineering, cloning, or knowledge of the antibody sequence is required. Bispecific antibodies are generated in just hours. By labeling antibodies isolated from tumor-bearing mice, including two syngeneic models, we generated T cell-redirecting autoantibodies (TRAAbs) that act as an effective therapeutic. TRAAbs preferentially bind tumor tissue over healthy tissue, indicating a previously unexplored therapeutic window. The use of autoantibodies to direct the tumor targeting of bispecific antibodies represents a new paradigm in personalized medicine that eliminates the need to identify tumor biomarkers.
Collapse
Affiliation(s)
- Fabiana Zappala
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Elizabeth Higbee-Dempsey
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Bian Jang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Lesan Yan
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Nicholas G. Minutolo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Gabriela T. Rosado González
- Gabriela T. Rosado González, Department of Chemistry, University of Puerto Rico, 14, 2534 Av. Universidad Ste. 1401, San Juan, 00925 Puerto Rico
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Burcin Altun Ozdemir
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| |
Collapse
|
68
|
Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 2022; 185:1208-1222.e21. [PMID: 35305314 DOI: 10.1016/j.cell.2022.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.
Collapse
|
69
|
Delvecchio FR, Goulart MR, Fincham REA, Bombadieri M, Kocher HM. B cells in pancreatic cancer stroma. World J Gastroenterol 2022; 28:1088-1101. [PMID: 35431504 PMCID: PMC8985484 DOI: 10.3748/wjg.v28.i11.1088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a disease with high unmet clinical need. Pancreatic cancer is also characterised by an intense fibrotic stroma, which harbours many immune cells. Studies in both human and animal models have demonstrated that the immune system plays a crucial role in modulating tumour onset and progression. In human pancreatic ductal adenocarcinoma, high B-cell infiltration correlates with better patient survival. Hence, B cells have received recent interest in pancreatic cancer as potential therapeutic targets. However, the data on the role of B cells in murine models is unclear as it is dependent on the pancreatic cancer model used to study. Nevertheless, it appears that B cells do organise along with other immune cells such as a network of follicular dendritic cells (DCs), surrounded by T cells and DCs to form tertiary lymphoid structures (TLS). TLS are increasingly recognised as sites for antigen presentation, T-cell activation, B-cell maturation and differentiation in plasma cells. In this review we dissect the role of B cells and provide directions for future studies to harness the role of B cells in treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Romana Delvecchio
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michelle R Goulart
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | - Michele Bombadieri
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
70
|
Afzal S, Hassan M, Ullah S, Abbas H, Tawakkal F, Khan MA. Breast Cancer; Discovery of Novel Diagnostic Biomarkers, Drug Resistance, and Therapeutic Implications. Front Mol Biosci 2022; 9:783450. [PMID: 35265667 PMCID: PMC8899313 DOI: 10.3389/fmolb.2022.783450] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second most reported cancer in women with high mortality causing millions of cancer-related deaths annually. Early detection of breast cancer intensifies the struggle towards discovering, developing, and optimizing diagnostic biomarkers that can improve its prognosis and therapeutic outcomes. Breast cancer-associated biomarkers comprise macromolecules, such as nucleic acid (DNA/RNA), proteins, and intact cells. Advancements in molecular technologies have identified all types of biomarkers that are exclusively studied for diagnostic, prognostic, drug resistance, and therapeutic implications. Identifying biomarkers may solve the problem of drug resistance which is a challenging obstacle in breast cancer treatment. Dysregulation of non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) initiates and progresses breast cancer. The circulating multiple miRNA profiles promise better diagnostic and prognostic performance and sensitivity than individual miRNAs. The high stability and existence of circRNAs in body fluids make them a promising new diagnostic biomarker. Many therapeutic-based novels targeting agents have been identified, including ESR1 mutation (DNA mutations), Oligonucleotide analogs and antagonists (miRNA), poly (ADP-ribose) polymerase (PARP) in BRCA mutations, CDK4/6 (cell cycle regulating factor initiates tumor progression), Androgen receptor (a steroid hormone receptor), that have entered clinical validation procedure. In this review, we summarize the role of novel breast cancer diagnostic biomarkers, drug resistance, and therapeutic implications for breast cancer.
Collapse
Affiliation(s)
- Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- *Correspondence: Samia Afzal,
| | - Muhammad Hassan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Safi Ullah
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Hazrat Abbas
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Farah Tawakkal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
71
|
Belousov PV. The Autoantibodies against Tumor-Associated Antigens as Potential Blood-Based Biomarkers in Thyroid Neoplasia: Rationales, Opportunities and Challenges. Biomedicines 2022; 10:biomedicines10020468. [PMID: 35203677 PMCID: PMC8962333 DOI: 10.3390/biomedicines10020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
The Autoantibodies targeting Tumor-Associated Antigens (TAA-AAbs) emerge as a result of a variety of tumor-related immunogenic stimuli and may be regarded as the eyewitnesses to the anti-tumor immune response. TAA-AAbs may be readily detected in peripheral blood to unveil the presence of a particular TAA-expressing tumor, and a fair number of TAAs eliciting the tumor-associated autoantibody response have been identified. The potential of TAA-AAbs as tumor biomarkers has been extensively studied in many human malignancies with a major influence on public health; however, tumors of the endocrine system, and, in particular, the well-differentiated follicular cell-derived thyroid neoplasms, remain understudied in this context. This review provides a detailed perspective on and legitimate rationales for the potential use of TAA-AAbs in thyroid neoplasia, with particular reference to the already established diagnostic implications of the TAA-AAbs in human cancer, to the windows for improvement and diagnostic niches in the current workup strategies in nodular thyroid disease and differentiated thyroid cancer that TAA-AAbs may successfully occupy, as well as to the proof-of-concept studies demonstrating the usefulness of TAA-AAbs in thyroid oncology, particularly for the pre-surgical discrimination between tumors of different malignant potential in the context of the indeterminate results of the fine-needle aspiration cytology.
Collapse
Affiliation(s)
- Pavel V. Belousov
- National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, 117036 Moscow, Russia; or
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
72
|
Yu R, Yang S, Liu Y, Zhu Z. Identification and validation of serum autoantibodies in children with B-cell acute lymphoblastic leukemia by serological proteome analysis. Proteome Sci 2022; 20:3. [PMID: 35109855 PMCID: PMC8808998 DOI: 10.1186/s12953-021-00184-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Background B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy of childhood. Even though significant progresses have been made in the treatment of B-ALL, some pediatric B-ALL have still poor prognosis. The identification of tumor autoantibodies may have utility in early cancer diagnosis and immunotherapy. In this study, we used serological proteome analysis (SERPA) to screen serum autoantibodies of pediatric B-ALL, aiming to contribute to the early detection of B-ALL in children. Methods The total proteins from three pooled B-ALL cell lines (NALM-6, REH and BALL-1 cells) were separated using two-dimensional gel electrophoresis (2-DE), which was followed by Western blot by mixed serum samples from children with B-ALL (n=20) or healthy controls (n=20). We analyzed the images of 2-D gel and Western blot by PDQuest software, and then identified the spots of immune responses in B-ALL samples compared with those in control samples. The proteins from spots were identified using mass spectrometry (MS). The autoantibodies against alpha-enolase (α-enolase) and voltage-dependent anion-selective channel protein 1 (VDAC1) were further validated in sera from another 30 children with B-ALL and 25 normal individuals by the use of enzyme-linked immunosorbent assay (ELISA). The protein expression levels of the candidate antigens α-enolase and VDAC1 in B-ALL were thoroughly studied by immunohistochemical analysis. Results Utilizing the SERPA approach, α-enolase and VDAC1 were identified as candidate autoantigens in children with B-ALL. The frequencies of autoantibodies against α-enolase and VDAC1 in children with B-ALL were 27% and 23% by using ELISA analysis, respectively, which were significantly higher than those in normal controls (4% and 0, p<0.05). Immunohistochemical analysis showed the expression of α-enolase and VDAC1 was positive in 95% and 85% of B-ALL patients, respectively, but negative expression levels were showed in the control group. Conclusions This study incidated that α-enolase and VDAC1 may be the autoantigens associated with B-ALL. Therefore, α-enolase and VDAC1 autoantibodies may be the potential serological markers for children with B-ALL. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-021-00184-w.
