51
|
Menzies RI, Zhao X, Mullins LJ, Mullins JJ, Cairns C, Wrobel N, Dunbar DR, Bailey MA, Kenyon CJ. Transcription controls growth, cell kinetics and cholesterol supply to sustain ACTH responses. Endocr Connect 2017; 6:446-457. [PMID: 28720595 PMCID: PMC5574282 DOI: 10.1530/ec-17-0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 01/29/2023]
Abstract
Chronic ACTH exposure is associated with adrenal hypertrophy and steroidogenesis. The underlying molecular processes in mice have been analysed by microarray, histological and immunohistochemical techniques. Synacthen infused for 2 weeks markedly increased adrenal mass and plasma corticosterone levels. Microarray analysis found greater than 2-fold changes in expression of 928 genes (P < 0.001; 397 up, 531 down). These clustered in pathways involved in signalling, sterol/lipid metabolism, cell proliferation/hypertrophy and apoptosis. Signalling genes included some implicated in adrenal adenomas but also upregulated genes associated with cyclic AMP and downregulated genes associated with aldosterone synthesis. Sterol metabolism genes were those promoting cholesterol supply (Scarb1, Sqle, Apoa1) and disposal (Cyp27a1, Cyp7b1). Oil red O staining showed lipid depletion consistent with reduced expression of genes involved in lipid synthesis. Genes involved in steroidogenesis (Star, Cyp11a1, Cyp11b1) were modestly affected (P < 0.05; <1.3-fold). Increased Ki67, Ccna2, Ccnb2 and Tk1 expression complemented immunohistochemical evidence of a 3-fold change in cell proliferation. Growth arrest genes, Cdkn1a and Cdkn1c, which are known to be active in hypertrophied cells, were increased >4-fold and cross-sectional area of fasciculata cells was 2-fold greater. In contrast, genes associated with apoptosis (eg Casp12, Clu,) were downregulated and apoptotic cells (Tunel staining) were fewer (P < 0.001) and more widely distributed throughout the cortex. In summary, long-term steroidogenesis with ACTH excess is sustained by genes controlling cholesterol supply and adrenal mass. ACTH effects on adrenal morphology and genes controlling cell hypertrophy, proliferation and apoptosis suggest the involvement of different cell types and separate molecular pathways.
Collapse
Affiliation(s)
- Robert I Menzies
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Xin Zhao
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Linda J Mullins
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - John J Mullins
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Carolynn Cairns
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Nicola Wrobel
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Donald R Dunbar
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Matthew A Bailey
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Christopher J Kenyon
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
52
|
Rosado-Olivieri EA, Ramos-Ortiz GA, Hernández-Pasos J, Díaz-Balzac CA, Vázquez-Rosa E, Valentín-Tirado G, Vega IE, García-Arrarás JE. A START-domain-containing protein is a novel marker of nervous system components of the sea cucumber Holothuria glaberrima. Comp Biochem Physiol B Biochem Mol Biol 2017; 214:57-65. [PMID: 28864221 DOI: 10.1016/j.cbpb.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 12/21/2022]
Abstract
One of the main challenges faced by investigators studying the nervous system of members of the phylum Echinodermata is the lack of markers to identify nerve cells and plexi. Previous studies have utilized an antibody, RN1, that labels most of the nervous system structures of the sea cucumber Holothuria glaberrima and other echinoderms. However, the antigen recognized by RN1 remained unknown. In the present work, the antigen has been characterized by immunoprecipitation, tandem mass spectrometry, and cDNA cloning. The RN1 antigen contains a START lipid-binding domain found in Steroidogenic Acute Regulatory (StAR) proteins and other lipid-binding proteins. Phylogenetic tree assembly showed that the START domain is highly conserved among echinoderms. We have named this antigen HgSTARD10 for its high sequence similarity to the vertebrate orthologs. Gene and protein expression analyses revealed an abundance of HgSTARD10 in most H. glaberrima tissues including radial nerve, intestine, muscle, esophagus, mesentery, hemal system, gonads and respiratory tree. Molecular cloning of HgSTARD10, consequent protein expression and polyclonal antibody production revealed the STARD10 ortholog as the antigen recognized by the RN1 antibody. Further characterization into this START domain-containing protein will provide important insights for the biochemistry, physiology and evolution of deuterostomes.
Collapse
Affiliation(s)
- Edwin A Rosado-Olivieri
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico.
| | - Gibram A Ramos-Ortiz
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico.
| | - Josué Hernández-Pasos
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico
| | - Carlos A Díaz-Balzac
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico.
| | - Edwin Vázquez-Rosa
- Department of Chemistry, University of Puerto Rico Río Piedras Campus, San Juan PR 00931, Puerto Rico
| | - Griselle Valentín-Tirado
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico
| | - Irving E Vega
- Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico.
| |
Collapse
|
53
|
Thelen AM, Zoncu R. Emerging Roles for the Lysosome in Lipid Metabolism. Trends Cell Biol 2017; 27:833-850. [PMID: 28838620 DOI: 10.1016/j.tcb.2017.07.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Precise regulation of lipid biosynthesis, transport, and storage is key to the homeostasis of cells and organisms. Cells rely on a sophisticated but poorly understood network of vesicular and nonvesicular transport mechanisms to ensure efficient delivery of lipids to target organelles. The lysosome stands at the crossroads of this network due to its ability to process and sort exogenous and endogenous lipids. The lipid-sorting function of the lysosome is intimately connected to its recently discovered role as a metabolic command-and-control center, which relays multiple nutrient cues to the master growth regulator, mechanistic target of rapamycin complex (mTORC)1 kinase. In turn, mTORC1 potently drives anabolic processes, including de novo lipid synthesis, while inhibiting lipid catabolism. Here, we describe the dual role of the lysosome in lipid transport and biogenesis, and we discuss how integration of these two processes may play important roles both in normal physiology and in disease.
