51
|
Macrophage Migration and Its Regulation by CSF-1. Int J Cell Biol 2012; 2012:501962. [PMID: 22505929 PMCID: PMC3296313 DOI: 10.1155/2012/501962] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 02/06/2023] Open
Abstract
Macrophages are terminally differentiated cells of the mononuclear phagocytic lineage and develop under the stimulus of their primary growth and differentiation factor, CSF-1. Although they differentiate into heterogeneous populations, depending upon their tissue of residence, motility is an important aspect of their function. To facilitate their migration through tissues, macrophages express a unique range of adhesion and cytoskeletal proteins. Notably, macrophages do not form large, stable adhesions or actin stress fibers but rely on small, short lived point contacts, focal complexes and podosomes for traction. Thus, macrophages are built to respond rapidly to migratory stimuli. As well as triggering growth and differentiation, CSF-1 is also a chemokine that regulates macrophage migration via activation the CSF-1 receptor tyrosine kinase. CSF-1R autophosphorylation of several intracellular tyrosine residues leads to association and activation of many downstream signaling molecules. However, phosphorylation of just one residue, Y721, mediates association of PI3K with the receptor to activate the major motility signaling pathways in macrophages. Dissection of these pathways will identify drug targets for the inhibition of diseases in which macrophages contribute to adverse outcomes.
Collapse
|
52
|
Noss EH, Chang SK, Watts GFM, Brenner MB. Modulation of matrix metalloproteinase production by rheumatoid arthritis synovial fibroblasts after cadherin 11 engagement. ACTA ACUST UNITED AC 2012; 63:3768-78. [PMID: 22127696 DOI: 10.1002/art.30630] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Cadherin 11 is a homophilic cell-to-cell adhesion molecule expressed on joint synovial fibroblasts. Absence of cadherin 11 in a mouse rheumatoid arthritis (RA) model led to striking reductions in cartilage erosion. Matrix metalloproteinases (MMPs) are enzymes expressed by synovial fibroblasts important for cartilage erosion. The objective of this study was to determine if synovial fibroblast MMP production is regulated by cadherin 11. METHODS To mimic cadherin 11 engagement, human RA synovial fibroblasts were stimulated with a chimeric construct consisting of the cadherin 11 extracellular domain linked to the human IgG1 Fc domain (Cad-11-Fc). Effects on MMP production were measured by enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction analysis, and immunoblotting. RESULTS Human Cad-11-Fc up-regulated MMP-1 and MMP-3 protein production by RA synovial fibroblasts, both alone and in synergy with tumor necrosis factor α. This up-regulation required cell cadherin 11 engagement, since a mutant Cad-11-Fc with reduced binding affinity stimulated significantly less MMP production. Also, short hairpin RNA (shRNA) cadherin 11 silencing almost completely inhibited Cad-11-Fc-induced MMP expression. Cad-11-Fc stimulation increased RA synovial fibroblast MMP messenger RNA levels. It also increased the phosphorylation of the MAPKs JNK, ERK, and p38 kinase, the phosphorylation of NF-κB p65, and the nuclear translocation of activator protein 1 transcription factor. MAPK and NF-κB inhibitors partially blocked RA synovial fibroblast MMP expression. CONCLUSION Cadherin 11 engagement stimulates increased synthesis of several MMPs by RA synovial fibroblasts in a MAPK- and NF-κB-dependent manner. These results underscore the existence of a pathway by which cadherin 11 regulates MMP production and has important implications for joint destruction in RA.
Collapse
Affiliation(s)
- Erika H Noss
- Brigham and Women's Hospital and Harvard School of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
53
|
Abstract
The cadherin/catenin complex organizes to form a structural Velcro that joins the cytoskeletal networks of adjacent cells. Functional loss of this complex arrests the development of normal tissue organization, and years of research have gone into teasing out how the physical structure of adhesions conveys information to the cell interior. Evidence that most cadherin-binding partners also localize to the nucleus to regulate transcription supports the view that cadherins serve as simple stoichiometric inhibitors of nuclear signals. However, it is also clear that cadherin-based adhesion initiates a variety of molecular events that can ultimately impact nuclear signaling. This chapter discusses these two modes of cadherin signaling in the context of tissue growth and differentiation.
Collapse
|
54
|
Beckmann S, Hahnel S, Cailliau K, Vanderstraete M, Browaeys E, Dissous C, Grevelding CG. Characterization of the Src/Abl hybrid kinase SmTK6 of Schistosoma mansoni. J Biol Chem 2011; 286:42325-42336. [PMID: 22013071 PMCID: PMC3234968 DOI: 10.1074/jbc.m110.210336] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 10/12/2011] [Indexed: 11/06/2022] Open
Abstract
Cellular protein-tyrosine kinases play key roles in signal transduction processes in eukaryotes. SmTK4 was the first Syk kinase identified in a parasite and found to be tissue-specifically transcribed in the gonads of adult Schistosoma mansoni. Functional analyses confirmed its role in oogenesis and spermatogenesis. As an SmTK4 upstream binding partner, the cellular protein-tyrosine kinase SmTK6 was isolated from a yeast two-hybrid library. Phylogenetic analyses performed in this study confirmed the first suggestions of a hybrid character of SmTK6. Biochemical studies made in Xenopus oocytes using inhibitors against Src (herbimycin A) and Abl (imatinib) kinases exhibited a biochemical inhibition profile of SmTK6, which was intermediate of Src and Abl kinases. As SmTK6 upstream interaction partners, we identified among others the known Src kinase SmTK3 and the Venus kinase receptor SmVKR1 of S. mansoni by yeast two-hybrid analyses, all of which co-localized in the gonads. Co-immunoprecipitation experiments confirmed interactions between SmTK6 and SmTK3 or SmVKR1. In Xenopus oocytes, it was finally shown that SmVKR1 but also SmTK3 were able to activate SmTK6 enzymatic activity indicating its functions in a receptor tyrosine kinase signal transduction cascade. These results not only demonstrate an intermediate but Src-biased profile of the unusual kinase SmTK6. They also strongly substantiate previous indications for a kinase complex, consisting of a receptor tyrosine kinase, Syk and Src kinases, which has been hypothesized to be involved in proliferation and differentiation processes in the gonads of schistosomes.
Collapse
Affiliation(s)
- Svenja Beckmann
- Institute for Parasitology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Steffen Hahnel
- Institute for Parasitology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Katia Cailliau
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, 59655 Villeneuve d'Ascq Cedex, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, Institut Pasteur Lille, 59019 Lille, France
| | - Edith Browaeys
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, 59655 Villeneuve d'Ascq Cedex, France
| | - Colette Dissous
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, Institut Pasteur Lille, 59019 Lille, France
| | | |
Collapse
|
55
|
Mishra J, Waters CM, Kumar N. Molecular mechanism of interleukin-2-induced mucosal homeostasis. Am J Physiol Cell Physiol 2011; 302:C735-47. [PMID: 22116305 DOI: 10.1152/ajpcell.00316.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sustained damage to the mucosal lining in patients with inflammatory bowel disease (IBD) facilitates translocation of intestinal microbes to submucosal immune cells leading to chronic inflammation. Previously, we demonstrated the role of Jak3 in IL-2-induced intestinal epithelial cell (IEC) migration, one of the early events during intestinal wound repair. In this study, we demonstrate that IL-2 also plays a role in IEC homeostasis through concentration-dependent regulation of IEC proliferation and cell death. At lower concentrations (≤50 U/ml), IL-2 promoted proliferation, while at higher concentrations (100 U/ml), it promoted apoptosis. Activation by IL-2 led to tyrosine phosphorylation-dependent interactions between Jak3 and p52ShcA only at lower concentrations. Phosphatase SHP1 dephosphorylated IL-2-induced phosphorylated p52ShcA. Higher concentrations of IL-2 decreased the phosphorylation of Jak3 and p52ShcA, disrupted their interactions, redistributed Jak3 to the nucleus, and induced apoptosis in IEC. IL-2 also induced dose-dependent upregulation of p52shcA and downregulation of jak3-mRNA. Constitutive overexpression and mir-shRNA-mediated knockdown studies showed that expression of both Jak3 and p52ShcA were necessary for IL-2-induced proliferation of IEC. Doxycycline-regulated sh-RNA expression demonstrated that IL-2-induced downregulation of jak3-mRNA was responsible for higher IL-2-induced apoptosis in IEC. Collectively, these data demonstrate a novel mechanism of IL-2-induced mucosal homeostasis through posttranslational and transcriptional regulation of Jak3 and p52ShcA.