Collapse
Affiliation(s)
- Runhong Yu
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China.,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shiwei Yang
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China.,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Erqi District, Zhengzhou, Henan, 450052, China
| | - Zunmin Zhu
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China. .,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China. .,Department of Hematology, People's Hospital of Zhengzhou University, Henan, Zhengzhou, China.
| |
Collapse
|
73
|
Qi S, Li J, He X, Zhou J, Chen Z, Li X, Zhang B, Ma H, You H, Huang J. Identification and Validation of Novel Serum Autoantibodies Biomarkers for Staging Liver Fibrosis in Patients With Chronic Hepatitis B. Front Med (Lausanne) 2022; 8:807087. [PMID: 35059422 PMCID: PMC8764302 DOI: 10.3389/fmed.2021.807087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Liver fibrosis monitoring is essential in patients with chronic hepatitis B (CHB). However, less robust, noninvasive diagnostic methods for staging liver fibrosis, other than liver biopsy, are available. Our previous study demonstrated a panel of cellular proteins recognized by autoantibodies that may have potential value in discrimination of CHB and liver cirrhosis. We aim to assess the diagnostic value of these serum autoantibodies for staging liver fibrosis. Methods: Candidate autoantigens were screened and assessed by microarray analysis in 96 healthy controls and 227 CHB patients with pre-treatment biopsy-proven METAVIR fibrosis score, comprising 69, 115, and 43 cases with S0-1, S2-3, and S4 stages, respectively. Autoantibodies with potential diagnostic value for staging liver fibrosis were verified by enzyme-linked immunosorbent assays (ELISA). Receiver operating characteristic curve was conducted to evaluate autoantibody performance. Results: Microarray analysis identified autoantigens CENPF, ACY1, HSPA6, and ENO1 with potential diagnostic value for liver fibrosis staging, among which CENPF and ACY1 were validated using ELISA. CENPF and ACY1 autoantibodies had area under the curve values of 0.746 and 0.685, 58.14 and 74.42% sensitivity, and 88.41 and 60.87% specificity, respectively, for discriminating liver fibrosis stages S4 and S0-1. The prevalence of CENPF and ACY1 autoantibodies was not correlated with age, sex or level of inflammation. Conclusions: Autoimmune responses may be elicited during progression of liver fibrosis, and serum autoantibodies may be a valuable biomarker for staging liver fibrosis deserving of further study.
Collapse
Affiliation(s)
- Saiping Qi
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Healthcare Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaomin He
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
74
|
Scandolara TB, Pacholak LM, Tavares IM, Kern R, Garcia-Velazquez L, Panis C. Cross talks between autoimmunity and cancer. TRANSLATIONAL AUTOIMMUNITY 2022:15-49. [DOI: 10.1016/b978-0-323-85415-3.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
75
|
Tumour- associated autoantibodies as prognostic cancer biomarkers- a review. Autoimmun Rev 2022; 21:103041. [DOI: 10.1016/j.autrev.2022.103041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
|
76
|
Tan Q, Dai L, Wang Y, Liu S, Liang T, Luo R, Wang S, Lou N, Chen H, Zhou Y, Zhong Q, Yang J, Xing P, Hu X, Liu Y, Zhou S, Yao J, Wu D, Zhang Z, Tang L, Yu X, Han X, Shi Y. Anti-PD1/PDL1 IgG subclass distribution in ten cancer types and anti-PD1 IgG4 as biomarker for the long time survival in NSCLC with anti-PD1 therapy. Cancer Immunol Immunother 2021; 71:1681-1691. [PMID: 34817638 DOI: 10.1007/s00262-021-03106-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Antibodies targeting programmed cell death-1(PD1) and its ligand (PDL1) have revolutionized cancer therapy. However, little is known about the preexisted anti-PD1/PDL1 autoantibodies (AAbs) distribution in multiple cancer types, nor is their potential biomarker role for anti-PD1 therapy. METHOD Plasma anti-PD1/PDL1 AAb IgG and subclasses (IgG1-4) were detected by enzyme-linked immune sorbent assay (ELISA) in 190 cancer patients, covering 10 cancer types (lung, breast, esophageal, colorectal, liver, prostatic, cervical, ovarian, gastric cancers and lymphoma), the comprehensive correlation of AAbs with multiple clinical parameters was analyzed. We further tested these AAbs in 76 non-small cell lung cancer (NSCLC) samples receiving anti-PD1 therapy, the association of AAbs level with survival was analyzed and validated in an independent cohort (n = 32). RESULTS Anti-PD1/PDL1 AAb IgG were globally detected in 10 types of cancer patients. IgG1 and IgG2 were the major subtypes for anti-PD1/PDL1 AAbs. Correlation analysis revealed a distinct landscape between various cancer types. The random forest model indicated that IgG4 subtype was mostly associated with cancer. In discovery cohort of 76 NSCLC patients, high anti-PD1 IgG4 was associated with a reduced overall survival (OS, p = 0.019), not progression-free survival (PFS, p = 0.088). The negative association of anti-PD1 IgG4 with OS was validated in 32 NSCLC patients (p = 0.032). CONCLUSION This study reports for the first time the distribution of preexisted anti-PD1/PDL1 AAb IgG and subclasses across 10 cancer types. Moreover, the anti-PD1 AAb IgG4 subclass was identified to associate with OS, which may serve as a potential biomarker for anti-PD1 therapeutic survival benefit in NSCLC patients.
Collapse
Affiliation(s)
- Qiaoyun Tan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Liyuan Dai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yanrong Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Shuxia Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Te Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Rongrong Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Shasha Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Ning Lou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Haizhu Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Qiaofeng Zhong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Di Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Zhishang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100032, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
| |
Collapse
|
77
|
A highly predictive autoantibody-based biomarker panel for prognosis in early-stage NSCLC with potential therapeutic implications. Br J Cancer 2021; 126:238-246. [PMID: 34728792 PMCID: PMC8770460 DOI: 10.1038/s41416-021-01572-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. Surgical resection remains the definitive curative treatment for early-stage disease offering an overall 5-year survival rate of 62%. Despite careful case selection, a significant proportion of early-stage cancers relapse aggressively within the first year post-operatively. Identification of these patients is key to accurate prognostication and understanding the biology that drives early relapse might open up potential novel adjuvant therapies. METHODS We performed an unsupervised interrogation of >1600 serum-based autoantibody biomarkers using an iterative machine-learning algorithm. RESULTS We identified a 13 biomarker signature that was highly predictive for survivorship in post-operative early-stage lung cancer; this outperforms currently used autoantibody biomarkers in solid cancers. Our results demonstrate significantly poor survivorship in high expressers of this biomarker signature with an overall 5-year survival rate of 7.6%. CONCLUSIONS We anticipate that the data will lead to the development of an off-the-shelf prognostic panel and further that the oncogenic relevance of the proteins recognised in the panel may be a starting point for a new adjuvant therapy.
