51
|
Albring A, Wendt L, Benson S, Nissen S, Yavuz Z, Engler H, Witzke O, Schedlowski M. Preserving Learned Immunosuppressive Placebo Response: Perspectives for Clinical Application. Clin Pharmacol Ther 2014; 96:247-55. [DOI: 10.1038/clpt.2014.75] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/27/2014] [Indexed: 12/13/2022]
|
52
|
Ersche KD, Hagan CC, Smith DG, Abbott S, Jones PS, Apergis-Schoute AM, Döffinger R. Aberrant disgust responses and immune reactivity in cocaine-dependent men. Biol Psychiatry 2014; 75:140-7. [PMID: 24090796 PMCID: PMC3898808 DOI: 10.1016/j.biopsych.2013.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Infectious diseases are the most common and cost-intensive health complications associated with drug addiction. There is wide belief that drug-dependent individuals expose themselves more regularly to disease-related pathogens through risky behaviors such as sharing pipes and needles, thereby increasing their risk for contracting an infectious disease. However, evidence is emerging indicating that not only lifestyle but also the immunomodulatory effects of addictive drugs, such as cocaine, may account for their high infection risk. As feelings of disgust are thought to be an important psychological mechanism in avoiding the exposure to pathogens, we sought to investigate behavioral, physiological, and immune responses to disgust-evoking cues in both cocaine-dependent and healthy men. METHODS All participants (N = 61) were exposed to neutral and disgust-evoking photographs depicting food and nonfood images while response accuracy, latency, and skin conductivity were recorded. Saliva samples were collected before and after exposure to neutral and disgusting images, respectively. Attitudes toward disgust and hygiene behaviors were assessed using questionnaire measures. RESULTS Response times to disgust-evoking photographs were prolonged in all participants, and specifically in cocaine-dependent individuals. While viewing the disgusting images, cocaine-dependent individuals exhibited aberrant skin conductivity and increased the secretion of the salivary cytokine interleukin-6 relative to control participants. CONCLUSION Our data provide evidence of a hypersensitivity to disgusting stimuli in cocaine-dependent individuals, possibly reflecting conditioned responses to noningestive sources of infection. Coupled with a lack of interoception of bodily signals, aberrant disgust responses might lead to increased infection susceptibility in affected individuals.
Collapse
Affiliation(s)
- Karen D Ersche
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | - Cindy C Hagan
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Dana G Smith
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sanja Abbott
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - P Simon Jones
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Annemieke M Apergis-Schoute
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Rainer Döffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospitals National Health Service Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
53
|
Vits S, Schedlowski M. Learned Placebo Effects in the Immune System. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2014. [DOI: 10.1027/2151-2604/a000184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.
Collapse
Affiliation(s)
- Sabine Vits
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| |
Collapse
|
54
|
Wendt L, Albring A, Schedlowski M. Learned placebo responses in neuroendocrine and immune functions. Handb Exp Pharmacol 2014; 225:159-181. [PMID: 25304532 DOI: 10.1007/978-3-662-44519-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The phenomenon of learned placebo responses in neuroendocrine and immune functions is a fascinating example of communication between the brain and both the endocrine and peripheral immune systems. In this chapter, we will give a short overview of afferent and efferent communication pathways, as well as the central mechanisms, which steer the behavioral conditioned immune response. Subsequently, we will focus on data that provides evidence for learned immune responses in experimental animals and learned neuroendocrine and immune placebo responses in humans. Finally, we will take a critical look at these learning protocols, to determine whether or not they can be considered a viable additional treatment option to pharmacological regimens in clinical routine. This is fundamental, since there are still a number of issues, which need to be solved, such as the potential reproducibility, predictability, and extinction of the learned neuroendocrine and immune responses. Together, these findings not only provide an excellent basis to increase our understanding of human biology but may also have far reaching clinical implications. They pave the way for the ultimate aim of employing associative learning protocols as supportive treatment strategies in pharmacological regimens. As a result, medication levels may be reduced, as well as their unwanted side effects, providing a maximized therapeutic outcome to the benefit of the patient.