Collapse
Affiliation(s)
- Jayshree Mishra
- College of Pharmacy Texas A & M Univ. HSC, Kingsville, Texas 78363, USA
| | | | | |
Collapse
|
56
|
Prager-Khoutorsky M, Lichtenstein A, Krishnan R, Rajendran K, Mayo A, Kam Z, Geiger B, Bershadsky AD. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat Cell Biol 2011; 13:1457-65. [PMID: 22081092 DOI: 10.1038/ncb2370] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/27/2011] [Indexed: 12/13/2022]
Abstract
Cell elongation and polarization are basic morphogenetic responses to extracellular matrix adhesion. We demonstrate here that human cultured fibroblasts readily polarize when plated on rigid, but not on compliant, substrates. On rigid surfaces, large and uniformly oriented focal adhesions are formed, whereas cells plated on compliant substrates form numerous small and radially oriented adhesions. Live-cell monitoring showed that focal adhesion alignment precedes the overall elongation of the cell, indicating that focal adhesion orientation may direct cell polarization. siRNA-mediated knockdown of 85 human protein tyrosine kinases (PTKs) induced distinct alterations in the cell polarization response, as well as diverse changes in cell traction force generation and focal adhesion formation. Remarkably, changes in rigidity-dependent traction force development, or focal adhesion mechanosensing, were consistently accompanied by abnormalities in the cell polarization response. We propose that the different stages of cell polarization are regulated by multiple, PTK-dependent molecular checkpoints that jointly control cell contractility and focal-adhesion-mediated mechanosensing.
Collapse
|
57
|
Elliott J, Zheleznova NN, Wilson PD. c-Src inactivation reduces renal epithelial cell-matrix adhesion, proliferation, and cyst formation. Am J Physiol Cell Physiol 2011; 301:C522-9. [PMID: 21508333 DOI: 10.1152/ajpcell.00163.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
c-Src is a non-receptor tyrosine kinase whose activity is induced by phosphorylation at Y418 and translocation from the cytoplasm to the cell membrane. Increased activity of c-Src has been associated with cell proliferation, matrix adhesion, motility, and apoptosis in tumors. Immunohistochemistry suggested that activated (pY(418))-Src activity is increased in cyst-lining autosomal dominant polycystic kidney disease (ADPKD) epithelial cells in human and mouse ADPKD. Western blot analysis showed that SKI-606 (Wyeth) is a specific inhibitor of pY(418)-Src without demonstrable effects on epidermal growth factor receptor or ErbB2 activity in renal epithelia. In vitro studies on mouse inner medullary collecting duct (mIMCD) cells and human ADPKD cyst-lining epithelial cells showed that SKI-606 inhibited epithelial cell proliferation over a 24-h time frame. In addition, SKI-606 treatment caused a striking statistically significant decrease in adhesion of mIMCD and human ADPKD to extracellular collagen matrix. Retained viability of unattached cells was consistent with a primary effect on epithelial cell anchorage dependence mediated by the loss of extracellular matrix (ECM)-attachment due to α(2)β(1)-integrin function. SKI-606-mediated attenuation of the human ADPKD hyperproliferative and hyper-ECM-adhesive epithelial cell phenotype in vitro was paralleled by retardation of the renal cystic phenotype of Pkd1 orthologous ADPKD heterozygous mice in vivo. This suggests that SKI-606 has dual effects on cystic epithelial cell proliferation and ECM adhesion and may have therapeutic potential for ADPKD patients.
Collapse
Affiliation(s)
- Justine Elliott
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
58
|
Jin L. The actin associated protein palladin in smooth muscle and in the development of diseases of the cardiovasculature and in cancer. J Muscle Res Cell Motil 2011; 32:7-17. [PMID: 21455759 DOI: 10.1007/s10974-011-9246-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/22/2011] [Indexed: 02/06/2023]
Abstract
Palladin is an actin associated protein serving as a cytoskeleton scaffold, and actin cross linker, localizing at stress fibers, focal adhesions, and other actin based structures. Recent studies showed that palladin plays a critical role in smooth muscle differentiation, migration, contraction, and more importantly contributes to embryonic development. This review will focus on the functions and possible mechanisms of palladin in smooth muscle and in pathological conditions such as cardiovascular diseases and cancers.
Collapse
Affiliation(s)
- Li Jin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
59
|
Lifeng Z, Yan H, Dayun Y, Xiaoying L, Tingfei X, Deyuan Z, Ying H, Jinfeng Y. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys. Biomed Mater 2011; 6:025012. [PMID: 21441653 DOI: 10.1088/1748-6041/6/2/025012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field.
Collapse
Affiliation(s)
- Zhao Lifeng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Kher R, Sha EC, Escobar MR, Andreoli EM, Wang P, Xu WM, Wandinger-Ness A, Bacallao RL. Ectopic expression of cadherin 8 is sufficient to cause cyst formation in a novel 3D collagen matrix renal tubule culture. Am J Physiol Cell Physiol 2011; 301:C99-C105. [PMID: 21389276 DOI: 10.1152/ajpcell.00151.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While a variety of genetic mutations have been shown to be associated with renal cyst formation, mechanisms of renal cyst formation are largely unknown. In prior communications we described alterations in E-cadherin assembly in cultured cystic epithelial cells (Charron AJ, Nakamura S, Bacallao R, Wandinger-Ness A. J Cell Biol 149: 111-124, 2000). Using the same cell line we assayed cadherin expression by RT-PCR using primer pairs that anneal to highly conserved sequences of cadherin genes but flank informative regions of cadherins. Using this approach we found that autosomal dominant polycystic kidney disease (ADPKD) cells express cadherin 8, a neuronal cadherin with limited expression in the kidney. Immunohistochemistry confirmed cadherin 8 expression in cystic epithelia. To test the functional significance of cadherin 8 expression in renal epithelial cells, we adapted a three-dimensional collagen culture method in which HK-2 cells form tubule structures and microinjected adenovirus into the matrix space surrounding tubule structures. Adenovirus expressing cadherin 8 under the control of a tet promoter caused cyst structures to grow out of the tubules when coinjected with adenovirus expressing a tet transactivator. Microinjection of single adenovirus expressing either tet transactivator or cadherin 8 failed to cause cyst formation. When doxycycline was added to the culture, following coinjection of adenovirus, there was a dose-response reduction in cadherin 8 expression and cyst formation. Similarly, HK-2 cells transfected with Flag-tagged cadherin 8 form cysts in addition to tubular structures. HK-2 cells transfected with Flag-tagged N-cadherin do not form cysts. These data suggest that ectopic expression of cadherin 8 in renal epithelial cells is sufficient to cause the morphogenic pattern of cyst formation.
Collapse
Affiliation(s)
- Rajesh Kher
- Division of Nephrology, Richard L. Roudebush Department of Veterans Affairs Medical Center and Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Yang H, Kim TH, Lee HH, Choi KC, Jeung EB. Distinct expression of the calcium exchangers, NCKX3 and NCX1, and their regulation by steroid in the human endometrium during the menstrual cycle. Reprod Sci 2011; 18:577-85. [PMID: 21321244 DOI: 10.1177/1933719110396229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasma membrane sodium/calcium exchangers are an important component of intracellular calcium homeostasis and electrical conduction. The potassium-dependent sodium/calcium exchangers NCKX3 (gene SLC24A3) and NCX1 (gene SLC8A1) play a critical role in the transport of intracellular calcium across the cell membrane in exchange for extracellular sodium ions. NCKX3 and NCX1 transcripts are most abundant in the brain and smooth muscle, but many other tissues, particularly the uterus, aorta, and intestine, also express this gene at lower levels. However, the expression patterns and physiological roles of NCKX3 and NCX1 in the human endometrium during the menstrual cycle are unknown. Thus, we examined the endometrial expression of NCKX3 and NCX1 messenger RNA (mRNA) and protein throughout the different phases of the menstrual cycle. Endometrial expression of NCKX3 mRNA and protein was increased 1.5- to 2.5-fold during the early-proliferative, mid-proliferative, and early-secretory phases compared with the other phases; however, no significant alteration in NCX1 expression level was observed. The effects of the sex-steroid hormones, 17β-estradiol (E2) and progesterone (P4), on the expression of NCKX3 and NCX1 in Ishikawa cells was also investigated. NCKX3 expression was significantly increased by E2 (10(-8) mol/L). However, the expression of NCX1 was not affected by E2 and P4. Subsequent immunohistochemical analysis revealed that the uterine NCKX3 and NCX1 proteins were abundantly localized in the cytoplasm of luminal and glandular epithelial cells throughout the menstrual cycle. Taken together, these results indicate that NCKX3 is abundantly expressed within the human endometrium at the transcriptional and translational levels, and its level appears to be regulated by a steroid hormone, in particular, E2 during the human menstrual cycle.
