51
|
Castro I, Ekinci E, Huang X, Cheaito HA, Ahn YH, Olivero-Verbel J, Dou QP. Proteasome-associated cysteine deubiquitinases are molecular targets of environmental optical brightener compounds. J Cell Biochem 2019; 120:14065-14075. [PMID: 30963630 DOI: 10.1002/jcb.28682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 11/06/2022]
Abstract
The levels of organic pollutants, such as optical brightener (OB) compounds, in the global environment have been increasing in recent years. The toxicological effects and signal transduction systems associated with OB toxicity have not been thoroughly studied. The ubiquitin-proteasome system (UPS) plays a crucial role in regulating multiple essential cellular processes, and proteasome-associated cysteine deubiquitinases (DUBs), ubiquitin C-terminal hydrolase L5 (UCHL5) and USP14, are two major regulators for (de)ubiquitination and stability of many important target proteins. Therefore, potential inhibition of UCHL5 and USP14 activities by some environmental chemicals might cause in vivo toxicity. In the current study we hypothesize that electrophilic OB compounds, such as 4,4'-diamino-2,2'-stilbenedisulfonic acid(DAST), fluorescent brightener 28 (FB-28) and FB-71, can interact with the catalytic triads (CYS, HIS, and ASP) of UCHL5 and USP14 and inhibit their enzymatic activities, leading to cell growth suppression. This hypothesis is supported by our findings presented in this study. Results from in silico computational docking and ubiquitin vinyl sulfone assay confirmed the UCHL5/USP14-inhibitory activities of these OB compounds that have potencies in an order of: FB-71 > FB-28 > DAST. Furthermore, inhibition of these two proteasomal DUBs by OBs resulted in cell growth inhibition and apoptosis induction in two human breast cancer cell models. In addition, we found that OB-mediated DUB inhibition triggers a feedback reaction in which expression of UCHL5 and USP14 proteins is increased to compromise the suppressed activities. Our study suggests that these commonly used OB compounds may target and inhibit proteasomal cysteine DUBs, which should contribute to their toxicological effects in vivo.
Collapse
Affiliation(s)
- Isel Castro
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan.,Environmental and Computational Chemistry Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Campus of Zaragocilla, Cartagena, Colombia
| | - Elmira Ekinci
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| | - Xuemei Huang
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| | - Hassan Ali Cheaito
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Campus of Zaragocilla, Cartagena, Colombia
| | - Q Ping Dou
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
52
|
Golonko A, Pienkowski T, Swislocka R, Lazny R, Roszko M, Lewandowski W. Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system. Eur J Med Chem 2019; 167:291-311. [PMID: 30776692 DOI: 10.1016/j.ejmech.2019.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/26/2022]
Abstract
Inhibitors of the ubiquitin-proteasome system (UPS) have been the object of research interests for many years because of their potential as anti-cancer agents. Research in this field is aimed at improving the specificity and safety of known proteasome inhibitors. Unfortunately, in vitro conditions do not reflect the processes taking place in the human body. Recent reports indicate that the components of human plasma affect the course of many signaling pathways, proteasome activity and the effectiveness of synthetic cytostatic drugs. Therefore, it is believed that the key issue is to determine the effects of components of the human diet, including effects of chemically active polyphenols on the ubiquitin-proteasome system activity in both physiological and pathological (cancerous) states. The following article summarizes the current knowledge on the direct and indirect synergistic and antagonistic effects between polyphenolic compounds present in the human diet and the efficiency of protein degradation via the UPS.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Tomasz Pienkowski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Department of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Renata Swislocka
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Department of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Ryszard Lazny
- Institut of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Marek Roszko
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Wlodzimierz Lewandowski
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532, Warsaw, Poland.
| |
Collapse
|
53
|
Lin Y, Kong F, Li Y, Wang Y, Song L, Zhao C. The tumor suppressor OVCA1 is a short half-life protein degraded by the ubiquitin-proteasome pathway. Oncol Lett 2019; 17:2328-2334. [PMID: 30675298 PMCID: PMC6341780 DOI: 10.3892/ol.2018.9852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer gene 1 (OVCA1) is a tumor suppressor associated with ovarian cancer, which is involved in cell proliferation regulation, embryonic development and tumorigenesis. Loss of heterozygosity in the OVCA1 gene occurs in 50-86% of cases of ovarian cancer; however, the physiological and biochemical functions of OVCA1 are not yet clear. In the present study, the stability and degradation of OVCA1 were investigated in A2780, Hela and 293 cells. The results revealed that the OVCA1 protein was unstable by MG132 inhibiting proteasome mediated degradation, co-immunoprecipitation and half-life measurement experiments. The cellular protein levels of endogenous OVCA1 were too low to be detected by western blotting. In addition, carbobenzoxy-L-leucyl-L-leucyl-L-leucinal inhibited the degradation of OVCA1 in cells. The co-immunoprecipitation assay revealed that the OVCA1 protein interacted with ubiquitin to form a poly-ubiquitinated complex in cells. The half-life of OVCA1, measured by inhibiting protein synthesis with cycloheximide, was <2 h. The present study demonstrated that OVCA1 may be degraded by the ubiquitin-mediated proteasome pathway and may be considered a short half-life protein. In conclusion, the regulation of OVCA1 protein degradation via the ubiquitin-proteasome pathway may represent a novel direction in the development of ovarian cancer therapy.