Collapse
Affiliation(s)
- Laura Wendt
- Institute of Medical Psychology and Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45122, Essen, Germany
| | | | | |
Collapse
|
55
|
Sölle A, Bartholomäus T, Worm M, Klinger R. How to Psychologically Minimize Scratching Impulses. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2014. [DOI: 10.1027/2151-2604/a000183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research in recent years, especially in the analgesic field, has intensively studied the placebo effect and its mechanisms. It has been shown that physical complaints can be efficiently reduced via learning and cognitive processes (conditioning and expectancies). However, despite evidence demonstrating a large variety of physiological similarities between pain and itch, the possible transfer of the analgesic placebo model to itch has not yet been widely discussed in research. This review therefore aims at highlighting potential transfers of placebo mechanisms to itch processes by demonstrating the therapeutic issues in pharmacological treatments for pruritus on a physiological basis and by discussing the impact of psychological mechanisms and psychological factors influencing itch sensations.
Collapse
Affiliation(s)
- Ariane Sölle
- Outpatient Clinic of Behavior Therapy, Department of Psychology, University of Hamburg, Germany
| | - Theresa Bartholomäus
- Hospital for Dermatology, Venereology und Allergology, Allergy Center, Charité University Medicine, Berlin, Germany
| | - Margitta Worm
- Hospital for Dermatology, Venereology und Allergology, Allergy Center, Charité University Medicine, Berlin, Germany
| | - Regine Klinger
- Outpatient Clinic of Behavior Therapy, Department of Psychology, University of Hamburg, Germany
| |
Collapse
|
56
|
Vits S, Cesko E, Benson S, Rueckert A, Hillen U, Schadendorf D, Schedlowski M. Cognitive factors mediate placebo responses in patients with house dust mite allergy. PLoS One 2013; 8:e79576. [PMID: 24260254 PMCID: PMC3832536 DOI: 10.1371/journal.pone.0079576] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Placebo effects have been reported in type I allergic reactions. However the neuropsychological mechanisms steering placebo responses in allergies are largely unknown. The study analyzed whether and to what extend a conditioned placebo response is affecting type I allergic reactions and whether this response can be reproduced at multiple occasions. Methods 62 patients with house dust mite allergy were randomly allocated to either a conditioned (n = 25), sham-conditioned (n = 25) or natural history (n = 12) group. During the learning phase (acquisition), patients in the conditioned group received the H1-receptor antagonist desloratadine (5mg) (unconditioned stimulus/US) together with a novel tasting gustatory stimulus (conditioned stimulus/CS). Patients in the sham-conditioned control group received the CS together with a placebo pill. After a wash out time of 9 days patients in the conditioned and sham-conditioned group received placebo pills together with the CS during evocation. Allergic responses documented by wheal size after skin prick test and symptom scores after nasal provocation were analyzed at baseline, after last desloratadine treatment and after the 1st and 5th CS re-exposure. Results Both conditioned and sham-conditioned patients showed significantly decreased wheal sizes after the 1st CS-evocation and significantly decreased symptom scores after the 1st as well as after the 5th evocation compared to the natural history control group. Conclusions These results indicate that placebo responses in type I allergy are not primarily mediated by learning processes, but seemed to be induced by cognitive factors such as patients’ expectation, with these effects not restricted to a single evocation.