Collapse
|
78
|
Lázár J, Kovács A, Tornyi I, Takács L, Kurucz I. Detection of leucine-rich alpha-2-glycoprotein 1-containing immunocomplexes in the plasma of lung cancer patients with epitope-specific mAbs. Cancer Biomark 2021; 34:113-122. [PMID: 34744074 DOI: 10.3233/cbm-210164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. With the expectation of improved survival, tremendous efforts and resources have been invested in the discovery of specific biomarkers for early detection of the disease. Several investigators have reported the presence of cancer-associated autoantibodies in the plasma or serum of lung cancer patients. Previously, we used a monoclonal-antibody proteomics technology platform for the discovery of novel lung cancer-associated proteins. OBJECTIVE The identification of specific protein epitopes associated with various cancers is a promising method in biomarker discovery. Here, in a preliminary study, we aimed to detect autoantibody-leucine-rich alpha-2-glycoprotein 1 (LRG1) immunocomplexes using epitope-specific monoclonal antibodies (mAbs). METHODS We performed sandwich ELISA assays using the LRG1 epitope-specific capture mAbs, Bsi0352 and Bsi0392, and an IgG-specific polyclonal antibody coupled to a reporter system as the detection reagent. We tested the plasma of lung-cancer patients and apparently healthy controls. RESULTS Depending on the epitope specificity of the capture monoclonal mAb, we were either unable to distinguish the control from LC-groups or showed a higher level of LRG1 and IgG autoantibody containing immunocomplexes in the plasma of non-small cell lung cancer and small cell lung cancer subgroups of lung cancer patients than in the plasma of control subjects. CONCLUSIONS Our findings underline the importance of protein epitope-specific antibody targeted approaches in biomarker research, as this may increase the accuracy of previously described tests, which will need further validation in large clinical cohorts.
Collapse
Affiliation(s)
- József Lázár
- Biosystems International Kft., Debrecen, Hungary
| | | | - Ilona Tornyi
- Biosystems International Kft., Debrecen, Hungary.,Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Takács
- Biosystems International Kft., Debrecen, Hungary.,Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
79
|
Wang M, Liu F, Pan Y, Xu R, Li F, Liu A, Yang H, Duan L, Shen L, Wu Q, Liu Y, Liu M, Liu Z, Hu Z, Chen H, Cai H, He Z, Ke Y. Tumor-associated autoantibodies in ESCC screening: Detecting prevalent early-stage malignancy or predicting future cancer risk? EBioMedicine 2021; 73:103674. [PMID: 34753106 PMCID: PMC8586741 DOI: 10.1016/j.ebiom.2021.103674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND To assess potential roles for tumor-associated autoantibodies (TAAs) in esophageal squamous cell carcinoma (ESCC) screening: detecting early-stage malignancy, and predicting future cancer risk. METHOD Thirteen candidate autoantibodies identified in previous literatures were measured using multiplex serological assays in sera from cases and matched controls nested in two population-level screening cohorts in China. To evaluate the role of TAAs in detecting prevalent esophageal malignant lesions, an identification set (150 cases vs. 560 controls) and an external validation set (34 cases vs. 121 controls) were established with pre-screening sera collected ≤ 12 months prior to screening-related diagnosis. To explore the role of TAAs in predicting future ESCC risk, an exploration set (105 cases vs. 416 controls) with pre-diagnostic sera collected > 12 months before clinical diagnosis was established. Two models, the questionnaire-based model and full model additionally incorporating TAA markers, were constructed. Area under the receiver operating characteristic curve (AUC) and net reclassification improvement (NRI) were calculated to compare the performance of the two models. FINDINGS In the identification set, NY-ESO-1 (OR=2·12, 95% CI=1·02-4·40) and STIP1 (OR=1·83, 95% CI=1·10-3·05) were positively associated with higher risk of esophageal malignancy. Elevated MMP-7 was associated with higher risk of malignancy in females (ORfemale=5·07, 95% CI=1·30-19·71). The estimates in validation set were consistent with these results, but were close to null in exploration set. Integration of selected TAAs improved the performance of questionnaire-based models in detecting prevalent esophageal malignancy (female: AUCfull model=0·745, 95% CI=0·675-0·814, AUCquestionnaire-based model=0·658, 95% CI=0·585-0·732, NRI=0·604, P<0·0001; male: AUCfull model=0·662, 95% CI=0·596-0·728, AUCquestionnaire-based model=0·619, 95% CI=0·548-0·690, NRI=0·357, P=0·0028). This improvement was also seen in validation set, but was not similarly effective in distinguishing long-term incident cases from healthy controls. INTERPRETATION Serological autoantibodies against NY-ESO-1, STIP1, and MMP-7 perform well in detecting early-stage esophageal malignancy, but are less effective in predicting future ESCC risks. FUNDING This work was supported by the National Science & Technology Fundamental Resources Investigation Program of China (2019FY101102), the National Natural Science Foundation of China (82073626), the National Key R&D Program of China (2016YFC0901404), the Beijing-Tianjin-Hebei Basic Research Cooperation Project (J200016), the Digestive Medical Coordinated Development Center of Beijing Hospitals Authority (XXZ0204), and the Natural Science Foundation of Beijing Municipality (7182033).
Collapse
Affiliation(s)
- Minmin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Fangfang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Yaqi Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Ruiping Xu
- Anyang Cancer Hospital, Anyang, Henan Province, P.R. China
| | - Fenglei Li
- Hua County People's Hospital, Anyang, Henan Province, P.R. China
| | - Anxiang Liu
- Endoscopy center, Anyang Cancer Hospital, Anyang, Henan Province, P.R. China
| | - Haijun Yang
- Department of pathology, Anyang Cancer Hospital, Anyang, Henan Province, P.R. China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, P.R. China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Qi Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Endoscopy Center, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Ying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Mengfei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Zhen Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Zhe Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Huanyu Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Hong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Zhonghu He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| |
Collapse
|
80
|
Li X, Li Y, Xu A, Zhou D, Zhang B, Qi S, Chen Z, Wang X, Ou X, Cao B, Qu C, Huang J. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma. Oncoimmunology 2021; 10:1992104. [PMID: 34676150 PMCID: PMC8525945 DOI: 10.1080/2162402x.2021.1992104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Serum autoantibodies against tumor-associated antigen have important value in the early diagnosis of hepatocellular carcinoma (HCC), but the mechanism of autoantibody production is poorly understood. We previously showed that autoantibodies against the centromere protein F (CENPF) may be useful as an early diagnostic marker for HCC. Here we explored the mechanism of cell apoptosis-based CENPF autoantibody production and verified the correlation of CENPF autoantibody level with HCC development. We demonstrated that CENPF was overexpressed and aberrantly localized throughout the nuclei and cytoplasm in human HCC cells compared with hepatic cells. CENPF overexpression promoted the production of CENPF autoantibodies in a manner that correlated with tumor growth of mouse HCC model. During apoptosis of HCC cells, CENPF protein translocated to apoptotic vesicles and relocalized at the cell surface. Through isolating apoptotic components, we found apoptotic body and blebs with lower CD31 and CD47 expression more effectively induced DC phagocytosis and maturation compared with apoptotic intact cells in vitro, and this DC response was independent of CENPF expression. Moreover, injection of mice with apoptotic bodies and blebs effectively induced an immune response and the production of CENPF-specific antibodies. Our findings provide a first elucidation of mechanisms underlying the CENPF autoantibody production via cell apoptosis-induced CENPF translocation, and demonstrate a direct correlation between CENPF autoantibody levels and HCC progression, suggesting the potential of CENPF autoantibody as an HCC diagnostic marker.