Collapse
Affiliation(s)
- Ashley M Thelen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
54
|
Tillander V, Alexson SEH, Cohen DE. Deactivating Fatty Acids: Acyl-CoA Thioesterase-Mediated Control of Lipid Metabolism. Trends Endocrinol Metab 2017; 28:473-484. [PMID: 28385385 PMCID: PMC5474144 DOI: 10.1016/j.tem.2017.03.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
The cellular uptake of free fatty acids (FFA) is followed by esterification to coenzyme A (CoA), generating fatty acyl-CoAs that are substrates for oxidation or incorporation into complex lipids. Acyl-CoA thioesterases (ACOTs) constitute a family of enzymes that hydrolyze fatty acyl-CoAs to form FFA and CoA. Although biochemically and biophysically well characterized, the metabolic functions of these enzymes remain incompletely understood. Existing evidence suggests regulatory roles in controlling rates of peroxisomal and mitochondrial fatty acyl-CoA oxidation, as well as in the subcellular trafficking of fatty acids. Emerging data implicate ACOTs in the pathogenesis of metabolic diseases, suggesting that better understanding their pathobiology could reveal unique targets in the management of obesity, diabetes, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Veronika Tillander
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 14186, Sweden
| | - Stefan E H Alexson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 14186, Sweden
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
55
|
Wilhelm LP, Wendling C, Védie B, Kobayashi T, Chenard MP, Tomasetto C, Drin G, Alpy F. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J 2017; 36:1412-1433. [PMID: 28377464 PMCID: PMC5430228 DOI: 10.15252/embj.201695917] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/04/2023] Open
Abstract
StAR‐related lipid transfer domain‐3 (STARD3) is a sterol‐binding protein that creates endoplasmic reticulum (ER)–endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill‐defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3‐mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER–endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER‐anchored partner, Vesicle‐associated membrane protein‐associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER–endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes.
Collapse
Affiliation(s)
- Léa P Wilhelm
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 964, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Corinne Wendling
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 964, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Benoît Védie
- AP-HP (Assistance Publique - Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | - Toshihide Kobayashi
- Université de Strasbourg, Illkirch, France.,Laboratory of Biophotonics and Pharmacology, Centre National de la Recherche Scientifique (CNRS), UMR 7213, Illkirch, France
| | - Marie-Pierre Chenard
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Service d'Anatomie Pathologique Générale, Centre Hospitalier Universitaire de Hautepierre, Strasbourg, France
| | - Catherine Tomasetto
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France .,Institut National de la Santé et de la Recherche Médicale (INSERM), U 964, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Fabien Alpy
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France .,Institut National de la Santé et de la Recherche Médicale (INSERM), U 964, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
56
|
Abstract
The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.
Collapse
Affiliation(s)
- Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore;
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut 06510;
| |
Collapse
|
57
|
Santos C, Stauffert F, Ballereau S, Dehoux C, Rodriguez F, Bodlenner A, Compain P, Génisson Y. Iminosugar-based ceramide mimicry for the design of new CERT START domain ligands. Bioorg Med Chem 2017; 25:1984-1989. [PMID: 28237558 DOI: 10.1016/j.bmc.2017.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/23/2017] [Accepted: 02/11/2017] [Indexed: 01/29/2023]
Abstract
The enigmatical dichotomy between the two CERT/GPBP protein isoforms, their vast panel of biological implications and the scarcity of known antagonist series call for new ligand chemotypes identification. We report the design of iminosugar-based ceramide mimics for the development of new START domain ligands potentially targeting either protein isoforms. Strategic choice of (i) an iminoxylitol core structure and (ii) the positioning of two dodecyl residues led to an extent of protein binding comparable to that of the natural cargo lipid ceramide or the archetypical inhibitor HPA-12. Molecular docking study evidenced a possible mode of protein binding fully coherent with the one observed in crystalline co-structures of known ligands. The present study thus paves the way for cellular CERT inhibition studies en route to the development of pharmacological tools aiming at deciphering the respective function and therapeutic potential of the two CERT/GPBP protein isoforms.