Collapse
Affiliation(s)
- Sabine Vits
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
57
|
Benedetti F, Amanzio M. Mechanisms of the placebo response. Pulm Pharmacol Ther 2013; 26:520-3. [DOI: 10.1016/j.pupt.2013.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/14/2013] [Indexed: 12/19/2022]
|
58
|
Darragh M, Booth RJ, Koschwanez HE, Sollers J, Broadbent E. Expectation and the placebo effect in inflammatory skin reactions: a randomised-controlled trial. J Psychosom Res 2013; 74:439-43. [PMID: 23597333 DOI: 10.1016/j.jpsychores.2012.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/27/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study investigated the placebo effect on experimentally induced skin reactions via the manipulation of expectation. METHODS Fifty-eight healthy volunteers were randomised into either expectancy or control groups. All participants received a baseline administration of histamine on one arm (Time 1), then a second administration on the other arm, approximately 30 minutes later (Time 2). Prior to the second administration, the expectancy group was told that an antihistamine cream (the placebo) had been applied that would reduce their skin reaction to the histamine. Expected wheal area, actual wheal area, heart rate, and heart rate variability were measured at each time point. RESULTS There was a positive relationship between expected and actual wheal area at Time 1. While the expectancy group expected a smaller skin reaction on the second arm they did not experience a greater reduction in wheal area, compared to control. The expectancy group had a greater reduction in heart rate during the second skin reaction, after the manipulation of expectation (p<.05). CONCLUSION While wheal area was not modulated, it may be worth further investigating this possibility, with modifications to the protocol. The reduction of heart rate appears to be an expectation effect and future research could elucidate mechanisms involved. There is an indication that expectations and inflammatory skin reactions are associated. Further study might aim to clarify the direction and nature of this relationship.
Collapse
Affiliation(s)
- Margot Darragh
- Department of Psychological Medicine, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
59
|
Enck P, Bingel U, Schedlowski M, Rief W. The placebo response in medicine: minimize, maximize or personalize? Nat Rev Drug Discov 2013; 12:191-204. [PMID: 23449306 DOI: 10.1038/nrd3923] [Citation(s) in RCA: 475] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
60
|
Abstract
Like other physiological responses, immune functions are the subject of behavioural conditioning. Conditioned immunosuppression can be induced by contingently pairing a novel taste with an injection of the immunosuppressant cyclosporine A (CsA) in an associative learning paradigm. This learned immunosuppression is centrally mediated by the insular cortex and the amygdala. However, the afferent mechanisms by which the brain detects CsA are not understood. In this study we analysed whether CsA is sensed via the chemosensitive vagus nerve or whether CsA directly acts on the brain. Our experiments revealed that a single peripheral administration of CsA increases neuronal activity in the insular cortex and the amygdala as evident from increased electric activity, c-Fos expression and amygdaloid noradrenaline release. However, this increased neuronal activity was not affected by prior vagal deafferentation but rather seems to partially be induced by direct action of CsA on cortico-amygdaloid structures and the chemosensitive brainstem regions area postrema and nucleus of the solitary tract. Together, these data indicate that CsA as an unconditioned stimulus may directly act on the brain by a still unknown transduction mechanism.
Collapse
|
61
|
Impairment of lithium chloride-induced conditioned gaping responses (anticipatory nausea) following immune system stimulation with lipopolysaccharide (LPS) occurs in both LPS tolerant and LPS non-tolerant rats. Brain Behav Immun 2013; 27:123-32. [PMID: 23064080 DOI: 10.1016/j.bbi.2012.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/17/2012] [Accepted: 10/04/2012] [Indexed: 12/26/2022] Open
Abstract
Anticipatory nausea is a classically conditioned response to a context that has been previously paired with toxin-induced nausea and/or vomiting. When injected with a nausea-inducing drug, such as lithium chloride (LiCl), rats will show a distinctive conditioned gaping response that has been suggested to be an index of nausea. Previous studies have found that immune system activation with an endotoxin, such as lipopolysaccharide (LPS), attenuates LiCl-induced conditioned gaping in rats. The present study examined the acquisition of LiCl-induced conditioned gaping in rats that were either LPS tolerant or LPS non-tolerant, as little is known about the effects of endotoxin tolerance on learning and memory. Male Long-Evan rats were given four systemic injections of LPS (200 μg/kg) or isotonic saline (NaCl) to induce LPS tolerance, indexed with 24 h changes in body weight following treatment. The animals were then given 4 acquisition trials in a LiCl-induced conditioned gaping paradigm. On conditioning days animals were treated with LPS (200 μg/kg) or saline followed 90 min later by injection of LiCl (127 mg/kg) or saline and then placed in a distinctive context for 30 min and their behavior video-recorded. On a drug free test day all animals were again placed in the distinctive context for 10 min and behavior was video-recorded. Gaping responses were scored for all acquisition days and the test day. Spleen and body weights were also obtained for all rats at the end of the experiment. Gaping responses were attenuated in rats treated with LPS in both the LPS tolerant and LPS non-tolerant groups. There were significant negative correlations between spleen weight as well as spleen/body weight ratios, and levels of conditioned gaping responses in LiCl treated rats, but not control rats. These results show that LPS interferes with learning/memory in the anticipatory nausea paradigm in rats that are both LPS tolerant and LPS non-tolerant.
