51
|
Keolopile ZG, Gutowski M, Buonaugurio A, Collins E, Zhang X, Erb J, Lectka T, Bowen KH, Allan M. Importance of Time Scale and Local Environment in Electron-Driven Proton Transfer. The Anion of Acetoacetic Acid. J Am Chem Soc 2015; 137:14329-40. [DOI: 10.1021/jacs.5b08134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zibo G. Keolopile
- Department
of Physics, University of Botswana, Private Bag 0022, Gaborone, Botswana
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Maciej Gutowski
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Angela Buonaugurio
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Evan Collins
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xinxing Zhang
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeremy Erb
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H. Bowen
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael Allan
- Department
of Chemistry, University of Fribourg, chemin du Musée 9, Fribourg 1700, Switzerland
| |
Collapse
|
52
|
Li Y, Tse ECM, Barile CJ, Gewirth AA, Zimmerman SC. Photoresponsive molecular switch for regulating transmembrane proton-transfer kinetics. J Am Chem Soc 2015; 137:14059-62. [PMID: 26512414 DOI: 10.1021/jacs.5b10016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To control proton delivery across biological membranes, we synthesized a photoresponsive molecular switch and incorporated it in a lipid layer. This proton gate was reversibly activated with 390 nm light (Z-isomer) and then deactivated by 360 nm irradiation (E-isomer). In a lipid layer this stimuli responsive proton gate allowed the regulation of proton flux with irradiation to a lipid-buried O2 reduction electrocatalyst. Thus, the catalyst was turned on and off with the E-to-Z interconversion. This light-induced membrane proton delivery system may be useful in developing any functional device that performs proton-coupled electron-transfer reactions.
Collapse
Affiliation(s)
- Ying Li
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Edmund C M Tse
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Christopher J Barile
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University , Fukuoka 812-8581, Japan
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
53
|
Chatterjee S, Sengupta K, Hematian S, Karlin KD, Dey A. Electrocatalytic O2-Reduction by Synthetic Cytochrome c Oxidase Mimics: Identification of a "Bridging Peroxo" Intermediate Involved in Facile 4e(-)/4H(+) O2-Reduction. J Am Chem Soc 2015; 137:12897-905. [PMID: 26419806 DOI: 10.1021/jacs.5b06513] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthetic heme-Cu CcO model complex shows selective and highly efficient electrocatalytic 4e(-)/4H(+) O2-reduction to H2O with a large catalytic rate (>10(5) M(-1) s(-1)). While the heme-Cu model (FeCu) shows almost exclusive 4e(-)/4H(+) reduction of O2 to H2O (detected using ring disk electrochemistry and rotating ring disk electrochemistry), when imidazole is bound to the heme (Fe(Im)Cu), this same selective O2-reduction to water occurs only under slow electron fluxes. Surface enhanced resonance Raman spectroscopy coupled to dynamic electrochemistry data suggests the formation of a bridging peroxide intermediate during O2-reduction by both complexes under steady state reaction conditions, indicating that O-O bond heterolysis is likely to be the rate-determining step (RDS) at the mass transfer limited region. The O-O vibrational frequencies at 819 cm(-1) in (16)O2 (759 cm(-1) in (18)O2) for the FeCu complex and at 847 cm(-1) (786 cm(-1)) for the Fe(Im)Cu complex, indicate the formation of side-on and end-on bridging Fe-peroxo-Cu intermediates, respectively, during O2-reduction in an aqueous environment. These data suggest that side-on bridging peroxide intermediates are involved in fast and selective O2-reduction in these synthetic complexes. The greater amount of H2O2 production by the imidazole bound complex under fast electron transfer is due to 1e(-)/1H(+) O2-reduction by the distal Cu where O2 binding to the water bound low spin Fe(II) complex is inhibited.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India
| | - Kushal Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India
| | - Shabnam Hematian
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India
| |
Collapse
|
54
|
Tomin VI, Demchenko AP, Chou PT. Thermodynamic vs. kinetic control of excited-state proton transfer reactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.09.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Chatterjee S, Sengupta K, Samanta S, Das PK, Dey A. Concerted Proton–Electron Transfer in Electrocatalytic O2 Reduction by Iron Porphyrin Complexes: Axial Ligands Tuning H/D Isotope Effect. Inorg Chem 2015; 54:2383-92. [DOI: 10.1021/ic5029959] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kushal Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Subhra Samanta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pradip Kumar Das
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
56
|
Lesslie M, Osburn S, van Stipdonk MJ, Ryzhov V. Gas-phase tyrosine-to-cysteine radical migration in model systems. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:589-597. [PMID: 26307738 DOI: 10.1255/ejms.1341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Radical migration, both intramolecular and intermolecular, from the tyrosine phenoxyl radical Tyr(O(∙)) to the cysteine radical Cys(S(∙)) in model peptide systems was observed in the gas phase. Ion-molecule reactions (IMRs) between the radical cation of homotyrosine and propyl thiol resulted in a fast hydrogen atom transfer. In addition, radical cations of the peptide LysTyrCys were formed via two different methods, affording regiospecific production of Tyr(O(∙)) or Cys(S(∙)) radicals. Collision-induced dissociation of these isomeric species displayed evidence of radical migration from the oxygen to sulfur, but not for the reverse process. This was supported by theoretical calculations, which showed the Cys(S(∙)) radical slightly lower in energy than the Tyr(O(∙)) isomer. IMRs of the LysTyrCys radical cation with allyl iodide further confirmed these findings. A mechanism for radical migration involving a proton shuttle by the C-terminal carboxylic group is proposed.