Collapse
Affiliation(s)
- Xiaojin Li
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Donghu Zhou
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunfeng Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Huang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
81
|
Identification of Tumor Antigens in Ovarian Cancers Using Local and Circulating Tumor-Specific Antibodies. Int J Mol Sci 2021; 22:ijms222011220. [PMID: 34681879 PMCID: PMC8538754 DOI: 10.3390/ijms222011220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancers include several disease subtypes and patients often present with advanced metastatic disease and a poor prognosis. New biomarkers for early diagnosis and targeted therapy are, therefore, urgently required. This study uses antibodies produced locally in tumor-draining lymph nodes (ASC probes) of individual ovarian cancer patients to screen two separate protein microarray platforms and identify cognate tumor antigens. The resulting antigen profiles were unique for each individual cancer patient and were used to generate a 50-antigen custom microarray. Serum from a separate cohort of ovarian cancer patients encompassing four disease subtypes was screened on the custom array and we identified 28.8% of all ovarian cancers, with a higher sensitivity for mucinous (50.0%) and serous (40.0%) subtypes. Combining local and circulating antibodies with high-density protein microarrays can identify novel, patient-specific tumor-associated antigens that may have diagnostic, prognostic or therapeutic uses in ovarian cancer.
Collapse
|
82
|
Perales S, Torres C, Jimenez-Luna C, Prados J, Martinez-Galan J, Sanchez-Manas JM, Caba O. Liquid biopsy approach to pancreatic cancer. World J Gastrointest Oncol 2021; 13:1263-1287. [PMID: 34721766 PMCID: PMC8529923 DOI: 10.4251/wjgo.v13.i10.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to pose a major clinical challenge. There has been little improvement in patient survival over the past few decades, and it is projected to become the second leading cause of cancer mortality by 2030. The dismal 5-year survival rate of less than 10% after the diagnosis is attributable to the lack of early symptoms, the absence of specific biomarkers for an early diagnosis, and the inadequacy of available chemotherapies. Most patients are diagnosed when the disease has already metastasized and cannot be treated. Cancer interception is vital, actively intervening in the malignization process before the development of a full-blown advanced tumor. An early diagnosis of PC has a dramatic impact on the survival of patients, and improved techniques are urgently needed to detect and evaluate this disease at an early stage. It is difficult to obtain tissue biopsies from the pancreas due to its anatomical position; however, liquid biopsies are readily available and can provide useful information for the diagnosis, prognosis, stratification, and follow-up of patients with PC and for the design of individually tailored treatments. The aim of this review was to provide an update of the latest advances in knowledge on the application of carbohydrates, proteins, cell-free nucleic acids, circulating tumor cells, metabolome compounds, exosomes, and platelets in blood as potential biomarkers for PC, focusing on their clinical relevance and potential for improving patient outcomes.
Collapse
Affiliation(s)
- Sonia Perales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Carolina Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Joaquina Martinez-Galan
- Department of Medical Oncology, Hospital Universitario Virgen de las Nieves, Granada 18011, Spain
| | | | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| |
Collapse
|
83
|
Belousov PV. Analysis of the Repertoires of Circulating Autoantibodies' Specificities as a Tool for Identification of the Tumor-Associated Antigens: Current Problems and Solutions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1225-1242. [PMID: 34903148 DOI: 10.1134/s0006297921100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 06/14/2023]
Abstract
Circulating autoantibodies against tumor-associated autoantigens (TAA) may serve as valuable biomarkers for a wide range of diagnostic purposes. Modern immunology offers a large variety of methods for in-depth comparative analysis of the repertoires of circulating antibodies' antigenic specificities in health and disease. Nevertheless, this research field so far has met somewhat limited clinical success, while numerous data on the repertoires of circulating autoantibodies' specificities in cancer patients are poorly integrated into the contemporary picture of the immunological and molecular landscapes of human tumors. This review is an attempt to identify and systematize the key and essentially universal conceptual and methodological limitations of analyses of the repertoires of circulating antibodies' antigenic specificities in cancer (expression bias, redundancy of TAA repertoires, identification of natural IgG, the absence of the pathogenetically relevant context in the experimental systems used to detect TAA), as well as to discuss potential and already known methodological improvements that may significantly increase the detectability of the pathogenetically relevant and diagnostically significant bona fide TAA.
Collapse
Affiliation(s)
- Pavel V Belousov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center of Endocrinology, Ministry of Health of the Russian Federation, Moscow, 117036, Russia
| |
Collapse
|
84
|
Roney MSI, Lanagan C, Sheng YH, Lawler K, Schmidt C, Nguyen N, Begun J, Kijanka GS. IgM and IgA augmented autoantibody signatures improve early-stage detection of colorectal cancer prior to nodal and distant spread. Clin Transl Immunology 2021; 10:e1330. [PMID: 34603722 PMCID: PMC8473921 DOI: 10.1002/cti2.1330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Tumor-associated autoantibodies (AAbs) in individuals with cancer can precede clinical diagnosis by several months to years. The objective of this study was to determine whether the primary immune response in form of IgM and gut mucosa-associated IgA can aid IgG AAbs in the detection of early-stage colorectal cancer (CRC). METHODS We developed a novel protein array comprising 492 antigens seropositive in CRC. The array was used to profile IgG, IgM and IgA antibody signatures in 99 CRC patients and 99 sex- and age-matched non-cancer controls. A receiver operating curve (ROC), Kaplan-Meier survival analysis and univariate and multivariate Cox regression analyses were conducted. RESULTS We identified a panel of 16 multi-isotype AAbs with a cumulative sensitivity of 91% and specificity of 74% (AUC 0.90, 95% CI: 0.850-0.940) across all CRC stages. IgM and IgG isotypes were conversely associated with disease stage with IgM contributing significantly to improved stage I and II sensitivity of 96% at 78% specificity (AUC 0.928, 95% CI: 0.884-0.973). A single identified IgA AAb reached an overall sensitivity of 5% at 99% specificity (AUC 0.520, 95% CI: 0.440-0.601) balanced across all CRC stages. Kaplan-Meier analysis revealed that se33-1 (ZNF638) IgG AAbs were associated with reduced 5-year overall survival (log-rank test, P = 0.012), whereas cumulative IgM isotype signatures were associated with improved 5-year overall survival (log-rank test, P = 0.024). CONCLUSION IgM AAbs are associated with early-stage colorectal cancer. Combining IgG, IgM and IgA AAbs is a novel strategy to improve early diagnosis of cancers.
Collapse
Affiliation(s)
- Md Saiful Islam Roney
- Immune Profiling and Cancer GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
| | - Catharine Lanagan
- Immune Profiling and Cancer GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
| | - Yong Hua Sheng
- Inflammatory Bowel Diseases GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
| | - Karen Lawler
- Pathology QueenslandQueensland HealthBrisbaneQLDAustralia
| | - Christopher Schmidt
- Immune Profiling and Cancer GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
| | - Nam‐Trung Nguyen
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQLDAustralia
| | - Jakob Begun
- Inflammatory Bowel Diseases GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
- School of Clinical MedicineFaculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Gregor Stefan Kijanka
- Immune Profiling and Cancer GroupFaculty of MedicineMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQLDAustralia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQLDAustralia
| |
Collapse
|
85
|
Liao S, Wang B, Zeng R, Bao H, Chen X, Dixit R, Xing X. Recent advances in trophoblast cell-surface antigen 2 targeted therapy for solid tumors. Drug Dev Res 2021; 82:1096-1110. [PMID: 34462935 DOI: 10.1002/ddr.21870] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/27/2022]
Abstract
Trophoblast cell-surface antigen 2 (Trop 2) is a transmembrane glycoprotein that is highly expressed in various cancer types with relatively low or no baseline expression in most normal tissues. Its overexpression is associated with tumor growth and poor prognosis; Trop 2 is, therefore, an ideal therapeutic target for epithelial cancers. Several Trop 2 targeted therapeutics have recently been developed for the treatment of cancers, such as anti-Trop 2 antibodies and antibody-drug conjugates (ADCs), as well as Trop 2-specific cell therapy. In particular, the safety and clinical benefit of Trop 2-based ADCs have been demonstrated in clinical trials across multiple tumor types, including those with limited treatment options, such as triple-negative breast cancer, platinum-resistant urothelial cancer, and heavily pretreated non-small cell lung cancer. In this review, we elaborate on recent advances in Trop 2 targeted modalities and provide an overview of novel insights for future developments in this field.
