51
|
Wang Z, Xia P, Hu J, Huang Y, Zhang F, Li L, Wang E, Guo Q, Ye Z. LncRNA MEG3 Alleviates Diabetic Cognitive Impairments by Reducing Mitochondrial-Derived Apoptosis through Promotion of FUNDC1-Related Mitophagy via Rac1-ROS Axis. ACS Chem Neurosci 2021; 12:2280-2307. [PMID: 33843209 DOI: 10.1021/acschemneuro.0c00682] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction and elevated ROS generation are predominant contributors of neuronal death that is responsible for the diabetes-related cognitive impairments. Emerging evidence has demonstrated that long noncoding RNA-MEG3 can serve as an important regulator in the pathogenesis of diabetes. However, the underlying mechanisms remain to be further clarified. Here, it was observed that MEG3 was significantly down-regulated in STZ (streptozotocin)-induced diabetic rats. MEG3 overexpression noticeably improved diabetes-induced cognitive dysfunctions, accompanied by the abatement of Rac1 activation and ROS production, as well as the inhibition of mitochondria-associated apoptosis. Furthermore, either MEG3 overexpression or Rac1 inhibition promoted FUNDC1 dephosphorylation and suppressed oxidative stress and neuro-inflammation. Similarly, in vitro studies confirmed that hyperglycemia also down-regulated MEG3 expression in PC12 cells. MEG3 reintroduction protected PC12 cells against hyperglycemia-triggered neurotoxicity by improving mitochondrial fitness and repressing mitochondria-mediated apoptosis. Moreover, these neuroprotective effects of MEG3 relied on FUNDC1-related mitophagy, since silencing of FUNDC1 abolished these beneficial outcomes. Additionally, MEG3 rescued HG-induced neurotoxicity was involved in inhibiting Rac1 expression via interaction with Rac1 3'UTR. Conversely, knockdown of MEG3 showed opposite effects. NSC23766, a specific inhibitor of Rac1, fully abolished harmful effects of MEG3 depletion. Consistently, knockdown of Rac1 potentiated FUNDC1-associated mitophagy. Meanwhile, colocalization of Rac1 and FUNDC1 was found in mitochondria under hyperglycemia, which was interrupted by MEG3 overexpression. Furthermore, silencing of Rac1 promoted PGAM5 expression, and FUNDC1 strongly interacted with LC3 in Rac1-deleted cells. Altogether, our findings suggested that the Rac1/ROS axis may be a downstream signaling pathway for MEG3-induced neuroprotection, which was involved in FUNDC1-associated mitophagy.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Anesthesiology, Hainan General Hospital, Haikou 570311, China
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Jie Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Yan Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| |
Collapse
|
52
|
Cheon SY, Koo BN, Kim SY, Kam EH, Nam J, Kim EJ. Scopolamine promotes neuroinflammation and delirium-like neuropsychiatric disorder in mice. Sci Rep 2021; 11:8376. [PMID: 33863952 PMCID: PMC8052461 DOI: 10.1038/s41598-021-87790-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/05/2021] [Indexed: 01/13/2023] Open
Abstract
Postoperative delirium is a common neuropsychiatric syndrome resulting a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium-like models due to their clinical significance, focusing on systematic inflammation and consequent neuroinflammation playing a key role in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium-like mice model with respect to the neuroinflammatory hypothesis of delirium. Male C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioral tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1β, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models. Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. The scopolamine-induced delirium-like mice model successfully showed that analogous neuropsychiatric changes coincides with the neuroinflammatory hypothesis for pathogenesis of delirium.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junhyun Nam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
53
|
Wang K, Shi Y, Liu W, Liu S, Sun MZ. Taurine improves neuron injuries and cognitive impairment in a mouse Parkinson's disease model through inhibition of microglial activation. Neurotoxicology 2021; 83:129-136. [PMID: 33450328 DOI: 10.1016/j.neuro.2021.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/27/2022]
Abstract
Clinical and experimental findings support the view that activation of hippocampus microglia through NADPH oxidase contributes to cognitive impairment in Parkinson's disease (PD). Taurine, an antioxidant, displays an exclusive physical property on brain function, such as learning and memory. To date, the role of taurine in improving cognitive impairment in PD is not fully uncovered. Hence, we evaluated the protective effect of taurine on cognitive ability and explored the related mechanism in the model built by paraquat and maneb (P + M)-induced PD mice. Then the ability of learning and memory was observed by Morris water maze, neuron loss was evaluated by immunohistochemistry in hippocampus, the level of postsynaptic density 95 (PSD95) and microglia activation was assessed by immunostaining, the molecules (gp91phox, p47phox, mac1, p-Src/Src and p-Erk/Erk) were examined by western blot. The results showed that taurine could alleviate the impairments in learning and memory induced by P + M injection in mice (decreased escape latency on day 4, P < 0.01; decreased swimming distance on day 4, P < 0.05; increased percent time in target quadrant, P < 0.05), corresponding with activation of microglia (decreased IBa-1 density, P < 0.001; decreased the protein expression of p47phox, P < 0.05; decreased protein expression of gp91phox, P < 0.01; decreased p-Src/Src, P < 0.01; decreased p-Erk/Erk, P < 0.01; decreased mac 1, P < 0.01), decreased neuron loss (increased number of NeurN+ neuron, P < 0.001; increased protein expression of NeruN, P < 0.01; decreased protein expression of caspase 3, P < 0.01) and increased PSD95 level in hippocampus (P < 0.01). The results indicated that mac1 and Src-Erk signaling was involved in increased NADPH oxidase expression in hippocampus microglia of P + M mice, and taurine could improve injuries in learning and memory through mac1 reduction. The new findings in mac1 triggering hippocampal microglia NADPH oxidase through Src/Erk pathway of the present study might provide a therapy target for PD.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China; Department of Clinical Nutrition, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yongquan Shi
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wei Liu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China; Department of Chinese Traditional Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
54
|
Chen X, Chen D, Li Q, Wu S, Pan J, Liao Y, Zheng X, Zeng W. Dexmedetomidine Alleviates Hypoxia-Induced Synaptic Loss and Cognitive Impairment via Inhibition of Microglial NOX2 Activation in the Hippocampus of Neonatal Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643171. [PMID: 33628369 PMCID: PMC7895593 DOI: 10.1155/2021/6643171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Perinatal hypoxia is a universal cause of death and neurological deficits in neonates worldwide. Activation of microglial NADPH oxidase 2 (NOX2) leads to oxidative stress and neuroinflammation, which may contribute to hypoxic damage in the developing brain. Dexmedetomidine has been reported to exert potent neuroprotection in several neurological diseases, but the mechanism remains unclear. We investigated whether dexmedetomidine acts through microglial NOX2 to reduce neonatal hypoxic brain damage. METHODS The potential role of microglial NOX2 in dexmedetomidine-mediated alleviation of hypoxic damage was evaluated in cultured BV2 microglia and neonatal rats subjected to hypoxia. In vivo, neonatal rats received dexmedetomidine (25 μg/kg, i.p.) 30 min before or immediately after hypoxia (5% O2, 2 h). Apocynin-mediated NOX inhibition and lentivirus-mediated NOX2 overexpression were applied to further assess the involvement of microglial NOX2 activation. RESULTS Pre- or posttreatment with dexmedetomidine alleviated hypoxia-induced cognitive impairment, restored damaged synapses, and increased postsynaptic density-95 and synaptophysin protein expression following neonatal hypoxia. Importantly, dexmedetomidine treatment suppressed hypoxia-induced microglial NOX2 activation and subsequent oxidative stress and the neuroinflammatory response, as reflected by reduced 4-hydroxynonenal and ROS accumulation, and decreased nuclear NF-κB p65 and proinflammatory cytokine levels in cultured BV2 microglia and the developing hippocampus. In addition, treating primary hippocampal neurons with conditioned medium (CM) from hypoxia-activated BV2 microglia resulted in neuronal damage, which was alleviated by CM from dexmedetomidine-treated microglia. Moreover, the neuroprotective effect of dexmedetomidine was reversed in NOX2-overexpressing BV2 microglia and diminished in apocynin-pretreated neonatal rats. CONCLUSION Dexmedetomidine targets microglial NOX2 to reduce oxidative stress and neuroinflammation and subsequently protects against hippocampal synaptic loss following neonatal hypoxia.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuyan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jiahao Pan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
55
|
Triviño JJ, von Bernhardi R. The effect of aged microglia on synaptic impairment and its relevance in neurodegenerative diseases. Neurochem Int 2021; 144:104982. [PMID: 33556444 DOI: 10.1016/j.neuint.2021.104982] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Microglia serve key functions in the central nervous system (CNS), participating in the establishment and regulation of synapses and the neuronal network, and regulating activity-dependent plastic changes. As the neuroimmune system, they respond to endogenous and exogenous signals to protect the CNS. In aging, one of the main changes is the establishment of inflamm-aging, a mild chronic inflammation that reduces microglial response to stressors. Neuroinflammation depends mainly on the increased activation of microglia. Microglia over-activation may result in a reduced capacity for performing normal functions related to migration, clearance, and the adoption of an anti-inflammatory state, contributing to an increased susceptibility for neurodegeneration. Oxidative stress contributes both to aging and to the progression of neurodegenerative diseases. Increased production of reactive oxygen species (ROS) and neuroinflammation associated with age- and disease-dependent mechanisms affect synaptic activity and neurotransmission, leading to cognitive dysfunction. Astrocytes prevent microglial cell cytotoxicity by mechanisms mediated by transforming growth factor β1 (TGFβ1). However, TGFβ1-Smad3 pathway is impaired in aging, and the age-related impairment of TGFβ signaling can reduce protective activation while facilitating cytotoxic activation of microglia. A critical analysis on the effect of aging microglia on neuronal function is relevant for the understanding of age-related changes on neuronal function. Here, we present evidence in the context of the "microglial dysregulation hypothesis", which leads to the reduction of the protective functions and increased cytotoxicity of microglia, to discuss the mechanisms involved in neurodegenerative changes and Alzheimer's disease.