Collapse
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA.
| | - Sandra Osburn
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania15282, USA.
| | - Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA.
| |
Collapse
|
57
|
Gera R, Das A, Jha A, Dasgupta J. Light-Induced Proton-Coupled Electron Transfer Inside a Nanocage. J Am Chem Soc 2014; 136:15909-12. [DOI: 10.1021/ja509761a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rahul Gera
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ankita Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ajay Jha
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
58
|
Judd ET, Stein N, Pacheco AA, Elliott SJ. Hydrogen bonding networks tune proton-coupled redox steps during the enzymatic six-electron conversion of nitrite to ammonia. Biochemistry 2014; 53:5638-46. [PMID: 25137350 PMCID: PMC4159211 DOI: 10.1021/bi500854p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Multielectron
multiproton reactions play an important role in both
biological systems and chemical reactions involved in energy storage
and manipulation. A key strategy employed by nature in achieving such
complex chemistry is the use of proton-coupled redox steps. Cytochrome c nitrite reductase (ccNiR) catalyzes the six-electron seven-proton
reduction of nitrite to ammonia. While a catalytic mechanism for ccNiR
has been proposed on the basis of studies combining computation and
crystallography, there have been few studies directly addressing the
nature of the proton-coupled events that are predicted to occur along
the nitrite reduction pathway. Here we use protein film voltammetry
to directly interrogate the proton-coupled steps that occur during
nitrite reduction by ccNiR. We find that conversion of nitrite to
ammonia by ccNiR adsorbed to graphite electrodes is defined by two
distinct phases; one is proton-coupled, and the other is not. Mutation
of key active site residues (H257, R103, and Y206) modulates these
phases and specifically alters the properties of the detected proton-dependent
step but does not inhibit the ability of ccNiR to conduct the full
reduction of nitrite to ammonia. We conclude that the active site
residues examined are responsible for tuning the protonation steps
that occur during catalysis, likely through an extensive hydrogen
bonding network, but are not necessarily required for the reaction
to proceed. These results provide important insight into how enzymes
can specifically tune proton- and electron transfer steps to achieve
high turnover numbers in a physiological pH range.
Collapse
Affiliation(s)
- Evan T Judd
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | | | | |
Collapse
|
59
|
Ferrocenyl-amidinium compound as building block for aqueous proton-coupled electron transfer studies. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
60
|
Ronca E, Pastore M, Belpassi L, De Angelis F, Angeli C, Cimiraglia R, Tarantelli F. Charge-displacement analysis for excited states. J Chem Phys 2014; 140:054110. [DOI: 10.1063/1.4863411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
61
|
Bullock RM, Appel AM, Helm ML. Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides. Chem Commun (Camb) 2014; 50:3125-43. [DOI: 10.1039/c3cc46135a] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrocatalytic production of hydrogen by nickel complexes is reviewed, with an emphasis on heterocoupling of protons and hydrides.
Collapse
Affiliation(s)
- R. Morris Bullock
- Center for Molecular Electrocatalysis (efrc.pnnl.gov)
- Physical Sciences Division
- Pacific Northwest National Laboratory
- , USA
| | - Aaron M. Appel
- Center for Molecular Electrocatalysis (efrc.pnnl.gov)
- Physical Sciences Division
- Pacific Northwest National Laboratory
- , USA
| | - Monte L. Helm
- Center for Molecular Electrocatalysis (efrc.pnnl.gov)
- Physical Sciences Division
- Pacific Northwest National Laboratory
- , USA
| |
Collapse
|
62
|
Kang B, Shi H, Yan S, Lee JY. Solvent effect on electron and proton transfer in the excited state of a hydrogen bonded phenol–imidazole complex. RSC Adv 2014. [DOI: 10.1039/c4ra05306k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Density functional theory calculations have been carried out for the ground state (S0) and the first excited state (S1) of the H-bonded phenol and imidazole complex as a model system for the active site of photosystem II.
