51
|
Schildroth S, Osborne G, Smith AR, Yip C, Collins C, Smith MT, Sandy MS, Zhang L. Occupational exposure to antimony trioxide: a risk assessment. Occup Environ Med 2020; 78:oemed-2020-106980. [PMID: 33243757 PMCID: PMC8149478 DOI: 10.1136/oemed-2020-106980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The US National Toxicology Program (NTP) recently recommended in its Report on Carcinogens Monograph for Antimony Trioxide that antimony trioxide be listed as 'reasonably anticipated to be a human carcinogen' based on sufficient evidence of carcinogenicity in experimental animals and supporting evidence from mechanistic studies. Our goal was to estimate the possible human cancer risk from occupational exposure to antimony trioxide. METHODS We selected data from 2-year inhalation studies in male and female mice conducted by the NTP and performed cancer dose-response analyses using cancer models and benchmark dose methods developed by the US Environmental Protection Agency. In these analyses, we generated benchmark doses and cancer slope factors for antimony trioxide, and then estimated human cancer risk under various exposure scenarios. Typical and worst-case inhalation scenarios in multiple occupational settings were used in risk estimation. RESULTS In typical case scenarios, the occupational cancer risk from antimony trioxide was estimated to be 0.025 (25 in 1000) for persons working with flame retardants in plastics and textiles for 40 years. Under worst-case scenarios, the occupational cancer risk was estimated to be 0.11 (110 in 1000) for persons working with flame retardants in plastics and textiles. At the current Occupational Safety and Health Administration Permissible Exposure Limit, the cancer risk for occupational inhalation exposure of antimony trioxide was estimated to be 0.096 (96 in 1000). CONCLUSION The risk estimates calculated in this study suggest that exposure to antimony trioxide at levels present in certain occupational settings results in a large increase in the risk of developing cancer.
Collapse
Affiliation(s)
- Samantha Schildroth
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Anna R Smith
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
| | - Caryn Yip
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
- Department of Occupational and Environmental Health, University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Caroline Collins
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
- California Department of Public Health, Richmond, California, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
| |
Collapse
|
52
|
Li J, Ji Z, Luo X, Li Y, Yuan P, Long J, Shen N, Lu Q, Zeng Q, Zhong R, Shen Y, Cheng L. Urinary bisphenol A and its interaction with ESR1 genetic polymorphism associated with non-small cell lung cancer: findings from a case-control study in Chinese population. CHEMOSPHERE 2020; 254:126835. [PMID: 32348927 DOI: 10.1016/j.chemosphere.2020.126835] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor, was reported to promote migration and invasion of lung cancer cells, but findings in human study is absent. A case-control study in Chinese population was conducted to evaluate the association between BPA exposure and non-small cell lung cancer (NSCLC), and explore the interaction between BPA exposure and estrogen-related genetic polymorphism on NSCLC. BPA concentrations were measured in urine samples using an UHPLC-MS method and rs2046210 in estrogen receptor α (ESR1) gene was genotyped by TaqMan genotyping system. Logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for the association analyses. As a result, 615 NSCLC cases and 615 healthy controls were enrolled from Wuhan, central China. The mean age was 58.0 (SD: 7.9) years old for controls and 59.2 (SD: 8.8) years old for cancer cases. The creatinine-adjusted BPA levels were significantly higher in NSCLC cases than that in healthy controls (median: 0.97 vs 0.73 μg/L, P < 0.001). Exposure to high levels of BPA was significantly associated with NSCLC (adjusted OR = 1.91, 95%CI: 1.39-2.62, P < 0.001 for the highest quartile). We also observed a shallow concave dose-response relationship about the overall association between BPA and NSCLC. Moreover, interaction analyses showed that BPA exposure interacted multiplicatively with rs2046210, with a marginal P value (P = 0.049), to contribute to NSCLC. In conclusion, exposure to high levels BPA may be associated with NSCLC and the relationship may be modified by genetic polymorphism in ESR1.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Ji
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
53
|
Segovia-Mendoza M, Nava-Castro KE, Palacios-Arreola MI, Garay-Canales C, Morales-Montor J. How microplastic components influence the immune system and impact on children health: Focus on cancer. Birth Defects Res 2020; 112:1341-1361. [PMID: 32767490 DOI: 10.1002/bdr2.1779] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND As a result of human socioeconomic activity, industrial wastes have increased distressingly. Plastic pollution is globally distributed across the world due to its properties of buoyancy and durability. A big health hazard is the sorption of toxicants to plastic while traveling through the environment. Two broad classes of plastic-related chemicals are of critical concern for human health-bisphenols and phthalates. Bisphenol A (BPA) is an endocrine-disruptor compound (EDC) with estrogenic activity. It is used in the production of materials that are used daily. The endocrine modulating activity of BPA and its effects on reproductive health has been widely studied. BPA also has effects on the immune system; however, they are poorly investigated and the available data are inconclusive. Phthalates are also EDCs used as plasticizers in a wide array of daily-use products. Since these compounds are not covalently bound to the plastic matrix, they easily leach out from it, leading to high human exposure. These compounds exert several cell effects through modulating different endocrine pathways, such as estrogen, androgen, peroxisome proliferator-activated receptor gamma, and arylhydrocarbon receptor pathways. The exposure to both classes of plastic derivatives during critical periods has detrimental effects on human health. METHODS In this review, we have compiled the most important of their perinatal effects on the function of the immune system and their relationship to the development of different types of cancer. RESULTS/CONCLUSION The administration of bisphenols and phthalates during critical stages of development affects important immune system components, and the immune function; which might be related to the development of different diseases including cancer.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karen E Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Margarita I Palacios-Arreola