Collapse
Affiliation(s)
- Juan José Triviño
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile
| | - Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile; Faculty of Health Sciences, Universidad San Sebastián, Lota 2465, Santiago, Chile.
| |
Collapse
|
56
|
Yan Z, Qi Z, Yang X, Ji N, Wang Y, Shi Q, Li M, Zhang J, Zhu Y. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling. J Cell Physiol 2021; 236:5547-5563. [PMID: 33469931 DOI: 10.1002/jcp.30285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Inflammasomes are a group of multiprotein signaling complexes located in the cytoplasm. Several inflammasomes have been identified, including NLRP1, NLRP2, NLRP3, AIM2, and NLRC4. Among them, NLRP3 was investigated in most detail, and it was reported that it can be activated by many different stimuli. Increased NLRP3 protein expression and inflammasome assembly lead to caspase-1 mediated maturation and release of IL-1β, which triggers inflammation and pyroptosis. The activation of the NLRP3 inflammasome has been widely reported in studies of tumors and neurological diseases, but relatively few studies on the cardiovascular system. Ventricular remodeling (VR) is an important factor contributing to heart failure (HF) after myocardial infarction (MI). Consequently, delaying VR is of great significance for improving heart function. Studies have shown that the NLRP3 inflammasome plays an essential role in the process of VR. Here, we reviewed the latest studies on the activation pathway of the NLRP3 inflammasome, focusing on the effects of the NLRP3 inflammasome in primary cells during VR, and finally discuss future research directions in this field.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yueyao Wang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Shi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaping Zhu
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
57
|
Yu L, Wen G, Zhu S, Hu X, Huang C, Yang Y. Abnormal phosphorylation of tau protein and neuroinflammation induced by laparotomy in an animal model of postoperative delirium. Exp Brain Res 2021; 239:867-880. [PMID: 33409674 DOI: 10.1007/s00221-020-06007-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Postoperative delirium (POD) is an acute neuropsychological disturbance after surgery, whose prevalence is related with advancing age. Neuroinflammation and abnormal tau phosphorylation that commonly presenting in Alzheimer's disease (AD) may contribute to the progression and duration of POD. To study the acute influence of surgery on cognitive function, wild type male C57BL/6 N mice were randomly divided into three groups: Control (CON), Laparotomy at 4 h and 24 h (LAP-4 h, LAP-24 h), then subjected to laparotomy under sevoflurane anaesthesia. The cognitive performance, peripheral and central inflammatory responses and tau phosphorylation levels were evaluated at 4 h and 24 h postoperatively. When LAP4-hrs displayed anxiety behaviors with high mRNA levels of inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, IL-8, TNF-α and MCP-1 in the liver, and IL-8 in the hippocampus, results at 24 h were different. In the liver, only IL-10 protein was obviously elevated, but in the hippocampus, both pro- and anti-inflammatory cytokines were significantly decreased whilst the elimination of anxiety. The activity of major related kinases and phosphatases was remarkably changed which may contribute to the dephosphorylated tau protein. With tremendous neuropathological changes and significant numbers of activated microglias and astrocytes observed in the sub-regions of hippocampus, the memory impairment existed at both 4 h and 24 h. Since the association of dephosphorylated tau with POD, these findings may supply novel implications for the understanding of tauopathies and as a theoretical basis for preventions from the postoperative cognitive dysfunction (POCD).
Collapse
Affiliation(s)
- Le Yu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230001, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China
| | - Guanghua Wen
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230001, People's Republic of China
| | - Shoufeng Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China. .,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China.
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
58
|
Abstract
A major feature of neurodegeneration is disruption of central nervous system homeostasis, during which microglia play diverse roles. In the central nervous system, microglia serve as the first line of immune defense and function in synapse pruning, injury repair, homeostasis maintenance, and regulation of brain development through scavenging and phagocytosis. Under pathological conditions or various stimulations, microglia proliferate, aggregate, and undergo a variety of changes in cell morphology, immunophenotype, and function. This review presents the features of microglia, especially their diversity and ability to change dynamically, and reinterprets their role as sensors for multiple stimulations and as effectors for brain aging and neurodegeneration. This review also summarizes some therapeutic approaches for neurodegenerative diseases that target microglia.
Collapse
Affiliation(s)
- Yu Xu
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty; Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Yong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering; National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai; Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
59
|
Mei B, Li J, Zuo Z. Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor. Brain Behav Immun 2021; 91:296-314. [PMID: 33039659 PMCID: PMC7749843 DOI: 10.1016/j.bbi.2020.10.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a significant clinical issue that is associated with increased mortality and cost of health care. Dexmedetomidine, an α2 adrenoceptor agonist that is used to provide sedation, has been shown to induce neuroprotection under various conditions. This study was designed to determine whether dexmedetomidine protects against SAE and whether α2 adrenoceptor plays a role in this protection. Six- to eight-week old CD-1 male mice were subjected to cecal ligation and puncture (CLP). They were treated with intraperitoneal injection of dexmedetomidine in the presence or absence of α2 adrenoceptor antagonists, atipamezole or yohimbine, or an α2A adrenoceptor antagonist, BRL-44408. Hippocampus and blood were harvested for measuring cytokines. Mice were subjected to Barnes maze and fear conditioning 14 days after CLP to evaluate their learning and memory. CLP significantly increased the proinflammatory cytokines including tumor necrosis factor α, interleukin (IL)-6 and IL-1β in the blood and hippocampus. CLP also increased the permeability of blood-brain barrier (BBB) and impaired learning and memory. These CLP detrimental effects were attenuated by dexmedetomidine. Intracerebroventricular application of atipamezole, yohimbine or BRL-44408 blocked the protection of dexmedetomidine on the brain but not on the systemic inflammation. Astrocytes but not microglia expressed α2A adrenoceptors. Microglial depletion did not abolish the protective effects of dexmedetomidine. These results suggest that dexmedetomidine reduces systemic inflammation, neuroinflammation, injury of BBB and cognitive dysfunction in septic mice. The protective effects of dexmedetomidine on the brain may be mediated by α2A adrenoceptors in the astrocytes.
Collapse
Affiliation(s)
- Bin Mei
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA; Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, PR China.
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA.
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA.
| |
Collapse
|
60
|
Yan J, Luo A, Sun R, Tang X, Zhao Y, Zhang J, Zhou B, Zheng H, Yu H, Li S. Resveratrol Mitigates Hippocampal Tau Acetylation and Cognitive Deficit by Activation SIRT1 in Aged Rats following Anesthesia and Surgery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4635163. [PMID: 33381265 PMCID: PMC7758127 DOI: 10.1155/2020/4635163] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a sever postsurgical neurological complication in the elderly population. As the global acceleration of population ageing, POCD is proved to be a great challenge to the present labor market and healthcare system. In the present study, our findings showed that tau acetylation mediated by SIRT1 deficiency resulted in tau hyperphosphorylation in the hippocampus of the aged POCD model and consequently contributed to cognitive impairment. Interestingly, pretreatment with resveratrol almost restored the expression of SIRT1, reduced the levels of acetylated tau and hyperphosphorylated tau in the hippocampus, and improved the cognitive performance in the behavioral tests. What is more, we observed that microglia-derived neuroinflammation resulting from SIRT1 inhibition in microglia probably aggravated the tau acetylation in cultured neurons in vitro. Our findings supported the notion that activation SIRT1 provided dually beneficial effect in the aged POCD model. Taken together, our findings provided the initial evidence that tau acetylation was associated with cognitive impairment in the aged POCD model and paved a promising avenue to prevent POCD by inhibiting tau acetylation in a SIRT1-dependent manner.
Collapse
Affiliation(s)
- Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Biyun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Hua Zheng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Honghui Yu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| |
Collapse
|
61
|
Zhang Y, Li M, Cui E, Zhang H, Zhu X, Zhou J, Yan M, Sun J. Dexmedetomidine attenuates sevoflurane‑induced neurocognitive impairment through α2‑adrenoceptors. Mol Med Rep 2020; 23:38. [PMID: 33179100 PMCID: PMC7684862 DOI: 10.3892/mmr.2020.11676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
It has been reported that sevoflurane induces neurotoxicity in the developing brain. Dexmedetomidine is an α2 adrenoceptor agonist used for the prevention of sevoflurane‑induced agitation in children in clinical practice. The aim of the present study was to determine whether dexmedetomidine could prevent sevoflurane‑induced neuroapoptosis, neuroinflammation, oxidative stress and neurocognitive impairment. Additionally, the involvement of α2 adrenoceptors in the neuroprotective effect of dexmedetomidine was assessed. Postnatal day (P)6 C57BL/6 male mice were randomly divided into four groups (n=6 in each group). Mice were pretreated with dexmedetomidine, either alone or together with yohimbine, an α2 adrenoceptor inhibitor, then exposed to 3% sevoflurane in 25% oxygen. Control mice either received normal saline alone or with sevoflurane exposure. Following sevoflurane exposure, the expression of cleaved caspase‑3 was detected by immunohistochemistry in hippocampal tissue sections. In addition, the levels of tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β, IL‑6 and malondialdehyde, as well as superoxide dismutase (SOD) activity in the hippocampus were measured. At P35, the learning and memory abilities were assessed in each mouse using a Morris water maze test. Dexmedetomidine significantly decreased the expression of activated caspase‑3 following sevoflurane exposure. Moreover, dexmedetomidine significantly decreased the levels of TNF‑α, IL‑1β and IL‑6 in the hippocampus. SOD activity also increased in a dose‑dependent manner in dexmedetomidine‑treated mice. MDA decreased in a dose‑dependent manner in dexmedetomidine‑treated mice. Lastly, sevoflurane‑induced learning and memory impairment was reversed by dexmedetomidine treatment. By contrast, co‑administration of yohimbine significantly attenuated the neuroprotective effects of dexmedetomidine. These findings suggested that dexmedetomidine exerted a neuroprotective effect against sevoflurane‑induced apoptosis, inflammation, oxidative stress and neurocognitive impairment, which was mediated, at least in part, by α2 adrenoceptors.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Anesthesiology, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Mao Li
- Department of Anesthesiology, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Enhui Cui
- Department of Anesthesiology, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Hao Zhang
- Department of Anesthesiology, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Xiaozhong Zhu
- Department of Anesthesiology, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Jing Zhou
- Department of Anesthesiology, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Ming Yan
- Department of Anesthesiology, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Jian Sun
- Department of Anesthesiology, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
62
|
Fan W, Mai L, Zhu X, Huang F, He H. The Role of Microglia in Perioperative Neurocognitive Disorders. Front Cell Neurosci 2020; 14:261. [PMID: 32973455 PMCID: PMC7461842 DOI: 10.3389/fncel.2020.00261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common phenomenon associated with anesthesia and surgery and has been frequently described in the elderly and susceptible individuals. Microglia, which are the brain’s major resident immune cells, play critical roles in maintaining neuronal homeostasis and synaptic plasticity. Accumulating evidence suggests microglial dysfunction occurring after anesthesia and surgery might perturb neuronal function and induce PND. This review aims to provide an overview of the involvement of microglia in PND to date. Possible cellular and molecular mechanisms regarding the connection between microglial activation and PND are discussed.
Collapse
Affiliation(s)
- Wenguo Fan
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Mai
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
63
|
Perioperative neurocognitive dysfunction: thinking from the gut? Aging (Albany NY) 2020; 12:15797-15817. [PMID: 32805716 PMCID: PMC7467368 DOI: 10.18632/aging.103738] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
With the aging of the world population, and improvements in medical and health technologies, there are increasing numbers of elderly patients undergoing anaesthesia and surgery. Perioperative neurocognitive dysfunction has gradually attracted increasing attention from academics. Very recently, 6 well-known journals jointly recommended that the term perioperative neurocognitive dysfunction (defined according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition) should be adopted to improve the quality and consistency of academic communications. Perioperative neurocognitive dysfunction currently includes preoperatively diagnosed cognitive decline, postoperative delirium, delayed neurocognitive recovery, and postoperative cognitive dysfunction. Increasing evidence shows that the gut microbiota plays a pivotal role in neuropsychiatric diseases, and in central nervous system functions via the microbiota-gut-brain axis. We recently reported that abnormalities in the composition of the gut microbiota might underlie the mechanisms of postoperative cognitive dysfunction and postoperative delirium, suggesting a critical role for the gut microbiota in perioperative neurocognitive dysfunction. This article therefore reviewed recent findings on the linkage between the gut microbiota and the underlying mechanisms of perioperative neurocognitive dysfunction.