Collapse
Affiliation(s)
- Baotao Kang
- Department of Chemistry
- Sungkyunkwan University
- Suwon, Korea
| | - Hu Shi
- Department of Chemistry
- Sungkyunkwan University
- Suwon, Korea
| | - Shihai Yan
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, P. R. China
| | - Jin Yong Lee
- Department of Chemistry
- Sungkyunkwan University
- Suwon, Korea
| |
Collapse
|
63
|
Ching HYV, Anxolabéhère-Mallart E, Colmer HE, Costentin C, Dorlet P, Jackson TA, Policar C, Robert M. Electrochemical formation and reactivity of a manganese peroxo complex: acid driven H2O2 generation vs. O–O bond cleavage. Chem Sci 2014. [DOI: 10.1039/c3sc53469c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
64
|
Demchenko AP, Tang KC, Chou PT. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem Soc Rev 2013; 42:1379-408. [PMID: 23169387 DOI: 10.1039/c2cs35195a] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha street, Kiev 01030, Ukraine.
| | | | | |
Collapse
|
65
|
Lee SW, Carlton C, Risch M, Surendranath Y, Chen S, Furutsuki S, Yamada A, Nocera DG, Shao-Horn Y. The Nature of Lithium Battery Materials under Oxygen Evolution Reaction Conditions. J Am Chem Soc 2012; 134:16959-62. [DOI: 10.1021/ja307814j] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | - Sho Furutsuki
- Department
of Chemical System
Engineering, The University of Tokyo, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Atsuo Yamada
- Department
of Chemical System
Engineering, The University of Tokyo, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
66
|
Padhi SK, Fukuda R, Ehara M, Tanaka K. Photoisomerization and Proton-Coupled Electron Transfer (PCET) Promoted Water Oxidation by Mononuclear Cyclometalated Ruthenium Catalysts. Inorg Chem 2012; 51:5386-92. [DOI: 10.1021/ic3003542] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sumanta Kumar Padhi
- Department of Life and Coordination-Complex
Molecular Science, Institute for Molecular Science, 5-1,
Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ryoichi Fukuda
- Department
of Theoretical and Computational Molecular Science, Institute for Molecular Science and Research Center for Computational Science, 38 Nishigo-Naka, Myodaiji,
Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Department
of Theoretical and Computational Molecular Science, Institute for Molecular Science and Research Center for Computational Science, 38 Nishigo-Naka, Myodaiji,
Okazaki 444-8585, Japan
| | - Koji Tanaka
- Department of Life and Coordination-Complex
Molecular Science, Institute for Molecular Science, 5-1,
Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Funai Center #201,
Kyoto University
Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
67
|
Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG. Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst. J Am Chem Soc 2012; 134:6801-9. [DOI: 10.1021/ja301018q] [Citation(s) in RCA: 372] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. Kwabena Bediako
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Benedikt Lassalle-Kaiser
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| | - Yogesh Surendranath
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Junko Yano
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| | - Vittal K. Yachandra
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| | - Daniel G. Nocera
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
68
|
Surendranath Y, Lutterman DA, Liu Y, Nocera DG. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst. J Am Chem Soc 2012; 134:6326-36. [PMID: 22394103 DOI: 10.1021/ja3000084] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism of nucleation, steady-state growth, and repair is investigated for an oxygen evolving catalyst prepared by electrodeposition from Co(2+) solutions in weakly basic electrolytes (Co-OEC). Potential step chronoamperometry and atomic force microscopy reveal that nucleation of Co-OEC is progressive and reaches a saturation surface coverage of ca. 70% on highly oriented pyrolytic graphite substrates. Steady-state electrodeposition of Co-OEC exhibits a Tafel slope approximately equal to 2.3 × RT/F. The electrochemical rate law exhibits a first order dependence on Co(2+) and inverse orders on proton (third order) and proton acceptor, methylphosphonate (first order for 1.8 mM ≤ [MeP(i)] ≤ 18 mM and second order dependence for 32 mM ≤ [MeP(i)] ≤ 180 mM). These electrokinetic studies, combined with recent XAS studies of catalyst structure, suggest a mechanism for steady state growth at intermediate MeP(i) concentration (1.8-18 mM) involving a rapid solution equilibrium between aquo Co(II) and Co(III) hydroxo species accompanied with a rapid surface equilibrium involving electrolyte dissociation and deprotonation of surface bound water. These equilibria are followed by a chemical rate-limiting step for incorporation of Co(III) into the growing cobaltate clusters comprising Co-OEC. At higher concentrations of MeP(i) ([MeP(i)] ≥ 32 mM), MePO(3)(2-) equilibrium binding to Co(II) in solution is suggested by the kinetic data. Consistent with the disparate pH profiles for oxygen evolution electrocatalysis and catalyst formation, NMR-based quantification of catalyst dissolution as a function of pH demonstrates functional stability and repair at pH values >6 whereas catalyst corrosion prevails at lower pH values. These kinetic insights provide a basis for developing and operating functional water oxidation (photo)anodes under benign pH conditions.