Collapse
Affiliation(s)
- Cécile Santos
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France
| | - Fabien Stauffert
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Stéphanie Ballereau
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France
| | - Cécile Dehoux
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France
| | - Frédéric Rodriguez
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France
| | - Anne Bodlenner
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Philippe Compain
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France.
| | - Yves Génisson
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France.
| |
Collapse
|
58
|
Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol 2017; 165:18-37. [PMID: 26960203 DOI: 10.1016/j.jsbmb.2016.03.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/29/2022]
Abstract
Steroidogenesis begins with cellular internalization of low-density lipoprotein particles and subsequent intracellular processing of cholesterol. Disorders in these steps include Adrenoleukodystrophy, Wolman Disease and its milder variant Cholesterol Ester Storage Disease, and Niemann-Pick Type C Disease, all of which may present with adrenal insufficiency. The means by which cholesterol is directed to steroidogenic mitochondria remains incompletely understood. Once cholesterol reaches the outer mitochondrial membrane, its delivery to the inner mitochondrial membrane is regulated by the steroidogenic acute regulatory protein (StAR). Severe StAR mutations cause classic congenital lipoid adrenal hyperplasia, characterized by lipid accumulation in the adrenal, adrenal insufficiency, and disordered sexual development in 46,XY individuals. The lipoid CAH phenotype, including spontaneous puberty in 46,XX females, is explained by a two-hit model. StAR mutations that retain partial function cause a milder, non-classic disease characterized by glucocorticoid deficiency, with lesser disorders of mineralocorticoid and sex steroid synthesis. Once inside the mitochondria, cholesterol is converted to pregnenolone by the cholesterol side-chain cleavage enzyme, P450scc, encoded by the CYP11A1 gene. Rare patients with mutations of P450scc are clinically and hormonally indistinguishable from those with lipoid CAH, and may also present as milder non-classic disease. Patients with P450scc defects do not have the massive adrenal hyperplasia that characterizes lipoid CAH, but adrenal imaging may occasionally fail to distinguish these, necessitating DNA sequencing.
Collapse
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143-0556, United States.
| |
Collapse
|
59
|
Abstract
Membrane contact sites (MCSs) are subcellular regions where the membranes of distinct organelles come into close apposition. These specialized areas of the cell, which are involved in inter-organelle metabolite exchange, are scaffolded by specific complexes. STARD3 [StAR (steroidogenic acute regulatory protein)-related lipid transfer domain-3] and its close paralogue STARD3NL (STARD3 N-terminal like) are involved in the formation of contacts between late-endosomes and the endoplasmic reticulum (ER). The lipid transfer protein (LTP) STARD3 and STARD3NL, which are both anchored on the limiting membrane of late endosomes (LEs), interact with ER-anchored VAP [VAMP (vesicle-associated membrane protein)-associated protein] (VAP-A and VAP-B) proteins. This direct interaction allows ER-endosome contact formation. STARD3 or STARD3NL-mediated ER-endosome contacts, which affect endosome dynamics, are believed to be involved in cholesterol transport.
Collapse
|
60
|
Fougère A, Jackson AP, Paraskevi Bechtsi D, Braks JAM, Annoura T, Fonager J, Spaccapelo R, Ramesar J, Chevalley-Maurel S, Klop O, van der Laan AMA, Tanke HJ, Kocken CHM, Pasini EM, Khan SM, Böhme U, van Ooij C, Otto TD, Janse CJ, Franke-Fayard B. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole. PLoS Pathog 2016; 12:e1005917. [PMID: 27851824 PMCID: PMC5113031 DOI: 10.1371/journal.ppat.1005917] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites. Malaria-parasites invade and multiply in hepatocytes and erythrocytes. The human parasite P. falciparum transports proteins encoded by multigene families onto the surface of erythrocytes, mediating interactions between infected red blood cells (iRBCs) and other host-cells and are thought to play a key role in parasite survival during blood-stage development. The function of other exported Plasmodium protein families remains largely unknown. We provide novel insights into expression and cellular location of proteins encoded by three large multigene families of rodent malaria parasites (Fam-a, Fam-b and PIR). Multiple members of the same family are expressed in a single iRBC, unlike P. falciparum PfEMP1 proteins where individual iRBCs express only a single member. Most proteins we examined are located in the RBC cytoplasm and are not transported onto the iRBC surface membrane, indicating that these proteins are unlikely to mediate interactions between iRBCs and host-cells. Unexpectedly, liver stages also express many of these proteins, where they locate to the vacuole surrounding the parasite inside the hepatocyte. In support of a role of these proteins for parasite growth within their host cells we provide evidence that Fam-A proteins have a role in uptake and transport of (host) phosphatidylcholine for parasite-membrane synthesis.
Collapse
Affiliation(s)
- Aurélie Fougère
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Experimental Medicine, University of Perugia, Italy
| | - Andrew P. Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UnitedKingdom
| | | | - Joanna A. M. Braks
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Takeshi Annoura
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Jannik Fonager
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microbiological Diagnostics and Virology, Statens Serum Institute, Copenhagen, Denmark
| | | | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | - Hans J. Tanke
- Department of Molecular Cell Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Erica M. Pasini
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ulrike Böhme
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, UnitedKingdom
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
61
|
Hill RJ, Ringel A, Knuepfer E, Moon RW, Blackman MJ, van Ooij C. Regulation and Essentiality of the StAR-related Lipid Transfer (START) Domain-containing Phospholipid Transfer Protein PFA0210c in Malaria Parasites. J Biol Chem 2016; 291:24280-24292. [PMID: 27694132 PMCID: PMC5104948 DOI: 10.1074/jbc.m116.740506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/23/2016] [Indexed: 12/22/2022] Open
Abstract
StAR-related lipid transfer (START) domains are phospholipid- or sterol-binding modules that are present in many proteins. START domain-containing proteins (START proteins) play important functions in eukaryotic cells, including the redistribution of phospholipids to subcellular compartments and delivering sterols to the mitochondrion for steroid synthesis. How the activity of the START domain is regulated remains unknown for most of these proteins. The Plasmodium falciparum START protein PFA0210c (PF3D7_0104200) is a broad-spectrum phospholipid transfer protein that is conserved in all sequenced Plasmodium species and is most closely related to the mammalian START proteins STARD2 and STARD7. PFA0210c is unusual in that it contains a signal sequence and a PEXEL export motif that together mediate transfer of the protein from the parasite to the host erythrocyte. The protein also contains a C-terminal extension, which is very uncommon among mammalian START proteins. Whereas the biochemical properties of PFA0210c have been characterized, the function of the protein remains unknown. Here, we provide evidence that the unusual C-terminal extension negatively regulates phospholipid transfer activity. Furthermore, we use the genetically tractable Plasmodium knowlesi model and recently developed genetic technology in P. falciparum to show that the protein is essential for growth of the parasite during the clinically relevant asexual blood stage life cycle. Finally, we show that the regulation of phospholipid transfer by PFA0210c is required in vivo, and we identify a potential second regulatory domain. These findings provide insight into a novel mechanism of regulation of phospholipid transfer in vivo and may have important implications for the interaction of the malaria parasite with its host cell.