Collapse
Affiliation(s)
- Shutan Liao
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Bing Wang
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Rong Zeng
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Haifeng Bao
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Xiaomin Chen
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Rakesh Dixit
- Department of Consultation, Bionavigen LLC, Gaithersburg, Maryland, USA
| | - Xiaoyan Xing
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| |
Collapse
|
86
|
Poli E, Cattelan M, Zanetti I, Scagnellato A, Giordano G, Zin A, Bisogno G, Bonvini P. Autoantibody profiling of alveolar rhabdomyosarcoma patients unveils tumor-associated antigens with diagnostic and prognostic significance. Oncoimmunology 2021; 10:1954765. [PMID: 34367733 PMCID: PMC8312597 DOI: 10.1080/2162402x.2021.1954765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS) is a highly aggressive subtype of childhood cancer for which efficacious treatments are needed. Immunotherapy represents a new therapeutic opportunity to pursue, but it requires the identification of worthwhile tumor antigens. Herein, we exploited the capacity of ARMS autoantibodies to recognize tumor self-antigens, probing human protein microarrays with plasma from ARMS patients and healthy subjects. We assessed the autoantibody response in ARMS, validated data with independent techniques, and estimated autoantibodies diagnostic and prognostic significance by receiver-operator characteristic curves (ROC), uni- and multivariate analysis. Of the 48 tumor antigens identified, General Transcription Factor II-I (GTF2i) and Protocadherin Gamma Subfamily C5 (PCDHGC5) were selected as candidate targets to validate tumor-restricted antigen expression and autoantibody reactivity through an independent technique and wider cohort of cases. GTF2i and PCDHGC5 overexpression was observed in tumor tissues compared to normal counterparts, and anti-GTF2i and -PCDHGC5 autoantibodies were found able to distinguish ARMS patients from healthy subjects as well as cases with different histology. Moreover, low levels of PCDHGC5 autoantibodies characterized patients with worse event-free survival and proved to be an independent negative prognostic factor. This approach provided the first comprehensive autoantibody profile of ARMS, gave novel insights into the immune response of this malignancy and paved the way toward novel potential antibody-based therapeutic applications suitable to improve the survival of ARMS patients.
Collapse
Affiliation(s)
- Elena Poli
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Ilaria Zanetti
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Angela Scagnellato
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Giuseppe Giordano
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy.,Institute of Pediatric Research (IRP), Fondazione Città Della Speranza, Padua, Italy
| | - Angelica Zin
- Institute of Pediatric Research (IRP), Fondazione Città Della Speranza, Padua, Italy
| | - Gianni Bisogno
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Paolo Bonvini
- Institute of Pediatric Research (IRP), Fondazione Città Della Speranza, Padua, Italy
| |
Collapse
|
87
|
Margulis V, Freifeld Y, Pop LM, Manna S, Kapur P, Pedrosa I, Christie A, Mohamad O, Mannala S, Singla N, Wait M, Bagrodia A, Woldu SL, Gahan J, Brugarolas J, Timmerman R, Hannan R. Neoadjuvant SABR for Renal Cell Carcinoma Inferior Vena Cava Tumor Thrombus-Safety Lead-in Results of a Phase 2 Trial. Int J Radiat Oncol Biol Phys 2021; 110:1135-1142. [PMID: 33549705 PMCID: PMC8856732 DOI: 10.1016/j.ijrobp.2021.01.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate the feasibility, safety, oncologic outcomes, and immune effect of neoadjuvant stereotactic radiation (Neo-SAbR) followed by radical nephrectomy and thrombectomy (RN-IVCT). METHODS AND MATERIALS These are results from the safety lead-in portion of a single-arm phase 1 and 2 trial. Patients with kidney cancer (renal cell carcinoma [RCC]) and inferior vena cava (IVC) tumor thrombus (TT) underwent Neo-SAbR (40 Gy in 5 fractions) to the IVC-TT followed by open RN-IVCT. Absence of grade 4 to 5 adverse events (AEs) within 90 days of RN-IVCT was the primary endpoint. Exploratory studies included pathologic and immunologic alterations attributable to SAbR. RESULTS Six patients were included in the final analysis. No grade 4 to 5 AEs were observed. A total of 81 AEs were reported within 90 days of surgery: 73% (59/81) were grade 1, 23% (19/81) were grade 2, and 4% (3/81) were grade 3. After a median follow-up of 24 months, all patients are alive. One patient developed de novo metastatic disease. Of 3 patients with metastasis at diagnosis, 1 had a complete and another had a partial abscopal response without the concurrent use of systemic therapy. Neo-SABR led to decreased Ki-67 and increased PD-L1 expression in the IVC-TT. Inflammatory cytokines and autoantibody titers reflecting better host immune status were observed in patients with nonprogressive disease. CONCLUSIONS Neo-SAbR followed by RN-IVCT for RCC IVC-TT is feasible and safe. Favorable host immune environment correlated with abscopal response to SABR and RCC relapse-free survival, though direct causal relation to SABR has yet to be established.
Collapse
Affiliation(s)
- Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuval Freifeld
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Urology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Laurentiu M Pop
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Subrata Manna
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Osama Mohamad
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Samantha Mannala
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nirmish Singla
- Departments of Urology and Oncology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Wait
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aditya Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Solomon L Woldu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey Gahan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert Timmerman
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Raquibul Hannan
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
88
|
Sena P, Mancini S, Bertacchini J, Carnevale G, Pedroni M, Roncucci L. Autoimmunity Profiles as Prognostic Indicators in Patients with Colorectal Cancer versus Those with Cancer at Other Sites: A Prospective Study. Cancers (Basel) 2021; 13:cancers13133239. [PMID: 34209517 PMCID: PMC8269181 DOI: 10.3390/cancers13133239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary The clinical utility of tumor-associated autoantibodies (TAABs) detected in patient sera with different types of cancer has not yet been established. Their possible use in early cancer detection, oncological follow-up, and patient prognosis is highly desirable. We developed a prospective study to investigate the role of TAABs in a five-year survival analysis in different types of cancer patients. Overall, overproduction of TAABs is associated with advanced oncological disease, the presence of metastasis, and poorer prognosis of cancer patients. There is evidence that more intensive follow-up programs provide different results for colorectal cancer than other cancers, because more intensive follow-up improves survival and is cost-effective in colorectal cancer. It is necessary to emphasize that there are many important aspects of follow-up in addition to detection of recurrence, and this must lead to proposals to change the way follow-up care is delivered. Abstract Colorectal cancer represents a paradigmatic model of inflammatory carcinogenesis accompanied by the production of several kinds of tumor-associated autoantibodies (TAABs). The specific aim of this study is to define the clinical impact of the presence of non-specific circulating TAABs in a cohort of cancer patients and to establish whether significant differences were present between colorectal cancer and cancers at other sites. For this aim a prospective study was developed and a five-year survival analysis performed. Indirect immunofluorescence on rat tissues for non-organ specific autoantibodies (NOSAs: liver-kidney-stomach), on rat colon substrates (colon-related autoantibodies, CAAs) and on HEp-2 cell lines was performed. NOSA positivity was more frequent in patients with colorectal cancer than in those with cancer at other sites. Survival analysis demonstrated a significantly worse prognosis in cancer patients positive for TAABs. CAA positivity is a predictor of survival, independently from the presence of comorbidities, and HEp-2 reactivity was a strong predictor of survival in a stepwise Cox-regression model, including stage at diagnosis. Overall overproduction of TAABs is associated with advanced oncological disease, the presence of metastasis, and poorer prognosis of cancer patients.