Collapse
Affiliation(s)
- Hyun Yang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | |
Collapse
|
62
|
The cortactin-binding domain of WIP is essential for podosome formation and extracellular matrix degradation by murine dendritic cells. Eur J Cell Biol 2011; 90:213-23. [DOI: 10.1016/j.ejcb.2010.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/05/2010] [Accepted: 09/01/2010] [Indexed: 01/10/2023] Open
|
63
|
Peculiarities of proliferation and differentiation of cambial and daughter cells of epidermal-dermal morphofunctional zone in normal epithelium and in cancer. Bull Exp Biol Med 2011; 149:521-6. [PMID: 21234456 DOI: 10.1007/s10517-010-0983-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cambial and daughter cells of normal epithelium function in the morphofunctional zone consisting of two subunits with 12 cambial cells in each. Daughter cells are differentiated in an electrical field created by 12 pairs of maternal and daughter cells, products of division of cambial cells located in the same subunit. The differentiation requires relaxation of the cortex of daughter cells via expression of SH3 domain of Src kinase by dermal daughter cells, which leads to a decrease in activity of RhoA in epidermal cells, their stretching, and activation of SH2 domain of Src responsible for differentiation. Reduction of the number of cambial cells to 6 and, consequently, weakening of electrical field produced by them to a threshold value corresponding to very weak stretching of daughter epithelial cells results in a decrease in SH2 domain expression in these cells and its kinase contribution in Src. This leads to an increase in RhoA relative to Src, enhances cell contraction, impairs formation of stress fibrils and focal contacts, reduces cell flattening, and increases cell mobility. The decrease in the number of microtubules, intermediate filaments, and stress-fibrils changes the major cell axis direction, which, in turn, sharply reduces nucleus stretching and leads to impaired chromosome looping out near the centromeres and telomeres; the cells acquires signs of an epitheliocyte and a fibroblast, protein transcription is impaired, and daughter cells are transformed into malignant cell.
Collapse
|
64
|
Duan L, Raja SM, Chen G, Virmani S, Williams SH, Clubb RJ, Mukhopadhyay C, Rainey MA, Ying G, Dimri M, Chen J, Reddi AL, Naramura M, Band V, Band H. Negative regulation of EGFR-Vav2 signaling axis by Cbl ubiquitin ligase controls EGF receptor-mediated epithelial cell adherens junction dynamics and cell migration. J Biol Chem 2011; 286:620-33. [PMID: 20940296 PMCID: PMC3013022 DOI: 10.1074/jbc.m110.188086] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 02/04/2023] Open
Abstract
The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.
Collapse
Affiliation(s)
- Lei Duan
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Srikumar M. Raja
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Gengsheng Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Sumeet Virmani
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | | | - Robert J. Clubb
- From the Eppley Institute for Cancer and Allied Diseases, and
| | | | - Mark A. Rainey
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Guoguang Ying
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Manjari Dimri
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Jing Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Alagarsamy L. Reddi
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Mayumi Naramura
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Vimla Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950 and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Hamid Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, Pharmacology and Neuroscience, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| |
Collapse
|
65
|
Connelly SF, Isley BA, Baker CH, Gallick GE, Summy JM. Loss of tyrosine phosphatase-dependent inhibition promotes activation of tyrosine kinase c-Src in detached pancreatic cells. Mol Carcinog 2011; 49:1007-21. [PMID: 20945416 DOI: 10.1002/mc.20684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite an intense focus on novel therapeutic strategies, pancreatic adenocarcinoma remains one of the deadliest human malignancies. The frequent and rapid mortality associated with pancreatic cancer may be attributed to several factors, including late diagnosis, rapid tumor invasion into surrounding tissues, and formation of distant metastases. Both local invasion and metastasis require disruption of tumor cell contacts with the extracellular matrix. Detachment of normal cells from the extracellular matrix leads to a form of programmed cell death termed anoikis. Pancreatic cancer cells avert anoikis by activation of signaling pathways that allow for adhesion-independent survival. In the present studies, cellular signaling pathways activated in detached pancreatic cancer cells were examined. We demonstrate a rapid and robust activation of Src kinase in detached pancreatic cancer cells, relative to adherent. Src autophosphorylation rapidly returned to baseline levels upon reattachment to tissue culture plastic, in the presence or absence of specific extracellular matrix proteins. Treatment of pancreatic cancer cells with tyrosine phosphatase inhibitors increased steady-state Src autophosphorylation in adherent cells and abrogated the detachment-induced increase in Src autophosphorylation. Src was found to co-immunoprecipitate with the Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP-2) in pancreatic cancer cells, suggesting that SHP-2 may participate in regulation of Src autophosphorylation in adherent cells. Src family kinase (SFK) dependent increases in Akt and Jun N-terminal kinase (JNK) phosphorylation were observed in detached cells, indicating the potential for Src-dependent activation of survival and stress pathways in pancreatic cancer cells that have detached from the extracellular matrix.
Collapse
Affiliation(s)
- Sarah F Connelly
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando, Orlando, Florida 32827, USA
| | | | | | | | | |
Collapse
|
66
|
Jackson TY, Sun Z, Martinez-Lemus LA, Hill MA, Meininger GA. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca. Front Physiol 2010; 1:165. [PMID: 21423400 PMCID: PMC3059933 DOI: 10.3389/fphys.2010.00165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/09/2010] [Indexed: 11/13/2022] Open
Abstract
The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure, and arterial pressure. The identity of the mechanosensory mechanism(s) for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs), was important for myogenic responsiveness. The purpose of this study was to investigate: (1) whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and (2) the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca(2+)]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 to 100 mmHg and changes in VSMC Ca(2+) were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function-blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca(2+)]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca(2+)]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca(2+)]i increases.
Collapse
Affiliation(s)
- Teresa Y Jackson
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | | | | | | | | |
Collapse
|
67
|
Singh B, Su YC, Riesbeck K. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol 2010; 78:545-60. [DOI: 10.1111/j.1365-2958.2010.07373.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
68
|
Gupton SL, Gertler FB. Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Dev Cell 2010; 18:725-36. [PMID: 20493807 DOI: 10.1016/j.devcel.2010.02.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/14/2010] [Accepted: 02/25/2010] [Indexed: 10/25/2022]
Abstract
Neurons establish their unique morphology by elaborating multiple neurites that subsequently form axons and dendrites. Neurite initiation entails significant surface area expansion, necessitating addition to the plasma membrane. We report that regulated membrane delivery coordinated with the actin cytoskeleton is crucial for neuritogenesis and identify two independent pathways that use distinct exocytic and cytoskeletal machinery to drive neuritogenesis. One pathway uses Ena/VASP-regulated actin dynamics coordinated with VAMP2-mediated exocytosis and involves a novel role for Ena/VASP in exocytosis. A second mechanism occurs in the presence of laminin through integrin-dependent activation of FAK and src and uses coordinated activity of the Arp2/3 complex and VAMP7-mediated exocytosis. We conclude that neuritogenesis can be driven by two distinct pathways that differentially coordinate cytoskeletal dynamics and exocytosis. These regulated changes and coordination of cytoskeletal and exocytic machinery may be used in other physiological contexts involving cell motility and morphogenesis.
Collapse
Affiliation(s)
- Stephanie L Gupton
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
69
|
Perrier A, Dumas V, Linossier MT, Fournier C, Jurdic P, Rattner A, Vico L, Guignandon A. Apatite content of collagen materials dose-dependently increases pre-osteoblastic cell deposition of a cement line-like matrix. Bone 2010; 47:23-33. [PMID: 20303420 DOI: 10.1016/j.bone.2010.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 11/26/2022]
Abstract
Bone matrix, mainly composed of type I collagen and apatite, is constantly modified during the bone remodeling process, which exposes bone cells to various proportions of mineralized collagen within bone structural units. Collagen-mineralized substrates have been shown to increase osteoblast activities. We hypothesized that such effects may be explained by a rapid secretion of specific growth factors and/or deposition of specific matrix proteins. Using MC3T3-E1 seeded for 32h on collagen substrates complexed with various apatite contents, we found that pre-osteoblasts in contact with mineralized collagen gave rise to a dose-dependent deposit of Vascular Endothelial Growth Factor-A (VEGF-A) and RGD-containing proteins such as osteopontin (OPN) and fibronectin (FN). This RGD-matrix deposition reinforced the cell adhesion to collagen-mineralized substrates. It was also observed that, on these substrates, this matrix was elaborated concomitantly to an increased cell migration, allowing a homogeneous coverage of the sample. This particular surface activation was probably done firstly to reinforce cell survival (VEGF-A) and adhesion (OPN, FN) and secondly to recruit and prepare surfaces for subsequent bone cell activity.