Collapse
Affiliation(s)
- Ross J Hill
- From the The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA and
| | - Alessa Ringel
- From the The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA and
| | - Ellen Knuepfer
- From the The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA and
| | | | - Michael J Blackman
- From the The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA and
- Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Christiaan van Ooij
- From the The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA and
| |
Collapse
|
62
|
Wei J, Choi H, Jin P, Wu Y, Yoon J, Lee YS, Quan T, An G. GL2-type homeobox gene Roc4 in rice promotes flowering time preferentially under long days by repressing Ghd7. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:133-143. [PMID: 27717449 DOI: 10.1016/j.plantsci.2016.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Under long day (LD) lengths, flowering can be delayed in rice by modulating several regulatory genes. We found activation tagging lines that showed an early flowering phenotype preferentially under LD conditions. Expression of Rice outermost cell-specific gene 4 (Roc4), encoding a homeodomain Leu-zipper class IV family protein, was significantly increased. Transcript levels of Grain number, plant height, and heading date7 (Ghd7) were significantly reduced while those of Ghd7 downstream genes were increased. However, other flowering regulators were unaffected. Whereas constitutive overexpression of Roc4 in 'Dongjin' japonica rice, which carries active Ghd7, also caused LD-preferential early flowering, its overexpression in 'Longjing27' rice, which is defective in functional Ghd7, did not produce the same result. This confirmed that Roc4 regulates flowering time mainly through Ghd7. Phytochromes and O. sativa GIGANTEA (OsGI) function upstream of Roc4. Transgenic plants showed ubiquitous expression of the β-glucuronidase reporter gene under the Roc4 promoter. Furthermore, Roc4 had transcriptional activation activity in the N-terminal region of the StAR-related lipid-transfer domain. All of these findings are evidence that Roc4 is an LD-preferential flowering enhancer that functions downstream of phytochromes and OsGI, but upstream of Ghd7.
Collapse
Affiliation(s)
- Jinhuan Wei
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Heebak Choi
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea; Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ping Jin
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Yunfei Wu
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jinmi Yoon
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Yang-Seok Lee
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Taiyong Quan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
63
|
Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat 2016; 209:78-92. [PMID: 27773772 DOI: 10.1016/j.aanat.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 01/03/2023]
Abstract
Pulmonary surfactant is a lipid-protein complex that lines and stabilizes the respiratory interface in the alveoli, allowing for gas exchange during the breathing cycle. At the same time, surfactant constitutes the first line of lung defense against pathogens. This review presents an updated view on the processes involved in biogenesis and intracellular processing of newly synthesized and recycled surfactant components, as well as on the extracellular surfactant transformations before and after the formation of the surface active film at the air-water interface. Special attention is paid to the crucial regulation of surfactant homeostasis, because its disruption is associated with several lung pathologies.
Collapse
Affiliation(s)
- Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Marta Martínez-Calle
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Jesus Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
64
|
Flores-Martín J, Reyna L, Ridano ME, Panzetta-Dutari GM, Genti-Raimondi S. Suppression of StarD7 promotes endoplasmic reticulum stress and induces ROS production. Free Radic Biol Med 2016; 99:286-295. [PMID: 27554972 DOI: 10.1016/j.freeradbiomed.2016.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/29/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022]
Abstract
StarD7 is an intracellular lipid transport protein identified as up-regulated in the choriocarcinoma JEG-3 cell line. StarD7 facilitates the delivery of phosphatidylcholine (PC) to the mitochondria, and StarD7 knockdown causes a reduction in phospholipid synthesis. Since inhibition of PC synthesis may lead to endoplasmic reticulum (ER) stress we hypothesized that StarD7 may be involved in maintaining cell homeostasis. Here, we examined the effect of StarD7 silencing on ER stress response and on the levels of reactive oxygen species (ROS) in the human hepatoma cell line HepG2. StarD7 knockdown induced alterations in mitochondria and ER morphology. These changes were accompanied with an ER stress response as determined by increased expression of inositol-requiring enzyme 1α (IRE1α), calnexin, glucose regulated protein 78/immunoglobulin heavy chain-binding protein (Grp78/BiP), protein kinase-like ER kinase (PERK) as well as the phosphorylated eukaryotic translation initiation factor 2, subunit 1α (p-eIF2α). Additionally, a downregulation of the tumor suppressor p53 by a degradation mechanism was observed in StarD7 siRNA cells. Furthermore, StarD7 silencing induced ROS generation and reduced cell viability after H2O2 exposure. Decreased expression of StarD7 was associated to increased levels of the heme oxygenase-1 (HO-1) and catalase enzymes as well as in catalase enzymatic activity. Finally, no changes in levels of autophagy and apoptosis markers were observed in StarD7 siRNA treated cells respect to control cells. Taken together, these results indicate that StarD7 contributes to modulate cellular redox homeostasis.