Collapse
Affiliation(s)
- Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (P.S.); (J.B.); (G.C.)
| | - Stefano Mancini
- Department of Internal Medicine and Rehabilitation, Santa Maria Bianca Hospital, AUSL Modena, Via A. Fogazzaro 6, 41037 Mirandola, Italy;
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (P.S.); (J.B.); (G.C.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (P.S.); (J.B.); (G.C.)
| | - Monica Pedroni
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
- Correspondence:
| |
Collapse
|
89
|
Madheswaran S, Mungra N, Biteghe FAN, De la Croix Ndong J, Arowolo AT, Adeola HA, Ramamurthy D, Naran K, Khumalo NP, Barth S. Antibody-Based Targeted Interventions for the Diagnosis and Treatment of Skin Cancers. Anticancer Agents Med Chem 2021; 21:162-186. [PMID: 32723261 DOI: 10.2174/1871520620666200728123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cutaneous malignancies most commonly arise from skin epidermal cells. These cancers may rapidly progress from benign to a metastatic phase. Surgical resection represents the gold standard therapeutic treatment of non-metastatic skin cancer while chemo- and/or radiotherapy are often used against metastatic tumors. However, these therapeutic treatments are limited by the development of resistance and toxic side effects, resulting from the passive accumulation of cytotoxic drugs within healthy cells. OBJECTIVE This review aims to elucidate how the use of monoclonal Antibodies (mAbs) targeting specific Tumor Associated Antigens (TAAs) is paving the way to improved treatment. These mAbs are used as therapeutic or diagnostic carriers that can specifically deliver cytotoxic molecules, fluorophores or radiolabels to cancer cells that overexpress specific target antigens. RESULTS mAbs raised against TAAs are widely in use for e.g. differential diagnosis, prognosis and therapy of skin cancers. Antibody-Drug Conjugates (ADCs) particularly show remarkable potential. The safest ADCs reported to date use non-toxic photo-activatable Photosensitizers (PSs), allowing targeted Photodynamic Therapy (PDT) resulting in targeted delivery of PS into cancer cells and selective killing after light activation without harming the normal cell population. The use of near-infrared-emitting PSs enables both diagnostic and therapeutic applications upon light activation at the specific wavelengths. CONCLUSION Antibody-based approaches are presenting an array of opportunities to complement and improve current methods employed for skin cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Suresh Madheswaran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fleury A N Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, 8700 Beverly Blvd, Los Angeles, CA, United States
| | - Jean De la Croix Ndong
- Department of Orthopedic Surgery, New York University Langone Orthopedic Hospital, 301 East 17th Street, New York, NY, United States
| | - Afolake T Arowolo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Henry A Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Dharanidharan Ramamurthy
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
90
|
Tracking the Antibody Immunome in Sporadic Colorectal Cancer by Using Antigen Self-Assembled Protein Arrays. Cancers (Basel) 2021; 13:cancers13112718. [PMID: 34072782 PMCID: PMC8198956 DOI: 10.3390/cancers13112718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunome in Sporadic Colorectal Cancer as source for biomarkers. Hence, a self-assembled protein array has been designed and developed to perform a serum screening to determined specific immune response against tumor antigens proteins as potential diagnostics biomarker panel. Abstract Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis. Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response. Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to establish a systematic workflow based on NAPPArray to define differential aAb profiles between healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic (n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling the development and progression of sCRC. Our results showed aAb profile based on 141 TAA including TAAs associated with biological cellular processes altered in genesis and progress of sCRC (e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition, the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs (USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC ~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic and prognostic value in CRC. Additional prospective studies in larger series of patients are required to confirm the clinical utility of these novel sCRC immunomic biomarkers.
Collapse
|
91
|
He J, Fang X, Han M. Discovery and Verification of an Immune-Related Gene Pairs Signature for Predicting Prognosis in Head and Neck Squamous Cell Carcinoma. Front Genet 2021; 12:654657. [PMID: 34108990 PMCID: PMC8181401 DOI: 10.3389/fgene.2021.654657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
The study of IRGPs to construct the prognostic signature in head and neck squamous cell carcinoma (HNSCC) has not yet elucidated. The objective of this study was to explore a novel model to predict the prognosis of HNSCC patients. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were set as training and validation cohorts, respectively. The least absolute shrinkage and selection operator (LASSO) and time-dependent ROC were employed to screen the highest frequency immune-related gene pairs (IRGPs) and their best cut-off value. Survival analysis, Cox regression analysis were applied to discover the effects of selected IRGPs signature on survival outcomes. The immune cell proportions were deconvoluted by the CIBERSORT method. After a couple of filtering, we obtained 22 highest frequency IRGPs. The overall survival time of HNSCC patients with a high score of IRGPs was shorter as compared to the ones with a low score in two independent datasets (P < 0.001). Six kinds of immune cells were found to be differentially distributed in the two different risk groups of HNSCC patients (P < 0.001). GO and GSEA analysis showed these differentially expressed genes enriched in multiple molecular functions. The new IRGPs signature probably confers a new insight into the prognosis prediction of HNSCC patients.
Collapse
Affiliation(s)
- Jiqiang He
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xinqi Fang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
92
|
El-Rasikh AM, Farghali HAM, Abdelrahman HA, Elgaffary M, Abdelmalek S, Emam IA, Ghoneim MA, Selim SA. The implication of autoantibodies in early diagnosis and monitoring of plasmonic photothermal therapy in the treatment of feline mammary carcinoma. Sci Rep 2021; 11:10441. [PMID: 34001936 PMCID: PMC8129074 DOI: 10.1038/s41598-021-89894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 02/03/2023] Open
Abstract
Feline mammary carcinoma (FMC) shows great similarities to human breast cancer in the cellular and molecular levels. So, in cats as in humans, the role of immune responses is indicated to detect and follow up the development of tumors. As a new breast cancer therapeutic approach, Plasmonic Photothermal Therapy (PPTT) is an effective localized treatment for canine and feline mammary-carcinoma. Its systemic effect has not been inquired yet and needs many studies to hypothesis how the PPTT eradicates tumor cells. In this study, it is the first time to detect (P53, PCNA, MUC-1, and C-MYC) feline autoantibodies (AAbs), study the relationship between PCNA AAbs and mammary-tumors, and investigate the effect of PPTT on the humoral immune response of cats with mammary-carcinoma through detection of AAbs level before, during, and after the treatment. The four-AAbs panel was evaluated in serum of normal and clinically diagnosed cats with mammary tumors using Enzyme-Linked Immunosorbent Assay. The panel showed 100% specificity and 93.7% sensitivity to mammary tumors. The panel was evaluated in PPTT monotherapy, mastectomy monotherapy, and combination therapy. PPTT monotherapy decreased AAbs level significantly while mastectomy monotherapy and combination therapy had a nonsignificant effect on AAbs level.