Collapse
Affiliation(s)
- Yogesh Surendranath
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | |
Collapse
|
69
|
Orio M, Jarjayes O, Baptiste B, Philouze C, Duboc C, Mathias JL, Benisvy L, Thomas F. Geometric and Electronic Structures of Phenoxyl Radicals Hydrogen Bonded to Neutral and Cationic Partners. Chemistry 2012; 18:5416-29. [DOI: 10.1002/chem.201102854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Indexed: 11/06/2022]
|
70
|
Park J, Morimoto Y, Lee YM, Nam W, Fukuzumi S. Proton-Promoted Oxygen Atom Transfer vs Proton-Coupled Electron Transfer of a Non-Heme Iron(IV)-Oxo Complex. J Am Chem Soc 2012; 134:3903-11. [DOI: 10.1021/ja211641s] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiyun Park
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Yuma Morimoto
- Department of Material and Life
Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871,
Japan
| | - Yong-Min Lee
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shunichi Fukuzumi
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
- Department of Material and Life
Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871,
Japan
| |
Collapse
|
71
|
Young ER, Rosenthal J, Nocera DG. Energy transfer mediated by asymmetric hydrogen-bonded interfaces. Chem Sci 2012; 3:10.1039/C1SC00596K. [PMID: 24363889 PMCID: PMC3868475 DOI: 10.1039/c1sc00596k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amidine-appended ferrocene derivatives form a supramolecular assembly with Ru(ii)(bpy-COOH) (L)22+ complexes (bpy-COOH is 4-CO2H-4'-CH3-bpy and L = bpy, 2,2'-bipyridine or btfmbpy, 4,4'-bis (trifluoromethyl)-2,2'-bipyridine). Steady-state, time-resolved spectroscopy and kinetic isotope effects establish that the metal-to-ligand charge transfer excited states of the Ru(ii) complexes are quenched by proton-coupled energy transfer (PCEnT). These results show that proton motion can be effective in mediating not only electron transfer (ET) but energy transfer (EnT) as well.
Collapse
Affiliation(s)
- Elizabeth R Young
- Department of Chemistry, Amherst College, P.O. Box 5000, Amherst, MA, 01002-5000, USA
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Daniel G Nocera
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA. ; Tel: +1 617 253 5537
| |
Collapse
|
72
|
Fukuzumi S, Ohkubo K, Morimoto Y. Mechanisms of metal ion-coupled electron transfer. Phys Chem Chem Phys 2012; 14:8472-84. [DOI: 10.1039/c2cp40459a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
73
|
Ghachtouli SE, Guillot R, Dorlet P, Anxolabéhère-Mallart E, Aukauloo A. Influence of second sphere hydrogen bonding interaction on a manganese(ii)-aquo complex. Dalton Trans 2012; 41:1675-7. [DOI: 10.1039/c1dt11858g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger. Proc Natl Acad Sci U S A 2011; 109:39-43. [PMID: 22171005 DOI: 10.1073/pnas.1115778108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photochemical radical initiation is a powerful tool for studying radical initiation and transport in biology. Ribonucleotide reductases (RNRs), which catalyze the conversion of nucleotides to deoxynucleotides in all organisms, are an exemplar of radical mediated transformations in biology. Class Ia RNRs are composed of two subunits: α2 and β2. As a method to initiate radical formation photochemically within β2, a single surface-exposed cysteine of the β2 subunit of Escherichia coli Class Ia RNR has been labeled (98%) with a photooxidant ([Re ] = tricarbonyl(1,10-phenanthroline)(methylpyridyl)rhenium(I)). The labeling was achieved by incubation of S355C-β2 with the 4-(bromomethyl)pyridyl derivative of [Re] to yield the labeled species, [Re]-S355C-β2. Steady-state and time-resolved emission experiments reveal that the metal-to-ligand charge transfer (MLCT) excited-state (3)[Re ](∗) is not significantly perturbed after bioconjugation and is available as a phototrigger of tyrosine radical at position 356 in the β2 subunit; transient absorption spectroscopy reveals that the radical lives for microseconds. The work described herein provides a platform for photochemical radical initiation and study of proton-coupled electron transfer (PCET) in the β2 subunit of RNR, from which radical initiation and transport for this enzyme originates.
Collapse
|
75
|
Bonin J, Robert M. Photoinduced Proton-Coupled Electron Transfers in Biorelevant Phenolic Systems. Photochem Photobiol 2011; 87:1190-203. [DOI: 10.1111/j.1751-1097.2011.00996.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
76
|
Barry BA. Proton coupled electron transfer and redox active tyrosines in Photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2011; 104:60-71. [PMID: 21419640 PMCID: PMC3164834 DOI: 10.1016/j.jphotobiol.2011.01.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 11/30/2022]
Abstract
In this article, progress in understanding proton coupled electron transfer (PCET) in Photosystem II is reviewed. Changes in acidity/basicity may accompany oxidation/reduction reactions in biological catalysis. Alterations in the proton transfer pathway can then be used to alter the rates of the electron transfer reactions. Studies of the bioenergetic complexes have played a central role in advancing our understanding of PCET. Because oxidation of the tyrosine results in deprotonation of the phenolic oxygen, redox active tyrosines are involved in PCET reactions in several enzymes. This review focuses on PCET involving the redox active tyrosines in Photosystem II. Photosystem II catalyzes the light-driven oxidation of water and reduction of plastoquinone. Photosystem II provides a paradigm for the study of redox active tyrosines, because this photosynthetic reaction center contains two tyrosines with different roles in catalysis. The tyrosines, YZ and YD, exhibit differences in kinetics and midpoint potentials, and these differences may be due to noncovalent interactions with the protein environment. Here, studies of YD and YZ and relevant model compounds are described.