Collapse
Affiliation(s)
- A Perrier
- Université de Lyon, F42023, Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Bolós V, Gasent JM, López-Tarruella S, Grande E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther 2010; 3:83-97. [PMID: 20616959 PMCID: PMC2895777 DOI: 10.2147/ott.s6909] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Indexed: 12/11/2022] Open
Abstract
Focal adhesion kinase (FAK) and steroid receptor coactivator (Src) are intracellular (nonreceptor) tyrosine kinases that physically and functionally interact to promote a variety of cellular responses. Plenty of reports have already suggested an additional central role for this complex in cancer through its ability to promote proliferation and anoikis resistance in tumor cells. An important role for the FAK/Src complex in tumor angiogenesis has also been established. Furthermore, FAK and Src have been associated with solid tumor metastasis through their ability to promote the epithelial mesenchymal transition. In fact, a strong correlation between increased FAK/Src expression/phosphorylation and the invasive phenotype in human tumors has been found. Additionally, an association for FAK/Src with resistances to the current anticancer therapies has already been established. Currently, novel anticancer agents that target FAK or Src are under development in a broad variety of solid tumors. In this article we will review the normal cellular functions of the FAK/Src complex as an effector of integrin and/or tyrosine kinase receptor signaling. We will also collect data about their role in cancer and we will summarize the most recent data from the FAK and Src inhibitors under clinical and preclinical development. Furthermore, the association of both these proteins with chemotherapy and hormonal therapy resistances, as a rationale for new combined therapeutic approaches with these novel agents, to abrogate treatment associated resistances, will also be reviewed.
Collapse
|
71
|
Two stages in three-dimensional in vitro growth of tissue generated by osteoblastlike cells. Biointerphases 2010; 5:45-52. [DOI: 10.1116/1.3431524] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
72
|
Mori M, Murata Y, Kotani T, Kusakari S, Ohnishi H, Saito Y, Okazawa H, Ishizuka T, Mori M, Matozaki T. Promotion of cell spreading and migration by vascular endothelial-protein tyrosine phosphatase (VE-PTP) in cooperation with integrins. J Cell Physiol 2010; 224:195-204. [PMID: 20301196 DOI: 10.1002/jcp.22122] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular endothelial-protein tyrosine phosphatase (VE-PTP) is a receptor-type protein tyrosine phosphatase with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like domains in its extracellular region. VE-PTP is expressed specifically in endothelial cells and is implicated in regulation of angiogenesis. The molecular basis for such regulation by VE-PTP has remained largely unknown, however. We now show that forced expression of VE-PTP promoted cell spreading as well as formation of lamellipodia and filopodia in cultured fibroblasts plated on fibronectin. These effects of VE-PTP on cell morphology required its catalytic activity as well as activation of integrins and Ras. In addition, VE-PTP-induced cell spreading and lamellipodium formation were prevented by inhibition of Src family kinases or of Rac or Cdc42. Indeed, forced expression of VE-PTP increased the level of c-Src phosphorylation at tyrosine-416. Moreover, the VE-PTP-induced changes in cell morphology were suppressed by expression of dominant negative forms of FRG or Vav2, both of which are guanine nucleotide exchange factors for Rho family proteins and are activated by tyrosine phosphorylation. Forced expression of VE-PTP also enhanced fibronectin-dependent migration of cultured fibroblasts. Conversely, depletion of VE-PTP by RNA interference in human umbilical vein endothelial cells or mouse endothelioma cells inhibited cell spreading on fibronectin. These results suggest that VE-PTP, in cooperation with integrins, regulates the spreading and migration of endothelial cells during angiogenesis.
Collapse
Affiliation(s)
- Munemasa Mori
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Passeri G, Cacchioli A, Ravanetti F, Galli C, Elezi E, Macaluso GM. Adhesion pattern and growth of primary human osteoblastic cells on five commercially available titanium surfaces. Clin Oral Implants Res 2010; 21:756-65. [DOI: 10.1111/j.1600-0501.2009.01906.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
Abstract
Src family kinases (SFKs) have a critical role in cell adhesion, invasion, proliferation, survival, and angiogenesis during tumor development. SFKs comprise nine family members that share similar structure and function. Overexpression or high activation of SFKs occurs frequently in tumor tissues and they are central mediators in multiple signaling pathways that are important in oncogenesis. SFKs can interact with tyrosine kinase receptors, such as EGFR and the VEGF receptor. SFKs can affect cell proliferation via the Ras/ERK/MAPK pathway and can regulate gene expression via transcription factors such as STAT molecules. SFKs can also affect cell adhesion and migration via interaction with integrins, actins, GTPase-activating proteins, scaffold proteins, such as p130(CAS) and paxillin, and kinases such as focal adhesion kinases. Furthermore, SFKs can regulate angiogenesis via gene expression of angiogenic growth factors, such as fibroblast growth factor, VEGF, and interleukin 8. On the basis of these important findings, small-molecule SFK inhibitors have been developed and are undergoing early phase clinical testing. In preclinical studies these agents can suppress tumor growth and metastases. The agents seem to be safe in humans and could add to the therapeutic arsenal against subsets of cancers.
Collapse
|
75
|
Ren G, Crampton MS, Yap AS. Cortactin: Coordinating adhesion and the actin cytoskeleton at cellular protrusions. ACTA ACUST UNITED AC 2009; 66:865-73. [PMID: 19437513 DOI: 10.1002/cm.20380] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has long been recognized that adhesion receptors cooperate with the cytoskeleton during morphogenesis, tissue remodeling and homeostasis. But how this occurs is less well-understood. A host of cytoskeletal regulators have been reported to have functional and biochemical linkage with adhesion receptors. The challenge remains to find functionally-coherent patterns within this increasingly large corpus of molecular information. In this review we discuss one approach, to identify distinctive functional modules that contribute to different adhesive processes. We illustrate this by considering Arp2/3-driven surface protrusion, which is utilized at both integrin-based cell-matrix adhesions and cadherin-based cell-cell adhesions. We further argue that regulatory proteins, such as cortactin, serve to coordinate the molecular components of this protrusive apparatus into a cohesive module.
Collapse
Affiliation(s)
- Gang Ren
- Institute for Molecular Bioscience, Division of Molecular Cell Biology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia 4072
| | | | | |
Collapse
|
76
|
Park DW, Choi KC, MacCalman CD, Leung PCK. Gonadotropin-releasing hormone (GnRH)-I and GnRH-II induce cell growth inhibition in human endometrial cancer cells: involvement of integrin beta3 and focal adhesion kinase. Reprod Biol Endocrinol 2009; 7:81. [PMID: 19656390 PMCID: PMC2736964 DOI: 10.1186/1477-7827-7-81] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/05/2009] [Indexed: 11/10/2022] Open
Abstract
Endometrial carcinoma is the most common neoplasm of the female genital tract, accounting for nearly one half of all gynecologic cancers in the Western world. Although intensive research on pathological phenomena of endometrial cancer is currently going on, but exact cause and biological aspects of this disease are not well described yet. In addition to well-documented roles of gonadotropin-releasing hormone (GnRH) in hypopituitary ovarian (HPO) axis, the agonistic or antagonistic analogs (or both) of GnRH have been shown to inhibit the proliferation of a variety of human gynecologic cancers. Thus, in the present study, we further examined the possibility that GnRH induces integrin beta3 and activation of focal adhesion kinase (FAK) through mitogen-activated protein kinases (MAPKs), ERK1/2 and p38, to inhibit the growth of HEC1A endometrial cancer cell line. As a result, both GnRH-I and GnRH-II resulted in a significant increase in integrin beta3 expression and evoked the activation of FAK in a time-dependent manner in these cells. In addition, these analogs induced an activation of ERK1/2 and p38 MAPK in a time-dependent manner as downstream pathways of FAK. It appears that GnRH-II has much greater effect on the activation of FAK, ERK1/2 and p38 compared to GnRH-I in these cells. Further, we demonstrated that the growth inhibition of HEC1A cells by GnRH-I or GnRH-II is involved in the activation of integrin-FAK and ERK1/2 and p38 MAPK pathways. Taken together, these results suggest that GnRH may be involved in the inhibition of endometrial cancer cell growth via activation of integrin beta3 and FAK as a direct effect. This knowledge could contribute to a better understanding of the mechanisms implicated in the therapeutic action of GnRH and its biomedical application for the treatment against endometrial cancer.