Collapse
Affiliation(s)
- Yingwei Lin
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yan Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yinghui Wang
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ling Song
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Chunyan Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
54
|
Nishimura Y, Kasahara K, Shiromizu T, Watanabe M, Inagaki M. Primary Cilia as Signaling Hubs in Health and Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801138. [PMID: 30643718 PMCID: PMC6325590 DOI: 10.1002/advs.201801138] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Indexed: 05/13/2023]
Abstract
Primary cilia detect extracellular cues and transduce these signals into cells to regulate proliferation, migration, and differentiation. Here, the function of primary cilia as signaling hubs of growth factors and morphogens is in focus. First, the molecular mechanisms regulating the assembly and disassembly of primary cilia are described. Then, the role of primary cilia in mediating growth factor and morphogen signaling to maintain human health and the potential mechanisms by which defects in these pathways contribute to human diseases, such as ciliopathy, obesity, and cancer are described. Furthermore, a novel signaling pathway by which certain growth factors stimulate cell proliferation through suppression of ciliogenesis is also described, suggesting novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Kousuke Kasahara
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Takashi Shiromizu
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masatoshi Watanabe
- Department of Oncologic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masaki Inagaki
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| |
Collapse
|
55
|
Yang M, Wan Q, Hu X, Yin H, Hao D, Wu C, Li J. Coexpression modules constructed by weighted gene co-expression network analysis indicate ubiquitin-mediated proteolysis as a potential biomarker of uveal melanoma. Exp Ther Med 2018; 17:237-243. [PMID: 30651788 PMCID: PMC6307452 DOI: 10.3892/etm.2018.6945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
Uveal melanoma (UM) is a tumor that affects individuals throughout the world. Although gene expression analysis of UM has been performed previously, systemic co-expression analysis for this type of cancer remains lacking. Microarray data of UM samples was obtained from the Genome Expression Omnibus (dataset GSE44295). Co-expression modules were built by weighted gene co-expression network analysis. Functional enrichment analysis was performed on the co-expressed genes from important modules. Seven co-expression modules were constructed from the 5,000 genes gathered from the 58 human UM samples. The number of genes in these modules ranged from 73 to 3,051, with the mean number being 711. There was a marked difference in interactions among pairwise modules. Functional enrichment analysis demonstrated that module 2 was mainly enriched in pathways associated with the regulation of transcription. Additionally, modules 2–4 were significantly enriched in the ubiquitin mediated proteolysis pathway, suggesting it could serve a critical role in the occurrence and development of UM. The findings of the present study present a framework of co-expressed gene modules for human UM and provide an improved understanding of these modules at a functional level. Understanding the molecular mechanism and cellular pathways involved in pathogenesis of UM is extremely important for the development of more effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Meng Yang
- Department of Dermatology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China
| | - Qi Wan
- Department of Ophthalmology, The People's Hospital of Leshan, Leshan, Sichuan 614000, P.R. China
| | - Xiang Hu
- Department of Radiotherapy, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Xuzhou Hospital Affiliated to The Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Xuzhou Clinical School, Xuzhou Medical College, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221009, P.R. China
| | - Haitao Yin
- Department of Radiotherapy, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Xuzhou Hospital Affiliated to The Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Xuzhou Clinical School, Xuzhou Medical College, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221009, P.R. China
| | - Dawei Hao
- Department of Radiotherapy, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Xuzhou Hospital Affiliated to The Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Xuzhou Clinical School, Xuzhou Medical College, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221009, P.R. China
| | - Chengjun Wu
- Department of Radiotherapy, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Xuzhou Hospital Affiliated to The Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Xuzhou Clinical School, Xuzhou Medical College, Xuzhou, Jiangsu 221009, P.R. China.,Department of Radiotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221009, P.R. China
| | - Jianmin Li
- Department of Dermatology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China
| |
Collapse
|
56
|
Gastric Cancer Cell Lines Have Different MYC-Regulated Expression Patterns but Share a Common Core of Altered Genes. Can J Gastroenterol Hepatol 2018; 2018:5804376. [PMID: 30410872 PMCID: PMC6206580 DOI: 10.1155/2018/5804376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022] Open
Abstract
MYC is an oncogene responsible for excessive cell growth in cancer, enabling transcriptional activation of genes involved in cell cycle regulation, metabolism, and apoptosis, and is usually overexpressed in gastric cancer (GC). By using siRNA and Next-Generation Sequencing (NGS), we identified MYC-regulated differentially expressed Genes (DEGs) in three Brazilian gastric cancer cell lines representing the histological subtypes of GC (diffuse, intestinal, and metastasis). The DEGs were picked using Sailfish software, followed by Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using KEGG. We found 11 significantly enriched gene sets by using enrichment score (ES), False Discovery Rate (FDR), and nominal P-values. We identified a total of 5.471 DEGs with correlation over (80%). In diffuse-type and in metastatic GC cell lines, MYC-silencing caused DEGs downregulation, while the intestinal-type GC cells presented overall DEGs upregulation after MYC siRNA depletion. We were able to detect 11 significant gene sets when comparing our samples to the hallmark collection of gene expression, enriched mostly for the following hallmarks: proliferation, pathway, signaling, metabolic, and DNA damage response. When we analyzed our DEGs considering KEGG metabolic pathways, we found 12 common branches covering a wide range of biological functions, and three of them were common to all three cell lines: ubiquitin-mediated proteolysis, ribosomes, and system and epithelial cell signaling in Helicobacter pylori infection. The GC cell lines used in this study share 14 MYC-regulated genes, but their gene expression profile is different for each histological subtype of GC. Our results present a computational analysis of MYC-related signatures in GC, and we present evidence that GC cell lines representing distinct histological subtypes of this disease have different MYC-regulated expression profiles but share a common core of altered genes. This is an important step towards the understanding of MYC's role in gastric carcinogenesis and an indication of probable new drug targets in stomach cancer.
Collapse
|
57
|
Derenzini E, Mondello P, Erazo T, Portelinha A, Liu Y, Scallion M, Asgari Z, Philip J, Hilden P, Valli D, Rossi A, Djaballah H, Ouerfelli O, de Stanchina E, Seshan VE, Hendrickson RC, Younes A. BET Inhibition-Induced GSK3β Feedback Enhances Lymphoma Vulnerability to PI3K Inhibitors. Cell Rep 2018; 24:2155-2166. [PMID: 30134175 PMCID: PMC7456333 DOI: 10.1016/j.celrep.2018.07.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
The phosphatidylinositol 3 kinase (PI3K)-glycogen synthase kinase β (GSK3β) axis plays a central role in MYC-driven lymphomagenesis, and MYC targeting with bromodomain and extraterminal protein family inhibitors (BETi) is a promising treatment strategy in lymphoma. In a high-throughput combinatorial drug screening experiment, BETi enhance the antiproliferative effects of PI3K inhibitors in a panel of diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma cell lines. BETi or MYC silencing upregulates several PI3K pathway genes and induces GSK3β S9 inhibitory phosphorylation, resulting in increased β-catenin protein abundance. Furthermore, BETi or MYC silencing increases GSK3β S9 phosphorylation levels and β-catenin protein abundance through downregulating the E2 ubiquitin conjugating enzymes UBE2C and UBE2T. In a mouse xenograft DLBCL model, BETi decrease MYC, UBE2C, and UBE2T and increase phospho-GSK3β S9 levels, enhancing the anti-proliferative effect of PI3K inhibitors. Our study reveals prosurvival feedbacks induced by BETi involving GSK3β regulation, providing a mechanistic rationale for combination strategies.
Collapse
Affiliation(s)
- Enrico Derenzini
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Oncohematology Unit, European Institute of Oncology, Milan, Italy
| | - Patrizia Mondello
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tatiana Erazo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Portelinha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuxuan Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary Scallion
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zahra Asgari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Philip
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick Hilden
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Debora Valli
- Oncohematology Unit, European Institute of Oncology, Milan, Italy
| | - Alessandra Rossi
- Oncohematology Unit, European Institute of Oncology, Milan, Italy
| | - Hakim Djaballah
- High-Throughput Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
58
|
Nabavi SF, Atanasov AG, Khan H, Barreca D, Trombetta D, Testai L, Sureda A, Tejada S, Vacca RA, Pittalà V, Gulei D, Berindan-Neagoe I, Shirooie S, Nabavi SM. Targeting ubiquitin-proteasome pathway by natural, in particular polyphenols, anticancer agents: Lessons learned from clinical trials. Cancer Lett 2018; 434:101-113. [PMID: 30030139 DOI: 10.1016/j.canlet.2018.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is the main non-lysosomal proteolytic system responsible for degradation of most intracellular proteins, specifically damaged and regulatory proteins. The UPP is implicated in all aspects of the cellular metabolic networks including physiological or pathological conditions. Alterations in the components of the UPP can lead to stabilization of oncoproteins or augmented degradation of tumour suppressor favouring cancer appearance and progression. Polyphenols are natural compounds that can modulate proteasome activity or the expression of proteasome subunits. All together and due to the pleiotropic functions of UPP, there is a great interest in this proteasome system as a promising therapeutic target for the development of novel anti-cancer drugs. In the present review, the main features of the UPP and its implication in cancer development and progression are described, highlighting the importance of bioactive polyphenols that target the UPP as potential anti-cancer agents.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Center of Nutrafood, University of Pisa, Pisa, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands, Ctra. Valldemossa, Km 7,5, Ed, Guillem Colom, 07122, Balearic Islands, Spain
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Italian National Council of Research, Bari, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34 Street, 400015, Cluj-Napoca, Romania
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
59
|
Wade BE, Zhao J, Ma J, Hart CM, Sutliff RL. Hypoxia-induced alterations in the lung ubiquitin proteasome system during pulmonary hypertension pathogenesis. Pulm Circ 2018; 8:2045894018788267. [PMID: 29927354 PMCID: PMC6146334 DOI: 10.1177/2045894018788267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pulmonary hypertension (PH) is a clinical disorder characterized by sustained
increases in pulmonary vascular resistance and pressure that can lead to right
ventricular (RV) hypertrophy and ultimately RV failure and death. The molecular
pathogenesis of PH remains incompletely defined, and existing treatments are
associated with suboptimal outcomes and persistent morbidity and mortality.