Collapse
Affiliation(s)
- Asmaa M. El-Rasikh
- grid.7776.10000 0004 0639 9286Department of Microbiology, Immunology, and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Haithem A. M. Farghali
- grid.7776.10000 0004 0639 9286Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Hisham A. Abdelrahman
- grid.7776.10000 0004 0639 9286Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Mostafa Elgaffary
- grid.7776.10000 0004 0639 9286Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Shaymaa Abdelmalek
- grid.7776.10000 0004 0639 9286Department of Microbiology, Immunology, and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Ibrahim A. Emam
- grid.7776.10000 0004 0639 9286Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Magdy A. Ghoneim
- grid.7776.10000 0004 0639 9286Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Salah A. Selim
- grid.7776.10000 0004 0639 9286Department of Microbiology, Immunology, and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
93
|
Haynes WA, Kamath K, Waitz R, Daugherty PS, Shon JC. Protein-Based Immunome Wide Association Studies (PIWAS) for the Discovery of Significant Disease-Associated Antigens. Front Immunol 2021; 12:625311. [PMID: 33986742 PMCID: PMC8110919 DOI: 10.3389/fimmu.2021.625311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Identification of the antigens associated with antibodies is vital to understanding immune responses in the context of infection, autoimmunity, and cancer. Discovering antigens at a proteome scale could enable broader identification of antigens that are responsible for generating an immune response or driving a disease state. Although targeted tests for known antigens can be straightforward, discovering antigens at a proteome scale using protein and peptide arrays is time consuming and expensive. We leverage Serum Epitope Repertoire Analysis (SERA), an assay based on a random bacterial display peptide library coupled with next generation sequencing (NGS), to power the development of Protein-based Immunome Wide Association Study (PIWAS). PIWAS uses proteome-based signals to discover candidate antibody-antigen epitopes that are significantly elevated in a subset of cases compared to controls. After demonstrating statistical power relative to the magnitude and prevalence of effect in synthetic data, we apply PIWAS to systemic lupus erythematosus (SLE, n=31) and observe known autoantigens, Smith and Ribosomal protein P, within the 22 highest scoring candidate protein antigens across the entire human proteome. We validate the magnitude and location of the SLE specific signal against the Smith family of proteins using a cohort of patients who are positive by predicate anti-Sm tests. To test the generalizability of the method in an additional autoimmune disease, we identified and validated autoantigenic signals to SSB, CENPA, and keratin proteins in a cohort of individuals with Sjogren’s syndrome (n=91). Collectively, these results suggest that PIWAS provides a powerful new tool to discover disease-associated serological antigens within any known proteome.
Collapse
Affiliation(s)
| | - Kathy Kamath
- Serimmune, Inc., Santa Barbara, CA, United States
| | | | | | - John C Shon
- Serimmune, Inc., Santa Barbara, CA, United States
| |
Collapse
|
94
|
Vázquez-Del Mercado M, Martínez-García EA, Daneri-Navarro A, Gómez-Bañuelos E, Martín-Márquez BT, Pizano-Martínez O, Wilson-Manríquez EA, Corona-Sánchez EG, Chavarria-Avila E, Sandoval-García F, Satoh M. Presence of anti-TIF-1γ, anti-Ro52, anti-SSA/Ro60 and anti-Su/Ago2 antibodies in breast cancer: a cross-sectional study. Immunopharmacol Immunotoxicol 2021; 43:328-333. [PMID: 33876712 DOI: 10.1080/08923973.2021.1910833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The presence of myositis-specific antibodies (MSA), was recently reported in healthy individuals, cancer patients without myopathy and paraneoplastic rheumatic syndromes. We sought to analyze the frequency of MSA, myositis-associated antibodies (MAA) and autoantibodies related to systemic autoimmune rheumatic diseases (SARD) in breast cancer patients. METHODS One hundred fifty-two breast cancer patients were enrolled in a cross-sectional study. Clinical information was collected, and autoantibodies tested by immunoprecipitation of an 35S-methionine-labeled K562 cell extract, enzyme-linked immunosorbent assay (ELISA) and Western blot when indicated. All statistical tests were performed using the software statistical package for the social science (SPSS) ver. 19.0 (IBM Inc., NYSE, USA). RESULTS Autoantibodies associated with SARD: anti-52 kD ribonucleoprotein/tripartite motif-containing 21 (anti-Ro52/TRIM21) was found in 5.9% (9/152), anti-Sjögren syndrome-related antigen A/60 kD ribonucleoprotein antibody (anti-SSA/Ro60) in 3.9% (6/152) and anti-Su antigen/Argonaute 2 antibody (anti-Su/Ago2) in 2.6% (4/152). Meanwhile, anti-transcription intermediary factor-1γ (anti-TIF-1γ, p155/140) antibody was positive in 2 cases and anti-polymyositis/scleroderma antibody was detected in one case. As a whole, 14.47% (22/152) of breast cancer patients showed autoantibodies associated with SARD. These specific autoantibodies were not associated with the presence of rheumatic diseases except one rheumatoid arthritis patient positive for anti-Ro52/TRIM21. CONCLUSIONS Autoantibodies to TIF-1γ were found in two patients with breast cancer without dermatomyositis (DM). More common specificities were autoantibodies anti-SSA/Ro60, anti-Ro52/TRIM21 and anti-Su/Ago2. More studies are needed in order to establish the biological meaning of the presence of SARD-associated autoantibodies in breast cancer.
Collapse
Affiliation(s)
- Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Hospital Civil de Guadalajara "Juan I. Menchaca", Servicio de Reumatología, PNPC, CONACyT, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Adrián Daneri-Navarro
- Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Eduardo Gómez-Bañuelos
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Oscar Pizano-Martínez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Clínicas Médicas. CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Eduardo A Wilson-Manríquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Esther Guadalupe Corona-Sánchez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Disciplinas Filosóficas, Metodológicas e Instrumentales. CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Flavio Sandoval-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Clínicas Médicas. CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Minoru Satoh
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
95
|
Recent progress in cancer immunotherapy approaches based on nanoparticle delivery devices. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00527-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
96
|
Al-Shaheri FN, Alhamdani MSS, Bauer AS, Giese N, Büchler MW, Hackert T, Hoheisel JD. Blood biomarkers for differential diagnosis and early detection of pancreatic cancer. Cancer Treat Rev 2021; 96:102193. [PMID: 33865174 DOI: 10.1016/j.ctrv.2021.102193] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is currently the most lethal tumor entity and case numbers are rising. It will soon be the second most frequent cause of cancer-related death in the Western world. Mortality is close to incidence and patient survival after diagnosis stands at about five months. Blood-based diagnostics could be one crucial factor for improving this dismal situation and is at a stage that could make this possible. Here, we are reviewing the current state of affairs with its problems and promises, looking at various molecule types. Reported results are evaluated in the overall context. Also, we are proposing steps toward clinical utility that should advance the development toward clinical application by improving biomarker quality but also by defining distinct clinical objectives and the respective diagnostic accuracies required to achieve them. Many of the discussed points and conclusions are highly relevant to other solid tumors, too.
