51
|
Chia BS, Li B, Cui A, Eisenhaure T, Raychowdhury R, Lieb D, Hacohen N. Loss of the Nuclear Protein RTF2 Enhances Influenza Virus Replication. J Virol 2020; 94:e00319-20. [PMID: 32878895 PMCID: PMC7592231 DOI: 10.1128/jvi.00319-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
While hundreds of genes are induced by type I interferons, their roles in restricting the influenza virus life cycle remain mostly unknown. Using a loss-of-function CRISPR screen in cells prestimulated with interferon beta (IFN-β), we identified a small number of factors required for restricting influenza A virus replication. In addition to known components of the interferon signaling pathway, we found that replication termination factor 2 (RTF2) restricts influenza virus at the nuclear stage (and perhaps other stages) of the viral life cycle, based on several lines of evidence. First, a deficiency in RTF2 leads to higher levels of viral primary transcription, even in the presence of cycloheximide to block genome replication and secondary transcription. Second, cells that lack RTF2 have enhanced activity of a viral reporter that depends solely on four viral proteins that carry out replication and transcription in the nucleus. Third, when the RTF2 protein is mislocalized outside the nucleus, it is not able to restrict replication. Finally, the absence of RTF2 leads not only to enhanced viral transcription but also to reduced expression of antiviral factors in response to interferon. RTF2 thus inhibits primary influenza virus transcription, likely acts in the nucleus, and contributes to the upregulation of antiviral effectors in response to type I interferons.IMPORTANCE Viral infection triggers the secretion of type I interferons, which in turn induce the expression of hundreds of antiviral genes. However, the roles of these induced genes in controlling viral infections remain largely unknown, limiting our ability to develop host-based antiviral therapeutics against pathogenic viruses, such as influenza virus. Here, we performed a loss-of-function genetic CRISPR screen in cells prestimulated with type I interferon to identify antiviral genes that restrict influenza A virus replication. Besides finding key components of the interferon signaling pathway, we discovered a new restriction factor, RTF2, which acts in the nucleus, restricts influenza virus transcription, and contributes to the interferon-induced upregulation of known restriction factors. Our work contributes to the field of antiviral immunology by discovering and characterizing a novel restriction factor of influenza virus and may ultimately be useful for understanding how to control a virus that causes significant morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Bing Shao Chia
- Harvard University Virology Program, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Bo Li
- Harvard University Virology Program, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | | | - David Lieb
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nir Hacohen
- Harvard University Virology Program, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
52
|
Dong SXM, Caballero R, Ali H, Roy DLF, Cassol E, Kumar A. Transfection of hard-to-transfect primary human macrophages with Bax siRNA to reverse Resveratrol-induced apoptosis. RNA Biol 2020; 17:755-764. [PMID: 32050839 PMCID: PMC7577235 DOI: 10.1080/15476286.2020.1730081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Small interfering RNA (siRNA) is a critical loss-of-function tool for elucidating the role of genes in biomedical studies. The effective use of siRNA needs transfection technology that delivers siRNA into the correct location of target cells, especially those which are extremely difficult to transfect. Macrophages, which play an important role in the pathogenesis of many diseases, are known to be extremely hard to transfect. Thus, to elucidate the functions of genes in human macrophage biology, it is essential to devise technology for efficient siRNA transfection. However, a fast and efficient method for siRNA transfection in primary human macrophages has not been reported. The siRNA transfection is a tug-of-war between transfection rate and cytotoxicity. A higher transfection rate is generally accompanied with increased cytotoxicity, therefore, choosing a transfection reagent that limits cell death while maintain a desirable transfection rate is important. In this study, we employed auto-analysis function of the IncuCyte® to devise a fast and cost-saving technology for efficient transfection of adherent cells and particularly human macrophages. We show that DharmaFECT3 transfection reagent from Dharmacon was the most efficient in transfecting primary human monocyte-derived macrophages and PMA-differentiated U937 cells, whereas other transfection reagents tested were cytotoxic. This method exhibited approximately 85% transfection efficiency in human macrophages. Moreover, siRNA silencing of Bax with this technique effectively protected primary human macrophages and PMA-differentiated U937 cells against Resveratrol-induced cell death. In addition, this method inherently takes the balance between transfection rate and cytotoxicity of siRNA transfection reagents into consideration.