Collapse
|
64
|
Zhang X, Fan X, Li F, Qiu J, Zhang Y. Effects of PYRIN-containing Apaf1-like protein 1 on isoflurane-induced postoperative cognitive dysfunction in aged rats. Mol Med Rep 2020; 22:1391-1399. [PMID: 32626997 PMCID: PMC7339563 DOI: 10.3892/mmr.2020.11244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent neurocognitive disorder following surgery and anesthesia, particularly in elderly patients. Isoflurane is a widely used anesthetic agent, which is associated with the development of POCD; however, the precise mechanisms remain unclear. In the present study, aged rats were exposed to 2% isoflurane to establish a POCD model. The expression of PYRIN-containing Apaf1-like protein 1 (PYPAF1) was knocked down using a lentivirus containing specific short hairpin RNA. Subsequently, the spatial learning ability of rats was assessed using the Morris water maze. In addition, mRNA and protein expression levels were detected using reverse transcription-quantitative PCR and western blot analysis, respectively. Immunofluorescence double staining was also used to determine the expression of PYPAF1 and Iba-1 in the hippocampus. Neural apoptosis was observed using TUNEL-NeuN double staining. The results revealed that isoflurane exposure impaired the spatial learning ability of rats, while PYPAF1 knockdown alleviated cognitive impairment. In addition, isoflurane exposure induced activation of the PYPAF1 inflammasome, as evidenced by elevated expression of PYPAF1 and apoptosis-associated speck-like protein containing a caspase recruitment domain, while silencing of PYPAF1 partially reversed this effect. Furthermore, isoflurane exposure promoted the activation of microglia and caspase-1, and the secretion of interleukin (IL)-1β and IL-18, all of which were alleviated following PYPAF1 silencing. Moreover, isoflurane exposure induced neuronal apoptosis, elevated the levels of Bax and cleaved caspase-3, and inhibited the expression of Bcl-2; all of these effects were partially abrogated following PYPAF1 silencing. In conclusion, the results of the present study indicated that PYPAF1 silencing partially abolished isoflurane-induced cognitive impairment, neuroinflammation and neuronal apoptosis. Therefore, PYPAF1 may be a potential therapeutic target for treatment of POCD.
Collapse
Affiliation(s)
- Xiaona Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiushuang Fan
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fan Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinpeng Qiu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
65
|
Hippocampal complement C3 might contribute to cognitive impairment induced by anesthesia and surgery. Neuroreport 2020; 31:507-514. [PMID: 32168099 DOI: 10.1097/wnr.0000000000001422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Postoperative cognitive dysfunction is a well-recognized complication after major surgery in the elderly, but its pathophysiological mechanism is not fully understood. In the present study, we used liquid chromatography-tandem mass spectrometry combined with tandem mass tags to identify differentially expressed proteins and perform further functional studies on protein of interest. Here, we showed that hippocampal complement C3 was significantly upregulated after surgery, which was accompanied by marked decreases in synaptic related proteins and density. In aged patients undergoing gastrointestinal surgery, we also found significantly increased plasma level of C3b postoperatively and were negatively associated with cognitive performance. Notably, selective inhibition of complement C3 by compstatin was able to rescue synaptic and cognitive impairments induced by surgery in aged mice. Collectively, our study confirms that surgery can induce cognitive impairments, and the possible mechanisms might be related to abnormal complement signaling and synaptic disruption.
Collapse
|
66
|
Wu T, Wang X, Zhang R, Jiao Y, Yu W, Su D, Zhao Y, Tian J. Mice with pre-existing tumors are vulnerable to postoperative cognitive dysfunction. Brain Res 2020; 1732:146650. [DOI: 10.1016/j.brainres.2020.146650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
67
|
Wen C, Xie T, Pan K, Deng Y, Zhao Z, Li N, Bian J, Deng X, Zha Y. Acetate attenuates perioperative neurocognitive disorders in aged mice. Aging (Albany NY) 2020; 12:3862-3879. [PMID: 32139660 PMCID: PMC7066918 DOI: 10.18632/aging.102856] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Perioperative neurocognitive disorders are common in elderly patients who have undergone surgical procedures. Neuroinflammation induced by microglial activation is a hallmark of these neurological disorders. Acetate can suppress inflammation in the context of inflammatory diseases. We employed an exploratory laparotomy model with isoflurane anesthesia to study the effects of acetate on perioperative neurocognitive disorders in aged mice. Neurocognitive function was assessed with open-field tests and Morris water maze tests 3 or 7 days post-surgery. Acetate ameliorated the surgery-induced cognitive deficits of aged mice and inhibited the activation of IBA-1, a marker of microglial activity. Acetate also reduced expression of inflammatory proteins (tumor necrosis factor-α, interleukin-1β and interleukin-6), oxidative stress factors (NADPH oxidase 2, inducible nitric oxide synthase and reactive oxygen species), and signaling molecules (nuclear factor kappa B and mitogen-activated protein kinase) in the hippocampus. BV2 microglial cells were used to verify the anti-inflammatory effects of acetate in vitro. Acetate suppressed inflammation in lipopolysaccharide-treated BV2 microglial cells, but not when GPR43 was silenced. These results suggest that acetate may bind to GPR43, thereby inhibiting microglial activity, suppressing neuroinflammation, and preventing memory deficits. This makes acetate is a promising therapeutic for surgery-induced neurocognitive disorders and neuroinflammation.
Collapse
Affiliation(s)
- Cen Wen
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Tao Xie
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Ke Pan
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yu Deng
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhijia Zhao
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Na Li
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yanping Zha
- Faculty of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
68
|
Fu Q, Li J, Qiu L, Ruan J, Mao M, Li S, Mao Q. Inhibiting NLRP3 inflammasome with MCC950 ameliorates perioperative neurocognitive disorders, suppressing neuroinflammation in the hippocampus in aged mice. Int Immunopharmacol 2020; 82:106317. [PMID: 32087497 DOI: 10.1016/j.intimp.2020.106317] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
Abstract
Perioperative neurocognitive disorders (PND) are characterized by deficits in cognitive functions in the elderly following anesthesia and surgery. Effective clinical interventions for preventing this disease are limited. Growing evidence demonstrates that activation of NOD-like receptor protein3 (NLRP3) inflammasome is involved in neurodegenerative diseases. We therefore hypothesized that activation of NLRP3 inflammasome is linked to neuroinflammation and the subsequent cognitive impairments that occurred in an animal model of PND. In this study, 18-month-old C57BL/6 mice were subjected to an exploratory laparotomy under isoflurane anesthesia to mimic clinical human abdominal surgery. For interventional studies, mice received NLRP3 specific inhibitor MCC950 (10 mg/kg) or the vehicle only intraperitoneally. Behavioral studies were performed at 6 and 7 d after surgery using open field and fear conditioning tests, respectively. Interleukin-1β (IL-1β), interleukin-18 (IL-18), tumor necrosis factor-α (TNF-α), ionized calcium-binding adaptor molecule-1 (IBA1) positive cells, glial fibrillary acidic protein (GFAP) positive cells, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 were measured at 3 days post-surgery. Brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) were measured at 7 days post-surgery. Our data indicates that surgery-induced cognitive impairments were associated with significant increases in IL-1β, IL-18, TNF-α, NLRP3, ASC, cleaved caspase-1, IBA1-positive cells and GFAP-positive cells, and decreases in BDNF and PSD95 expression in the hippocampus. Notably, administration with MCC950 attenuated inflammatory changes and rescued surgery-induced cognitive impairments. Our study suggests that surgery induces neuroinflammation and cognitive deficits that are partly attributed to the activation of NLRP3 inflammasome in the hippocampus of aged mice.
Collapse
Affiliation(s)
- Qun Fu
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jing Li
- Fenghuang Community Health Service Center, Gulou District, Nanjing 210029, China
| | - Lili Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jiaping Ruan
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Mingjie Mao
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Shuming Li
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Qinghong Mao
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
69
|
Ho YS, Zhao FY, Yeung WF, Wong GTC, Zhang HQ, Chang RCC. Application of Acupuncture to Attenuate Immune Responses and Oxidative Stress in Postoperative Cognitive Dysfunction: What Do We Know So Far? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9641904. [PMID: 32148660 PMCID: PMC7044481 DOI: 10.1155/2020/9641904] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a common sequela following surgery and hospitalization. The prevention and management of POCD are important during clinical practice. POCD more commonly affects elderly patients who have undergone major surgery and can result in major decline in quality of life for both patients and their families. Acupuncture has been suggested as an effective intervention for many neurological disorders. In recent years, there are increasing interest in the use of acupuncture to prevent and treat POCD. In this review, we summarized the clinical and preclinical evidence of acupuncture on POCD using a narrative approach and discussed the potential mechanisms involved. The experimental details and findings of studies were summarized in tables and analyzed. Most of the clinical studies suggested that acupuncture before surgery could reduce the incidence of POCD and reduce the levels of systematic inflammatory markers. However, their reliability is limited by methodological flaws. Animal studies showed that acupuncture reduced cognitive impairment and the associated pathology after various types of surgery. It is possible that acupuncture modulates inflammation, oxidative stress, synaptic changes, and other cellular events to mitigate POCD. In conclusion, acupuncture is a potential intervention for POCD. More clinical studies with good research design are required to confirm its effectiveness. At the same time, findings from animal studies will help reveal the protective mechanisms, in which systematic inflammation is likely to play a major role.
Collapse
Affiliation(s)
- Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Wing-Fai Yeung
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hong-Qi Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
70
|
Qiu LL, Pan W, Luo D, Zhang GF, Zhou ZQ, Sun XY, Yang JJ, Ji MH. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca 2+/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation 2020; 17:23. [PMID: 31948437 PMCID: PMC6966800 DOI: 10.1186/s12974-019-1695-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Postoperative cognitive decline (POCD) is a recognized clinical phenomenon characterized by cognitive impairments in patients following anesthesia and surgery, yet its underlying mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, learning, and memory via activation of TrkB-full length (TrkB-FL) receptors. It has been reported that an abnormal truncation of TrkB mediated by calpain results in dysregulation of BDNF/TrkB signaling and is associated with cognitive impairments in several neurodegenerative disorders. Calpains are Ca2+-dependent proteases, and overactivation of calpain is linked to neuronal death. Since one source of intracellular Ca2+ is N-methyl-d-aspartate receptors (NMDARs) related and the function of NMDARs can be regulated by neuroinflammation, we therefore hypothesized that dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might be involved in the pathogenesis of POCD. METHODS In the present study, 16-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to establish the POCD animal model. For the interventional study, mice were treated with either NMDAR antagonist memantine or calpain inhibitor MDL-28170. Behavioral tests were performed by open field, Y maze, and fear conditioning tests from 5 to 8 days post-surgery. The levels of Iba-1, GFAP, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), NMDARs, calpain, BDNF, TrkB, bax, bcl-2, caspase-3, and dendritic spine density were determined in the hippocampus. RESULTS Anesthesia and surgery-induced neuroinflammation overactivated NMDARs and then triggered overactivation of calpain, which subsequently led to the truncation of TrkB-FL, BDNF/TrkB signaling dysregulation, dendritic spine loss, and cell apoptosis, contributing to cognitive impairments in aging mice. These abnormities were prevented by memantine or MDL-28170 treatment. CONCLUSION Collectively, our study supports the notion that NMDAR/Ca2+/calpain is mechanistically involved in anesthesia and surgery-induced BDNF/TrkB signaling disruption and cognitive impairments in aging mice, which provides one possible therapeutic target for POCD.