Collapse
Affiliation(s)
- Dong Wook Park
- Department of Obstetrics and Gynecology, Child and Family Research Institute, The University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Health Center. College of Medicine, Kwandong University, 100-380, Seoul, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Colin D MacCalman
- Department of Obstetrics and Gynecology, Child and Family Research Institute, The University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Peter CK Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, The University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| |
Collapse
|
77
|
Gross JC, Schreiner A, Engels K, Starzinski-Powitz A. E-cadherin surface levels in epithelial growth factor-stimulated cells depend on adherens junction protein shrew-1. Mol Biol Cell 2009; 20:3598-607. [PMID: 19515834 DOI: 10.1091/mbc.e08-12-1240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gain- and loss-of-function studies indicate that the adherens junction protein shrew-1 acts as a novel modulator of E-cadherin internalization induced by epithelial growth factor (EGF) or E-cadherin function-blocking antibody during epithelial cell dynamics. Knocking down shrew-1 in MCF-7 carcinoma cells preserves E-cadherin surface levels upon EGF stimulation. Overexpression of shrew-1 leads to preformation of an E-cadherin/EGF receptor (EGFR) HER2/src-kinase/shrew-1 signaling complex and accelerated E-cadherin internalization. Shrew-1 is not sufficient to stimulate E-cadherin internalization, but facilitates the actions of EGFR and thus may promote malignant progression in breast cancer cells with constitutive EGFR stimulation by reducing surface E-cadherin expression.
Collapse
Affiliation(s)
- Julia Christina Gross
- Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University of Frankfurt, 60323 Frankfurt, Germany
| | | | | | | |
Collapse
|
78
|
Aquino JB, Lallemend F, Marmigère F, Adameyko II, Golemis EA, Ernfors P. The retinoic acid inducible Cas-family signaling protein Nedd9 regulates neural crest cell migration by modulating adhesion and actin dynamics. Neuroscience 2009; 162:1106-19. [PMID: 19464348 DOI: 10.1016/j.neuroscience.2009.05.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 04/21/2009] [Accepted: 05/18/2009] [Indexed: 01/12/2023]
Abstract
Cell migration is essential for the development of numerous structures derived from embryonic neural crest cells (NCCs), however the underlying molecular mechanisms are incompletely understood. NCCs migrate long distances in the embryo and contribute to many different cell types, including peripheral neurons, glia and pigment cells. In the present work we report expression of Nedd9, a scaffolding protein within the integrin signaling pathway, in non-lineage-restricted neural crest progenitor cells. In particular, Nedd9 was found to be expressed in the dorsal neural tube at the time of neural crest delamination and in early migrating NCCs. To analyze the role of Nedd9 in neural crest development we performed loss- and gain-of-function experiments and examined the subsequent effects on delamination and migration in vitro and in vivo. Our results demonstrate that loss of Nedd9 activity in chick NCCs perturbs cell spreading and the density of focal complexes and actin filaments, properties known to depend on integrins. Moreover, a siRNA dose-dependent decrease in Nedd9 activity results in a graded reduction of NCC's migratory distance while forced overexpression increases it. Retinoic acid (RA) was found to regulate Nedd9 expression in NCCs. Our results demonstrate in vivo that Nedd9 promotes the migration of NCCs in a graded manner and suggest a role for RA in the control of Nedd9 expression levels.
Collapse
Affiliation(s)
- J B Aquino
- Unit of Molecular Neurobiology-MBB, Karolinska Institutet, Scheeles vag 1 A1:2, 171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
79
|
Volpe MV, Chung E, Ulm JP, Gilchrist BF, Ralston S, Wang KT, Nielsen HC. Aberrant cell adhesion molecule expression in human bronchopulmonary sequestration and congenital cystic adenomatoid malformation. Am J Physiol Lung Cell Mol Physiol 2009; 297:L143-52. [PMID: 19411307 DOI: 10.1152/ajplung.90618.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In many organs, integrins and cadherins are partly regulated by Hox genes, but their interactions in airway morphogenesis and congenital lung diseases are unknown. We previously showed that the Hox protein HoxB5 is abnormally increased in bronchopulmonary sequestration (BPS) and congenital cystic adenomatoid malformation (CCAM), congenital lung lesions with abnormal airway branching. We now report on alpha(2)-, alpha(3)-, and beta(1)-integrin and E-cadherin expression in normal human lung and in BPS and CCAM tissue previously shown to have abnormal HoxB5 expression and on the relationship of cell adhesion molecule expression to Hoxb5 regulation. alpha(2)-, alpha(3)-, and beta(1)-integrins and E-cadherin expression in normal human lung and BPS and CCAM were evaluated using Western blot and immunohistochemistry. Fetal mouse lung fibroblasts with Hoxb5-specific siRNA downregulation were evaluated for alpha(2)-integrin protein levels by Western blot. Compared with normal human lung, a previously undetected alpha(2)-integrin isoform potentially lacking essential cytoplasmic sequences was significantly increased in BPS and CCAM, and alpha(2)-integrin spatial and cellular expression was more intense. E-cadherin protein levels were also significantly increased, whereas alpha(3) increased in CCAM compared with canalicular, but not with alveolar, stage lung. beta(1)-integrin levels were unchanged. We conclude that in BPS and CCAM, altered alpha(2)-integrin cytoplasmic signaling contributes to abnormal cellular behavior in these lung lesions. Aberrant cell adhesion molecule and Hox protein regulation are likely part of the mechanism involved in the development of BPS and CCAM.
Collapse
Affiliation(s)
- Maryann V Volpe
- Department of Pediatrics, Division of Newborn Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
80
|
Gröger M, Pasteiner W, Ignatyev G, Matt U, Knapp S, Atrasheuskaya A, Bukin E, Friedl P, Zinkl D, Hofer-Warbinek R, Zacharowski K, Petzelbauer P, Reingruber S. Peptide Bbeta(15-42) preserves endothelial barrier function in shock. PLoS One 2009; 4:e5391. [PMID: 19401765 PMCID: PMC2670535 DOI: 10.1371/journal.pone.0005391] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/03/2009] [Indexed: 11/22/2022] Open
Abstract
Loss of vascular barrier function causes leak of fluid and proteins into tissues, extensive leak leads to shock and death. Barriers are largely formed by endothelial cell-cell contacts built up by VE-cadherin and are under the control of RhoGTPases. Here we show that a natural plasmin digest product of fibrin, peptide Bß15-42 (also called FX06), significantly reduces vascular leak and mortality in animal models for Dengue shock syndrome. The ability of Bß15-42 to preserve endothelial barriers is confirmed in rats i.v.-injected with LPS. In endothelial cells, Bß15-42 prevents thrombin-induced stress fiber formation, myosin light chain phosphorylation and RhoA activation. The molecular key for the protective effect of Bß15-42 is the src kinase Fyn, which associates with VE-cadherin-containing junctions. Following exposure to Bß15-42 Fyn dissociates from VE-cadherin and associates with p190RhoGAP, a known antagonists of RhoA activation. The role of Fyn in transducing effects of Bß15-42 is confirmed in Fyn−/− mice, where the peptide is unable to reduce LPS-induced lung edema, whereas in wild type littermates the peptide significantly reduces leak. Our results demonstrate a novel function for Bß15-42. Formerly mainly considered as a degradation product occurring after fibrin inactivation, it has now to be considered as a signaling molecule. It stabilizes endothelial barriers and thus could be an attractive adjuvant in the treatment of shock.