Collapse
Affiliation(s)
- Bridgette A Barry
- School of Chemistry and Biochemistry and The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
77
|
Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes. Proc Natl Acad Sci U S A 2011; 108:8554-8. [PMID: 21555541 DOI: 10.1073/pnas.1104811108] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.
Collapse
|
78
|
Abhayawardhana AD, Sutherland TC. Heterogeneous proton-coupled electron transfer of a hydroxy-anthraquinone self-assembled monolayer. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
79
|
Kurakin A. The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor Biol Med Model 2011; 8:4. [PMID: 21447162 PMCID: PMC3080324 DOI: 10.1186/1742-4682-8-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/29/2011] [Indexed: 12/15/2022] Open
Abstract
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy.An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter.The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
80
|
Schwalbe M, Dogutan DK, Stoian SA, Teets TS, Nocera DG. Xanthene-Modified and Hangman Iron Corroles. Inorg Chem 2011; 50:1368-77. [DOI: 10.1021/ic101943h] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Schwalbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dilek K. Dogutan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sebastian A. Stoian
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas S. Teets
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel G. Nocera
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
81
|
DuBois DL, Bullock RM. Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen – The Role of Pendant Amines as Proton Relays. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001081] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel L. DuBois
- Center for Molecular Electrocatalysis, Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - R. Morris Bullock
- Center for Molecular Electrocatalysis, Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
82
|
Kawashima T, Ohkubo K, Fukuzumi S. Stepwise vs. concerted pathways in scandium ion-coupled electron transfer from superoxide ion to p-benzoquinone derivatives. Phys Chem Chem Phys 2011; 13:3344-52. [DOI: 10.1039/c0cp00916d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
83
|
Dogutan DK, Stoian SA, McGuire R, Schwalbe M, Teets TS, Nocera DG. Hangman Corroles: Efficient Synthesis and Oxygen Reaction Chemistry. J Am Chem Soc 2010; 133:131-40. [DOI: 10.1021/ja108904s] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dilek K. Dogutan
- Department of Chemistry, 6-335, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States, and Department of Chemistry, Carnegie Mellon University Mellon Institute Pittsburgh, Pennsylvania 15213, United States
| | - Sebastian A. Stoian
- Department of Chemistry, 6-335, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States, and Department of Chemistry, Carnegie Mellon University Mellon Institute Pittsburgh, Pennsylvania 15213, United States
| | - Robert McGuire
- Department of Chemistry, 6-335, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States, and Department of Chemistry, Carnegie Mellon University Mellon Institute Pittsburgh, Pennsylvania 15213, United States
| | - Matthias Schwalbe
- Department of Chemistry, 6-335, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States, and Department of Chemistry, Carnegie Mellon University Mellon Institute Pittsburgh, Pennsylvania 15213, United States
| | - Thomas S. Teets
- Department of Chemistry, 6-335, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States, and Department of Chemistry, Carnegie Mellon University Mellon Institute Pittsburgh, Pennsylvania 15213, United States
| | - Daniel G. Nocera
- Department of Chemistry, 6-335, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States, and Department of Chemistry, Carnegie Mellon University Mellon Institute Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
84
|
Kumar A, Sevilla MD. Proton-coupled electron transfer in DNA on formation of radiation-produced ion radicals. Chem Rev 2010; 110:7002-23. [PMID: 20443634 PMCID: PMC2947616 DOI: 10.1021/cr100023g] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | | |
Collapse
|
85
|
Affiliation(s)
- Jillian L. Dempsey
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
86
|
Surendranath Y, Kanan MW, Nocera DG. Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH. J Am Chem Soc 2010; 132:16501-9. [DOI: 10.1021/ja106102b] [Citation(s) in RCA: 968] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yogesh Surendranath
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Matthew W. Kanan