Reports have suggested a role for the ubiquitin proteasome system (UPS) in PH,
but the extent of UPS-mediated non-proteolytic protein alterations during PH
pathogenesis has not been previously defined. To further examine UPS
alterations, the current study employed C57BL/6J mice exposed to normoxia or
hypoxia for 3 weeks. Lung protein ubiquitination was evaluated by mass
spectrometry to identify differentially ubiquitinated proteins relative to
normoxic controls. Hypoxia stimulated differential ubiquitination of 198
peptides within 131 proteins (p < 0.05). These proteins were
screened to identify candidates within pathways involved in PH pathogenesis.
Some 51.9% of the differentially ubiquitinated proteins were implicated in at
least one known pathway contributing to PH pathogenesis, and 13% were involved
in three or more PH pathways. Anxa2, App, Jak1, Lmna, Pdcd6ip, Prkch1, and Ywhah
were identified as mediators in PH pathways that undergo differential
ubiquitination during PH pathogenesis. To our knowledge, this is the first study
to report global changes in protein ubiquitination in the lung during PH
pathogenesis. These findings suggest signaling nodes that are dynamically
regulated by the UPS during PH pathogenesis. Further exploration of these
differentially ubiquitinated proteins and related pathways can provide new
insights into the role of the UPS in PH pathogenesis.
Collapse
Affiliation(s)
- Brandy E Wade
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - Jingru Zhao
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - Jing Ma
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - C Michael Hart
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| |
Collapse
|
60
|
Nguyen TH, Kugler JM. Ubiquitin-Dependent Regulation of the Mammalian Hippo Pathway: Therapeutic Implications for Cancer. Cancers (Basel) 2018; 10:cancers10040121. [PMID: 29673168 PMCID: PMC5923376 DOI: 10.3390/cancers10040121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway serves as a key barrier for oncogenic transformation. It acts by limiting the activity of the proto-oncogenes YAP and TAZ. Reduced Hippo signaling and elevated YAP/TAZ activities are frequently observed in various types of tumors. Emerging evidence suggests that the ubiquitin system plays an important role in regulating Hippo pathway activity. Deregulation of ubiquitin ligases and of deubiquitinating enzymes has been implicated in increased YAP/TAZ activity in cancer. In this article, we review recent insights into the ubiquitin-mediated regulation of the mammalian Hippo pathway, its deregulation in cancer, and possibilities for targeting the Hippo pathway through the ubiquitin system.
Collapse
Affiliation(s)
- Thanh Hung Nguyen
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Jan-Michael Kugler
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
61
|
Zheng H, Ke X, Li D, Wang Q, Wang J, Liu X, Deng M, Deng X, Xue Y, Zhu Y, Wang Q. NEDD4 promotes cell growth and motility in hepatocellular carcinoma. Cell Cycle 2018; 17:728-738. [PMID: 29480061 DOI: 10.1080/15384101.2018.1440879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. In China, the situation is even worse as cancer incidence and mortality continue to increase rapidly. Although tremendous progress has been made toward HCC treatments, the benefits for liver cancer patients are still limited. Therefore, it is necessary to identify and develop novel therapeutic methods. Neuronally expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, plays a critical role in the development and progression of various types of human cancers. In our study, NEDD4 acts as an oncoprotein in both QGY7703 and SMMC7721 liver cancer cell lines. We found that depletion of NEDD4 by siRNA transfection led to inhibition of cell growth, invasion and migration, and promotion of apoptosis. In contrast, overexpression of NEDD4 via plasmid transfection resulted in facilitated cell proliferation, invasion and migration, and decreased apoptosis. Importantly, we observed that tumor suppressor LATS1, also a core component of Hippo pathway, was negatively regulated by NEDD4 in liver cancer cells. Our findings suggested that NEDD4 may be involved in the HCC progression via regulating LATS1 associated signaling pathway. Therefore, targeting NEDD4-LATS1 signaling could be a potential therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Hailun Zheng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiquan Ke
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Dapeng Li
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qiangwu Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Jianchao Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaoyang Liu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Min Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaojing Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yongju Xue
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yu Zhu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qizhi Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| |
Collapse
|
62
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
63
|
Zheng H, Ke X, Li D, Wang Q, Wang J, Liu X, Deng M, Deng X, Xue Y, Zhu Y, Wang Q. NEDD4 promotes cell growth and motility in hepatocellular carcinoma. CELL CYCLE (GEORGETOWN, TEX.) 2018. [PMID: 29480061 DOI: 10.1080/15384101.2018.1440879.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. In China, the situation is even worse as cancer incidence and mortality continue to increase rapidly. Although tremendous progress has been made toward HCC treatments, the benefits for liver cancer patients are still limited. Therefore, it is necessary to identify and develop novel therapeutic methods. Neuronally expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, plays a critical role in the development and progression of various types of human cancers. In our study, NEDD4 acts as an oncoprotein in both QGY7703 and SMMC7721 liver cancer cell lines. We found that depletion of NEDD4 by siRNA transfection led to inhibition of cell growth, invasion and migration, and promotion of apoptosis. In contrast, overexpression of NEDD4 via plasmid transfection resulted in facilitated cell proliferation, invasion and migration, and decreased apoptosis. Importantly, we observed that tumor suppressor LATS1, also a core component of Hippo pathway, was negatively regulated by NEDD4 in liver cancer cells. Our findings suggested that NEDD4 may be involved in the HCC progression via regulating LATS1 associated signaling pathway. Therefore, targeting NEDD4-LATS1 signaling could be a potential therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Hailun Zheng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiquan Ke
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Dapeng Li
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qiangwu Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Jianchao Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaoyang Liu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Min Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaojing Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yongju Xue
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yu Zhu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qizhi Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| |
Collapse
|
64
|
Perez M, Peinado-Serrano J, Garcia-Heredia JM, Felipe-Abrio I, Tous C, Ferrer I, Martin-Broto J, Saez C, Carnero A. Efficacy of bortezomib in sarcomas with high levels of MAP17 (PDZK1IP1). Oncotarget 2018; 7:67033-67046. [PMID: 27563810 PMCID: PMC5341855 DOI: 10.18632/oncotarget.11475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/09/2016] [Indexed: 11/25/2022] Open
Abstract
Sarcomas are malignant tumors accounting for a high percentage of cancer morbidity and mortality in children and young adults. Surgery and radiation therapy are the accepted treatments for most sarcomas; however, patients with metastatic disease are treated with systemic chemotherapy. Many tumors display marginal levels of chemoresponsiveness, and new treatment approaches are needed. MAP17 is a small non-glycosylated membrane protein overexpressed in carcinomas. The levels of MAP17 could be used as a prognostic marker to predict the response to bortezomib in hematological malignancies and in breast tumors. Therefore, we analyzed the expression of this oncogene in sarcomas and its relationship with clinico-pathological features, as well as tested whether it can be used as a new biomarker to predict the therapeutic response to bortezomib and new therapies for sarcomas. We found that the levels of MAP17 were related to clinical features and poor survival in a cohort of 69 patients with different sarcoma types, not being restricted to any special subtype of tumor. MAP17 expression is associated with poor overall survival (p<0.001) and worse disease-free survival (p=0.002). Cell lines with high levels of MAP17 show a better response to bortezomib in vitro. Furthermore, patient-derived xenografts (PDX) with high levels of MAP17 respond to bortezomib in vivo. Our results showed that this response is due to the lower levels of NFκB and autophagy activation. Therefore, we suggest that MAP17 is a new biomarker to predict the efficacy of bortezomib as a new therapy for sarcomas.