Collapse
|
62
|
Albring A, Wendt L, Benson S, Witzke O, Kribben A, Engler H, Schedlowski M. Placebo effects on the immune response in humans: the role of learning and expectation. PLoS One 2012. [PMID: 23185342 PMCID: PMC3504052 DOI: 10.1371/journal.pone.0049477] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Placebo responses are primarily mediated via two neuropsychological mechanisms: patients’ expectation towards the benefit of a treatment and associative learning processes. Immune functions, like other physiological responses, can be modulated through behavioral conditioning. However, it is unknown whether learned immune responses are affected by the number of re-expositions to the conditioned stimulus (CS) during evocation. Moreover, it is unclear whether immune functions can also be modulated through mere verbally induced expectation. In the experiments reported here, we investigated in healthy male volunteers with an established model of learned immunosuppression whether a single re-exposition to the CS is able to induce a behaviorally conditioned immunosuppression. This conditioned immunosuppression is reflected through a significantly decreased interleukin (IL)-2 production by anti-CD3 stimulated peripheral blood mononuclear cells. Our data revealed that in contrast to four CS re-expositions (control group n = 15; experimental group n = 17), a single CS re-exposition was not sufficient to significantly suppress IL-2 production (control group n = 9, experimental group n = 10). Furthermore, we could demonstrate that mere expectation of taking an immunosuppressant did not cause an immunosuppressive response (n = 8–9 per expectation condition). Together, these findings extend our knowledge about the kinetics and mechanisms of placebo-induced immunosuppression and provide therewith information for designing conditioning protocols, which might be employed as a supportive therapy in clinical settings.
Collapse
Affiliation(s)
- Antje Albring
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Laura Wendt
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Oliver Witzke
- Department of Nephrology, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University of Duisburg-Essen, Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
63
|
Learned Immunosuppression: Extinction, Renewal, and the Challenge of Reconsolidation. J Neuroimmune Pharmacol 2012; 8:180-8. [DOI: 10.1007/s11481-012-9388-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/04/2012] [Indexed: 12/17/2022]
|
64
|
|
65
|
Schneider R, Kuhl J. Placebo forte: Ways to maximize unspecific treatment effects. Med Hypotheses 2012; 78:744-51. [DOI: 10.1016/j.mehy.2012.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/21/2012] [Indexed: 12/30/2022]
|
66
|
Pollo A, Carlino E, Vase L, Benedetti F. Preventing motor training through nocebo suggestions. Eur J Appl Physiol 2012; 112:3893-903. [DOI: 10.1007/s00421-012-2333-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 01/20/2012] [Indexed: 12/17/2022]
|
67
|
Utilizing placebo mechanisms for dose reduction in pharmacotherapy. Trends Pharmacol Sci 2012; 33:165-72. [DOI: 10.1016/j.tips.2011.12.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/19/2022]
|
68
|
Grigoleit JS, Kullmann JS, Winkelhaus A, Engler H, Wegner A, Hammes F, Oberbeck R, Schedlowski M. Single-trial conditioning in a human taste-endotoxin paradigm induces conditioned odor aversion but not cytokine responses. Brain Behav Immun 2012; 26:234-8. [PMID: 21925260 DOI: 10.1016/j.bbi.2011.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022] Open
Abstract
Immunological responses to bacterial endotoxin can be behaviorally conditioned in rodents. However, it is unclear whether an acute systemic inflammatory response can be behaviorally conditioned in humans. Thus, in a double-blind placebo-controlled study, 20 healthy, male subjects received either a single injection of lipopolysaccharide (LPS) or saline together with a novel tasting beverage (conditioned stimulus, CS). Five days later, all subjects received a saline injection and were re-exposed to the CS. Blood was drawn prior to as well as 0.5, 1.5, 3, 4, 6, and 24 h after LPS administration or CS re-exposure. Endotoxin administration led to transient increases in plasma concentrations of interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α and to a significant rise in body temperature. Sole presentation of the CS during evocation did induce neither alterations in body temperature nor changes in plasma cytokine levels. However, subjects in the experimental group rated the smell of the CS significantly more aversive compared to the control group. Employing endotoxin as a US in a single trial taste-immune conditioning paradigm in humans shows a behaviorally conditioned smell aversion but no learned alterations in cytokine levels.