Collapse
Affiliation(s)
- Li-Li Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Wei Pan
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Luo
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Yun Sun
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Mu-Huo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
71
|
Zhang Y, Xu H, Wang J, Ren F, Shao F, Ellenbroek B, Lin W, Wang W. Transient upregulation of immune activity induced by adolescent social stress is involved in cognitive deficit in adult male mice and early intervention with minocycline. Behav Brain Res 2019; 374:112136. [DOI: 10.1016/j.bbr.2019.112136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
72
|
Zhao L, Zhang C, Cao G, Dong X, Li D, Jiang L. Higher Circulating Trimethylamine N-oxide Sensitizes Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Probably by Downregulating Hippocampal Methionine Sulfoxide Reductase A. Neurochem Res 2019; 44:2506-2516. [PMID: 31486012 DOI: 10.1007/s11064-019-02868-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/28/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote oxidative stress and inflammation in the peripheral tissues, contributing to the pathogenesis of many diseases. Here we examined whether pre-existing higher circulating TMAO would influence cognitive function in aged rats after anesthetic sevoflurane exposure. Aged rats received vehicle or TMAO treatment for 3 weeks. After 2 weeks of treatment, these animals were exposed to either control or 2.6% sevoflurane for 4 h. One week after exposure, freezing as measured by fear conditioning test, microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent reactive oxygen species (ROS) production in the hippocampus (a key brain structure involved in learning and memory) were comparable between vehicle-treated rats exposed to control and vehicle-treated rats exposed to sevoflurane. TMAO treatment, which increased plasma TMAO before and 1 week after control or sevoflurane exposure, significantly reduced freezing to contextual fear conditioning, which was associated with increases in microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent ROS production in the hippocampus in rats exposed to sevoflurane but not in rats exposed to control. Moreover, hippocampal expression of antioxidant enzyme methionine sulfoxide reductase A (MsrA) was reduced by TMAO treatment in both groups, and TMAO-induced reduction in MsrA expression was negatively correlated with increased proinflammatory cytokine expression in rats exposed to SEV. These findings suggest that pre-existing higher circulating TMAO downregulates antioxidant enzyme MsrA in the hippocampus, which may sensitize the hippocampus to oxidative stress, resulting in microglia-mediated neuroinflammation and cognitive impairment in aged rats after sevoflurane exposure.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Chuanyang Zhang
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Guilin Cao
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Xueyi Dong
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Jiang
- Department of Anesthesiology and Pain Medicine, PKU Care Zibo Hospital, Zibo, Shandong, China.
| |
Collapse
|
73
|
Li X, Li Z, Li B, Zhu X, Lai X. Klotho improves diabetic cardiomyopathy by suppressing the NLRP3 inflammasome pathway. Life Sci 2019; 234:116773. [PMID: 31422095 DOI: 10.1016/j.lfs.2019.116773] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
AIMS NLRP3 inflammasome activation is essential for the development and prognosis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho is suggested to modulate tissue inflammatory responses. The aim of the present study was to examine the protective effects of Klotho on DCM. MAIN METHODS A streptozotocin-induced diabetes mouse model was established to assess the effects of Klotho in vivo, which was administered for 12 weeks. The characteristics of type 1 DCM were evaluated by general status, echocardiography, and histopathology. The expression of associated factors was determined by RT-qPCR and western blotting. Parallel experiments to determine the molecular mechanism through which Klotho prevents DCM were performed using H9C2 cells exposed to high glucose (35 mM). KEY FINDINGS Diabetes-induced increases in serum creatine kinase-muscle/brain and lactate dehydrogenase levels, cardiac fibrosis, cardiomyocyte apoptosis, and cardiac dysfunction were ameliorated by Klotho. Additionally, Klotho suppressed TXNIP expression, NLRP3 inflammasome activation, and expression of the inflammatory cytokines tumor necrosis factor ɑ, interleukin-1β, and interleukin-18 in vivo. In high glucose-cultured cardiomyocytes, Klotho and N-acetylcysteine significantly downregulated intracellular reactive oxygen species generation and TXNIP/NLRP3 inflammasome activation. Pretreatment of H9C2 cells with NLRP3 siRNA or Klotho prevented high glucose-induced inflammation and apoptosis in H9C2 cells. SIGNIFICANCE Our results demonstrate that the protective effect of Klotho on diabetes-induced cardiac injury is associated with inhibition of the NLRP3 inflammasome pathway, suggesting its therapeutic potential for DCM.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China
| | - Zhiyang Li
- Grade 2016 Class 2, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingong Li
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China; Department of Cardiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Xianjie Zhu
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China
| | - Xingjun Lai
- Department of Cardiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
74
|
Jiang XL, Gu XY, Zhou XX, Chen XM, Zhang X, Yang YT, Qin Y, Shen L, Yu WF, Su DS. Intestinal dysbacteriosis mediates the reference memory deficit induced by anaesthesia/surgery in aged mice. Brain Behav Immun 2019; 80:605-615. [PMID: 31063849 DOI: 10.1016/j.bbi.2019.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/17/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is associated with increased morbidity and mortality and has become a major concern for patients and caregivers. POCD is most common in older patients. Previous studies demonstrated that the gut microbiome affects cognitive function and behaviour, and perioperative factors, including the operation itself, antibiotics, opioids or acid-inducing drugs, affect the gut microbiome. Thus, we hypothesised that intestinal dysbacteriosis caused by anaesthesia/surgery induces POCD. METHODS Tibial fracture internal fixation was performed in 18-month-old C57BL/6 mice under isoflurane anaesthesia to establish the POCD model. The Morris water maze was used to measure reference memory after anaesthesia/surgery. High-throughput sequencing of 16S rRNA from faecal samples was used to investigate changes in the abundance of intestinal bacteria after anaesthesia/surgery. To confirm the role of the gut microbiome in POCD, we pretreated mice with compound antibiotics or mixed probiotics (VSL#3). Anaesthesia/surgery impaired reference memory and induced intestinal dysbacteriosis in aged mice. RESULTS The 16S rRNA sequencing data revealed 37 genera (18 families) of bacteria that changed in abundance after anaesthesia/surgery. Pretreating mice with compound antibiotics or mixed probiotics (VSL#3) prevented the learning and memory deficits induced by anaesthesia/surgery. We further conducted quantitative real-time polymerase chain reaction (qRT-PCR) of 22 common types of bacteria among the 37 total types to verify the results of bacterial flora changes after anaesthesia/surgery. Numbers of 8 types of bacteria changed after anaesthesia/surgery but returned to normal after treatment with a mix of probiotics. CONCLUSIONS Our data suggest that deficits in reference memory induced by anaesthesia/surgery are mediated by intestinal dysbacteriosis.
Collapse
Affiliation(s)
- X L Jiang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - X Y Gu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - X X Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - X M Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - X Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - Y T Yang
- Department of Anesthesiology, First Hospital in Quanzhou City of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Y Qin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - L Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - W F Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China
| | - D S Su
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai 200127, China.
| |
Collapse
|
75
|
Zong MM, Zhou ZQ, Ji MH, Jia M, Tang H, Yang JJ. Activation of β2-Adrenoceptor Attenuates Sepsis-Induced Hippocampus-Dependent Cognitive Impairments by Reversing Neuroinflammation and Synaptic Abnormalities. Front Cell Neurosci 2019; 13:293. [PMID: 31354429 PMCID: PMC6636546 DOI: 10.3389/fncel.2019.00293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis-associated encephalopathy induces cognitive dysfunction via mechanisms that commonly involve neuroinflammation and synaptic plasticity impairment of the hippocampus. The β2-adrenoceptor (β2-AR) is a G-protein coupled receptor that regulates immune response and synaptic plasticity, whereas its dysfunction has been implicated in various neurodegenerative diseases. Thus, we hypothesized abnormal β2-AR signaling is involved in sepsis-induced cognitive impairment. In the present study, C57BL/6 mice were subjected to cecal ligation and puncture (CLP) to mimic the clinical human sepsis-associated encephalopathy. The levels of hippocampal β2-AR, proinflammatory cytokines tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, cAMP-response element binding protein (CREB), brain derived neurotrophic factor (BDNF), post-synaptic density protein 95 (PSD95), and NMDA receptor 2 B subtypes (GluN2B) were determined at 6, 12, 24 h and 7 and 16 days after CLP. For the interventional study, mice were treated with β2-AR agonist clenbuterol in two ways: early treatment (immediately following CLP) and delayed treatment (on the 8th day following CLP). Neurobehavioral performances were assessed by open field and fear conditioning tests. Here, we found that hippocampal β2-AR expression was significantly decreased starting from 12 h and persisted until 16 days following CLP. Besides, sepsis mice also exhibited increasing neuroinflammation, down-regulated CREB/BDNF, decreasing PSD95 and GluN2B expression, and displayed hippocampus-dependent cognitive impairments. Notably, early clenbuterol treatment alleviated sepsis-induced cognitive deficits by polarizing microglia toward an anti-inflammatory phenotype, reducing proinflammatory cytokines including IL-1β, TNF-α, and up-regulating CREB/BDNF, PSD95, and GluN2B. Intriguingly, delayed clenbuterol treatment also improved cognitive impairments by normalization of hippocampal CREB/BDNF, PSD95, and GluN2B. In summary, our results support the beneficial effects of both early and delayed clenbuterol treatment, which suggests that activation of β2-AR has a translational value in sepsis-associated organ dysfunction including cognitive impairments.
Collapse
Affiliation(s)
- Man-Man Zong
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Tang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
76
|
Deficiencies of microglia and TNFα in the mPFC-mediated cognitive inflexibility induced by social stress during adolescence. Brain Behav Immun 2019; 79:256-266. [PMID: 30772475 DOI: 10.1016/j.bbi.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
The crucial roles played by microglia and their release of cytokines in the regulation of brain maturation are increasingly being recognized. Adolescence is a unique period characterized by continued brain maturation, especially in the area of the prefrontal cortex. Our previous studies showed that adolescent social stress induced impairment in extradimensional set-shifting (EDS), a core component of cognitive flexibility mediated by the medial prefrontal cortex (mPFC) in adult mice. The present study further determined the role of microglia and the inflammatory cytokine tumor necrosis factor alpha (TNFα) in cognitive dysfunction. Accompanied by a deficit in EDS in adulthood, previously stressed mice showed significant reductions in the expression of the microglial molecular biomarker Iba1, cell numbers, and the levels of TNFα mRNA and protein in the mPFC. Pharmacological inhibition of TNFα signaling by direct injection of a neutralizer into the mPFC also specifically impaired EDS performance. Moreover, the cognitive and immune alterations in previously stressed adult mice were ameliorated by both acute LPS and chronic antidepressant treatment. Together, our data suggest that microglia and TNFα play important roles in cognitive flexibility and can provide attractive therapeutic targets for the treatment of cognitive deficits in psychiatric disorders.