Collapse
Affiliation(s)
- Marco Perez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Javier Peinado-Serrano
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Jose Manuel Garcia-Heredia
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain.,Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain
| | - Irene Felipe-Abrio
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Cristina Tous
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Irene Ferrer
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Javier Martin-Broto
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain.,Department of Medical Oncology, Virgen del Rocío University Hospital, Seville, Spain
| | - Carmen Saez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain.,Department of Pathology, Virgen del Rocío University Hospital, Seville, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| |
Collapse
|
65
|
Yang L, Chen J, Han X, Zhang E, Huang X, Guo X, Chen Q, Wu W, Zheng G, He D, Zhao Y, Yang Y, He J, Cai Z. Pirh2 mediates the sensitivity of myeloma cells to bortezomib via canonical NF-κB signaling pathway. Protein Cell 2018; 9:770-784. [PMID: 29441489 PMCID: PMC6107487 DOI: 10.1007/s13238-017-0500-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Clinical success of the proteasome inhibitor established bortezomib as one of the most effective drugs in treatment of multiple myeloma (MM). While survival benefit of bortezomib generated new treatment strategies, the primary and secondary resistance of MM cells to bortezomib remains a clinical concern. This study aimed to highlight the role of p53-induced RING-H2 (Pirh2) in the acquisition of bortezomib resistance in MM and to clarify the function and mechanism of action of Pirh2 in MM cell growth and resistance, thereby providing the basis for new therapeutic targets for MM. The proteasome inhibitor bortezomib has been established as one of the most effective drugs for treating MM. We demonstrated that bortezomib resistance in MM cells resulted from a reduction in Pirh2 protein levels. Pirh2 overexpression overcame bortezomib resistance and restored the sensitivity of myeloma cells to bortezomib, while a reduction in Pirh2 levels was correlated with bortezomib resistance. The levels of nuclear factor-kappaB (NF-κB) p65, pp65, pIKBa, and IKKa were higher in bortezomib-resistant cells than those in parental cells. Pirh2 overexpression reduced the levels of pIKBa and IKKa, while the knockdown of Pirh2 via short hairpin RNAs increased the expression of NF-κB p65, pIKBa, and IKKa. Therefore, Pirh2 suppressed the canonical NF-κB signaling pathway by inhibiting the phosphorylation and subsequent degradation of IKBa to overcome acquired bortezomib resistance in MM cells.
Collapse
Affiliation(s)
- Li Yang
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jing Chen
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoyan Han
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Enfan Zhang
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xi Huang
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xing Guo
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qingxiao Chen
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wenjun Wu
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Gaofeng Zheng
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Donghua He
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yi Zhao
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yang Yang
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jingsong He
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Cai
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
66
|
Hashimoto M, Kato H, Katsuki A, Tsukamoto S, Fujii I. Identification of the Biosynthetic Gene Cluster for Himeic Acid A: A Ubiquitin-Activating Enzyme (E1) Inhibitor in Aspergillus japonicus MF275. Chembiochem 2018; 19:535-539. [PMID: 29314577 DOI: 10.1002/cbic.201700584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 11/09/2022]
Abstract
Himeic acid A, which is produced by the marine fungus Aspergillus japonicus MF275, is a specific inhibitor of the ubiquitin-activating enzyme E1 in the ubiquitin-proteasome system. To elucidate the mechanism of himeic acid biosynthesis, feeding experiments with labeled precursors have been performed. The long fatty acyl side chain attached to the pyrone ring is of polyketide origin, whereas the amide substituent is derived from leucine. These results suggest that a polyketide synthase-nonribosomal peptide synthase (PKS-NRPS) is involved in himeic acid biosynthesis. A candidate gene cluster was selected from the results of genome sequencing analysis. Disruption of the PKS-NRPS gene by Agrobacterium-mediated transformation confirms that HimA PKS-NRPS is involved in himeic acid biosynthesis. Thus, the him biosynthetic gene cluster for himeic acid in A. japonicus MF275 has been identified.
Collapse
Affiliation(s)
- Makoto Hashimoto
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate, 028-3694, Japan
| | - Hikaru Kato
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Ayako Katsuki
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Isao Fujii
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate, 028-3694, Japan
| |
Collapse
|
67
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|
68
|
Pan C, Xiong Y, Lv X, Xia Y, Zhang S, Chen H, Fan J, Wu W, Liu F, Wu H, Zhou Z, Zhang L, Zhao Y. UbcD1 regulates Hedgehog signaling by directly modulating Ci ubiquitination and processing. EMBO Rep 2017; 18:1922-1934. [PMID: 28887318 PMCID: PMC5666607 DOI: 10.15252/embr.201643289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 01/20/2023] Open
Abstract
The Hh pathway controls many morphogenetic processes in metazoans and plays important roles in numerous pathologies and in cancer. Hh signaling is mediated by the activity of the Gli/Ci family of transcription factors. Several studies in Drosophila have shown that ubiquitination by the ubiquitin E3 ligases Slimb and Rdx(Hib) plays a crucial role in controlling Ci stability dependent on the levels of Hh signals. If Hh levels are low, Slimb adds K11- and K48-linked poly-ubiquitin chains on Ci resulting in partial degradation. Ubiquitin E2 enzymes are pivotal in determining the topologies of ubiquitin chains. However, which E2 enzymes participate in the selective ubiquitination-degradation of Ci remains elusive. Here, we find that the E2 enzyme UbcD1 negatively regulates Hh signaling activity in Drosophila wing disks. Genetic and biochemical analyses in wing disks and in cultured cells reveal that UbcD1 directly controls Ci stability. Interestingly, UbcD1 is found to be selectively involved in Slimb-mediated Ci degradation. Finally, we show that the homologs of UbcD1 play a conserved role in modulating Hh signaling in vertebrates.