Collapse
Affiliation(s)
- Jan-Sebastian Grigoleit
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, D-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Ober K, Benson S, Vogelsang M, Bylica A, Günther D, Witzke O, Kribben A, Engler H, Schedlowski M. Plasma noradrenaline and state anxiety levels predict placebo response in learned immunosuppression. Clin Pharmacol Ther 2011; 91:220-6. [PMID: 22166852 DOI: 10.1038/clpt.2011.214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Large interindividual differences exist in the presence and extent of placebo responses in both experimental and clinical studies, but little is known about possible predictors of these responses. We employed a behaviorally conditioned immunosuppression paradigm in healthy men to analyze predictors of learned placebo responses. During acquisition, the subjects received either the immunosuppressant cyclosporin A (n = 32) or a placebo (n = 14) (unconditioned stimuli (US)) together with a novel-tasting drink (conditioned stimulus (CS)). During evocation, the subjects were reexposed to the CS alone. In responders (n = 15), the CS alone caused a significant inhibition of interleukin (IL)-2 production by anti-CD3-stimulated peripheral blood T cells, closely mimicking the drug effect. Nonresponders (n = 17) did not show responses different from those of the controls. Multiple-regression analyses showed that baseline IL-2, plasma noradrenaline, and state anxiety predicted nearly 60% of the variance in the conditioned IL-2 response. These data provide first evidence for putative biological and psychological predictors of learned placebo responses.
Collapse
Affiliation(s)
- K Ober
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Pacheco-López G, Bermúdez-Rattoni F. Brain-immune interactions and the neural basis of disease-avoidant ingestive behaviour. Philos Trans R Soc Lond B Biol Sci 2011; 366:3389-405. [PMID: 22042916 PMCID: PMC3189354 DOI: 10.1098/rstb.2011.0061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuro-immune interactions are widely manifested in animal physiology. Since immunity competes for energy with other physiological functions, it is subject to a circadian trade-off between other energy-demanding processes, such as neural activity, locomotion and thermoregulation. When immunity is challenged, this trade-off is tilted to an adaptive energy protecting and reallocation strategy that is identified as 'sickness behaviour'. We review diverse disease-avoidant behaviours in the context of ingestion, indicating that several adaptive advantages have been acquired by animals (including humans) during phylogenetic evolution and by ontogenetic experiences: (i) preventing waste of energy by reducing appetite and consequently foraging/hunting (illness anorexia), (ii) avoiding unnecessary danger by promoting safe environments (preventing disease encounter by olfactory cues and illness potentiation neophobia), (iii) help fighting against pathogenic threats (hyperthermia/somnolence), and (iv) by associative learning evading specific foods or environments signalling danger (conditioned taste avoidance/aversion) and/or at the same time preparing the body to counteract by anticipatory immune responses (conditioning immunomodulation). The neurobiology behind disease-avoidant ingestive behaviours is reviewed with special emphasis on the body energy balance (intake versus expenditure) and an evolutionary psychology perspective.