Collapse
Affiliation(s)
- Fawaz N Al-Shaheri
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany.
| | - Mohamed S S Alhamdani
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Andrea S Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Nathalia Giese
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Markus W Büchler
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
97
|
Wang R, Zhao H, Liu Y, Kang B, Cai J. Antinuclear Antibodies With a Nucleolar Pattern Are Associated With a Significant Reduction in the Overall Survival of Patients With Leukemia: A Retrospective Cohort Study. Front Oncol 2021; 11:631038. [PMID: 33718211 PMCID: PMC7952743 DOI: 10.3389/fonc.2021.631038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Antinuclear antibodies (ANAs) have been reported to be associated with cancers. However, the role of different ANA patterns in cancers is poorly understood, especially in leukemia. This study aimed to investigate the association between ANA patterns and the outcome of leukemia in a retrospective cohort. METHODS A total of 429 adult patients initially diagnosed with leukemia at Henan Provincial People's Hospital from January 2014 to December 2018 were included in this study, including information on patients without positive ANAs at the time of initial diagnosis, preexisting autoimmune diseases, infectious diseases, etc. The data were retrieved up to December 2020. The final sample included 196 adult patients. The risk of death outcome according to ANA patterns was estimated using multivariable Cox proportional hazards models and the overall survival for ANA patterns was analyzed using Kaplan-Meier curve. RESULTS ANAs with a nucleolar pattern versus negative ANA were associated with a two-fold increased risk of death outcome in leukemia, independent of sex, age, leukemia immunophenotype, cytogenetic abnormality, treatment, and blood transfusion. Further analysis revealed that the association was more significant in elder patients (≥60 years) and patients treated with tyrosine kinase inhibitor or chemotherapy (P for interaction = 0.042 and 0.010). Notably, the patients with a nucleolar pattern had shorter survival than the patients with a non-nucleolar pattern or without ANA (p < 0.001). CONCLUSION ANAs with a nucleolar pattern are a significant predictor of poor prognosis, providing clues for prognostic assessment in patients with leukemia.
Collapse
Affiliation(s)
- Rong Wang
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijuan Zhao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yang Liu
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Kang
- Institute of Medical Genetics, Henan Provincial People’s Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Cai
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
98
|
Adeniyi O, Sicwetsha S, Adesina A, Mashazi P. Immunoassay detection of tumor-associated autoantibodies using protein G bioconjugated to nanomagnet-silica decorated with Au@Pd nanoparticles. Talanta 2021; 226:122127. [PMID: 33676681 DOI: 10.1016/j.talanta.2021.122127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022]
Abstract
A colorimetric immunosensor was developed for the detection of tumor-associated anti-p53 autoantibodies (anti-p53aAbs). The immunosensor platform was prepared by immobilizing human-protein (p53Ag) onto a high binding 96-well plate. The immunoassay was based on the immunometric sandwich protocol, and protein G functionalized nanomagnet-silica nanoparticles decorated with Au@Pd (Fe3O4@SiO2-NH2-Au@Pd0.30NPs-protG) was used as the detection nanobioprobe. The Fe3O4@SiO2-NH2-Au@Pd0.30NPs-protG exhibited a high binding affinity for the captured anti-p53aAbs and high catalytic performance towards the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The oxidation of TMB resulted in significant color change and a UV-vis absorption signal. The detection was achieved by measuring the changes in UV-Vis absorption as the concentrations of anti-p53aAbs changed. The apparent binding affinity (KD) between the p53aAbs and Fe3O4@SiO2-NH2-Au@Pd0.30NPs-protG was 35.2 ng mL-1. The plot of change in the absorption intensity against the logarithm of anti-p53aAbs was linear within 1.0-500.0 ng mL-1 with a correlation coefficient (R2) of 0.98. The detection limit (LoD) using 3σ was calculated to be 15 pg mL-1, which is lower than the conventional HRP-label based colorimetric immunoassay. The real sample detection was investigated using the serum recovery method. The recovery of the anti-p53aAbs ranges from 98.5% to 105.7%, demonstrating its potential for practical applications.
Collapse
Affiliation(s)
- Omotayo Adeniyi
- Department of Chemistry, P.O. Box 94, Makhanda, 6140, South Africa
| | | | - Abiola Adesina
- Department of Chemistry, P.O. Box 94, Makhanda, 6140, South Africa
| | - Philani Mashazi
- Department of Chemistry, P.O. Box 94, Makhanda, 6140, South Africa; Institute for Nanotechnology Innovation Rhodes University, P.O. Box 94, Makhanda, 6140, South Africa.
| |
Collapse
|
99
|
Sato Y, Shimoda M, Sota Y, Miyake T, Tanei T, Kagara N, Naoi Y, Kim SJ, Noguchi S, Shimazu K. Enhanced humoral immunity in breast cancer patients with high serum concentration of anti-HER2 autoantibody. Cancer Med 2021; 10:1418-1430. [PMID: 33506656 PMCID: PMC7926031 DOI: 10.1002/cam4.3742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/28/2022] Open
Abstract
Humoral immunity plays a substantial role in the suppression of breast cancer. We have revealed that a high serum concentration of anti‐HER2 autoantibody (HER2‐AAb) is associated with favorable outcomes in patients with invasive breast cancer. Thus, we aimed to clarify the association between high serum concentration of HER2‐AAb and humoral immune response in the tumor microenvironment. Out of 500 consecutive patients with invasive breast cancer, we selected those whose HER2‐AAb values were high (n = 33) or low (n = 20) based on the distribution of HER2‐AAb values of 100 healthy individuals. Tumor and regional lymph node formalin‐fixed paraffin‐embedded samples prepared from the surgical specimens were subjected to immunohistochemistry. We confirmed that the recurrence‐free survival of the high HER2‐AAb group was significantly longer than that of the low HER2‐AAb group (p = 0.015). The numbers of tumor‐infiltrating CD20+ immune cells (ICs) (p < 0.001), IGKC+ICs (p = 0.023), and CXCL13+ ICs (p = 0.044) were significantly higher in the high HER2‐AAb group than in the low HER2‐AAb group. The number of CD4+ ICs in the B‐cell follicles of the regional lymph nodes was also significantly greater in the high HER2‐AAb group than in the low HER2‐AAb group (p = 0.026). Our findings indicate that a high level of HER2‐AAb is associated with enhanced humoral immunity against breast cancer and thus may provide a rationale for the association of HER2‐AAb with favorable prognosis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiaki Sota
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naofumi Kagara
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuto Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Hyogo, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
100
|
Mitoma H, Manto M, Hadjivassiliou M. Immune-Mediated Cerebellar Ataxias: Clinical Diagnosis and Treatment Based on Immunological and Physiological Mechanisms. J Mov Disord 2021; 14:10-28. [PMID: 33423437 PMCID: PMC7840241 DOI: 10.14802/jmd.20040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the first description of immune-mediated cerebellar ataxias (IMCAs) by Charcot in 1868, several milestones have been reached in our understanding of this group of neurological disorders. IMCAs have diverse etiologies, such as gluten ataxia, postinfectious cerebellitis, paraneoplastic cerebellar degeneration, opsoclonus myoclonus syndrome, anti-GAD ataxia, and primary autoimmune cerebellar ataxia. The cerebellum, a vulnerable autoimmune target of the nervous system, has remarkable capacities (collectively known as the cerebellar reserve, closely linked to plasticity) to compensate and restore function following various pathological insults. Therefore, good prognosis is expected when immune-mediated therapeutic interventions are delivered during early stages when the cerebellar reserve can be preserved. However, some types of IMCAs show poor responses to immunotherapies, even if such therapies are introduced at an early stage. Thus, further research is needed to enhance our understanding of the autoimmune mechanisms underlying IMCAs, as such research could potentially lead to the development of more effective immunotherapies. We underscore the need to pursue the identification of robust biomarkers.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.,Service des Neurosciences, University of Mons, Mons, Belgium
| | | |
Collapse
|