Collapse
Affiliation(s)
- Simon Xin Min Dong
- Apoptosis Research Center of Children’s Hospital of Eastern Ontario, Department of Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Ramon Caballero
- Apoptosis Research Center of Children’s Hospital of Eastern Ontario, Department of Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Hamza Ali
- Apoptosis Research Center of Children’s Hospital of Eastern Ontario, Department of Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Ashok Kumar
- Apoptosis Research Center of Children’s Hospital of Eastern Ontario, Department of Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
53
|
Antiviral Activity and Adaptive Evolution of Avian Tetherins. J Virol 2020; 94:JVI.00416-20. [PMID: 32238588 DOI: 10.1128/jvi.00416-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Tetherin/BST-2 is an antiviral protein that blocks the release of enveloped viral particles by linking them to the membrane of producing cells. At first, BST-2 genes were described only in humans and other mammals. Recent work identified BST-2 orthologs in nonmammalian vertebrates, including birds. Here, we identify the BST-2 sequence in domestic chicken (Gallus gallus) for the first time and demonstrate its activity against avian sarcoma and leukosis virus (ASLV). We generated a BST-2 knockout in chicken cells and showed that BST-2 is a major determinant of an interferon-induced block of ASLV release. Ectopic expression of chicken BST-2 blocks the release of ASLV in chicken cells and of human immunodeficiency virus type 1 (HIV-1) in human cells. Using metabolic labeling and pulse-chase analysis of HIV-1 Gag proteins, we verified that chicken BST-2 blocks the virus at the release stage. Furthermore, we describe BST-2 orthologs in multiple avian species from 12 avian orders. Previously, some of these species were reported to lack BST-2, highlighting the difficulty of identifying sequences of this extremely variable gene. We analyzed BST-2 genes in the avian orders Galliformes and Passeriformes and showed that they evolve under positive selection. This indicates that avian BST-2 is involved in host-virus evolutionary arms races and suggests that BST-2 antagonists exist in some avian viruses. In summary, we show that chicken BST-2 has the potential to act as a restriction factor against ASLV. Characterizing the interaction of avian BST-2 with avian viruses is important in understanding innate antiviral defenses in birds.IMPORTANCE Birds are important hosts of viruses that have the potential to cause zoonotic infections in humans. However, only a few antiviral genes (called viral restriction factors) have been described in birds, mostly because birds lack counterparts of highly studied mammalian restriction factors. Tetherin/BST-2 is a restriction factor, originally described in humans, that blocks the release of newly formed virus particles from infected cells. Recent work identified BST-2 in nonmammalian vertebrate species, including birds. Here, we report the BST-2 sequence in domestic chicken and describe its antiviral activity against a prototypical avian retrovirus, avian sarcoma and leukosis virus (ASLV). We also identify BST-2 genes in multiple avian species and show that they evolve rapidly in birds, which is an important indication of their relevance for antiviral defense. Analysis of avian BST-2 genes will shed light on defense mechanisms against avian viral pathogens.
Collapse
|
54
|
Li S, Li L, Zhu H, Shi M, Fan H, Gao Y, Wang X, Jiang P, Bai J. Cholesterol 25-hydroxylase inhibits encephalomyocarditis virus replication through enzyme activity-dependent and independent mechanisms. Vet Microbiol 2020; 245:108658. [PMID: 32456829 DOI: 10.1016/j.vetmic.2020.108658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022]
Abstract
Cholesterol-25-hydroxylase (CH25 H) is a reticulum-associated membrane protein induced by an important interferon-stimulating gene (ISG) and can significantly inhibit some virus replication. But the effect of CH25H on encephalomyocarditis virus (EMCV) is still not clear. In this study, we found that EMCV infection increases significantly the endogenous CH25H expression in BHK-21 and N2a cells. CH25H and cholesterol catalytic oxidation product 25-hydroxycholesterol (25HC) obviously inhibits EMCV infection by inhibiting the viral penetration. But the CH25H mutant lacking hydroxylase activity repairs the ability to inhibit the viral replication. Meanwhile, β-cyclodextrin crystalline as a cholesterol inhibitor significantly decreases the viral replication. In addition, CH25H can selectively interact and degrade the viral RNA-Dependent RNA Polymerase-3D protein by independent on the association of proteasome, lysosome and caspase manner. It provides new insights into the interplay mechanisms between CH25H and non-enveloped single-stranded positive RNA viruses.