Collapse
Affiliation(s)
- Gustavo Pacheco-López
- Physiology and Behaviour Laboratory, ETH (Swiss Federal Institute of Technology)-Zurich, Schwerzenbach 8603, Switzerland
| | - Federico Bermúdez-Rattoni
- Neuroscience Division, Cellular Physiology Institute, UNAM (National University of Mexico), Mexico City 04510, Mexico
| |
Collapse
|
71
|
Nilsonne G, Appelgren A, Axelsson J, Fredrikson M, Lekander M. Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro. Behav Brain Funct 2011; 7:47. [PMID: 22098673 PMCID: PMC3247862 DOI: 10.1186/1744-9081-7-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 11/18/2011] [Indexed: 11/10/2022] Open
Abstract
Recent advances in cell biology and gene regulation suggest mechanisms whereby associative learning could be performed by single cells. Therefore, we explored a model of classical conditioning in human macrophages in vitro. In macrophage cultures, bacterial lipopolysaccharide (LPS; unconditioned stimulus) was paired once with streptomycin (conditioned stimulus). Secretion of interleukin-6 (IL-6) was used as response measure. At evocation, conditioning was not observed. Levels of IL-6 were higher only in those cultures that had been exposed to LPS in the learning phase (p's < .05), regardless whether they received the conditioned stimulus or not at evocation.However, habituation was evident, with a 62% loss of the IL-6 response after three LPS presentations (p < .001). If further experiments confirm that simple learning can occur in immune cells, this may have bearings not only on immune regulation, but also on the brain response to molecular signals detected in the periphery. Importantly, whether capacities for simple learning in single cells extend beyond habituation, and how this would be demonstrated, remain open questions.
Collapse
Affiliation(s)
- Gustav Nilsonne
- Karolinska Institutet, Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
72
|
Wirth T, Ober K, Prager G, Vogelsang M, Benson S, Witzke O, Kribben A, Engler H, Schedlowski M. Repeated recall of learned immunosuppression: evidence from rats and men. Brain Behav Immun 2011; 25:1444-51. [PMID: 21645613 DOI: 10.1016/j.bbi.2011.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 12/18/2022] Open
Abstract
Akin to other physiological responses, the immune system can be modified, via Pavlovian or behavioral conditioning. It is unknown, however, whether and to what extent learned immune responses can be repeatedly recalled over time. Here we demonstrate in both rats and humans that repeated contingent pairing of a novel taste (conditioned stimulus, CS) together with the immunosuppressive drug cyclosporine A as unconditioned stimulus (US) leads to the acquisition of a learned immunosuppression. Sole presentation of the CS caused a significant inhibition of interleukin (IL)-2 and interferon (IFN)-γ production by rat splenic T cells and human peripheral T lymphocytes, closely mimicking the effect of the drug. More importantly, a comparable suppression of cytokine production was also observed after a second, unreinforced exposure to the CS that was separated from the first evocation by an interval of 6 (rats) or 11 (humans)days, respectively. Together, our findings demonstrate that a learned immunosuppression can be repeatedly recalled in both animals and humans, which is an important prerequisite for the implementation of conditioning paradigms as supportive therapy.
Collapse
Affiliation(s)
- Timo Wirth
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
|
74
|
Vits S, Cesko E, Enck P, Hillen U, Schadendorf D, Schedlowski M. Behavioural conditioning as the mediator of placebo responses in the immune system. Philos Trans R Soc Lond B Biol Sci 2011; 366:1799-807. [PMID: 21576137 DOI: 10.1098/rstb.2010.0392] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current placebo research postulates that conditioning processes are one of the major mechanisms of the placebo response. Behaviourally conditioned changes in peripheral immune functions have been demonstrated in experimental animals, healthy subjects and patients. The physiological mechanisms responsible for this 'learned immune response' are not yet fully understood, but some relevant afferent and efferent pathways in the communication between the brain and the peripheral immune system have been identified. In addition, possible benefits and applicability in clinical settings have been demonstrated where behaviourally conditioned immunosuppression attenuated the exacerbation of autoimmune diseases, prolonged allograft survival and affected allergic responses. Here, we summarize data describing the mechanisms and the potential clinical benefit of behaviourally conditioned immune functions, with particular focus on learned placebo effects on allergic reactions.