Collapse
|
77
|
Huang C, Ng OTW, Chu JMT, Irwin MG, Hu X, Zhu S, Chang RCC, Wong GTC. Differential effects of propofol and dexmedetomidine on neuroinflammation induced by systemic endotoxin lipopolysaccharides in adult mice. Neurosci Lett 2019; 707:134309. [PMID: 31158431 DOI: 10.1016/j.neulet.2019.134309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Propofol and dexmedetomidine are commonly used in clinical situations where neuroinflammation may be imminent or even established but comparative data on their effects on neuroinflammatory and cognitive parameters are lacking. Using a murine model of neuroinflammation induced by systemic lipopolysaccharide (LPS), this study compared the effects of these two agents on cognitive function, neuroinflammatory parameters, oxidative stress and neurotransmission. Male adult C57BL/6 N mice were anaesthetised with propofol or dexmedetomidine prior to intraperitoneal injection of LPS. Cognitive and motor function were assessed by the Y-maze and Rotarod tests respectively. Inflammatory responses were evaluated by relative levels of cytokine mRNA and immunoreactivity of glia cells. LPS caused a marked elevation in IL-1β and TNF-α levels both peripherally and in the brain, together with microglia activation (p < 0.05) and cognitive impairment. These changes were accompanied by an increase in 8-hydroxy-2'-deoxyguanosine (8-OHdG) (p < 0.05). Dexmedetomidine attenuated microglia activation (p < 0.05) and the elevation in 8-OHdG level (p < 0.05). Propofol did not affect cognition. However, both drugs lowered the number of vesicular glutamate transporter 1 (VGLUT 1), but was associated with higher levels of apoptosis and 8-OHdG (p < 0.05). Data from this study suggest dexmedetomidine and propofol have different anti-neuroinflammatory and neuroprotective profiles. However, neither drug can fully attenuate the effects of LPS induced cognitive impairment.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei city, Anhui Province, PR China; Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Olivia Tsz-Wa Ng
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - John Man-Tak Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Michael Garnet Irwin
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xianwen Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei city, Anhui Province, PR China
| | - Shoufeng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei city, Anhui Province, PR China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
78
|
Meng F, Li N, Li D, Song B, Li L. The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats. Behav Brain Res 2019; 368:111902. [PMID: 30980850 DOI: 10.1016/j.bbr.2019.111902] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023]
Abstract
Surgical trauma can cause brain oxidative stress and neuroinflammation, leading to postoperative cognitive dysfunction (POCD), especially in the elderly. Additionally, the pre-existing risk factors may enhance POCD. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to contribute to the pathogenesis of many diseases by increasing oxidative stress and inflammation in the peripheral tissues. Here we examined whether the presence of elevated circulating TMAO would influence surgery-induced cognitive decline. Aged rats were treated with vehicle or TMAO for 3 weeks. After two weeks of treatment, these rats underwent sham-operation or laparotomy. One week after surgery, rats underwent laparotomy exhibited hippocampal-dependent cognitive dysfunction as evidenced by reduced contextual freezing time, which was associated with elevated plasma proinflammatory cytokine levels, increased microglia-mediated neuroinflammation and reactive oxygen species (ROS) production in the hippocampus. Treatment with TMAO, which elevated plasma TMAO before and 1 week after surgery, further increased microglia-mediated neuroinflammation and ROS production in the hippocampus, resulting in exaggerated cognitive dysfunction in laparotomy group but not in sham-operation group. Moreover, TMAO treatment decreased expression of antioxidant enzyme methionine sulfoxide reductase (Msr) A in both groups. The results suggest that the presence of elevated circulating TMAO downregulates antioxidant enzyme MsrA in the hippocampus, which may increase the susceptibility to surgery-induced oxidative stress, contributing to exaggerations of neuroinflammation and cognitive decline in aged rats following surgery. Interventions to reduce circulating TMAO in the perioperative period may be a novel strategy to prevent the exaggeration of cognitive decline in elderly patients with high circulating TMAO.
Collapse
Affiliation(s)
- Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Childcare Hospital, Jinan City, Shandong Province, China
| | - Ning Li
- School of Public Health, Jining Medical University, Jining City, Shandong Province, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Bingfeng Song
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China.
| |
Collapse
|
79
|
Wei P, Yang F, Zheng Q, Tang W, Li J. The Potential Role of the NLRP3 Inflammasome Activation as a Link Between Mitochondria ROS Generation and Neuroinflammation in Postoperative Cognitive Dysfunction. Front Cell Neurosci 2019; 13:73. [PMID: 30873011 PMCID: PMC6401615 DOI: 10.3389/fncel.2019.00073] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is commonly observed in perioperative care following major surgery and general anesthesia in elderly individuals. No preventive or interventional agents have been established so far. Although the role of interleukin-1β (IL-1β)-mediated neuroinflammation following surgery and anesthesia is strongly implicated in POCD, the exact mechanism of action remains to be explored. Growing evidence has shown that mitochondria-derived reactive oxygen species (mtROS) are closely linked to IL-1β expression through a redox sensor known as the nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. Therefore, we hypothesize that the mechanisms underlying POCD involve the mtROS/NLRP3 inflammasome/IL-1β signaling pathway. Furthermore, we speculate that cholinergic anti-inflammatory pathway induced by α7 nicotinic acetylcholine receptor (a7nAChR) may be the potential upstream of mtROS/NLRP3 inflammasome/IL-1β signaling pathway in POCD. For validating the hypotheses, we provide experimental plan involving different paradigms namely; microglial cells and behavioral studies. The link between mtROS, the NLRP3 inflammasome, and IL-1β within and between these different stages in combination with mtROS and NLRP3 inflammasome agonists and inhibitors could be explored using techniques, such as knockout mice, small interference ribonucleic acid, flow cytometry, co-immunoprecipitation, and the Morris Water Maze test. We conclude that the NLRP3 inflammasome is a new preventive and therapeutic target for POCD.
Collapse
Affiliation(s)
- Penghui Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Fan Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China.,Department of Anesthesiology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Zheng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Wenxi Tang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
80
|
Luo A, Yan J, Tang X, Zhao Y, Zhou B, Li S. Postoperative cognitive dysfunction in the aged: the collision of neuroinflammaging with perioperative neuroinflammation. Inflammopharmacology 2019; 27:27-37. [PMID: 30607668 DOI: 10.1007/s10787-018-00559-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022]
Abstract
The aging population is burgeoning globally and this trend presents great challenges to the current healthcare system as the growing number of aged individuals receives procedures of surgery and anesthesia. Postoperative cognitive dysfunction (POCD) is a severe postoperative neurological sequela. Advanced age is considered as an independent risk factor of POCD. Mounting evidence have shown that neuroinflammation plays an essential role in POCD. However, it remains debatable why this complication occurs highly in the aged individuals. As known, aging itself is the major common high-risk factor for age-associated disorders including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. Chronic low-grade neuroinflammation (dubbed neuroinflammaging in the present paper) is a hallmark alternation and contributes to age-related cognitive decline in the normal aging. Interestingly, several lines of findings show that the neuroinflammatory pathogenesis of POCD is age-dependent. It suggests that age-related changes, especially the neuroinflammaging, are possibly associated with the postoperative cognitive impairment. Understanding the role of neuroinflammaging in POCD is crucial to elucidate the mechanism of POCD and develop strategies to prevent or treat POCD. Here the focus of this review is on the potential role of neuroinflammaging in the mechanism of POCD. Lastly, we briefly review promising interventions for this neurological sequela.
Collapse
Affiliation(s)
- AiLin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - XiaoLe Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - YiLin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - BiYun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - ShiYong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
81
|
Zhang B, Bailey WM, McVicar AL, Stewart AN, Veldhorst AK, Gensel JC. Reducing age-dependent monocyte-derived macrophage activation contributes to the therapeutic efficacy of NADPH oxidase inhibition in spinal cord injury. Brain Behav Immun 2019; 76:139-150. [PMID: 30453022 PMCID: PMC6348135 DOI: 10.1016/j.bbi.2018.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The average age at the time of spinal cord injury (SCI) has increased to 43 years old. Middle-aged mice (14 months old, MO) exhibit impaired recovery after SCI with age-dependent increases in reactive oxygen species (ROS) production through NADPH oxidase (NOX) along with pro-inflammatory macrophage activation. Despite these aging differences, clinical therapies are being examined in individuals regardless of age based upon preclinical data generated primarily using young animals (∼4 MO). Our objective is to test the extent to which age affects SCI treatment efficacy. Specifically, we hypothesize that the effectiveness of apocynin, a NOX inhibitor, is age-dependent in SCI. METHODS Apocynin treatment (5 mg/kg) or vehicle was administered 1 and 6 h after moderate T9 contusion SCI (50kdyn IH) and then daily for 1 week to 4 and 14 MO mice. Locomotor and anatomical recovery was evaluated for 28 days. Monocyte-derived macrophage (MDM) and microglial activation and ROS production were evaluated at 3 and 28 days post-injury. RESULTS Apocynin improved functional and anatomical recovery in 14 but not 4 MO SCI mice. Apocynin-mediated recovery was coincident with significant reductions in MDM infiltration and MDM-ROS production in 14 MO SCI mice. Importantly, microglial activation was unaffected by treatment. CONCLUSION These results indicate that apocynin exhibits age-dependent neuroprotective effects by blocking excessive neuroinflammation through NOX-mediated ROS production in MDMs. Further, these data identify age as a critical regulator for SCI treatment efficacy and indicate that pharmacologically reduced macrophage, but not microglia, activation and ROS production reverses age-associated neurological impairments.
Collapse
Affiliation(s)
- Bei Zhang
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Physiology, University of Kentucky, Lexington, KY 40536, United States; College of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046 PR China.
| | - William M. Bailey
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Anna Leigh McVicar
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Andrew N. Stewart
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Amy K. Veldhorst
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Physiology, University of Kentucky, Lexington, Kentucky 40536,Correspondence to Dr. John C. Gensel or Dr. Bei Zhang, John C. Gensel, B463 Biomed & Bio Sci Research Building (BBSRB), University of Kentucky, 741 S. Limestone Street, Lexington, KY 40536-0509, (859) 218-0516, , Bei Zhang, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR China, 712046, 86-02938184662, ;
| |
Collapse
|
82
|
Alam A, Hana Z, Jin Z, Suen KC, Ma D. Surgery, neuroinflammation and cognitive impairment. EBioMedicine 2018; 37:547-556. [PMID: 30348620 PMCID: PMC6284418 DOI: 10.1016/j.ebiom.2018.10.021] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Trauma experienced during surgery can contribute to the development of a systemic inflammatory response that can cause multi-organ dysfunction or even failure. Post-surgical neuroinflammation is a documented phenomenon that results in synaptic impairment, neuronal dysfunction and death, and impaired neurogenesis. Various pro-inflammatory cytokines, such as TNFα, maintain a state of chronic neuroinflammation, manifesting as post-operative cognitive dysfunction and post-operative delirium. Furthermore, elderly patients with post-operative cognitive dysfunction or delirium are three times more likely to experience permanent cognitive impairment or dementia. We conducted a narrative review, considering evidence extracted from various databases including Pubmed, MEDLINE and EMBASE, as well as journals and book reference lists. We found that further pre-clinical and well-powered clinical studies are required to delineate the precise pathogenesis of post-operative delirium and cognitive dysfunction. Despite the burden of post-operative neurological sequelae, clinical studies investigating therapeutic agents, such as dexmedetomidine, ibuprofen and statins, have yielded conflicting results. In addition, evidence supporting novel therapeutic avenues, such as nicotinic and HMGB-1 targeting and remote ischaemic pre-conditioning, is limited and necessitates further investigation.