Collapse
Affiliation(s)
- Shihai Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixin Zhu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyu Shi
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - YanNi Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - XianWei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
55
|
Aiello A, Giannessi F, Percario ZA, Affabris E. An emerging interplay between extracellular vesicles and cytokines. Cytokine Growth Factor Rev 2019; 51:49-60. [PMID: 31874738 DOI: 10.1016/j.cytogfr.2019.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are small membrane-bound particles that are naturally released from cells. They are recognized as potent vehicles of intercellular communication both in prokaryotes and eukaryotes. Because of their capacity to carry biological macromolecules such as proteins, lipids and nucleic acids, EVs influence different physiological and pathological functions of both parental and recipient cells. Although multiple pathways have been proposed for cytokine secretion beyond the classical ER/Golgi route, EVs have recently recognized as an alternative secretory mechanism. Interestingly, cytokines/chemokines exploit these vesicles to be released into the extracellular milieu, and also appear to modulate their release, trafficking and/or content. In this review, we provide an overview of the cytokines/chemokines that are known to be associated with EVs or their regulation with a focus on TNFα, IL-1β and IFNs.
Collapse
|
56
|
Miyazato P, Matsuo M, Tan BJY, Tokunaga M, Katsuya H, Islam S, Ito J, Murakawa Y, Satou Y. HTLV-1 contains a high CG dinucleotide content and is susceptible to the host antiviral protein ZAP. Retrovirology 2019; 16:38. [PMID: 31842935 PMCID: PMC6915898 DOI: 10.1186/s12977-019-0500-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Background Human T cell leukaemia virus type 1 (HTLV-1) is a retrovirus associated with human diseases such as adult T-cell leukaemia/lymphoma and HTLV-1 associated myelopathy/tropical spastic paraparesis. In contrast to another human retrovirus, human immunodeficiency virus type 1 (HIV-1), HTLV-1 persists in the host not via vigorous virus production but mainly via proliferation and/or long-term survival in the form of silent proviruses in infected host cells. As a result, HTLV-1-infected cells rarely produce virus particles in vivo even without anti-retroviral treatment. That should be an advantage for the virus to escape from the host immune surveillance by minimizing the expression of viral antigens in host cells. However, why HIV-1 and HTLV-1 behave so differently during natural infection is not fully understood. Results We performed cap analysis of gene expression (CAGE) using total RNAs and nascent, chromatin-associated, RNAs in the nucleus and found that HTLV-1 RNAs were processed post-transcriptionally in infected cells. RNA processing was evident for the sense viral transcripts but not the anti-sense ones. We also found a higher proportion of CG di-nucleotides in proviral sequences of HTLV-1-infected cells, when compared to the HIV-1 genomic sequence. It has been reported recently that CG dinucleotide content of viral sequence is associated with susceptibility to the antiviral ZC3HAV1 (ZAP), suggesting the involvement of this protein in the regulation of HTLV-1 transcripts. To analyse the effect of ZAP on HTLV-1 transcripts, we over-expressed it in HTLV-1-infected cells. We found there was a dose-dependent reduction in virus production with ZAP expression. We further knocked down endogenous ZAP with two independent targeting siRNAs and observed a significant increase in virus production in the culture supernatant. Other delta-type retroviruses such as simian T-cell leukaemia virus and bovine leukaemia virus, also contain high CG-dinucleotide contents in their viral genomes, suggesting that ZAP-mediated suppression of viral transcripts might be a common feature of delta-type retroviruses, which cause minimal viremia in their natural hosts. Conclusions The post-transcriptional regulatory mechanism involving ZAP might allow HTLV-1 to maintain a delicate balance required for prolonged survival in infected individuals.