Collapse
Affiliation(s)
- Chenyu Pan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yue Xiong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangdong Lv
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanxin Xia
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuo Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jialin Fan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hailong Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
69
|
Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 2017; 36:683-702. [DOI: 10.1007/s10555-017-9703-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
70
|
Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer. Nat Commun 2017; 8:839. [PMID: 29018224 PMCID: PMC5635060 DOI: 10.1038/s41467-017-00991-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma harbors numerous genomic and epigenomic aberrations of DNA copy numbers and DNA methylation. Transcriptomic deregulation by these aberrations plays key driver roles in heterogeneous progression of cancers. Here, we profile DNA copy numbers, DNA methylation, and messenger RNA expression levels from 64 cases of hepatocellular carcinoma specimens. We find that the frequencies of the aberrancies of the DNA copy-number-correlated (CNVcor) expression genes and the methylation-correlated expression (METcor) genes are co-regulated significantly. Multi-omics integration of the CNVcor and METcor genes reveal three prognostic subtypes of hepatocellular carcinoma, which can be validated by an independent data. The most aggressive subtype expressing stemness genes has frequent BAP1 mutations, implying its pivotal role in the aggressive tumor progression. In conclusion, our integrative analysis of genomic and epigenomic regulation provides new insights on the multi-layered pathobiology of hepatocellular carcinoma, which might be helpful in developing precision management for hepatocellular carcinoma patients.Hepatocellular carcinoma is known to harbour numerous genomic and epigenomic aberrations, driving transcriptomic deregulation. Here, the authors integrate genomic, epigenomic, and expression data to reveal three prognostic subtypes, providing insight to the pathobiology of hepatocellular carcinoma.
Collapse
|
71
|
Okumura F, Joo-Okumura A, Obara K, Petersen A, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. Ubiquitin ligase SPSB4 diminishes cell repulsive responses mediated by EphB2. Mol Biol Cell 2017; 28:3532-3541. [PMID: 28931592 PMCID: PMC5683763 DOI: 10.1091/mbc.e17-07-0450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/29/2022] Open
Abstract
Eph receptor tyrosine kinases are important for cancer development and progression as well as in cellular repulsive responses. We determined that SOCS box-containing protein SPSB4 destabilizes EphB2 cytoplasmic fragments. SPSB4 is a novel ubiquitin ligase regulating EphB2-dependent cell repulsive responses. Eph receptor tyrosine kinases and their ephrin ligands are overexpressed in various human cancers, including colorectal malignancies, suggesting important roles in many aspects of cancer development and progression as well as in cellular repulsive responses. The ectodomain of EphB2 receptor is cleaved by metalloproteinases (MMPs) MMP-2/MMP-9 and released into the extracellular space after stimulation by its ligand. The remaining membrane-associated fragment is further cleaved by the presenilin-dependent γ-secretase and releases an intracellular peptide that has tyrosine kinase activity. Although the cytoplasmic fragment is degraded by the proteasome, the responsible ubiquitin ligase has not been identified. Here, we show that SOCS box-containing protein SPSB4 polyubiquitinates EphB2 cytoplasmic fragment and that SPSB4 knockdown stabilizes the cytoplasmic fragment. Importantly, SPSB4 down-regulation enhances cell repulsive responses mediated by EphB2 stimulation. Altogether, we propose that SPSB4 is a previously unidentified ubiquitin ligase regulating EphB2-dependent cell repulsive responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Keisuke Obara
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Alexander Petersen
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akihiko Nishikimi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| |
Collapse
|
72
|
Dong L, Meng F, Wu L, Mitchell AV, Block CJ, Zhang B, Craig DB, Jang H, Chen W, Yang Q, Wu G. Cooperative oncogenic effect and cell signaling crosstalk of co‑occurring HER2 and mutant PIK3CA in mammary epithelial cells. Int J Oncol 2017; 51:1320-1330. [PMID: 28902361 PMCID: PMC5592866 DOI: 10.3892/ijo.2017.4108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Though incidence of PI3K oncogenic mutation is prominent in breast cancer (20-30%), pharmacological targeting of this signaling pathway alone has failed to provide meaningful clinical benefit. To better understand and address this problem, we conducted genome-wide analysis to study the association of mutant PI3K with other gene amplification events. One of the most significant copy number gain events associated with PIK3CA mutation was the region within chromosome 17 containing HER2To investigate the oncogenic effect and cell signaling regulation of co-occurring PIK3CA-H1047R and or HER2 gene, we generated cell models ectopically expressing mutant PIK3CA, HER2 or both genetic alterations. We observed that cells with both genetic alterations demonstrate increased aggressiveness and invasive capabilities than cells with either genetic change alone. Furthermore, we found that the combination of the HER2 inhibitor (CP-724714) and pan PI3K inhibitor (LY294002) is more potent than either inhibitor alone in terms of inhibition of cell proliferation and colony formation. Significantly, four cell signaling pathways were found in common for cells with HER2, mutant PIK3CA and cells with both genetic alterations through an Affymetric microarray analysis. Moreover, the cells with both genetic alterations acquired more significant replication stress as shown by enriched signaling pathways of cell cycle checkpoint control and DNA damage response signaling. Our study suggests co-occurrence of oncogenic HER2 and mutant PIK3CA cooperatively drives breast cancer progression. The cells with both genetic alterations obtain additional features of replication stress which could open new opportunity for cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Lun Dong
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fanyan Meng
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Allison V Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - C James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Douglas B Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Hyejeong Jang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
73
|
Setz C, Friedrich M, Rauch P, Fraedrich K, Matthaei A, Traxdorf M, Schubert U. Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes. Viruses 2017; 9:v9080222. [PMID: 28805676 PMCID: PMC5580479 DOI: 10.3390/v9080222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)—the proteasome holoenzymes and a number of ubiquitin ligases—play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.
Collapse
Affiliation(s)
- Christian Setz
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Melanie Friedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Kirsten Fraedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Alina Matthaei
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Maximilian Traxdorf
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| |
Collapse
|
74
|
Kulinski M, Achkar IW, Haris M, Dermime S, Mohammad RM, Uddin S. Dysregulated expression of SKP2 and its role in hematological malignancies. Leuk Lymphoma 2017; 59:1051-1063. [PMID: 28797197 DOI: 10.1080/10428194.2017.1359740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
S-phase kinase-associated protein 2 (SKP2) is a well-studied F-box protein and a critical part of the Skp1-Cul1-Fbox (SCF) E3 ligase complex. It controls cell cycle by regulating the expression level of p27 and p21 through ubiquitination and proteasomal degradation. SKP2-mediated loss of p27Kip1 is associated with poor clinical outcome in various types of cancers including hematological malignancies. It is however well established that SKP2 is an oncogene, and its targeting may be an attractive therapeutic strategy for the management of hematological malignancies. In this article, we have highlighted the recent findings from our group and other investigators regarding the role of SKP2 in the pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Michal Kulinski
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Iman W Achkar
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Mohammad Haris
- b Translational Medicine Research Branch , Sidra Medical and Research Center , Doha , Qatar
| | - Said Dermime
- c National Center for Cancer Care and Research , Hamad Medical Corporation , Doha , Qatar
| | - Ramzi M Mohammad
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Shahab Uddin
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| |
Collapse
|
75
|
Singh RK, Kazansky Y, Wathieu D, Fushman D. Hydrophobic Patch of Ubiquitin is Important for its Optimal Activation by Ubiquitin Activating Enzyme E1. Anal Chem 2017; 89:7852-7860. [PMID: 28686836 PMCID: PMC5573600 DOI: 10.1021/acs.analchem.6b04194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein ubiquitination plays a role in essentially every process in eukaryotic cells. The attachment of ubiquitin (Ub) or Ub-like (UBL) proteins to target proteins is achieved by parallel but distinct cascades of enzymatic reactions involving three enzymes: E1, E2, and E3. The E1 enzyme functions at the apex of this pathway and plays a critical role in activating the C-terminus of ubiquitin or UBL, which is an essential step that triggers subsequent downstream transfer to their cognate E2s resulting in the fidelity of the Ub/UBL conjugation machinery. Despite the central role of the E1 enzyme in protein modification, a quantitative method to measure Ub/UBL activation by E1 is lacking. Here, we present a mass spectrometry-based assay to accurately measure the activation of Ub/UBL by E1 independent of the E2/E3 enzymes. Our method does not require radiolabeling of any components and therefore can be used in any biochemical laboratory having access to a mass spectrometer. This method allowed us to dissect the concerted process of E1-E2-catalyzed Ub conjugation in order to separately characterize the process of Ub activation and how it is affected by select mutations and other factors. We found that the hydrophobic patch of Ub is important for the optimal activation of Ub by E1. We further show that the blockers of the Ub-proteasome system such as ubistatin and fullerenol inhibit Ub activation by E1. Interestingly, our data indicate that the phosphorylation of Ub at the S65 position augments its activation by the E1 enzyme.