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Daniel G. Nocera
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
87
|
Wasylenko DJ, Ganesamoorthy C, Henderson MA, Koivisto BD, Osthoff HD, Berlinguette CP. Electronic modification of the [Ru(II)(tpy)(bpy)(OH(2))](2+) scaffold: effects on catalytic water oxidation. J Am Chem Soc 2010; 132:16094-106. [PMID: 20977265 DOI: 10.1021/ja106108y] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanistic details of the Ce(IV)-driven oxidation of water mediated by a series of structurally related catalysts formulated as [Ru(tpy)(L)(OH(2))](2+) [L = 2,2'-bipyridine (bpy), 1; 4,4'-dimethoxy-2,2'-bipyridine (bpy-OMe), 2; 4,4'-dicarboxy-2,2'-bipyridine (bpy-CO(2)H), 3; tpy = 2,2';6'',2''-terpyridine] is reported. Cyclic voltammetry shows that each of these complexes undergo three successive (proton-coupled) electron-transfer reactions to generate the [Ru(V)(tpy)(L)O](3+) ([Ru(V)=O](3+)) motif; the relative positions of each of these redox couples reflects the nature of the electron-donating or withdrawing character of the substituents on the bpy ligands. The first two (proton-coupled) electron-transfer reaction steps (k(1) and k(2)) were determined by stopped-flow spectroscopic techniques to be faster for 3 than 1 and 2. The addition of one (or more) equivalents of the terminal electron-acceptor, (NH(4))(2)[Ce(NO(3))(6)] (CAN), to the [Ru(IV)(tpy)(L)O](2+) ([Ru(IV)=O](2+)) forms of each of the catalysts, however, leads to divergent reaction pathways. The addition of 1 eq of CAN to the [Ru(IV)=O](2+) form of 2 generates [Ru(V)=O](3+) (k(3) = 3.7 M(-1) s(-1)), which, in turn, undergoes slow O-O bond formation with the substrate (k(O-O) = 3 × 10(-5) s(-1)). The minimal (or negligible) thermodynamic driving force for the reaction between the [Ru(IV)=O](2+) form of 1 or 3 and 1 eq of CAN results in slow reactivity, but the rate-determining step is assigned as the liberation of dioxygen from the [Ru(IV)-OO](2+) level under catalytic conditions for each complex. Complex 2, however, passes through the [Ru(V)-OO](3+) level prior to the rapid loss of dioxygen. Evidence for a competing reaction pathway is provided for 3, where the [Ru(V)=O](3+) and [Ru(III)-OH](2+) redox levels can be generated by disproportionation of the [Ru(IV)=O](2+) form of the catalyst (k(d) = 1.2 M(-1) s(-1)). An auxiliary reaction pathway involving the abstraction of an O-atom from CAN is also implicated during catalysis. The variability of reactivity for 1-3, including the position of the RDS and potential for O-atom transfer from the terminal oxidant, is confirmed to be intimately sensitive to electron density at the metal site through extensive kinetic and isotopic labeling experiments. This study outlines the need to strike a balance between the reactivity of the [Ru═O](z) unit and the accessibility of higher redox levels in pursuit of robust and reactive water oxidation catalysts.
Collapse
Affiliation(s)
- Derek J Wasylenko
- Department of Chemistry and Institute for Sustainable Energy, Environment & Economy, University of Calgary, 2500 University Drive N.W., Calgary, Canada T2N-1N4
| | | | | | | | | | | |
Collapse
|
88
|
Yan S, Kang S, Hayashi T, Mukamel S, Lee JY. Computational studies on electron and proton transfer in phenol-imidazole-base triads. J Comput Chem 2010; 31:393-402. [PMID: 19479733 DOI: 10.1002/jcc.21339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The electron and proton transfer in phenol-imidazole-base systems (base = NH(2)(-) or OH(-)) were investigated by density-functional theory calculations. In particular, the role of bridge imidazole on the electron and proton transfer was discussed in comparison with the phenol-base systems (base = imidazole, H(2)O, NH(3), OH(-), and NH(2)(-)). In the gas phase phenol-imidazole-base system, the hydrogen bonding between the phenol and the imidazole is classified as short strong hydrogen bonding, whereas that between the imidazole and the base is a conventional hydrogen bonding. The n value in sp(n) hybridization of the oxygen and carbon atoms of the phenolic CO sigma bond was found to be closely related to the CO bond length. From the potential energy surfaces without and with zero point energy correction, it can be concluded that the separated electron and proton transfer mechanism is suitable for the gas-phase phenol-imidazole-base triads, in which the low-barrier hydrogen bond is found and the delocalized phenolic proton can move freely in the single-well potential. For the gas-phase oxidized systems and all of the triads in water solvent, the homogeneous proton-coupled electron transfer mechanism prevails.