Collapse
Affiliation(s)
- Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Zac Hana
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Zhaosheng Jin
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Ka Chun Suen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
83
|
Varenicline reduces DNA damage, tau mislocalization and post surgical cognitive impairment in aged mice. Neuropharmacology 2018; 143:217-227. [PMID: 30273594 DOI: 10.1016/j.neuropharm.2018.09.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/02/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Postoperative cognitive dysfunction (POCD) occurs more frequently in elderly patients undergoing major surgery. Age associated cholinergic imbalance may exacerbate postoperative systemic and neuroinflammation, but the effect nicotinic acetylcholine receptor (nAchR) stimulation on the development of POCD remains unclear. Aged male C57BL/6N mice (18 months old) underwent a midline laparotomy or were exposed to sevoflurane anesthesia alone (4-5%), with or without concomitant varenicline, a partial nAchR, at 1 mg/kg/day. Laparotomy increased pro-inflammatory cytokines in the liver and hippocampus (IL-1β and MCP-1) and induced a decline in cognitive performance, indicated by lower discrimination index in the Novel Object Recognition test, greater error number and longer escape latency in the Y-maze test. Glia activation, aberrant tau phosphorylation (AT8) and accumulation of phosphorylated H2AX in the hippocampus were detectable up to postoperative day 14, with neuronal apoptosis seen in the hippocampus. Perioperative varenicline attenuated the cognitive decline and associated tau protein mislocalization, DNA damage and neuronal apoptosis. The modulation of JAK2/STAT3 signaling may play a critical role in this process. Neuroinflammation, tau phosphorylation and DNA damage contribute to the development of cognitive dysfunction following laparotomy. Cholinergic stimulation by varenicline attenuated these changes through preventing the mislocalization of phosphorylated tau and DNA damage.
Collapse
|
84
|
Ji M, Xia J, Tang X, Yang J. Altered functional connectivity within the default mode network in two animal models with opposing episodic memories. PLoS One 2018; 13:e0202661. [PMID: 30226886 PMCID: PMC6143184 DOI: 10.1371/journal.pone.0202661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Memory enhancement and memory decline are two opposing cognitive performances commonly observed in clinical practice, yet the neural mechanisms underlying these two different phenomena remain poorly understood. Accumulating evidence has demonstrated that the default-mode network (DMN) is implicated in diverse cognitive, social, and affective processes. In the present study, we used the retrosplenial cortex as a seed region to study the functional connectivity within the DMN in two animal models with opposing episodic memories, of which memory enhancement was induced by footshocks to mimic posttraumatic stress disorder (PTSD) and memory decline was induced by lipopolysaccharide (LPS) challenge to mimic sepsis-associated encephalopathy (SAE). Our results showed that LPS challenge and footshocks induced opposing episodic memories. With regard to the imaging data, there were significant differences in the functional connectivity between the retrosplenial cortex and the medial prefrontal cortex (mPFC), insular lobe, left piriform cortex, left sensory cortex, and right visual cortex among the three groups. Post-hoc comparisons showed the LPS group had a significantly increased functional connectivity between the retrosplenial cortex and mPFC as compared with the control group. Compared with the LPS group, the PTSD group displayed significantly decreased functional connectivity between the retrosplenial cortex and the right visual cortex, retrosplenial cortex, insular lobe, left piriform cortex, and left sensory cortex. In summary, our study suggests that there is a significant difference in the functional connectivity within the DMN between SAE and PTSD rats.
Collapse
Affiliation(s)
- Muhuo Ji
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiaohui Tang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jianjun Yang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
85
|
Gong H, Su WJ, Cao ZY, Lian YJ, Peng W, Liu YZ, Zhang Y, Liu LL, Wu R, Wang B, Zhang T, Wang YX, Jiang CL. Hippocampal Mrp8/14 signaling plays a critical role in the manifestation of depressive-like behaviors in mice. J Neuroinflammation 2018; 15:252. [PMID: 30180864 PMCID: PMC6122683 DOI: 10.1186/s12974-018-1296-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Depression is one of the most common mental disorders characterized mainly by low mood and loss of interest or pleasure. About a third of patients with depression do not respond to classic antidepressant treatments. Recent evidence suggests that Mrp8/14 (myeloid-related protein 8/14) plays a crucial role in cognitive dysfunction and neuroinflammatory diseases, yet its role in mood regulation remains largely uninvestigated. In the present work, we explored the potential role of Mrp8/14 in the progression of depression. METHODS After 4 weeks of chronic unpredictable mild stress (CUMS), depressive-like symptoms and Mrp8/14 were determined. To verify the effects of Mrp8/14 on depressive-like behaviors, the inhibitor TAK-242 and recombinant Mrp8/14 were used. Furthermore, the molecular mechanisms in Mrp8/14-induced behavioral and biological changes were examined in vivo and ex vivo. RESULTS Four-week CUMS contributed to the development of depressive symptoms. Mrp8 and Mrp14 were upregulated in the hippocampus and serum after exposure to CUMS. Pharmacological inhibition of Mrp14 attenuated CUMS-induced TLR4/NF-κB signaling activation and depressive-like behaviors. Furthermore, central administration of recombinant Mrp8, Mrp14, and Mrp8/14 resulted in neuroinflammation and depressive-like behaviors. Mrp8/14-provoked proinflammatory effects and depressive-like behaviors were improved by pretreatment with a TLR4 inhibitor. Moreover, pharmacological inhibition of TLR4 reduced the release of nitric oxide and reactive oxygen species in Mrp8/14-activated BV2 microglia. CONCLUSIONS These data suggest that the hippocampal Mrp8/14-TLR4-mediated neuroinflammation contributes to the development of depressive-like behaviors. Targeting the Mrp8/14 may be a novel promising antidepressant approach.
Collapse
Affiliation(s)
- Hong Gong
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
- Hainan Branch of Chinese PLA General Hospital, Sanya, 572013 People’s Republic of China
| | - Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Zhi-Yong Cao
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
- Department of Psychiatry, The 102nd Hospital of PLA, Changzhou, 213003 People’s Republic of China
| | - Yong-Jie Lian
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Wei Peng
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Yun-Zi Liu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Yi Zhang
- Department of Psychiatry, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Lin-Lin Liu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Ran Wu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Bo Wang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Ting Zhang
- Department of Navy Medicine, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Yun-Xia Wang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| |
Collapse
|
86
|
Huang C, Irwin MG, Wong GTC, Chang RCC. Evidence of the impact of systemic inflammation on neuroinflammation from a non-bacterial endotoxin animal model. J Neuroinflammation 2018; 15:147. [PMID: 29776428 PMCID: PMC5960121 DOI: 10.1186/s12974-018-1163-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic inflammation induces neuroinflammation and cellular changes such as tau phosphorylation to impair cognitive function, including learning and memory. This study uses a single model, laparotomy without any pathogen, to characterize these changes and their responses to anti-inflammatory treatment in the intermediate term. METHODS In a two-part experiment, wild-type C57BL/6N mice (male, 3 month old, 25 ± 2 g) were subjected to sevoflurane anesthesia alone or to a laparotomy. Cognitive performance, systemic and neuroinflammatory responses, and tau phosphorylation were evaluated on postoperative days (POD) 1, 3, and 14. The effect of perioperative ibuprofen intervention (60 mg/kg) on these changes was then assessed. RESULTS Mice in the laparotomy group displayed memory impairment up to POD 14 with initial high levels of inflammatory cytokines in the liver, frontal cortex (IL-1β, IL-6, and TNF-α), and hippocampus (IL-1β and IL-8). On POD 14, although most circulating and resident cytokine levels returned to normal, a significant number of microglia and astrocytes remained activated in the frontal cortex and microglia in the hippocampus, as well as abnormal tau phosphorylation in these two brain regions. Perioperative ibuprofen improved cognitive performance, attenuated systemic inflammation and glial activation, and suppressed the abnormal tau phosphorylation both in the frontal cortex and hippocampus. CONCLUSIONS Our results suggest that (1) cognitive dysfunction is associated with an unbalanced pro-inflammatory and anti-inflammatory response, tauopathy, and gliosis; (2) cognitive dysfunction, gliosis, and tauopathy following laparotomy can persist well beyond the immediate postoperative period; and (3) anti-inflammatory drugs can act rapidly to attenuate inflammatory responses in the brain and negatively modulate neuropathological changes to improve cognition. These findings may have implications for the duration of therapeutic strategies aimed at curtaining cognitive dysfunction following surgery.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.,Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Room L4-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Michael Garnet Irwin
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Room L4-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
87
|
Zhang X, Jiang X, Huang L, Tian W, Chen X, Gu X, Yu W, Tian J, Su D. Central cholinergic system mediates working memory deficit induced by anesthesia/surgery in adult mice. Brain Behav 2018; 8:e00957. [PMID: 29761010 PMCID: PMC5943735 DOI: 10.1002/brb3.957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/18/2018] [Accepted: 02/23/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is consistently associated with increased morbidity and mortality, which has become a major concern of patients and caregivers. Although POCD occurs mainly in aged patients, it happens at any age. Previous studies demonstrated that anesthesia/surgery had no effects on reference memory of adult mice. However, whether it impairs working memory remains unclear. Working memory deficit would result in many deficits of executive function. We hypothesized that anesthesia/surgery impaired the working memory of adult mice and the central cholinergic system was involved. METHOD Tibial fracture internal fixation under the anesthesia of isoflurane was performed in two-month-old C57BL/6 mice. Two days later, the spatial reference memory and working memory were measured by a Morris Water Maze (MWM). Donepezil, an inhibitor of acetylcholinesterase (AChE), was administered in another cohort mice for 4 weeks. Then, the working memory was measured by MWM 2 days after anesthesia/surgery. Western blot was used to detect the protein levels of acetylcholine transferase (ChAT), AChE, vesicular acetylcholine transporter (VAChT), and choline transporter (ChT) in the prefrontal cortex (PFC). RESULTS We found that anesthesia/surgery had no effects on the reference memory, but it impaired the working memory in adult mice. Meanwhile, we also found that the protein level of ChAT in PFC decreased significantly compared with that in control group. Donepezil pretreatment prevented working memory impairment and the decrease of the protein levels of ChAT induced by anesthesia/surgery. CONCLUSION These results suggest that anesthesia/surgery leads to working memory deficits in adult mice and central cholinergic system impairment is involved.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xuliang Jiang
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Lili Huang
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Weitian Tian
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xuemei Chen
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xiyao Gu
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Weifeng Yu
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Jie Tian
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Diansan Su
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| |
Collapse
|
88
|
Cheon SY, Koo BN. Postoperative cognitive dysfunction: advances based on pre-clinical studies. Anesth Pain Med (Seoul) 2018. [DOI: 10.17085/apm.2018.13.2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- So Yeong Cheon
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Bon-Nyeo Koo
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
89
|
Xiao JY, Xiong BR, Zhang W, Zhou WC, Yang H, Gao F, Xiang HB, Manyande A, Tian XB, Tian YK. PGE2-EP3 signaling exacerbates hippocampus-dependent cognitive impairment after laparotomy by reducing expression levels of hippocampal synaptic plasticity-related proteins in aged mice. CNS Neurosci Ther 2018; 24:917-929. [PMID: 29488342 DOI: 10.1111/cns.12832] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
AIM Multifactors contribute to the development of postoperative cognitive dysfunction (POCD), of which the most important mechanism is neuroinflammation. Prostaglandin E2 (PGE2) is a key neuroinflammatory molecule and could modulate hippocampal synaptic transmission and plasticity. This study was designed to investigate whether PGE2 and its receptors signaling pathway were involved in the pathophysiology of POCD. METHODS Sixteen-month old male C57BL/6J mice were exposed to laparotomy. Cognitive function was evaluated by fear conditioning test. The levels of PGE2 and its 4 distinct receptors (EP1-4) were assessed by biochemical analysis. Pharmacological or genetic methods were further applied to investigate the role of the specific PGE2 receptors. RESULTS Here, we found that the transcription and translation level of the EP3 receptor in hippocampus increased remarkably, but not EP1, EP2, or EP4. Immunofluorescence results showed EP3 positive cells in the hippocampal CA1 region were mainly neurons. Furthermore, pharmacological blocking or genetic suppression of EP3 could alleviate surgery-induced hippocampus-dependent memory deficits and rescued the expression of plasticity-related proteins, including cAMP response element-binding protein (CREB), activity-regulated cytoskeletal-associated protein (Arc), and brain-derived neurotrophic factor (BDNF) in hippocampus. CONCLUSION This study showed that PGE2-EP3 signaling pathway was involved in the progression of POCD and identified EP3 receptor as a promising treatment target.