Collapse
Affiliation(s)
- Rajesh K Singh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland , College Park, Maryland 20742, United States
| | - Yaniv Kazansky
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland , College Park, Maryland 20742, United States
| | - Donald Wathieu
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland , College Park, Maryland 20742, United States
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
76
|
Arpalahti L, Hagström J, Mustonen H, Lundin M, Haglund C, Holmberg CI. UCHL5 expression associates with improved survival in lymph-node-positive rectal cancer. Tumour Biol 2017; 39:1010428317716078. [DOI: 10.1177/1010428317716078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer is among the three most common cancer types for both genders, with a rising global incidence. To date, prognostic evaluation is difficult and largely dependent on early detection and successful surgery. UCHL5/Uch37 is an integral part of the protein homeostasis network as one of the three deubiquitinating enzymes associated with the 26S proteasome. Here, we have investigated in colorectal cancer the possible association of UCHL5 tumor expression and patient survival. UCHL5 tumor expression was evaluated by immunohistochemistry in 779 surgically treated colorectal cancer patients from Helsinki University Hospital, Finland, with assessment of clinicopathological parameters and the effect of UCHL5 expression on patient survival. High and undetectable UCHL5 expression both correlated with increased overall disease-specific survival in the subgroup of patients with lymph-node-positive (Dukes C/stage III) rectal cancer. Within this subgroup of 105 stage-III rectal cancer patients, none of the 7 with high UCHL5 expression died of colorectal cancer within 10 years after surgery ( p = 0.012). A similar, though less prominent, survival trend occurred throughout the whole patient cohort. In conclusion, UCHL5 is a promising novel prognostic marker in lymph-node-positive rectal cancer. Our results also advance the currently limited knowledge of biomarkers in colorectal cancer treatment.
Collapse
Affiliation(s)
- Leena Arpalahti
- Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and HusLab, Helsinki University Hospital, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikael Lundin
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carina I Holmberg
- Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
77
|
Uematsu K, Okumura F, Tonogai S, Joo-Okumura A, Alemayehu DH, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation. J Cell Biol 2016; 215:95-106. [PMID: 27697924 PMCID: PMC5057283 DOI: 10.1083/jcb.201603062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Uematsu et al. show that ASB7 ubiquitinates DDA3, which facilitates Kif2a-mediated depolymerization of microtubules (MTs) for proteasomal degradation. The presence of MTs prevents the ASB7–DDA3 interaction, suggesting a feedback loop to appropriately regulate MT polymerization and spindle dynamics. Proper dynamic regulation of the spindle is essential for successful cell division. However, the molecular mechanisms that regulate spindle dynamics in mitosis are not fully understood. In this study, we show that Cullin 5–interacting suppressor of cytokine signaling box protein ASB7 ubiquitinates DDA3, a regulator of spindle dynamics, thereby targeting it for proteasomal degradation. The presence of microtubules (MTs) prevented the ASB7–DDA3 interaction, thus stabilizing DDA3. Knockdown of ASB7 decreased MT polymerization and increased the proportion of cells with unaligned chromosomes, and this phenotype was rescued by deletion of DDA3. Collectively, these data indicate that ASB7 plays a crucial role in regulating spindle dynamics and genome integrity by controlling the expression of DDA3.
Collapse
Affiliation(s)
- Keiji Uematsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Syunsuke Tonogai
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Dawit Hailu Alemayehu
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akihiko Nishikimi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan Research Center for Advanced Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan Research Center for Advanced Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| |
Collapse
|
78
|
Abstract
The GI tract is the most exposed organ to proteases, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract contains large amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic activity into mucosal tissues (both in the upper and lower GI tract), associated with pathological conditions. This review aims at outlining the evidences for dysregulated proteolytic homeostasis in GI diseases and the pathogenic mechanisms of increased proteolytic activity. The therapeutic potential of protease inhibition in GI diseases is discussed, with a particular focus on IBDs, functional GI disorders and colorectal cancer.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- Inserm, U1220, Toulouse, France,Université de Toulouse, Université Paul Sabatier, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France,Inra, U1416, Toulouse, France,Ecole Nationale Vétérinaire de Toulouse (ENVT), France,Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
79
|
Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother 2016; 60:4183-96. [PMID: 27139470 DOI: 10.1128/aac.03021-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 12/17/2022] Open
Abstract
Due to the rise of antibiotic resistance and the small number of effective antiviral drugs, new approaches for treating infectious diseases are urgently needed. Identifying targets for host-based therapies represents an emerging strategy for drug discovery. The ubiquitin-proteasome system is a central mode of signaling in the eukaryotic cell and may be a promising target for therapies that bolster the host's ability to control infection. Deubiquitinase (DUB) enzymes are key regulators of the host inflammatory response, and we previously demonstrated that a selective DUB inhibitor and its derivative promote anti-infective activities in host cells. To find compounds with anti-infective efficacy but improved toxicity profiles, we tested a library of predominantly 2-cyano-3-acrylamide small-molecule DUB inhibitors for anti-infective activity in macrophages against two intracellular pathogens: murine norovirus (MNV) and Listeria monocytogenes We identified compound C6, which inhibited DUB activity in human and murine cells and reduced intracellular replication of both pathogens with minimal toxicity in cell culture. Treatment with C6 did not significantly affect the ability of macrophages to internalize virus, suggesting that the anti-infective activity interferes with postentry stages of the MNV life cycle. Metabolic stability and pharmacokinetic assays showed that C6 has a half-life in mouse liver microsomes of ∼20 min and has a half-life of approximately 4 h in mice when administered intravenously. Our results provide a framework for targeting the host ubiquitin system in the development of host-based therapies for infectious disease. Compound C6 represents a promising tool with which to elucidate the role of DUBs in the macrophage response to infection.