Collapse
Affiliation(s)
- Marion Gröger
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | | | - George Ignatyev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Ulrich Matt
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine 1, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Sylvia Knapp
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alena Atrasheuskaya
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Eugenij Bukin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Peter Friedl
- Fibrex Medical Research & Development GmbH., Vienna, Austria
| | - Daniela Zinkl
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Renate Hofer-Warbinek
- Department of Vascular Biology and Thrombosis Research, Medical University Vienna, Vienna, Austria
| | - Kai Zacharowski
- Molecular Cardioprotection & Inflammation Group, Department of Anesthesia, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Peter Petzelbauer
- Department of Dermatology, Medical University Vienna, Vienna, Austria
- * E-mail: (PP); (SR)
| | - Sonja Reingruber
- Fibrex Medical Research & Development GmbH., Vienna, Austria
- * E-mail: (PP); (SR)
| |
Collapse
|
81
|
Mounier J, Popoff MR, Enninga J, Frame MC, Sansonetti PJ, Van Nhieu GT. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 2009; 5:e1000271. [PMID: 19165331 PMCID: PMC2621354 DOI: 10.1371/journal.ppat.1000271] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 12/15/2008] [Indexed: 01/04/2023] Open
Abstract
Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial stages of Shigella entry. Src recruitment occurred at bacterial-cell contact sites independent of actin polymerization at the onset of the invasive process and was still observed in Shigella strains mutated for translocated T3S effectors of invasion. A Shigella strain with a polar mutation that expressed low levels of the translocator components IpaB and IpaC was fully proficient for Src recruitment and bacterial invasion. In contrast, a Shigella strain mutated in the IpaC carboxyterminal effector domain that was proficient for T3S effector translocation did not induce Src recruitment. Consistent with a direct role for IpaC in Src activation, cell incubation with the IpaC last 72 carboxyterminal residues fused to the Iota toxin Ia (IaC) component that translocates into the cell cytosol upon binding to the Ib component led to Src-dependent ruffle formation. Strikingly, IaC also induced actin structures resembling bacterial entry foci that were enriched in activated Src and were inhibited by the Src inhibitor PP2. These results indicate that the IpaC effector domain determines Src-dependent actin polymerization and ruffle formation during bacterial invasion. Type III secretion systems (T3SS) are present in a wide range of Gram-negative bacteria that are pathogenic to humans, animals, and plants. These molecular devices allow the injection of bacterial virulence factors into host cells to manipulate various cellular functions. T3SSs share similar functional features. Noticeably, host cell contact triggers the secretion of two T3SS substrates that insert into host cell membranes to form a so-called “translocator” required for the injection of T3SS effectors. Shigella, an enteroinvasive pathogen responsible for bacillary dysentery, uses a T3SS to transiently reorganize the actin cytoskeleton and to induce its internalization into epithelial cells. Some Shigella-injected T3SS effectors participate in cytoskeletal reorganization, but none of these effectors are totally necessary or sufficient to induce bacterial invasion. We show here that in addition to its role in the injection of bacterial effectors, the translocator component IpaC also induces the recruitment of Src and actin polymerization driving the formation of localized membrane ruffling. Our findings suggest that major signaling through T3S translocator components occurs during the initial steps of bacterial interaction with host cell membranes. Compounds that prevent membrane insertion of the Shigella T3S translocator would likely constitute ideal candidates for antimicrobial agents.
Collapse
Affiliation(s)
- Joëlle Mounier
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Michel R. Popoff
- Unité de Recherche et d'Expertise Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Jost Enninga
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Margaret C. Frame
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Guy Tran Van Nhieu
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
82
|
Sachdev S, Bu Y, Gelman IH. Paxillin-Y118 phosphorylation contributes to the control of Src-induced anchorage-independent growth by FAK and adhesion. BMC Cancer 2009; 9:12. [PMID: 19138410 PMCID: PMC2651180 DOI: 10.1186/1471-2407-9-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/12/2009] [Indexed: 01/10/2023] Open
Abstract
Background Focal adhesion kinase (FAK) and Src are protein tyrosine kinases that physically and functionally interact to facilitate cancer progression by regulating oncogenic processes such as cell motility, survival, proliferation, invasiveness, and angiogenesis. Method To understand how FAK affects oncogenesis through the phosphorylation of cellular substrates of Src, we analyzed the phosphorylation profile of a panel of Src substrates in parental and v-Src-expressing FAK+/+ and FAK-/- mouse embryo fibroblasts, under conditions of anchorage-dependent (adherent) and -independent (suspension) growth. Results Total Src-induced cellular tyrosine phosphorylation as well as the number of phosphotyrosyl substrates was higher in suspension versus adherent cultures. Although the total level of Src-induced cellular phosphorylation was similar in FAK+/+ and FAK-/- backgrounds, the phosphorylation of some substrates was influenced by FAK depending on adherence state. Specifically, in the absence of FAK, Src induced higher phosphorylation of p190RhoGAP, paxillin (poY118) and Crk irrespective of adhesion state, PKC-δ (poY311), connexin-43 (poY265) and Sam68 only under adherent conditions, and p56Dok-2 (poY351) and p120catenin (poY228) only under suspension conditions. In contrast, FAK enhanced the Src-induced phosphorylation of vinculin (poY100 and poY1065) and p130CAS (poY410) irrespective of adherence state, p56Dok-2 (poY351) and p120catenin (poY228) only under adherent conditions, and connexin-43 (poY265), cortactin (poY421) and paxillin (poY31) only under suspension conditions. The Src-induced phosphorylation of Eps8, PLC-γ1 and Shc (poY239/poY240) were not affected by either FAK or adherence status. The enhanced anchorage-independent growth of FAK-/-[v-Src] cells was selectively decreased by expression of paxillinY118F, but not by WT-paxillin, p120cateninY228F or ShcY239/240F, identifying for the first time a role for paxillinpoY118 in Src-induced anchorage-independent growth. Knockdown of FAK by siRNA in the human colon cancer lines HT-25 and RKO, resulted in increased paxillinpoY118 levels under suspension conditions as well as increased anchorage-independent growth, supporting the notion that FAK attenuates anchorage-independent growth by suppressing adhesion-dependent phosphorylation of paxillinY118. Conclusion These data suggest that phosphorylation of Src substrates is a dynamic process, influenced temporally and spatially by factors such as FAK and adhesion.
Collapse
Affiliation(s)
- Sanjay Sachdev
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
83
|
Affiliation(s)
- Wafic M Elmasri
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
84
|
Holt MR, Calle Y, Sutton DH, Critchley DR, Jones GE, Dunn GA. Quantifying cell-matrix adhesion dynamics in living cells using interference reflection microscopy. J Microsc 2008; 232:73-81. [PMID: 19017203 DOI: 10.1111/j.1365-2818.2008.02069.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Focal adhesions and podosomes are integrin-mediated cell-substratum contacts that can be visualized using interference reflection microscopy (IRM). Here, we have developed automated image-processing procedures to quantify adhesion turnover from IRM images of live cells. Using time sequences of images, we produce adhesion maps that reveal the spatial changes of adhesions and contain additional information on the time sequence of these changes. Such maps were used to characterize focal adhesion dynamics in mouse embryo fibroblasts lacking one or both alleles of the vinculin gene. Loss of vinculin expression resulted in increased assembly, disassembly and/or in increased translocation of focal adhesions, suggesting that vinculin is important for stabilizing focal adhesions. This method is also useful for studying the rapid dynamics of podosomes as observed in primary mouse dendritic cells.
Collapse
Affiliation(s)
- M R Holt
- King's College London, The Randall Division of Cellular and Molecular Biophysics, New Hunt's House, London, SE1 1UL, United Kingdom.
| | | | | | | | | | | |
Collapse
|
85
|
Zhao Y, Planas-Silva MD. Mislocalization of cell-cell adhesion complexes in tamoxifen-resistant breast cancer cells with elevated c-Src tyrosine kinase activity. Cancer Lett 2008; 275:204-12. [PMID: 19026486 DOI: 10.1016/j.canlet.2008.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/29/2008] [Accepted: 10/14/2008] [Indexed: 11/17/2022]
Abstract
c-Src activation has been implicated in metastasis of tamoxifen-resistant breast cancer. Here we investigated how c-Src activity affects cell adhesion using a tamoxifen-resistant variant of MCF-7 cells (MTR-3) containing elevated c-Src activity. In MTR-3 cells, adhesion proteins beta-catenin and E-cadherin are mislocalized, forming novel structures perpendicular to cell-cell junctions. c-Src is associated with beta-catenin/E-cadherin complexes and beta-catenin tyrosine phosphorylation is enhanced. Blocking c-Src tyrosine kinase activity decreased beta-catenin tyrosine phosphorylation and restored localization of beta-catenin and E-cadherin at cell-cell junctions. These findings suggest that inhibition of c-Src signaling may prevent metastasis of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
86
|
mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Proc Natl Acad Sci U S A 2008; 105:15914-9. [PMID: 18832467 DOI: 10.1073/pnas.0808171105] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The scaffold PDZ-domain containing protein mda-9/syntenin functions as a positive regulator of cancer cell progression in human melanoma and other tumors. mda-9/Syntenin regulates cell motility and invasion by altering defined biochemical and signaling pathways, including focal adhesion kinase (FAK), p38 mitogen-activated protein kinase (MAPK) and NF-kappaB, but precisely how mda-9/syntenin organizes these multiprotein signaling complexes is not well understood. Using a clinically relevant human melanoma model, we demonstrate that mda-9/syntenin physically interacts with c-Src and this communication correlates with an increase in FAK/c-Src complex formation and c-Src activation. Inhibiting mda-9/syntenin, using an adenovirus expressing antisense mda-9/syntenin or addition of c-Src siRNA, suppresses melanoma cell migration, anchorage-independent growth, and spontaneous tumor cell dissemination in vivo in a human melanoma animal metastasis model. These data are compatible with a model wherein interaction of MDA-9/syntenin with c-Src promotes the formation of an active FAK/c-Src signaling complex, leading to enhanced tumor cell invasion and metastatic spread. These provocative findings highlight mda-9/syntenin and its interacting partners as promising therapeutic targets for intervention of metastasis.