Collapse
Affiliation(s)
- Jésica Flores-Martín
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Luciana Reyna
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Magali E Ridano
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| |
Collapse
|
65
|
Xia Y, Charubin K, Marquardt D, Heberle FA, Katsaras J, Tian J, Cheng X, Liu Y, Nieh MP. Morphology-Induced Defects Enhance Lipid Transfer Rates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9757-9764. [PMID: 27560711 DOI: 10.1021/acs.langmuir.6b02099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular transfer between nanoparticles has been considered to have important implications regarding nanoparticle stability. Recently, the interparticle spontaneous lipid transfer rate constant for discoidal bicelles was found to be very different from spherical, unilamellar vesicles (ULVs). Here, we investigate the mechanism responsible for this discrepancy. Analysis of the data indicates that lipid transfer is entropically favorable, but enthalpically unfavorable with an activation energy that is independent of bicelle size and long- to short-chain lipid molar ratio. Moreover, molecular dynamics simulations reveal a lower lipid dissociation energy cost in the vicinity of interfaces ("defects") induced by the segregation of the long- and short-chain lipids in bicelles; these defects are not present in ULVs. Taken together, these results suggest that the enhanced lipid transfer observed in bicelles arises from interfacial defects as a result of the hydrophobic mismatch between the long- and short-chain lipid species. Finally, the observed lipid transfer rate is found to be independent of nanoparticle stability.
Collapse
Affiliation(s)
| | | | - Drew Marquardt
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz , Graz 8010, Austria
- Department of Physics, Brock University , St. Catharines, Ontario L2S 3A1, Canada
| | | | | | | | | | | | | |
Collapse
|
66
|
Elustondo P, Martin LA, Karten B. Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:90-101. [PMID: 27565112 DOI: 10.1016/j.bbalip.2016.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
All animal subcellular membranes require cholesterol, which influences membrane fluidity and permeability, fission and fusion processes, and membrane protein function. The distribution of cholesterol among subcellular membranes is highly heterogeneous and the cholesterol content of each membrane must be carefully regulated. Compared to other subcellular membranes, mitochondrial membranes are cholesterol-poor, particularly the inner mitochondrial membrane (IMM). As a result, steroidogenesis can be controlled through the delivery of cholesterol to the IMM, where it is converted to pregnenolone. The low basal levels of cholesterol also make mitochondria sensitive to changes in cholesterol content, which can have a relatively large impact on the biophysical and functional characteristics of mitochondrial membranes. Increased mitochondrial cholesterol levels have been observed in diverse pathological conditions including cancer, steatohepatitis, Alzheimer disease and Niemann-Pick Type C1-deficiency, and are associated with increased oxidative stress, impaired oxidative phosphorylation, and changes in the susceptibility to apoptosis, among other alterations in mitochondrial function. Mitochondria are not included in the vesicular trafficking network; therefore, cholesterol transport to mitochondria is mostly achieved through the activity of lipid transfer proteins at membrane contact sites or by cytosolic, diffusible lipid transfer proteins. Here we will give an overview of the main mechanisms involved in mitochondrial cholesterol import, focusing on the steroidogenic acute regulatory protein StAR/STARD1 and other members of the StAR-related lipid transfer (START) domain protein family, and we will discuss how changes in mitochondrial cholesterol levels can arise and affect mitochondrial function. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Pia Elustondo
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Laura A Martin
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
67
|
Quon E, Beh CT. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange. Lipid Insights 2016; 8:55-63. [PMID: 26949334 PMCID: PMC4772907 DOI: 10.4137/lpi.s37190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 11/07/2022] Open
Abstract
Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions.
Collapse
Affiliation(s)
- Evan Quon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.; Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
68
|
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids 2016; 199:74-93. [PMID: 26874289 DOI: 10.1016/j.chemphyslip.2016.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/05/2023]
Abstract
Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, 1653 W. Congress Parkway, Chicago, IL 60612, USA.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
69
|
Lipid transfer and metabolism across the endolysosomal-mitochondrial boundary. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:880-894. [PMID: 26852832 DOI: 10.1016/j.bbalip.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Abstract
Lysosomes and mitochondria occupy a central stage in the maintenance of cellular homeostasis, by playing complementary roles in nutrient sensing and energy metabolism. Specifically, these organelles function as signaling hubs that integrate environmental and endogenous stimuli with specific metabolic responses. In particular, they control various lipid biosynthetic and degradative pipelines, either directly or indirectly, by regulating major cellular metabolic pathways, and by physical and functional connections established with each other and with other organelles. Membrane contact sites allow the exchange of ions and molecules between organelles, even without membrane fusion, and are privileged routes for lipid transfer among different membrane compartments. These inter-organellar connections typically involve the endoplasmic reticulum. Direct membrane contacts have now been described also between lysosomes, autophagosomes, lipid droplets, and mitochondria. This review focuses on these recently identified membrane contact sites, and on their role in lipid biosynthesis, exchange, turnover and catabolism. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
70
|
Xia Y, Li M, Charubin K, Liu Y, Heberle FA, Katsaras J, Jing B, Zhu Y, Nieh MP. Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12920-8. [PMID: 26540211 DOI: 10.1021/acs.langmuir.5b03291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C14, DMPC) in discoidal "bicelles" (0.156 h(-1)) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10(-3) h(-1)). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C14 DMPC to di-C16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differential scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. The present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.