Collapse
Affiliation(s)
- Sabine Vits
- Institute of Medical Psychology and Behavioral Immunobiology, University Clinic Essen, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
75
|
Pollo A, Carlino E, Benedetti F. Placebo mechanisms across different conditions: from the clinical setting to physical performance. Philos Trans R Soc Lond B Biol Sci 2011; 366:1790-8. [PMID: 21576136 DOI: 10.1098/rstb.2010.0381] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although the great increase in interest in the placebo phenomenon was spurred by the clinical implications of its use, the progressive elucidation of the neurobiological and pharmacological mechanisms underlying the placebo effect also helps cast new light on the relationship between mind (and brain) and body, a topic of foremost philosophical importance but also a major medical issue in light of the complex interactions between the brain on the one hand and body functions on the other. While the concept of placebo can be a general one, with a broad definition generally applicable to many different contexts, the description of the cerebral processes called into action in specific situations can vary widely. In this paper, examples will be given where physiological or pathological conditions are altered following the administration of an inert substance or verbal instructions tailored to induce expectation of a change, and explanations will be offered with details on neurotransmitter changes and neural pathways activated. As an instance of how placebo effects can extend beyond the clinical setting, data in the physical performance domain and implications for sport competitions will also be presented and discussed.
Collapse
Affiliation(s)
- Antonella Pollo
- Department of Neuroscience, University of Turin, and National Institute of Neuroscience, Turin, Italy
| | | | | |
Collapse
|
76
|
Meissner K, Kohls N, Colloca L. Introduction to placebo effects in medicine: mechanisms and clinical implications. Philos Trans R Soc Lond B Biol Sci 2011; 366:1783-9. [PMID: 21576135 PMCID: PMC3130411 DOI: 10.1098/rstb.2010.0414] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The field of placebo research has made considerable progress in the last years and it has become a major focus of interest. We know now that the placebo effect is a real neurobiological phenomenon and that the brain's 'inner pharmacy' is a critical determinant for the occurrence of psychobiological and behavioural changes relevant to healing processes and well-being. However, harnessing the advantages of placebo effects in healthcare is still a challenge. The first part of the theme issue summarizes and discusses the various kinds of placebo mechanisms across medical fields, thereby not only focusing on two main explanatory models-expectation and conditioning theory-but also taking into account empathy and social learning, emotion and motivation, spirituality and the healing ritual. The second part of the issue focuses on questions related to transferring knowledge from placebo research into clinical practice and discusses implications for the design and interpretation of clinical trials, for the therapeutic settings in daily patient care, and for future translational placebo research.
Collapse
Affiliation(s)
- Karin Meissner
- Institute of Medical Psychology, Ludwig-Maximilians-University, Goethestrasse 31 80336 Munich, Germany.
| | | | | |
Collapse
|
77
|
Colloca L, Miller FG. How placebo responses are formed: a learning perspective. Philos Trans R Soc Lond B Biol Sci 2011; 366:1859-69. [PMID: 21576143 PMCID: PMC3130403 DOI: 10.1098/rstb.2010.0398] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite growing scientific interest in the placebo effect and increasing understanding of neurobiological mechanisms, theoretical conceptualization of the placebo effect remains poorly developed. Substantial mechanistic research on this phenomenon has proceeded with little guidance by any systematic theoretical paradigm. This review seeks to present a theoretical perspective on the formation of placebo responses. We focus on information processing, and argue that different kinds of learning along with individuals' genetic make-up evolved as the proximate cause for triggering behavioural and neural mechanisms that enable the formation of individual expectations and placebo responses. Conceptualizing the placebo effect in terms of learning offers the opportunity for facilitating scientific investigation with a significant impact on medical care.