Collapse
Affiliation(s)
- Shihai Yan
- Department of Chemistry, SungKyunKwan University, Suwon 440-746, Korea
| | | | | | | | | |
Collapse
|
89
|
|
90
|
Fukuzumi S, Kotani H, Suenobu T, Hong S, Lee YM, Nam W. Contrasting Effects of Axial Ligands on Electron-Transfer Versus Proton-Coupled Electron-Transfer Reactions of Nonheme Oxoiron(IV) Complexes. Chemistry 2010; 16:354-61. [DOI: 10.1002/chem.200901163] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
91
|
Millington KR, Zhang H, Jones MJ, Wang X. The effect of dyes on photo-induced chemiluminescence emission from polymers. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2009.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
92
|
Miyazaki S, Kojima T, Mayer JM, Fukuzumi S. Proton-coupled electron transfer of ruthenium(III)-pterin complexes: a mechanistic insight. J Am Chem Soc 2009; 131:11615-24. [PMID: 19722655 DOI: 10.1021/ja904386r] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ruthenium(II) complexes having pterins of redox-active heteroaromatic coenzymes as ligands were demonstrated to perform multistep proton transfer (PT), electron transfer (ET), and proton-coupled electron transfer (PCET) processes. Thermodynamic parameters including pK(a) and bond dissociation energy (BDE) of multistep PCET processes in acetonitrile (MeCN) were determined for ruthenium-pterin complexes, [Ru(II)(Hdmp)(TPA)](ClO(4))(2) (1), [Ru(II)(Hdmdmp)(TPA)](ClO(4))(2) (2), [Ru(II)(dmp(-))(TPA)]ClO(4) (3), and [Ru(II)(dmdmp(-))(TPA)]ClO(4) (4) (Hdmp = 6,7-dimethylpterin, Hdmdmp = N,N-dimethyl-6,7-dimethylpterin, TPA = tris(2-pyridylmethyl)amine), all of which had been isolated and characterized before. The BDE difference between 1 and one-electron oxidized species, [Ru(III)(dmp(-))(TPA)](2+), was determined to be 89 kcal mol(-1), which was large enough to achieve hydrogen atom transfer (HAT) from phenol derivatives. In the HAT reactions from phenol derivatives to [Ru(III)(dmp(-))(TPA)](2+), the second-order rate constants (k) were determined to exhibit a linear relationship with BDE values of phenol derivatives with a slope (-0.4), suggesting that this HAT is simultaneous proton and electron transfer. As for HAT reaction from 2,4,6-tri-tert-buthylphenol (TBP; BDE = 79.15 kcal mol(-1)) to [Ru(III)(dmp(-))(TPA)](2+), the activation parameters were determined to be DeltaH(double dagger) = 1.6 +/- 0.2 kcal mol(-1) and DeltaS(double dagger) = -36 +/- 2 cal K(-1) mol(-1). This small activation enthalpy suggests a hydrogen-bonded adduct formation prior to HAT. Actually, in the reaction of 4-nitrophenol with [Ru(III)(dmp(-))(TPA)](2+), the second-order rate constants exhibited saturation behavior at higher concentrations of the substrate, and low-temperature ESI-MS allowed us to detect the hydrogen-bonding adduct. This also lends credence to an associative mechanism of the HAT involving intermolecular hydrogen bonding between the deprotonated dmp ligand and the phenolic O-H to facilitate the reaction. In particular, a two-point hydrogen bonding between the complex and the substrate involving the 2-amino group of the deprotonated pterin ligand effectively facilitates the HAT reaction from the substrate to the Ru(III)-pterin complex.
Collapse
Affiliation(s)
- Soushi Miyazaki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
93
|
Fleisher AJ, Morgan PJ, Pratt DW. Charge transfer by electronic excitation: Direct measurement by high resolution spectroscopy in the gas phase. J Chem Phys 2009; 131:211101. [DOI: 10.1063/1.3259690] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
94
|
Johannissen LO, Irebo T, Sjödin M, Johansson O, Hammarström L. The Kinetic Effect of Internal Hydrogen Bonds on Proton-Coupled Electron Transfer from Phenols: A Theoretical Analysis with Modeling of Experimental Data. J Phys Chem B 2009; 113:16214-25. [DOI: 10.1021/jp9048633] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linus O. Johannissen
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Tania Irebo
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Martin Sjödin
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Olof Johansson
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Leif Hammarström
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|
95
|
Abstract
Personalized energy (PE) is a transformative idea that provides a new modality for the planet's energy future. By providing solar energy to the individual, an energy supply becomes secure and available to people of both legacy and nonlegacy worlds and minimally contributes to an increase in the anthropogenic level of carbon dioxide. Because PE will be possible only if solar energy is available 24 h a day, 7 days a week, the key enabler for solar PE is an inexpensive storage mechanism. HY (Y = halide or OH(-)) splitting is a fuel-forming reaction of sufficient energy density for large-scale solar storage, but the reaction relies on chemical transformations that are not understood at the most basic science level. Critical among these are multielectron transfers that are proton-coupled and involve the activation of bonds in energy-poor substrates. The chemistry of these three italicized areas is developed, and from this platform, discovery paths leading to new hydrohalic acid- and water-splitting catalysts are delineated. The latter water-splitting catalyst captures many of the functional elements of photosynthesis. In doing so, a highly manufacturable and inexpensive method for solar PE storage has been discovered.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA.
| |
Collapse
|
96
|
Conlan AR, Axelrod HL, Cohen AE, Abresch EC, Zuris J, Yee D, Nechushtai R, Jennings PA, Paddock ML. Crystal structure of Miner1: The redox-active 2Fe-2S protein causative in Wolfram Syndrome 2. J Mol Biol 2009; 392:143-53. [PMID: 19580816 PMCID: PMC2739586 DOI: 10.1016/j.jmb.2009.06.079] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/29/2022]
Abstract
The endoplasmic reticulum protein Miner1 is essential for health and longevity. Mis-splicing of CISD2, which codes for Miner1, is causative in Wolfram Syndrome 2 (WFS2) resulting in early onset optic atrophy, diabetes mellitus, deafness and decreased lifespan. In knock-out studies, disruption of CISD2 leads to accelerated aging, blindness and muscle atrophy. In this work, we characterized the soluble region of human Miner1 and solved its crystal structure to a resolution of 2.1 A (R-factor=17%). Although originally annotated as a zinc finger, we show that Miner1 is a homodimer harboring two redox-active 2Fe-2S clusters, indicating for the first time an association of a redox-active FeS protein with WFS2. Each 2Fe-2S cluster is bound by a rare Cys(3)-His motif within a 17 amino acid segment. Miner1 is the first functionally different protein that shares the NEET fold with its recently identified paralog mitoNEET, an outer mitochondrial membrane protein. We report the first measurement of the redox potentials (E(m)) of Miner1 and mitoNEET, showing that they are proton-coupled with E(m) approximately 0 mV at pH 7.5. Changes in the pH sensitivity of their cluster stabilities are attributed to significant differences in the electrostatic distribution and surfaces between the two proteins. The structural and biophysical results are discussed in relation to possible roles of Miner1 in cellular Fe-S management and redox reactions.