Collapse
|
87
|
Schaefer AW, Schoonderwoert VTG, Ji L, Mederios N, Danuser G, Forscher P. Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell 2008; 15:146-62. [PMID: 18606148 DOI: 10.1016/j.devcel.2008.05.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 01/16/2008] [Accepted: 05/05/2008] [Indexed: 01/07/2023]
Abstract
Although much evidence suggests that axon growth and guidance depend on well-coordinated cytoskeletal dynamics, direct characterization of the corresponding molecular events has remained a challenge. Here, we address this outstanding problem by examining neurite outgrowth stimulated by local application of cell adhesion substrates. During acute outgrowth, the advance of organelles and underlying microtubules was correlated with regions of attenuated retrograde actin network flow in the periphery. Interestingly, as adhesion sites matured, contractile actin arc structures, known to be regulated by the Rho/Rho Kinase/myosin II signaling cascade, became more robust and coordinated microtubule movements in the growth cone neck. When Rho Kinase was inhibited, although growth responses occurred with less of a delay, microtubules failed to consolidate into a single axis of growth. These results reveal a role for Rho Kinase and myosin II contractility in regulation of microtubule behavior during neuronal growth.
Collapse
Affiliation(s)
- Andrew W Schaefer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | |
Collapse
|
88
|
Sui GP, Wu C, Roosen A, Ikeda Y, Kanai AJ, Fry CH. Modulation of bladder myofibroblast activity: implications for bladder function. Am J Physiol Renal Physiol 2008; 295:F688-97. [PMID: 18632799 PMCID: PMC2536873 DOI: 10.1152/ajprenal.00133.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Bladder suburothelial myofibroblasts may modulate both sensory responses from the bladder wall and spontaneous activity. This study aimed to characterize further these cells in their response to exogenous agents implicated in mediating the above activity. Detrusor strips, with or without mucosa, and isolated suburothelial myofibroblasts were prepared from guinea pig bladders. Isometric tension, intracellular Ca2+, and membrane current were recorded. Cell pairs were formed by pushing two cells together. Tension, intracellular Ca2+, and membrane potential were also recorded from bladder sheets using normal or spinal cord-transected (SCT) rats. Spontaneous contractions were greater in detrusor strips with an intact mucosa and were augmented by 10 μM UTP. ATP, UTP, or reduced extracellular pH elicited Ca2+ transients and inward currents (Erev −30 mV) in isolated cells. Capsaicin (5–30 μM) reduced membrane current (37 ± 12% of control) with minor effects on Ca2+ transients: sodium nitroprusside reduced membrane currents (40 ± 21% of control). Cell pair formation, without an increase in cell capacitance, augmented ATP and pH responses (180 ± 58% of control) and reduced the threshold to ATP and acidosis. Glivec (20–50 μM) reversibly blocked the augmentation and also reduced spontaneous activity in bladder sheets from SCT, but not normal, rats. Glivec also disrupted the spread of Ca2+ waves in SCT sheets, generating patterns similar to normal bladders. Suburothelial myofibroblasts respond to exogenous agents implicated in modulating bladder sensory responses; responses augmented by physical intercellular contact. The action of glivec and its selective suppression of spontaneous activity in SCT rats identifies a possible pathway to attenuate bladder overactivity.
Collapse
Affiliation(s)
- Gui-Ping Sui
- Postgraduate Medical School, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | | | | | | |
Collapse
|
89
|
Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci 2008; 15:675-85. [PMID: 18622762 DOI: 10.1007/s11373-008-9264-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 06/06/2008] [Indexed: 12/14/2022] Open
Abstract
Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.
Collapse
|
90
|
Ha VL, Bharti S, Inoue H, Vass WC, Campa F, Nie Z, de Gramont A, Ward Y, Randazzo PA. ASAP3 is a focal adhesion-associated Arf GAP that functions in cell migration and invasion. J Biol Chem 2008; 283:14915-26. [PMID: 18400762 DOI: 10.1074/jbc.m709717200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ASAP3, an Arf GTPase-activating protein previously called DDEFL1 and ACAP4, has been implicated in the pathogenesis of hepatocellular carcinoma. We have examined in vitro and in vivo functions of ASAP3 and compared it to the related Arf GAP ASAP1 that has also been implicated in oncogenesis. ASAP3 was biochemically similar to ASAP1: the pleckstrin homology domain affected function of the catalytic domain by more than 100-fold; catalysis was stimulated by phosphatidylinositol 4,5-bisphosphate; and Arf1, Arf5, and Arf6 were used as substrates in vitro. Like ASAP1, ASAP3 associated with focal adhesions and circular dorsal ruffles. Different than ASAP1, ASAP3 did not localize to invadopodia or podosomes. Cells, derived from a mammary carcinoma and from a glioblastoma, with reduced ASAP3 expression had fewer actin stress fiber, reduced levels of phosphomyosin, and migrated more slowly than control cells. Reducing ASAP3 expression also slowed invasion of mammary carcinoma cells. In contrast, reduction of ASAP1 expression had no effect on migration or invasion. We propose that ASAP3 functions nonredundantly with ASAP1 to control cell movement and may have a role in cancer cell invasion. In comparing ASAP1 and ASAP3, we also found that invadopodia are dispensable for the invasive behavior of cells derived from a mammary carcinoma.
Collapse
Affiliation(s)
- Vi Luan Ha
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Kuga T, Hoshino M, Nakayama Y, Kasahara K, Ikeda K, Obata Y, Takahashi A, Higashiyama Y, Fukumoto Y, Yamaguchi N. Role of Src-family kinases in formation of the cortical actin cap at the dorsal cell surface. Exp Cell Res 2008; 314:2040-54. [PMID: 18457834 DOI: 10.1016/j.yexcr.2008.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 02/23/2008] [Accepted: 03/29/2008] [Indexed: 10/22/2022]
Abstract
Protein-tyrosine phosphorylation is regulated by protein-tyrosine kinases and protein-tyrosine phosphatases (PTPs). Src-family tyrosine kinases (SFKs) participate in the regulation of the actin cytoskeleton. Actin filaments can be accumulated in a cap at the dorsal cell surface, which is called the cortical actin cap. Here, we show that SFKs play an important role in formation of the cortical actin cap. HeLa cells normally exhibit the cortical actin cap, one of the major sites of tyrosine phosphorylation. The cortical actin cap is disrupted by SFK inhibitors or overexpression of the Lyn SH3 domain. Csk-knockout cells form the cortical actin cap when the level of tyrosine phosphorylation is increased by Na(3)VO(4), a PTP inhibitor, and the formation of the cortical actin cap is inhibited by SFK inactivation with re-introduction of Csk. SYF cells lacking SFKs minimally exhibit the cortical actin cap even in the presence of Na(3)VO(4), and transfection with Lyn restores the cortical actin cap in the presence of Na(3)VO(4). Disruption of the cortical actin cap by dominant-negative Cdc42 causes loss of tyrosine phosphorylation at the cell top. These results suggest that SFK(s) is involved in formation of the cortical actin cap, which may serve as a platform of tyrosine phosphorylation signaling.
Collapse
Affiliation(s)
- Takahisa Kuga
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Wagner S, Storbeck CJ, Roovers K, Chaar ZY, Kolodziej P, McKay M, Sabourin LA. FAK/src-family dependent activation of the Ste20-like kinase SLK is required for microtubule-dependent focal adhesion turnover and cell migration. PLoS One 2008; 3:e1868. [PMID: 18382658 PMCID: PMC2270904 DOI: 10.1371/journal.pone.0001868] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 02/15/2008] [Indexed: 11/19/2022] Open
Abstract
Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal.