Collapse
|
80
|
A dominant-negative F-box deleted mutant of E3 ubiquitin ligase, β-TrCP1/FWD1, markedly reduces myeloma cell growth and survival in mice. Oncotarget 2016; 6:21589-602. [PMID: 26009993 PMCID: PMC4673288 DOI: 10.18632/oncotarget.4120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Treatment of multiple myeloma with bortezomib can result in severe adverse effects, necessitating the development of targeted inhibitors of the proteasome. We show that stable expression of a dominant-negative F-box deleted (ΔF) mutant of the E3 ubiquitin ligase, SCFβ-TrCP/FWD1, in murine 5TGM1 myeloma cells dramatically attenuated their skeletal engraftment and survival when inoculated into immunocompetent C57BL/KaLwRij mice. Similar results were obtained in immunodeficient bg-nu-xid mice, suggesting that the observed effects were independent of host recipient immune status. Bone marrow stroma offered no protection for 5TGM1-ΔF cells in cocultures treated with tumor necrosis factor (TNF), indicating a cell-autonomous anti-myeloma effect. Levels of p100, IκBα, Mcl-1, ATF4, total and cleaved caspase-3, and phospho-β-catenin were elevated in 5TGM1-ΔF cells whereas cIAP was down-regulated. TNF also activated caspase-3 and downregulated Bcl-2, correlating with the enhanced susceptibility of 5TGM1-ΔF cells to apoptosis. Treatment of 5TGM1 tumor-bearing mice with a β-TrCP1/FWD1 inhibitor, pyrrolidine dithiocarbamate (PDTC), significantly reduced tumor burden in bone. PDTC also increased levels of cleaved Mcl-1 and caspase-3 in U266 human myeloma cells, correlating with our murine data and validating the development of specific β-TrCP inhibitors as an alternative therapy to nonspecific proteasome inhibitors for myeloma patients.
Collapse
|
81
|
Pisano M, Palomba A, Tanca A, Pagnozzi D, Uzzau S, Addis MF, Dettori MA, Fabbri D, Palmieri G, Rozzo C. Protein expression changes induced in a malignant melanoma cell line by the curcumin analogue compound D6. BMC Cancer 2016; 16:317. [PMID: 27192978 PMCID: PMC4870815 DOI: 10.1186/s12885-016-2362-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/13/2016] [Indexed: 01/09/2023] Open
Abstract
Background We have previously demonstrated that the hydroxylated biphenyl compound D6 (3E,3′E)-4,4′-(5,5′,6,6′-tetramethoxy-[1,1′-biphenyl]-3,3′-diyl)bis(but-3-en-2-one), a structural analogue of curcumin, exerts a strong antitumor activity on melanoma cells both in vitro and in vivo. Although the mechanism of action of D6 is yet to be clarified, this compound is thought to inhibit cancer cell growth by arresting the cell cycle in G2/M phase, and to induce apoptosis through the mitochondrial intrinsic pathway. To investigate the changes in protein expression induced by exposure of melanoma cells to D6, a differential proteomic study was carried out on D6-treated and untreated primary melanoma LB24Dagi cells. Methods Proteins were fractionated by SDS-PAGE and subjected to in gel digestion. The peptide mixtures were analyzed by liquid chromatography coupled with tandem mass spectrometry. Proteins were identified and quantified using database search and spectral counting. Proteomic data were finally uploaded into the Ingenuity Pathway Analysis software to find significantly modulated networks and pathways. Results Analysis of the differentially expressed protein profiles revealed the activation of a strong cellular stress response, with overexpression of several HSPs and stimulation of ubiquitin-proteasome pathways. These were accompanied by a decrease of protein synthesis, evidenced by downregulation of proteins involved in mRNA processing and translation. These findings are consistent with our previous results on gene expression profiling in melanoma cells treated with D6. Conclusions Our findings confirm that the curcumin analogue D6 triggers a strong stress response in melanoma cells, turning down majority of cell functions and finally driving cells to apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2362-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Pisano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy
| | - Antonio Palomba
- Proteomics Laboratory, Porto Conte Ricerche, Tramariglio, Alghero, Italy.,Biosistema Scrl, Sassari, Italy
| | - Alessandro Tanca
- Proteomics Laboratory, Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - Daniela Pagnozzi
- Proteomics Laboratory, Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - Sergio Uzzau
- Proteomics Laboratory, Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | | | - Maria Antonietta Dettori
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy
| | - Davide Fabbri
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy
| | - Giuseppe Palmieri
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy
| | - Carla Rozzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy.
| |
Collapse
|
82
|
Mulder MPC, Witting K, Berlin I, Pruneda JN, Wu KP, Chang JG, Merkx R, Bialas J, Groettrup M, Vertegaal ACO, Schulman BA, Komander D, Neefjes J, El Oualid F, Ovaa H. A cascading activity-based probe sequentially targets E1-E2-E3 ubiquitin enzymes. Nat Chem Biol 2016; 12:523-30. [PMID: 27182664 DOI: 10.1038/nchembio.2084] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/22/2016] [Indexed: 01/05/2023]
Abstract
Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like modifiers (Ubls), orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a wide range of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Similarly to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade, UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe 'hops' and 'traps' catalytically active Ub-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activity in living cells, presents novel and versatile tools to interrogate Ub and Ubl cascades.
Collapse
Affiliation(s)
- Monique P C Mulder
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Katharina Witting
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ilana Berlin
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jonathan N Pruneda
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kuen-Phon Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jer-Gung Chang
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Remco Merkx
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johanna Bialas
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Howard Hughes Medical Institute, Memphis, Tennessee, USA
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jacques Neefjes
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Farid El Oualid
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
83
|
Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1-F-box interface. Proc Natl Acad Sci U S A 2016; 113:3527-32. [PMID: 26976582 DOI: 10.1073/pnas.1519389113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Skp1-Cul1-F-box (SCF) E3 ligases play key roles in multiple cellular processes through ubiquitination and subsequent degradation of substrate proteins. Although Skp1 and Cul1 are invariant components of all SCF complexes, the 69 different human F-box proteins are variable substrate binding modules that determine specificity. SCF E3 ligases are activated in many cancers and inhibitors could have therapeutic potential. Here, we used phage display to develop specific ubiquitin-based inhibitors against two F-box proteins, Fbw7 and Fbw11. Unexpectedly, the ubiquitin variants bind at the interface of Skp1 and F-box proteins and inhibit ligase activity by preventing Cul1 binding to the same surface. Using structure-based design and phage display, we modified the initial inhibitors to generate broad-spectrum inhibitors that targeted many SCF ligases, or conversely, a highly specific inhibitor that discriminated between even the close homologs Fbw11 and Fbw1. We propose that most F-box proteins can be targeted by this approach for basic research and for potential cancer therapies.
Collapse
|
84
|
Guharoy M, Bhowmick P, Tompa P. Design Principles Involving Protein Disorder Facilitate Specific Substrate Selection and Degradation by the Ubiquitin-Proteasome System. J Biol Chem 2016; 291:6723-31. [PMID: 26851277 DOI: 10.1074/jbc.r115.692665] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) regulates diverse cellular pathways by the timely removal (or processing) of proteins. Here we review the role of structural disorder and conformational flexibility in the different aspects of degradation. First, we discuss post-translational modifications within disordered regions that regulate E3 ligase localization, conformation, and enzymatic activity, and also the role of flexible linkers in mediating ubiquitin transfer and reaction processivity. Next we review well studied substrates and discuss that substrate elements (degrons) recognized by E3 ligases are highly disordered: short linear motifs recognized by many E3s constitute an important class of degrons, and these are almost always present in disordered regions. Substrate lysines targeted for ubiquitination are also often located in neighboring regions of the E3 docking motifs and are therefore part of the disordered segment. Finally, biochemical experiments and predictions show that initiation of degradation at the 26S proteasome requires a partially unfolded region to facilitate substrate entry into the proteasomal core.