Collapse
Affiliation(s)
- Paola Miyazato
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Benjy J Y Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Michiyo Tokunaga
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hiroo Katsuya
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Saiful Islam
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan. .,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
57
|
Michalski D, Ontiveros JG, Russo J, Charley PA, Anderson JR, Heck AM, Geiss BJ, Wilusz J. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem 2019; 294:16282-16296. [PMID: 31519749 DOI: 10.1074/jbc.ra119.009129] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Insect-borne flaviviruses produce a 300-500-base long noncoding RNA, termed subgenomic flavivirus RNA (sfRNA), by stalling the cellular 5'-3'-exoribonuclease 1 (XRN1) via structures located in their 3' UTRs. In this study, we demonstrate that sfRNA production by Zika virus represses XRN1 analogous to what we have previously shown for other flaviviruses. Using protein-RNA reconstitution and a stringent RNA pulldown assay with human choriocarcinoma (JAR) cells, we demonstrate that the sfRNAs from both dengue type 2 and Zika viruses interact with a common set of 21 RNA-binding proteins that contribute to the regulation of post-transcriptional processes in the cell, including splicing, RNA stability, and translation. We found that four of these sfRNA-interacting host proteins, DEAD-box helicase 6 (DDX6) and enhancer of mRNA decapping 3 (EDC3) (two RNA decay factors), phosphorylated adaptor for RNA export (a regulator of the biogenesis of the splicing machinery), and apolipoprotein B mRNA-editing enzyme catalytic subunit 3C (APOBEC3C, a nucleic acid-editing deaminase), inherently restrict Zika virus infection. Furthermore, we demonstrate that the regulations of cellular mRNA decay and RNA splicing are compromised by Zika virus infection as well as by sfRNA alone. Collectively, these results reveal the large extent to which Zika virus-derived sfRNAs interact with cellular RNA-binding proteins and highlight the potential for widespread dysregulation of post-transcriptional control that likely limits the effective response of these cells to viral infection.
Collapse
Affiliation(s)
- Daniel Michalski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - J Gustavo Ontiveros
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Phillida A Charley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Adam M Heck
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523 .,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
58
|
Brown WL, Law EK, Argyris PP, Carpenter MA, Levin-Klein R, Ranum AN, Molan AM, Forster CL, Anderson BD, Lackey L, Harris RS. A Rabbit Monoclonal Antibody against the Antiviral and Cancer Genomic DNA Mutating Enzyme APOBEC3B. Antibodies (Basel) 2019; 8:antib8030047. [PMID: 31544853 PMCID: PMC6783943 DOI: 10.3390/antib8030047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
The DNA cytosine deaminase APOBEC3B (A3B) is normally an antiviral factor in the innate immune response. However, A3B has been implicated in cancer mutagenesis, particularly in solid tumors of the bladder, breast, cervix, head/neck, and lung. Here, we report data on the generation and characterization of a rabbit monoclonal antibody (mAb) for human A3B. One mAb, 5210-87-13, demonstrates utility in multiple applications, including ELISA, immunoblot, immunofluorescence microscopy, and immunohistochemistry. In head-to-head tests with commercial reagents, 5210-87-13 was the only rabbit monoclonal suitable for detecting native A3B and for immunohistochemical quantification of A3B in tumor tissues. This novel mAb has the potential to enable a wide range of fundamental and clinical studies on A3B in human biology and disease.
Collapse
Affiliation(s)
- William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rena Levin-Klein
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alison N Ranum
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy M Molan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen L Forster
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brett D Anderson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lela Lackey
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
59
|
The KT Jeang Prize 2019: Reuben S. Harris : Romancing the Mutator. Retrovirology 2019; 16:24. [PMID: 31462326 PMCID: PMC6714304 DOI: 10.1186/s12977-019-0486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
60
|
Abstract
In the absence of an intact interferon (IFN) response, mammals may be susceptible to lethal viral infection. IFNs are secreted cytokines that activate a signal transduction cascade leading to the induction of hundreds of interferon-stimulated genes (ISGs). Remarkably, approximately 10% of the genes in the human genome have the potential to be regulated by IFNs. What do all of these genes do? It is a complex question without a simple answer. From decades of research, we know that many of the protein products encoded by these ISGs work alone or in concert to achieve one or more cellular outcomes, including antiviral defense, antiproliferative activities, and stimulation of adaptive immunity. The focus of this review is the antiviral activities of the IFN/ISG system. This includes general paradigms of ISG function, supported by specific examples in the literature, as well as methodologies to identify and characterize ISG function.