Collapse
Affiliation(s)
- Jing-Yu Xiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing-Rui Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Chang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Xue-Bi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Ke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
90
|
Microglia and alcohol meet at the crossroads: Microglia as critical modulators of alcohol neurotoxicity. Toxicol Lett 2018; 283:21-31. [DOI: 10.1016/j.toxlet.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/17/2022]
|
91
|
d’Avila JC, Siqueira LD, Mazeraud A, Azevedo EP, Foguel D, Castro-Faria-Neto HC, Sharshar T, Chrétien F, Bozza FA. Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation. J Neuroinflammation 2018; 15:28. [PMID: 29382344 PMCID: PMC5791311 DOI: 10.1186/s12974-018-1059-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. METHODS Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. RESULTS Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1β and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. CONCLUSIONS Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.
Collapse
Affiliation(s)
- Joana Costa d’Avila
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciana Domett Siqueira
- Institute of Medical Biochemistry Leopoldo DeMeis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aurélien Mazeraud
- Human Histopathology and Animal Models, Pasteur Institute, Paris, France
| | - Estefania Pereira Azevedo
- Institute of Medical Biochemistry Leopoldo DeMeis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo DeMeis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Tarek Sharshar
- Human Histopathology and Animal Models, Pasteur Institute, Paris, France
| | - Fabrice Chrétien
- Human Histopathology and Animal Models, Pasteur Institute, Paris, France
| | - Fernando Augusto Bozza
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
92
|
Zhang Z, Ji M, Liao Y, Yang J, Gao J. Endotoxin tolerance induced by lipopolysaccharide preconditioning protects against surgery‑induced cognitive impairment in aging mice. Mol Med Rep 2018; 17:3845-3852. [PMID: 29328416 DOI: 10.3892/mmr.2018.8370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/09/2017] [Indexed: 11/05/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a clinical syndrome characterized by varying degrees of cognitive functional decline in patients following major surgery. Inflammation and a dysregulated innate immune system exert broad effects in the periphery and central nervous system, yet the mechanisms underlying POCD remain poorly understood and without effective therapy. It has been reported that modulation of the dysregulated inflammatory response with low‑dose lipopolysaccharide (LPS) preconditioning, a phenomenon additionally referred to as endotoxin tolerance, has the potential to reduce neuroinflammation, blood‑brain barrier disruption, and cognitive impairment in a number of disease states. Therefore, it was hypothesized that endotoxin tolerance induced by LPS preconditioning may protect against surgery‑induced cognitive impairment in aging mice. Using a mouse model of surgery‑induced cognitive decline, the present study demonstrated that exploratory laparotomy caused a significant impairment in hippocampal‑dependent memory. Notably, one application of low‑dose LPS preconditioning at 24 h prior to surgery improved the cognitive impairment and abolished the signs of neuroinflammation in the hippocampus following surgery. However, LPS injection at 6 h or immediately prior to surgery did not confer such beneficial effects, suggesting that the effects of LPS‑induced endotoxin tolerance may depend on the time of application. In conclusion, the results of the present study suggested that low‑dose LPS preconditioning may markedly alleviate surgery‑induced neuroinflammation and cognitive impairment in aging mice, which may provide a novel approach to preventing POCD and, potentially, other forms of memory impairment.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Muhuo Ji
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Yanlin Liao
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Jianjun Yang
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
93
|
Li D, Liu L, Li L, Li X, Huang B, Zhou C, Zhang Z, Wang C, Dong P, Zhang X, Yang B, Zhang L. Sevoflurane Induces Exaggerated and Persistent Cognitive Decline in a Type II Diabetic Rat Model by Aggregating Hippocampal Inflammation. Front Pharmacol 2017; 8:886. [PMID: 29238302 PMCID: PMC5712596 DOI: 10.3389/fphar.2017.00886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Recent studies show that a moderate duration of sevoflurane, one of the most commonly used volatile anesthetics in clinical practice, does not induce cognitive impairment in animals under physiological conditions. However, the influence of sevoflurane on cognitive function under diabetic conditions remains unclear. The aim of this study was to determine whether sevoflurane causes cognitive decline in a rat model of type 2 diabetes mellitus (DM) and if so, to explore a possible underlying mechanism. Diabetic Goto–Kakizaki (GK) rats and non-diabetic Wistar rats underwent 2.6% sevoflurane for 4 h or sham (control) exposure. Cognitive function and hippocampal inflammation were assessed 1 week and 5 months after sevoflurane or sham exposure. Compared with Wistar control rats, GK control rats exhibited shorter freezing times in Trace fear conditioning task 1 week after exposure, took longer to locate the submerged platform and had shorter dwell-time in the target quadrant in Morris Water Maze task 5 months after exposure. GK rats that received sevoflurane not only exhibited less freezing times 1 week after exposure, but also spent more time to locate the submerged platform and had less dwell-time in the target quadrant, compared with GK control rats. Molecular studies revealed that the levels of pro-inflammatory cytokines and activated microglia in the hippocampus were higher in GK control rats than those in Wistar control rats at both time points and were further increased in GK rats receiving sevoflurane. Wistar rats that received sevoflurane and Wistar control rats did not differ in any cognitive performance and molecular assessment. The results suggest that diabetic GK rats exhibit cognitive dysfunction probably due to increased hippocampal inflammation, and that sevoflurane induces exaggerated and persistent cognitive decline in GK rat by aggregating hippocampal inflammation.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Lingling Liu
- Jining Health School of Shandong Province, Jining, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute, Shandong University, Jinan, China
| | - Changqing Zhou
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhaohang Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Ping Dong
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiyan Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Bo Yang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Li Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
94
|
Choi DH, Lee J. A Mini-Review of the NADPH oxidases in Vascular Dementia: Correlation with NOXs and Risk Factors for VaD. Int J Mol Sci 2017; 18:ijms18112500. [PMID: 29165383 PMCID: PMC5713465 DOI: 10.3390/ijms18112500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OS) is one of the factors that cause dementia conditions such as Alzheimer’s disease and vascular dementia (VaD). In the pathogenesis of VaD, OS is associated with risk factors that include increased age, hypertension, and stroke. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a molecular source of reactive oxygen species (ROS). According to recent studies, inhibition of NOX activity can reduce cognitive impairment in animal models of VaD. In this article, we review the evidence linking cognitive impairment with NOX-dependent OS, including the vascular NOX and non-vascular NOX systems, in VaD.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science & Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143701, Korea.
- Department of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143701, Korea.
| | - Jongmin Lee
- Department of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143701, Korea.
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143701, Korea.
| |
Collapse
|
95
|
Tang Y, Wang X, Zhang S, Duan S, Qing W, Chen G, Ye F, Le Y, Ouyang W. Pre-existing weakness is critical for the occurrence of postoperative cognitive dysfunction in mice of the same age. PLoS One 2017; 12:e0182471. [PMID: 28787017 PMCID: PMC5546624 DOI: 10.1371/journal.pone.0182471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/19/2017] [Indexed: 11/30/2022] Open
Abstract
Occurrence of postoperative cognitive dysfunction (POCD) is age-dependent and heterogenous. Factors deciding the occurrence of POCD in patients of the same age undergone same surgeries remain unclear. Here we investigated the effects of pre-existing weakness on the occurrence of POCD in mice of the same age. Pre-existing weakness of mice was induced by intraperitoneal injection of lipopolysaccharide (8mg/kg) and was evaluated by physical frailty index (by open field test), neuroinflammation level (by Iba1 immunostaining and inflammatory factors TNF-α and IL-1β), and neuronal activity (by p-CREB immunostaining). POCD was induced by partial hepatolobectomy and was evaluated by puzzle box test and Morris water maze test. The brains were collected to detect the levels of neuroinflammation, synaptophysin and NMDA receptor subunits NR2A, NR2B and NR1 (by western blot), and oxidative stress (by Dihydroethidium). Compared to the normal adult mice of the same age, LPS pretreated mice had increased physical frailty index, higher levels of neuroinflammation, and lower neuronal activity. Partial hepatolobectomy induced obvious impairments in executive function, learning and memory in LPS pretreated mice after surgery, but not in normal mice of the same age. Partial hepatolobectomy also induced heightened neuroinflammation, obvious loss of NMDA receptor subunits, strong oxidative stress in LPS pretreated mice on the 1st and 3rd postoperative day. However, the POCD-associated pathological changes didn’t occur in normal mice of the same age after surgery. These results suggest that pre-existing weakness is critical for the occurrence of POCD in mice of the same age.