Collapse
Affiliation(s)
- Yan Xia
- Department of Chemical and Biomolecular Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Ming Li
- Polymer Program, Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Kamil Charubin
- Department of Chemical and Biomolecular Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Ying Liu
- Department of Chemical and Biomolecular Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Frederick A Heberle
- Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831 United States
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831 United States
- Department of Physics and Astronomy, University of Tennessee , Knoxville, Tennessee 37996, United States
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Benxin Jing
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Yingxi Zhu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
- Department of Chemical Engineering and Materials Science, Wayne State University , Detroit, Michigan 48202 United States
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
- Department of Biomedical Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
71
|
Goto A, Charman M, Ridgway ND. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools. J Biol Chem 2015; 291:1336-47. [PMID: 26601944 DOI: 10.1074/jbc.m115.682997] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50-70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT.
Collapse
Affiliation(s)
- Asako Goto
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Mark Charman
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Neale D Ridgway
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
72
|
Olkkonen VM. OSBP-Related Protein Family in Lipid Transport Over Membrane Contact Sites. Lipid Insights 2015; 8:1-9. [PMID: 26715851 PMCID: PMC4685180 DOI: 10.4137/lpi.s31726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that oxysterol-binding protein-related proteins (ORPs) localize at membrane contact sites, which are high-capacity platforms for inter-organelle exchange of small molecules and information. ORPs can simultaneously associate with the two apposed membranes and transfer lipids across the interbilayer gap. Oxysterol-binding protein moves cholesterol from the endoplasmic reticulum to trans-Golgi, driven by the retrograde transport of phosphatidylinositol-4-phosphate (PI4P). Analogously, yeast Osh6p mediates the transport of phosphatidylserine from the endoplasmic reticulum to the plasma membrane in exchange for PI4P, and ORP5 and -8 are suggested to execute similar functions in mammalian cells. ORPs may share the capacity to bind PI4P within their ligand-binding domain, prompting the hypothesis that bidirectional transport of a phosphoinositide and another lipid may be a common theme among the protein family. This model, however, needs more experimental support and does not exclude a function of ORPs in lipid signaling.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland. ; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
73
|
Martinez F, Olvera-Sanchez S, Esparza-Perusquia M, Gomez-Chang E, Flores-Herrera O. Multiple functions of syncytiotrophoblast mitochondria. Steroids 2015; 103:11-22. [PMID: 26435077 DOI: 10.1016/j.steroids.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/16/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
The human placenta plays a central role in pregnancy, and the syncytiotrophoblast cells are the main components of the placenta that support the relationship between the mother and fetus, in apart through the production of progesterone. In this review, the metabolic processes performed by syncytiotrophoblast mitochondria associated with placental steroidogenesis are described. The metabolism of cholesterol, specifically how this steroid hormone precursor reaches the mitochondria, and its transformation into progesterone are reviewed. The role of nucleotides in steroidogenesis, as well as the mechanisms associated with signal transduction through protein phosphorylation and dephosphorylation of proteins is discussed. Finally, topics that require further research are identified, including the need for new techniques to study the syncytiotrophoblast in situ using non-invasive methods.
Collapse
Affiliation(s)
- Federico Martinez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico.
| | - Sofia Olvera-Sanchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Mercedes Esparza-Perusquia
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Erika Gomez-Chang
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| |
Collapse
|
74
|
Bürglin TR, Affolter M. Homeodomain proteins: an update. Chromosoma 2015; 125:497-521. [PMID: 26464018 PMCID: PMC4901127 DOI: 10.1007/s00412-015-0543-8] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
Here, we provide an update of our review on homeobox genes that we wrote together with Walter Gehring in 1994. Since then, comprehensive surveys of homeobox genes have become possible due to genome sequencing projects. Using the 103 Drosophila homeobox genes as example, we present an updated classification. In animals, there are 16 major classes, ANTP, PRD, PRD-LIKE, POU, HNF, CUT (with four subclasses: ONECUT, CUX, SATB, and CMP), LIM, ZF, CERS, PROS, SIX/SO, plus the TALE superclass with the classes IRO, MKX, TGIF, PBC, and MEIS. In plants, there are 11 major classes, i.e., HD-ZIP (with four subclasses: I to IV), WOX, NDX, PHD, PLINC, LD, DDT, SAWADEE, PINTOX, and the two TALE classes KNOX and BEL. Most of these classes encode additional domains apart from the homeodomain. Numerous insights have been obtained in the last two decades into how homeodomain proteins bind to DNA and increase their specificity by interacting with other proteins to regulate cell- and tissue-specific gene expression. Not only protein-DNA base pair contacts are important for proper target selection; recent experiments also reveal that the shape of the DNA plays a role in specificity. Using selected examples, we highlight different mechanisms of homeodomain protein-DNA interaction. The PRD class of homeobox genes was of special interest to Walter Gehring in the last two decades. The PRD class comprises six families in Bilateria, and tinkers with four different motifs, i.e., the PAIRED domain, the Groucho-interacting motif EH1 (aka Octapeptide or TN), the homeodomain, and the OAR motif. Homologs of the co-repressor protein Groucho are also present in plants (TOPLESS), where they have been shown to interact with small amphipathic motives (EAR), and in yeast (TUP1), where we find an EH1-like motif in MATα2.