Collapse
Affiliation(s)
- Mainak Guharoy
- From the VIB Structural Biology Research Center (SBRC), Vlaams Instituut voor Biotechnologie, 1050 Brussel, Belgium, the Structural Biology Brussels (SBB), Vrije Universiteit Brussel, 1050 Brussels, Belgium, and
| | - Pallab Bhowmick
- From the VIB Structural Biology Research Center (SBRC), Vlaams Instituut voor Biotechnologie, 1050 Brussel, Belgium, the Structural Biology Brussels (SBB), Vrije Universiteit Brussel, 1050 Brussels, Belgium, and
| | - Peter Tompa
- From the VIB Structural Biology Research Center (SBRC), Vlaams Instituut voor Biotechnologie, 1050 Brussel, Belgium, the Structural Biology Brussels (SBB), Vrije Universiteit Brussel, 1050 Brussels, Belgium, and the Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
85
|
Toure M, Crews CM. Niedermolekulare PROTACs: neue Wege zum Abbau von Proteinen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201507978] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Momar Toure
- Departments of Chemistry; Molecular, Cellular & Developmental Biology; Pharmacology; Yale University; New Haven CT 06511 USA
| | - Craig M. Crews
- Departments of Chemistry; Molecular, Cellular & Developmental Biology; Pharmacology; Yale University; New Haven CT 06511 USA
| |
Collapse
|
86
|
Toure M, Crews CM. Small-Molecule PROTACS: New Approaches to Protein Degradation. Angew Chem Int Ed Engl 2016; 55:1966-73. [DOI: 10.1002/anie.201507978] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Momar Toure
- Departments of Chemistry; Molecular, Cellular & Developmental Biology, Pharmacology; Yale University; New Haven CT 06511 USA
| | - Craig M. Crews
- Departments of Chemistry; Molecular, Cellular & Developmental Biology, Pharmacology; Yale University; New Haven CT 06511 USA
| |
Collapse
|
87
|
García-Limones C, Lara-Chica M, Jiménez-Jiménez C, Pérez M, Moreno P, Muñoz E, Calzado MA. CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2. Oncogene 2016; 35:4289-301. [PMID: 26751770 DOI: 10.1038/onc.2015.495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 01/14/2023]
Abstract
The serine threonine checkpoint kinase 2 (CHK2) is a critical protein involved in the DNA damage-response pathway, which is activated by phosphorylation inducing cellular response such as DNA repair, cell-cycle regulation or apoptosis. Although CHK2 activation mechanisms have been amply described, very little is known about degradation control processes. In the present study, we identify the ubiquitin E3 ligase SIAH2 as an interaction partner of CHK2, which mediates its ubiquitination and proteasomal degradation. CHK2 degradation is independent of both its activation and its kinase activity, but also of the phosphorylation in S456. We show that SIAH2-deficient cells present CHK2 accumulation together with lower ubiquitination levels. Accordingly, SIAH2 depletion by siRNA increases CHK2 levels. In response to DNA damage induced by etoposide, interaction between both proteins is disrupted, thus avoiding CHK2 degradation and promoting its stabilization. We also found that CHK2 phosphorylates SIAH2 at three residues (Thr26, Ser28 and Thr119), modifying its ability to regulate certain substrates. Cellular arrest in the G2/M phase induced by DNA damage is reverted by SIAH2 expression through the control of CHK2 levels. We observed that hypoxia decreases CHK2 levels in parallel to SIAH2 induction. Similarly, we provide evidence suggesting that resistance to apoptosis induced by genotoxic agents in cells subjected to hypoxia could be partly explained by the mutual regulation between both proteins. These results indicate that SIAH2 regulates CHK2 basal turnover, with important consequences on cell-cycle control and on the ability of hypoxia to alter the DNA damage-response pathway in cancer cells.
Collapse
Affiliation(s)
- C García-Limones
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Lara-Chica
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - C Jiménez-Jiménez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M Pérez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - P Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - E Muñoz
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| | - M A Calzado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital, Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
88
|
Teng YC, Shen ZQ, Kao CH, Tsai TF. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes. World J Gastroenterol 2016; 22:300-325. [PMID: 26755878 PMCID: PMC4698494 DOI: 10.3748/wjg.v22.i1.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
Collapse
|
89
|
Wu WJ, Shi J, Hu G, Yu X, Lu H, Yang ML, Liu B, Wu ZX. Wnt/β-catenin signaling inhibits FBXW7 expression by upregulation of microRNA-770 in hepatocellular carcinoma. Tumour Biol 2015; 37:6045-51. [PMID: 26602384 DOI: 10.1007/s13277-015-4452-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/17/2015] [Indexed: 01/25/2023] Open
Abstract
FBXW7 (F-box and WD repeat domain-containing 7) is the F-box protein component of a Skp1-Cul1-F-box protein-type (SCF-type) ubiquitin ligase. Previous studies have shown that FBXW7 serves as a tumor suppressor and is frequently downregulated in many types of human neoplasms. However, the molecular mechanisms for its downregulation remain poorly understood. Hyperactivation of Wnt/β-catenin signaling pathway is viewed as crucial for tumorigenesis, including hepatocellular carcinoma (HCC). In the present study, we show that protein levels, but not message RNA, of FBXW7 were suppressed by Wnt3a treatment or transfection of a constitutively activated β-catenin in HCC cells. Besides, microRNA-770 was identified as an important downstream target of Wnt/β-catenin signaling, to inhibit FBXW7 expression through targeting its 3'-untranslated region. Thus, our results suggest a previously unknown Wnt/β catenin-miR-770-FBXW7 molecular network in the HCC development.
Collapse
Affiliation(s)
- Wen-Jie Wu
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jia Shi
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Gang Hu
- Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, College of Medicine, Hubei Polytechnic University, Huangshi, Hubei, 435003, People's Republic of China
| | - Xin Yu
- Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, College of Medicine, Hubei Polytechnic University, Huangshi, Hubei, 435003, People's Republic of China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Ming-Liang Yang
- Department of Anesthesiology, Jianli Second People's Hospital, Jianli, Hubei, 433325, People's Republic of China
| | - Bin Liu
- Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, College of Medicine, Hubei Polytechnic University, Huangshi, Hubei, 435003, People's Republic of China.
| | - Zhi-Xiang Wu
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
90
|
Liu Y, Mallampalli RK. Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 2015; 36:105-19. [PMID: 26427329 DOI: 10.1016/j.semcancer.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
91
|
Qi J, Ronai ZA. Dysregulation of ubiquitin ligases in cancer. Drug Resist Updat 2015; 23:1-11. [PMID: 26690337 DOI: 10.1016/j.drup.2015.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 02/08/2023]
Abstract
Ubiquitin ligases (UBLs) are critical components of the ubiquitin proteasome system (UPS), which governs fundamental processes regulating normal cellular homeostasis, metabolism, and cell cycle in response to external stress signals and DNA damage. Among multiple steps of the UPS system required to regulate protein ubiquitination and stability, UBLs define specificity, as they recognize and interact with substrates in a temporally- and spatially-regulated manner. Such interactions are required for substrate modification by ubiquitin chains, which marks proteins for recognition and degradation by the proteasome or alters their subcellular localization or assembly into functional complexes. UBLs are often deregulated in cancer, altering substrate availability or activity in a manner that can promote cellular transformation. Such deregulation can occur at the epigenetic, genomic, or post-translational levels. Alterations in UBL can be used to predict their contributions, affecting tumor suppressors or oncogenes in select tumors. Better understanding of mechanisms underlying UBL expression and activities is expected to drive the development of next generation modulators that can serve as novel therapeutic modalities. This review summarizes our current understanding of UBL deregulation in cancer and highlights novel opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Jianfei Qi
- University of Maryland School of Medicine, Baltimore, 21201, USA.
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA.
| |
Collapse
|