Collapse
Affiliation(s)
- Luana Colloca
- National Center for Complementary and Alternative Medicine (NCCAM), National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
78
|
Doenlen R, Krügel U, Wirth T, Riether C, Engler A, Prager G, Engler H, Schedlowski M, Pacheco-López G. Electrical activity in rat cortico-limbic structures after single or repeated administration of lipopolysaccharide or staphylococcal enterotoxin B. Proc Biol Sci 2010; 278:1864-72. [PMID: 21106598 DOI: 10.1098/rspb.2010.2040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune-to-brain communication is essential for an individual to aptly respond to challenging internal and external environments. However, the specificity by which the central nervous system detects or 'senses' peripheral immune challenges is still poorly understood. In contrast to post-mortem c-Fos mapping, we recorded neural activity in vivo in two specific cortico-limbic regions relevant for processing visceral inputs and associating it with other sensory signalling, the amygdala (Am) and the insular cortex (IC). Adult rats were implanted with deep-brain monopolar electrodes and electrical activity was monitored unilaterally before and after administration of two different immunogens, the T-cell-independent antigen lipopolysaccharide (LPS) or the T-cell-dependent antigen staphylococcal enterotoxin B (SEB). In addition, the neural activity of the same individuals was analysed after single as well as repeated antigen administration, the latter inducing attenuation of the immune response. Body temperature and circulating cytokine levels confirmed the biological activity of the antigens and the success of immunization and desensitization protocols. More importantly, the present data demonstrate that neural activity of the Am and IC is not only specific for the type of immune challenge (LPS versus SEB) but seems to be also sensitive to the different immune state (naive versus desensitization). This indicates that the forebrain expresses specific patterns of electrical activity related to the type of peripheral immune activation as well as to the intensity of the stimulation, substantiating associative learning paradigms employing antigens as unconditioned stimuli. Overall, our data support the view of an intensive immune-to-brain communication, which may have evolved to achieve the complex energetic balance necessary for mounting effective immunity and improved individual adaptability by cognitive functions.
Collapse
Affiliation(s)
- Raphael Doenlen
- Swiss Federal Institute of Technology (ETH), Zurich 8092, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Colloca L, Petrovic P, Wager TD, Ingvar M, Benedetti F. How the number of learning trials affects placebo and nocebo responses. Pain 2010; 151:430-439. [PMID: 20817355 PMCID: PMC2955814 DOI: 10.1016/j.pain.2010.08.007] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 07/31/2010] [Accepted: 08/04/2010] [Indexed: 12/19/2022]
Abstract
Conditioning procedures are used in many placebo studies because evidence suggests that conditioning-related placebo responses are usually more robust than those induced by verbal suggestions alone. However, it has not been shown whether there is a causal relation between the number of conditioning trials and the resistance to extinction of placebo and nocebo responses. Here we test the effects of either one or four sessions of conditioning on the modulation of both non-painful and painful stimuli delivered to the dorsum of the foot. Placebo and nocebo manipulations were obtained by pairing green or red light to a series of stimuli that were made lower or higher with respect to a yellow light associated with a series of control stimuli. Subjects were told that the lights would indicate a treatment that would reduce or increase non-painful and painful stimuli to the foot. They were randomly assigned to either Group 1 or 2. Group 1 underwent one session of conditioning and Group 2 received four sessions of conditioning. We found that one session of conditioning (Group 1) induced nocebo responses, but not placebo responses in no pain condition. After one session of conditioning, we observed both nocebo and placebo responses to painful stimulation. However, these effects extinguished over time. Conversely, four sessions of conditioning (Group 2) induced robust placebo and nocebo responses to both non-painful and painful stimuli that persisted over the entire experiment. These findings suggest that the strength of learning may be clinically important for producing long-lasting placebo effects.
Collapse
Affiliation(s)
- Luana Colloca
- Department of Neuroscience, University of Turin Medical School and National Institute of Neuroscience, Turin, Italy MR-Research Center and Osher Center, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden National Center for Complementary and Alternative Medicine (NCCAM) & Department of Bioethics, Clinical Center, National Institutes of Health, Bethesda, USA Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
| | | | | | | | | |
Collapse
|