Collapse
Affiliation(s)
- Yujie Tang
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xueqin Wang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuibing Zhang
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shangchun Duan
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wenxiang Qing
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Gong Chen
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Feng Ye
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education of China, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Yuan Le
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- * E-mail: (WO); (YL)
| | - Wen Ouyang
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- * E-mail: (WO); (YL)
| |
Collapse
|
96
|
Mortadza SS, Sim JA, Stacey M, Jiang LH. Signalling mechanisms mediating Zn 2+-induced TRPM2 channel activation and cell death in microglial cells. Sci Rep 2017; 7:45032. [PMID: 28322340 PMCID: PMC5359577 DOI: 10.1038/srep45032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/20/2017] [Indexed: 01/06/2023] Open
Abstract
Excessive Zn2+ causes brain damage via promoting ROS generation. Here we investigated the role of ROS-sensitive TRPM2 channel in H2O2/Zn2+-induced Ca2+ signalling and cell death in microglial cells. H2O2/Zn2+ induced concentration-dependent increases in cytosolic Ca2+ concentration ([Ca2+]c), which was inhibited by PJ34, a PARP inhibitor, and abolished by TRPM2 knockout (TRPM2-KO). Pathological concentrations of H2O2/Zn2+ induced substantial cell death that was inhibited by PJ34 and DPQ, PARP inhibitors, 2-APB, a TRPM2 channel inhibitor, and prevented by TRPM2-KO. Further analysis indicate that Zn2+ induced ROS production, PARP-1 stimulation, increase in the [Ca2+]c and cell death, all of which were suppressed by chelerythrine, a protein kinase C inhibitor, DPI, a NADPH-dependent oxidase (NOX) inhibitor, GKT137831, a NOX1/4 inhibitor, and Phox-I2, a NOX2 inhibitor. Furthermore, Zn2+-induced PARP-1 stimulation, increase in the [Ca2+]c and cell death were inhibited by PF431396, a Ca2+-sensitive PYK2 inhibitor, and U0126, a MEK/ERK inhibitor. Taken together, our study shows PKC/NOX-mediated ROS generation and PARP-1 activation as an important mechanism in Zn2+-induced TRPM2 channel activation and, TRPM2-mediated increase in the [Ca2+]c to trigger the PYK2/MEK/ERK signalling pathway as a positive feedback mechanism that amplifies the TRPM2 channel activation. Activation of these TRPM2-depenent signalling mechanisms ultimately drives Zn2+-induced Ca2+ overloading and cell death.
Collapse
Affiliation(s)
- Sharifah Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Joan A Sim
- School of Life Sciences, University of Manchester, United Kingdom
| | - Martin Stacey
- School of Molecular and Cell Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom.,Sino-UK Joint Laboratory of Brain Function and Injury, and Department of Physiology and Neurobiology, Xinxiang Medical University, PR China
| |
Collapse
|
97
|
Yang X, Huo F, Liu B, Liu J, Chen T, Li J, Zhu Z, Lv B. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci 2017; 61:581-589. [PMID: 28238066 DOI: 10.1007/s12031-017-0899-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/10/2017] [Indexed: 01/24/2023]
Abstract
Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus that is closely associated with the degeneration and loss of retinal ganglion cells (RGCs) caused by diabetic microangiopathy and subsequent oxidative stress and an inflammatory response. Microglial cells are classed as neurogliocytes and play a significant role in neurodegenerative diseases. Over-activated microglial cells may cause neurotoxicity and induce the death and apoptosis of RGCs. Crocin is one of the two most pharmacologically bioactive constituents in saffron. In the present study, we focused on the role of microglial cells in DR, suggesting that DR may cause the over-activation of microglial cells and induce oxidative stress and the release of pro-inflammatory factors. Microglial cells BV-2 and N9 were cultured, and high-glucose (HG) and free fatty acid (FFA) were used to simulate diabetes. The results showed that HG-FFA co-treatment caused the up-regulated expression of CD11b and Iba-1, indicating that BV-2 and N9 cells were over-activated. Moreover, oxidative stress markers and pro-inflammatory factors were significantly enhanced by HG-FFA treatment. We found that crocin prevented the oxidative stress and pro-inflammatory response induced by HG-FFA co-treatment. Moreover, using the PI3K/Akt inhibitor LY294002, we revealed that PI3K/Akt signaling plays a significant role in blocking oxidative stress, suppressing the pro-inflammatory response, and maintaining the neuroprotective effects of crocin. In total, these results provide a new insight into DR and DR-induced oxidative stress and the inflammatory response, which provide a potential therapeutic target for neuronal damage, vision loss, and other DR-induced complications.
Collapse
Affiliation(s)
- Xinguang Yang
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Fuquan Huo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bei Liu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jing Liu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Junping Li
- Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Zhongqiao Zhu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| | - Bochang Lv
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|
98
|
Qi Z, Tianbao Y, Yanan L, Xi X, Jinhua H, Qiujun W. Pre-treatment with nimodipine and 7.5% hypertonic saline protects aged rats against postoperative cognitive dysfunction via inhibiting hippocampal neuronal apoptosis. Behav Brain Res 2016; 321:1-7. [PMID: 28017853 DOI: 10.1016/j.bbr.2016.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study aimed to investigate the effects of pre-treatment with nimodipine and 7.5% hypertonic saline (HS) on postoperative cognitive dysfunction (POCD) in aged rats. METHODS Healthy Sprague-Dawley aged rats were randomly assigned into 4 groups: POCD group, nimodipine group, HS group, and nimodipine+HS group. Rats in POCD group received normal saline injection and then splenectomy 30min later under 1.8% isoflurane inhalation for 2h. In remaining groups, rats received injection of 1mg/kg nimodipine (i.p) and/or 4ml/kg 7.5% HS (i.v) and then splenectomy. Morris water maze test was performed before and after surgery. The hippocampus was harvested for the detection of neuronal apoptosis rate (AR), cytoplasmic calcium ([Ca2+]i), Bcl-2 and Bax mRNA expression and hippocampal neuronal ultrastructure. RESULTS When compared with POCD group, the latency to escape, neuronal AR, [Ca2+]i, Bax mRNA expression and Bax/Bcl-2 ratio reduced dramatically, but the times of crossing the platform and Bcl-2 mRNA expression increased significantly (P<0.05) in nimodipine group, NS group and nimodipine+HS group. In addition, the latency to escape, neuronal AR, [Ca2+]i, Bax mRNA expression and Bax/Bcl-2 ratio reduced markedly, but the times of crossing the platform and Bcl-2 mRNA expression increased significantly in nimodipine+HS group as compared to nimodipine group and NS group (P<0.05). Hippocampal neuronal ultrastructure damage was observed in all 4 groups, but it was the mildest in nimodipine+HS group. CONCLUSION Pre-treatment with both nimodipine and 7.5% HS exerts better protective effects, which is related to the inhibition of hippocampal neuronal apoptosis.
Collapse
Affiliation(s)
- Zhang Qi
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang City, 050051, Hebei, China
| | - Yuan Tianbao
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang City, 050051, Hebei, China
| | - Li Yanan
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang City, 050051, Hebei, China
| | - Xin Xi
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang City, 050051, Hebei, China
| | - He Jinhua
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang City, 050051, Hebei, China
| | - Wang Qiujun
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No 139, Ziqiang Road, Shijiazhuang City, 050051, Hebei, China.
| |
Collapse
|
99
|
Qiu LL, Luo D, Zhang H, Shi YS, Li YJ, Wu D, Chen J, Ji MH, Yang JJ. Nox-2-Mediated Phenotype Loss of Hippocampal Parvalbumin Interneurons Might Contribute to Postoperative Cognitive Decline in Aging Mice. Front Aging Neurosci 2016; 8:234. [PMID: 27790135 PMCID: PMC5062642 DOI: 10.3389/fnagi.2016.00234] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/23/2016] [Indexed: 01/24/2023] Open
Abstract
Postoperative cognitive decline (POCD) is a common complication following anesthesia and surgery, especially in elderly patients; however, the precise mechanisms of POCD remain unclear. Here, we investigated whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mediated-abnormalities in parvalbumin (PV) interneurons play an important role in the pathophysiology of POCD. The animal model was established using isoflurane anesthesia and exploratory laparotomy in 16-month-old male C57BL/6 mice. For interventional experiments, mice were chronically treated with the NADPH oxidase inhibitor apocynin (APO). Open field and fear conditioning behavioral tests were performed on day 6 and 7 post-surgery, respectively. In a separate experiment, brain tissue was harvested and subjected to biochemical analysis. Primary hippocampal neurons challenged with lipopolysaccharide (LPS) in vitro were used to investigate the mechanisms underlying the oxidative stress-induced abnormalities in PV interneurons. Our results showed that anesthesia and surgery induced significant hippocampus-dependent memory impairment, which was accompanied by PV interneuron phenotype loss and increased expression of interleukin-1β (IL-1β), markers of oxidative stress and NADPH oxidase 2 (Nox2) in the hippocampus. In addition, LPS exposure increased Nox2 level and decreased the expression of PV and the number of excitatory synapses onto PV interneurons in the primary hippocampal neurons. Notably, treatment with APO reversed these abnormalities. Our study suggests that Nox2-derived reactive oxygen species (ROS) production triggers, at least in part, anesthesia- and surgery-induced hippocampal PV interneuron phenotype loss and consequent cognitive impairment in aging mice.
Collapse
Affiliation(s)
- Li-Li Qiu
- Zhongda Hospital, School of Medicine, Southeast University Nanjing, China
| | - Dan Luo
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Hui Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Yun S Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University Nanjing, China
| | - Yan-Jun Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University Nanjing, China
| | - Dan Wu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University Nanjing, China
| | - Jiang Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University Nanjing, China
| | - Mu-Huo Ji
- Zhongda Hospital, School of Medicine, Southeast University Nanjing, China
| | - Jian-Jun Yang
- Zhongda Hospital, School of Medicine, Southeast University Nanjing, China
| |
Collapse
|
100
|
Deferoxamine regulates neuroinflammation and iron homeostasis in a mouse model of postoperative cognitive dysfunction. J Neuroinflammation 2016; 13:268. [PMID: 27733186 PMCID: PMC5062909 DOI: 10.1186/s12974-016-0740-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication after surgery, especially amongst elderly patients. Neuroinflammation and iron homeostasis are key hallmarks of several neurological disorders. In this study, we investigated the role of deferoxamine (DFO), a clinically used iron chelator, in a mouse model of surgery-induced cognitive dysfunction and assessed its neuroprotective effects on neuroinflammation, oxidative stress, and memory function. METHODS A model of laparotomy under general anesthesia and analgesia was used to study POCD. Twelve to 14 months C57BL/6J male mice were treated with DFO, and changes in iron signaling, microglia activity, oxidative stress, inflammatory cytokines, and neurotrophic factors were assessed in the hippocampus on postoperative days 3, 7, and 14. Memory function was evaluated using fear conditioning and Morris water maze tests. BV2 microglia cells were used to test the anti-inflammatory and neuroprotective effects of DFO. RESULTS Peripheral surgical trauma triggered changes in hippocampal iron homeostasis including ferric iron deposition, increase in hepcidin and divalent metal transporter-1, reduction in ferroportin and ferritin, and oxidative stress. Microglia activation, inflammatory cytokines, brain-derived neurotropic factor impairments, and cognitive dysfunction were found up to day 14 after surgery. Treatment with DFO significantly reduced neuroinflammation and improved cognitive decline by modulating p38 MAPK signaling, reactive oxygen species, and pro-inflammatory cytokines release. CONCLUSIONS Iron imbalance represents a novel mechanism underlying surgery-induced neuroinflammation and cognitive decline. DFO treatment regulates neuroinflammation and microglia activity after surgery.
Collapse
|