Collapse
Affiliation(s)
- Thomas R. Bürglin
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
- />Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Markus Affolter
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
75
|
Richards SA, Stutzer C, Bosman AM, Maritz-Olivier C. Transmembrane proteins--Mining the cattle tick transcriptome. Ticks Tick Borne Dis 2015; 6:695-710. [PMID: 26096851 DOI: 10.1016/j.ttbdis.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 11/28/2022]
Abstract
Managing the spread and load of pathogen-transmitting ticks is an important task worldwide. The cattle tick, Rhipicephalus microplus, not only impacts the economy through losses in dairy and meat production, but also raises concerns for human health in regards to the potential of certain transmitted pathogens becoming zoonotic. However, novel strategies to control R. microplus are hindered by lack of understanding tick biology and the discovery of suitable vaccine or acaricide targets. The importance of transmembrane proteins as vaccine targets are well known, as is the case in tick vaccines with Bm86 as antigen. In this study, we describe the localization and functional annotation of 878 putative transmembrane proteins. Thirty proteins could be confirmed in the R. microplus gut using LC-MS/MS analysis and their roles in tick biology are discussed. To the best of our knowledge, 19 targets have not been reported before in any proteomics study in various tick species and the possibility of using the identified proteins as targets for tick control are discussed. Although tissue expression of identified putative proteins through expansive proteomics is necessary, this study demonstrates the possibility of using bioinformatics for the identification of targets for further evaluation in tick control strategies.
Collapse
Affiliation(s)
- Sabine A Richards
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Christian Stutzer
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Anna-Mari Bosman
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
76
|
Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proc Natl Acad Sci U S A 2015; 112:E3179-88. [PMID: 26056272 DOI: 10.1073/pnas.1422363112] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Membrane contact sites (MCS) between organelles are proposed as nexuses for the exchange of lipids, small molecules, and other signals crucial to cellular function and homeostasis. Various protein complexes, such as the endoplasmic reticulum-mitochondrial encounter structure (ERMES), function as dynamic molecular tethers between organelles. Here, we report the reconstitution and characterization of subcomplexes formed by the cytoplasm-exposed synaptotagmin-like mitochondrial lipid-binding protein (SMP) domains present in three of the five ERMES subunits--the soluble protein Mdm12, the endoplasmic reticulum (ER)-resident membrane protein Mmm1, and the mitochondrial membrane protein Mdm34. SMP domains are conserved lipid-binding domains found exclusively in proteins at MCS. We show that the SMP domains of Mdm12 and Mmm1 associate into a tight heterotetramer with equimolecular stoichiometry. Our 17-Å-resolution EM structure of the complex reveals an elongated crescent-shaped particle in which two Mdm12 subunits occupy symmetric but distal positions at the opposite ends of a central ER-anchored Mmm1 homodimer. Rigid body fitting of homology models of these SMP domains in the density maps reveals a distinctive extended tubular structure likely traversed by a hydrophobic tunnel. Furthermore, these two SMP domains bind phospholipids and display a strong preference for phosphatidylcholines, a class of phospholipids whose exchange between the ER and mitochondria is essential. Last, we show that the three SMP-containing ERMES subunits form a ternary complex in which Mdm12 bridges Mmm1 to Mdm34. Our findings highlight roles for SMP domains in ERMES assembly and phospholipid binding and suggest a structure-based mechanism for the facilitated transport of phospholipids between organelles.
Collapse
|
77
|
Abstract
In eukaryotic cells, a sterol gradient exists between the early and late regions of the secretory pathway. This gradient seems to rely on non-vesicular transport mechanisms mediated by specialized carriers. The oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) family has been assumed initially to exclusively include proteins acting as sterol sensors/transporters and many efforts have been made to determine their mode of action. Our recent studies have demonstrated that some ORP/Osh proteins are not mere sterol transporters, but sterol/phosphatidylinositol 4-phosphate [PI(4)P] exchangers. They exploit the PI(4)P gradient at the endoplasmic reticulum (ER)/Golgi interface, or at membrane-contact sites between these compartments, to actively create a sterol gradient. Other recent reports have suggested that all ORP/Osh proteins bind PI(4)P and recognize a second lipid that is not necessary sterol. We have thus proposed that ORP/Osh proteins use PI(4)P gradients between organelles to convey various lipid species.