Collapse
Affiliation(s)
- John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
61
|
Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Front Cell Infect Microbiol 2019; 9:69. [PMID: 30968001 PMCID: PMC6439341 DOI: 10.3389/fcimb.2019.00069] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the fact that great efforts have been made in the prevention and therapy of HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. Highly active antiretroviral therapy (HAART) can suppress virus replication, but it cannot eradicate latent viral reservoirs in HIV-1/AIDS patients. Recently, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system has been engineered as an effective gene-editing technology with the potential to treat HIV-1/AIDS. It can be used to target cellular co-factors or HIV-1 genome to reduce HIV-1 infection and clear the provirus, as well as to induce transcriptional activation of latent virus in latent viral reservoirs for elimination. This versatile gene editing technology has been successfully applied to HIV-1/AIDS prevention and reduction in human cells and animal models. Here, we update the rapid progress of CRISPR/Cas9-based HIV-1/AIDS therapy research in recent years and discuss the limitations and future perspectives of its application.
Collapse
Affiliation(s)
- Qiaoqiao Xiao
- School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China.,Laboratory of Medical Virology, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Deyin Guo
- Laboratory of Medical Virology, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuliang Chen
- School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China.,Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH, United States
| |
Collapse
|
62
|
Langer S, Hammer C, Hopfensperger K, Klein L, Hotter D, De Jesus PD, Herbert KM, Pache L, Smith N, van der Merwe JA, Chanda SK, Fellay J, Kirchhoff F, Sauter D. HIV-1 Vpu is a potent transcriptional suppressor of NF-κB-elicited antiviral immune responses. eLife 2019; 8:41930. [PMID: 30717826 PMCID: PMC6372280 DOI: 10.7554/elife.41930] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/26/2019] [Indexed: 12/11/2022] Open
Abstract
Many viral pathogens target innate sensing cascades and/or cellular transcription factors to suppress antiviral immune responses. Here, we show that the accessory viral protein U (Vpu) of HIV-1 exerts broad immunosuppressive effects by inhibiting activation of the transcription factor NF-κB. Global transcriptional profiling of infected CD4 +T cells revealed that vpu-deficient HIV-1 strains induce substantially stronger immune responses than the respective wild type viruses. Gene set enrichment analyses and cytokine arrays showed that Vpu suppresses the expression of NF-κB targets including interferons and restriction factors. Mutational analyses demonstrated that this immunosuppressive activity of Vpu is independent of its ability to counteract the restriction factor and innate sensor tetherin. However, Vpu-mediated inhibition of immune activation required an arginine residue in the cytoplasmic domain that is critical for blocking NF-κB signaling downstream of tetherin. In summary, our findings demonstrate that HIV-1 Vpu potently suppresses NF-κB-elicited antiviral immune responses at the transcriptional level. The Human Immunodeficiency Virus (or HIV for short) has infected more than 70 million people worldwide. Although effective therapies exist to prevent the replication of the virus and the development to AIDS, there is no cure or vaccine, and the virus still spreads efficiently in human populations, infecting about 1.8 million new people every year. The unfortunate success of HIV can in part be explained by several viral proteins that trick our immune system and enable the virus to persist at high levels in the human body. For example, an HIV protein called viral protein U (Vpu) prevents infected cells from producing alarm signals such as interferons, which usually help healthy, uninfected cells to defend themselves against viruses. However, the extent to which Vpu interferes with interferons and other proteins involved in immune responses has remained unclear. To address this question, Langer, Hammer, Hopfensperger et al. compared how different variants of HIV affect immune responses in human cells. The experiments showed that cells infected with HIV variants lacking Vpu released larger amounts of interferons and other cellular proteins that are involved in immune responses compared to HIV variants with Vpu. Further experiments showed that Vpu works by inhibiting the activation of a protein called NF-κB, which usually switches on genes that encode interferons and many other proteins involved in immune responses. These findings demonstrate that Vpu has a broader impact on the human immune response than previously thought. In order to multiply efficiently, HIV initially requires the NF-κB protein to be active. Therefore, when NF-κB is inactive, HIV may adopt a dormant state that prevents current antiviral drug treatments from eradicating the virus in the human body. In the future, developing new drugs that can activate dormant HIV particles may therefore have the potential to help cure HIV infections.
Collapse
Affiliation(s)
- Simon Langer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Christian Hammer
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Lukas Klein
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Paul D De Jesus
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Kristina M Herbert
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Nikaïa Smith
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Sumit K Chanda
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|