Collapse
Affiliation(s)
- Andrea R. Conlan
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093
| | - Herbert L. Axelrod
- Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025
| | - Edward C. Abresch
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
| | - John Zuris
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093
| | - David Yee
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
| | - Rachel Nechushtai
- Department of Plant and Environmental Sciences, The Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093
| | - Mark L. Paddock
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
97
|
Reece SY, Lutterman DA, Seyedsayamdost MR, Stubbe J, Nocera DG. Re(bpy)(CO)3CN as a probe of conformational flexibility in a photochemical ribonucleotide reductase. Biochemistry 2009; 48:5832-8. [PMID: 19402704 PMCID: PMC3340421 DOI: 10.1021/bi9005804] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical ribonucleotide reductases (photoRNRs) have been developed to study the proton-coupled electron transfer (PCET) mechanism of radical transport in Escherichia coli class I ribonucleotide reductase (RNR). The transport of the effective radical occurs along several conserved aromatic residues across two subunits: beta2((*)Y122 --> W48 --> Y356) --> alpha2(Y731 --> Y730 --> C439). The current model for RNR activity suggests that radical transport is strongly controlled by conformational gating. The C-terminal tail peptide (Y-betaC19) of beta2 is the binding determinant of beta2 to alpha2 and contains the redox active Y356 residue. A photoRNR has been generated synthetically by appending a Re(bpy)(CO)(3)CN ([Re]) photo-oxidant next to Y356 of the 20-mer peptide. Emission from the [Re] center dramatically increases upon peptide binding, serving as a probe for conformational dynamics and the protonation state of Y356. The diffusion coefficient of [Re]-Y-betaC19 has been measured (k(d1) = 6.1 x 10(-7) cm(-1) s(-1)), along with the dissociation rate constant for the [Re]-Y-betaC19-alpha2 complex (7000 s(-1) > k(off) > 400 s(-1)). Results from detailed time-resolved emission and absorption spectroscopy reveal biexponential kinetics, suggesting a large degree of conformational flexibility in the [Re]-Y-betaC19-alpha2 complex that engenders partitioning of the N-terminus of the peptide into both bound and solvent-exposed fractions.
Collapse
Affiliation(s)
- Steven Y Reece
- Department of Chemistry, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | |
Collapse
|
98
|
Wu R, McMahon TB. Protonation Sites and Conformations of Peptides of Glycine (Gly1−5H+) by IRMPD Spectroscopy. J Phys Chem B 2009; 113:8767-75. [DOI: 10.1021/jp811468q] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ronghu Wu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Terry B. McMahon
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
99
|
Abstract
The self-assembly and self-organization of porphyrins and related macrocycles enables the bottom-up fabrication of photonic materials for fundamental studies of the photophysics of these materials and for diverse applications. This rapidly developing field encompasses a broad range of disciplines including molecular design and synthesis, materials formation and characterization, and the design and evaluation of devices. Since the self-assembly of porphyrins by electrostatic interactions in the late 1980s to the present, there has been an ever increasing degree of sophistication in the design of porphyrins that self-assemble into discrete arrays or self-organize into polymeric systems. These strategies exploit ionic interactions, hydrogen bonding, coordination chemistry, and dispersion forces to form supramolecular systems with varying degrees of hierarchical order. This review concentrates on the methods to form supramolecular porphyrinic systems by intermolecular interactions other than coordination chemistry, the characterization and properties of these photonic materials, and the prospects for using these in devices. The review is heuristically organized by the predominant intermolecular interactions used and emphasizes how the organization affects properties and potential performance in devices.
Collapse
Affiliation(s)
- Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065, USA.
| | | | | |
Collapse
|
100
|
Jena NR, Mishra PC, Suhai S. Protection Against Radiation-Induced DNA Damage by Amino Acids: A DFT Study. J Phys Chem B 2009; 113:5633-44. [DOI: 10.1021/jp810468m] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. R. Jena
- Division Molecular Biophysics (B020), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D - 69120 Heidelberg, Germany, and Department of Physics, Banaras Hindu University, Varanasi-221005, India
| | - P. C. Mishra
- Division Molecular Biophysics (B020), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D - 69120 Heidelberg, Germany, and Department of Physics, Banaras Hindu University, Varanasi-221005, India
| | - S. Suhai
- Division Molecular Biophysics (B020), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D - 69120 Heidelberg, Germany, and Department of Physics, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|