Collapse
|
78
|
Lin S, Ikegami M, Moon C, Naren AP, Shannon JM. Lysophosphatidylcholine Acyltransferase 1 (LPCAT1) Specifically Interacts with Phospholipid Transfer Protein StarD10 to Facilitate Surfactant Phospholipid Trafficking in Alveolar Type II Cells. J Biol Chem 2015; 290:18559-74. [PMID: 26048993 DOI: 10.1074/jbc.m115.666701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 01/10/2023] Open
Abstract
Pulmonary surfactant, a mixture of proteins and phospholipids, plays an important role in facilitating gas exchange by maintaining alveolar stability. Saturated phosphatidylcholine (SatPC), the major component of surfactant, is synthesized both de novo and by the remodeling of unsaturated phosphatidylcholine (PC) by lyso-PC acyltransferase 1 (LPCAT1). After synthesis in the endoplasmic reticulum, SatPC is routed to lamellar bodies (LBs) for storage prior to secretion. The mechanism by which SatPC is transported to LB is not understood. The specificity of LPCAT1 for lyso-PC as an acyl acceptor suggests that formation of SatPC via LPCAT1 reacylation is a final step in SatPC synthesis prior to transport. We hypothesized that LPCAT1 forms a transient complex with SatPC and specific phospholipid transport protein(s) to initiate trafficking of SatPC from the endoplasmic reticulum to the LB. Herein we have assessed the ability of different StarD proteins to interact with LPCAT1. We found that LPCAT1 interacts with StarD10, that this interaction is direct, and that amino acids 79-271 of LPCAT1 and the steroidogenic acute regulatory protein-related lipid transfer (START) domain of START domain-containing protein 10 (StarD10) are sufficient for this interaction. The role of StarD10 in trafficking of phospholipid to LB was confirmed by the observation that knockdown of StarD10 significantly reduced transport of phospholipid to LB. LPCAT1 also interacted with one isoform of StarD7 but showed no interaction with StarD2/PC transfer protein.
Collapse
Affiliation(s)
- Sui Lin
- From the Divisions of Pulmonary Biology and
| | | | - Changsuk Moon
- Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Anjaparavanda P Naren
- Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | | |
Collapse
|
79
|
A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat Commun 2015; 6:6671. [PMID: 25849868 DOI: 10.1038/ncomms7671] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/18/2015] [Indexed: 01/15/2023] Open
Abstract
Lipids are unevenly distributed within eukaryotic cells, thus defining organelle identity. How non-vesicular transport mechanisms generate these lipid gradients between membranes remains a central question. Here using quantitative, real-time lipid transport assays, we demonstrate that Osh4p, a sterol/phosphatidylinositol-4-phosphate (PI(4)P) exchanger of the ORP/Osh family, transports sterol against its gradient between two membranes by dissipating the energy of a PI(4)P gradient. Sterol transport is sustained through the maintenance of this PI(4)P gradient by the PI(4)P-phosphatase Sac1p. Differences in lipid packing between membranes can stabilize sterol gradients generated by Osh4p and modulate its lipid exchange capacity. The ability of Osh4p to recognize sterol and PI(4)P via distinct modalities and the dynamics of its N-terminal lid govern its activity. We thus demonstrate that an intracellular lipid transfer protein actively functions to create a lipid gradient between membranes.
Collapse
|
80
|
Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 2014; 48:137-51. [PMID: 25425472 DOI: 10.1007/s10863-014-9592-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.
Collapse
|
81
|
Identification of phosphatidylcholine transfer protein-like in the parasite Entamoeba histolytica. Biochimie 2014; 107 Pt B:223-34. [PMID: 25223890 DOI: 10.1016/j.biochi.2014.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 09/04/2014] [Indexed: 11/22/2022]
Abstract
Caveolin is the protein marker of caveola-mediated endocytosis. Previously, we demonstrated by immunoblotting and immunofluorescence that an anti-chick embryo caveolin-1 monoclonal antibody (mAb) recognizes a protein in amoeba extracts. Nevertheless, the caveolin-1 gene is absent in the Entamoeba histolytica genome database. In this work, the goal was to isolate, identify and characterize the protein that cross-reacts with chick embryo caveolin-1. We identified the protein using a proteomic approach, and the complete gene was cloned and sequenced. The identified protein, E. histolytica phosphatidylcholine transfer protein-like (EhPCTP-L), is a member of the StAR-related lipid transfer (START) protein superfamily. The human homolog binds and transfers phosphatidylcholine (PC) and phosphatidylethanolamine (PE) between model membranes in vitro; however, the physiological role of PCTP-L remains elusive. Studies in silico showed that EhPCTP-L has a central START domain and also contains a C-terminal intrinsically disordered region. The anti-rEhPCTP-L antibody demonstrated that EhPCTP-L is found in the plasma membrane and cytosol, which is in agreement with previous reports on the human counterpart. This result points to the plasma membrane as one possible target membrane for EhPCTP-L. Furthermore, assays using filipin and nystatin showed down regulation of EhPCTP-L, in an apparently cholesterol-independent way. Interestingly, EhPCTP-L binds primarily to anionic phospholipids phosphatidylserine (PS) and phosphatidic acid (PA), while its mammalian counterpart HsPCTP-L binds neutral phospholipids PC and PE. The present study provides information that helps reveal the possible function and regulation of PCTP-L expression in the primitive eukaryotic parasite E. histolytica.
Collapse
|
82
|
Lipid landscapes and pipelines in membrane homeostasis. Nature 2014; 510:48-57. [DOI: 10.1038/nature13474] [Citation(s) in RCA: 743] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/03/2014] [Indexed: 11/08/2022]
|