Collapse
Affiliation(s)
- Simona Wagner
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chris J. Storbeck
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Kristin Roovers
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Ziad Y. Chaar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Piotr Kolodziej
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Marlene McKay
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Luc A. Sabourin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
93
|
Penela P, Ribas C, Aymerich I, Eijkelkamp N, Barreiro O, Heijnen CJ, Kavelaars A, Sánchez-Madrid F, Mayor F. G protein-coupled receptor kinase 2 positively regulates epithelial cell migration. EMBO J 2008; 27:1206-18. [PMID: 18369319 DOI: 10.1038/emboj.2008.55] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 02/27/2008] [Indexed: 01/09/2023] Open
Abstract
Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS, Popescu NC. DLC-1:a Rho GTPase-activating protein and tumour suppressor. J Cell Mol Med 2008; 11:1185-207. [PMID: 17979893 PMCID: PMC4401278 DOI: 10.1111/j.1582-4934.2007.00098.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The deleted in liver cancer 1 (DLC-1) gene encodes a GTPase activating protein that acts as a negative regulator of the Rho family of small GTPases. Rho proteins transduce signals that influence cell morphology and physiology, and their aberrant up-regulation is a key factor in the neoplastic process, including metastasis. Since its discovery, compelling evidence has accumulated that demonstrates a role for DLC-1 as a bona fide tumour suppressor gene in different types of human cancer. Loss of DLC-1 expression mediated by genetic and epigenetic mechanisms has been associated with the development of many human cancers, and restoration of DLC-1 expression inhibited the growth of tumour cells in vivo and in vitro. Two closely related genes, DLC-2 and DLC-3, may also be tumour suppressors. This review presents the current status of progress in understanding the biological functions of DLC-1 and its relatives and their roles in neoplasia.
Collapse
Affiliation(s)
- Marian E Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Walder R, Levine AJ, Dennin M. Rheology of two-dimensional F-actin networks associated with a lipid interface. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:011909. [PMID: 18351878 DOI: 10.1103/physreve.77.011909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Indexed: 05/26/2023]
Abstract
We report on the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power-law fluid in which the effective viscosity decreases with imposed shear.
Collapse
Affiliation(s)
- Robert Walder
- Department of Physics & Astronomy, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
96
|
Disruption of FAK signaling: a side mechanism in cytotoxicity. Toxicology 2007; 245:1-10. [PMID: 18215454 DOI: 10.1016/j.tox.2007.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/21/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase (PTK) which acts as an early modulator in the integrin signaling cascade. FAK phosphorylation and its consequent activation regulate several basic biological cellular functions. On the contrary, dysregulation of FAK signaling is implicated in the malignant transformation of cells, as well as in nonmalignant pathological conditions. With respect to cytotoxicity, accumulating data indicate that FAK participates in the mechanism of action of the known cytotoxic reactive oxygen species (ROS). Additionally, evidence was presented that different cytotoxic substances, such as arsenic (As), lead (Pb), acrylamide, methylisothiazolinone (MIT), dichlorovinylcysteine (DCVC) and halothane, acted, at least in part, by downregulating FAK tyrosine phosphorylation, while the bacterial toxins Pasteurella multocida toxin and Escherichia coli cytotoxic necrotizing factor, have been shown to exert cytotoxic effects by inducing FAK tyrosine phosphorylation. The observation that upregulation as well as downregulation of FAK activity both result in cytotoxic effects seems contradictory. Even though a common mode of action, with respect to the dysregulation of FAK signaling, for these cytotoxic substances has not yet been discovered, a cumulative approach could be established by focusing on FAK activation and signaling cascade. According to these data, interfering with FAK signaling might be of a potential use in blocking these cytotoxic effects. Further studies are needed on the possible implication of FAK in substance-induced cytotoxicity, as well as the possibility that such effects might be hindered or even blocked by restoring FAK signaling.
Collapse
|
97
|
Giehl K, Graness A, Goppelt-Struebe M. The small GTPase Rac-1 is a regulator of mesangial cell morphology and thrombospondin-1 expression. Am J Physiol Renal Physiol 2007; 294:F407-13. [PMID: 18045834 DOI: 10.1152/ajprenal.00093.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thrombospondin-1 (TSP-1), which is synthesized by mesangial cells, is known for its anti-angiogenic activity and its ability to activate latent TGF-beta. TSP-1 is upregulated in renal diseases associated with tissue remodeling. Therefore, we hypothesized that the expression of TSP-1 might be modulated by changes in cell morphology involving proteins of the Rho family. Spreading of mesangial cells after detachment and reseeding was characterized by the formation of lamellipodia and focal adhesions, pointing toward a Rac-1-mediated rearrangement of actin structures. Clustering of focal adhesion proteins was also observed in a model system of nocodazole-induced disruption of microtubules. These morphological alterations were impeded by pharmacological inhibition of Src family kinases, of the small GTPase Rac-1, or by downregulation of Rac-1 by siRNA. Upon cell spreading, TSP-1 was upregulated in the absence and much more prominently in the presence of serum, but also after nocodazole treatment. TSP-1 upregulation was controlled by activation of Src family kinases, ERK 1/2 and Rac-1, whereas activation of RhoA-ROCK signaling was not linked to TSP-1 induction. We thus provide evidence that TSP-1 expression is induced by common signaling pathways, which are activated by morphological alterations of renal mesangial cells or by soluble factors as contained in serum, and these pathways include Src family kinases, ERK 1/2 and Rac-1. Our data suggest that tissue remodeling activates gene expression of pathophysiologically relevant proteins such as TSP-1.
Collapse
Affiliation(s)
- Klaudia Giehl
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | | |
Collapse
|
98
|
c-Src-mediated epithelial cell migration and invasion regulated by PDZ binding site. Mol Cell Biol 2007; 28:642-55. [PMID: 18039857 DOI: 10.1128/mcb.01024-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-Src tyrosine kinase controls proliferation, cell adhesion, and cell migration and is highly regulated. A novel regulatory mechanism to control c-Src function that has recently been identified involves the C-terminal amino acid sequence Gly-Glu-Asn-Leu (GENL) of c-Src as ligand for PDZ domains. Herein, we determined the biological relevance of this c-Src regulation in human breast epithelial cells. The intact GENL sequence maintained c-Src in an inactive state in starved cells and restricted c-Src functions that might lead to metastatic transformation under normal growth conditions. c-Src with a C-terminal Leu/Ala mutation in GENL (Src-A) promoted the activation and translocation of cortactin and focal adhesion kinase and increased the motility and persistence of cell migration on the basement membrane. Src-A promoted increased extracellular proteolytic activity, and in acinar cultures, it led to the escape of cells through the basement membrane into the surrounding matrix. We ascribe the regulatory function of C-terminal Leu to the role of GENL in modulating c-Src activity downstream of cell matrix adhesion. We propose that the C terminus of c-Src via its GENL sequence presents a mechanism that restricts c-Src in epithelia and prevents progression toward an invasive phenotype.
Collapse
|
99
|
Tzoneva R, Faucheux N, Groth T. Wettability of substrata controls cell–substrate and cell–cell adhesions. Biochim Biophys Acta Gen Subj 2007; 1770:1538-47. [PMID: 17804166 DOI: 10.1016/j.bbagen.2007.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/20/2007] [Indexed: 01/03/2023]
Abstract
The maintenance of endothelial cell (EC) monolayer architecture requires stable adhesions not only between neighboring cells but also between cells and the extracellular matrix. While the influence of biomaterials surface wettability on cell-substratum adhesion is rather well studied, its impact on cell-cell cohesion has not been extensively investigated. In the present study a model system consisting of hydrophilic and hydrophobic glass pre-coated with fibronectin and fibrinogen was used to study the influence of surface wettability on both types of cell adhesions. It was demonstrated that the substrate wettability controls the adhesion and cytoskeletal organization of endothelial cells, which has an impact on the subsequent ability of cells to establish stable cell-cell cohesions. These effects were related to the accessibility of specific domains of the adsorbed proteins. While the hydrophobic substratum promoted cell-cell cohesion, on hydrophilic substrata cell-substrate adhesion was dominant. In addition, evidence for an influence of surface wettability on the cross talk between integrins and cadherins was found.
Collapse
Affiliation(s)
- R Tzoneva
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 108, Sofia 1113, Bulgaria
| | | | | |
Collapse
|
100
|
Abstract
This review explores possible mechanisms by which the neurofibromatosis type-2 tumour suppressor Merlin regulates contact-dependent inhibition of proliferation. Starting from an evolutionary perspective, the concurrent emergence of intercellular contacts and proliferation control in multicellular organisms is first considered. Following a brief survey of the molecular and subcellular milieus in which merlin performs its function, the importance of different cellular and biological contexts in defining the function of merlin is discussed. Finally, an integrated model for merlin and the Ezrin, Radixin, and Moesin (ERM) proteins functioning in the regulation of cellular interfaces is proposed.
Collapse
|