- Laboratorio de Genotoxicología y Mutagénesis Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
54
|
Zeng W. Bisphenol A triggers the malignancy of nasopharyngeal carcinoma cells via activation of Wnt/β-catenin pathway. Toxicol In Vitro 2020; 66:104881. [PMID: 32360864 DOI: 10.1016/j.tiv.2020.104881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022]
Abstract
It is critical to understand the risk factors responsible for the tumorigenesis and progression of nasopharyngeal carcinoma (NPC). Bisphenol A (BPA) can regulate the estrogenic signals to modulate cancer progression, while its roles in NC were not investigated. Our present study revealed that the BPA can increase proliferation and migration of NPC cells while decrease the chemosensitivity to doxorubicin (Dox). The inhibitor of GSK-3β/β-catenin (LiCl) can restore BPA-induced cell proliferation of NPC cells, which is due to that BPA can decrease phosphorylation while increase expression and nucleus localization of β-catenin. Mechanistically, BPA can increase the mRNA stability of β-catenin (encoded by CTNNB1) via suppressing the expression of miR-214-3p, which can direct target the 3'UTR of β-catenin mRNA. Further, BPA can decrease phosphorylation of β-catenin via repressing the expression of CK1α. Collectively, our data showed that BPA can trigger the proliferation and malignancy of NPC cells via activation of Wnt/β-catenin pathway. It indicated that body accumulation and inhalation exposure of BPA might be a risk factor for NPC development.
Collapse
Affiliation(s)
- Wenhui Zeng
- XiangYa School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
55
|
Shang J, Corriveau J, Champoux-Jenane A, Gagnon J, Moss E, Dumas P, Gaudreau E, Chevrier J, Chalifour LE. Recovery From a Myocardial Infarction Is Impaired in Male C57bl/6 N Mice Acutely Exposed to the Bisphenols and Phthalates That Escape From Medical Devices Used in Cardiac Surgery. Toxicol Sci 2020; 168:78-94. [PMID: 30398665 DOI: 10.1093/toxsci/kfy276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bisphenols and phthalates leach from medical devices, and this exposure is likely to increase in postcardiac surgery patients. Previous studies suggest that such chemical exposure may impact recovery and wound healing, yet the direct effects of bisphenols and phthalates are unknown in this context. To study the direct effect of clinically based chemical exposures, we measured the metabolites representative of 6 bisphenols and 10 phthalates in men before and after cardiac surgery and then replicated this exposure in a mouse model of cardiac surgery and assessed survival, cardiac function and inflammation. Bisphenol A (BPA), di-ethyl hexyl phthalate (DEHP), butylbenzyl phthalate, di-isodecyl phthalate, and di-n-butyl phthalate metabolites were increased after surgery. DEHP exposure predominated, was positively correlated with duration on the cardiopulmonary bypass machine and exceeded its tolerable daily intake limit by 37-fold. In vivo, C57bl/6 N male mice treated with BPA+phthalates during recovery from surgery-induced myocardial infarction had reduced survival, greater cardiac dilation, reduced cardiac function and increased infiltration of neutrophils, monocytes and macrophages suggesting impaired recovery. Of interest, genetic ablation or estrogen receptor beta (ERβ) antagonism did not improve recovery and replacement of DEHP with tri-octyl trimellitate or removal of BPA from the mixture did not ameliorate these effects. To examine the direct effects on inflammation, treatment of human THP-1 macrophages with BPA and phthalates induced a dysfunctional proinflammatory macrophage phenotype with increased expression of M1-type macrophage polarization markers and MMP9 secretion, yet reduced phagocytic activity. These results suggest that chemicals escape from medical devices and may impair patient recovery.
Collapse
Affiliation(s)
- Jijun Shang
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | | | | | - Julie Gagnon
- Jewish General Hospital, Montréal, Québec H3T 1E, Canada
| | - Emmanuel Moss
- Jewish General Hospital, Montréal, Québec H3T 1E, Canada
| | - Pierre Dumas
- Institut National de Santé Publique du Québec (INSPQ), Centre de Toxicologie du Québec (CTQ), Québec G1V 5B3, Canada
| | - Eric Gaudreau
- Institut National de Santé Publique du Québec (INSPQ), Centre de Toxicologie du Québec (CTQ), Québec G1V 5B3, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine
| | - Lorraine E Chalifour
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Jewish General Hospital, Montréal, Québec H3T 1E, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec H3A 1A2, Canada
| |
Collapse
|
56
|
Wen X, Xiong Y, Jin L, Zhang M, Huang L, Mao Y, Zhou C, Qiao Y, Zhang Y. Bisphenol A Exposure Enhances Endometrial Stromal Cell Invasion and Has a Positive Association with Peritoneal Endometriosis. Reprod Sci 2020; 27:704-712. [PMID: 32046440 DOI: 10.1007/s43032-019-00076-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/02/2019] [Indexed: 11/25/2022]
Abstract
Results of previous epidemiology studies on BPA exposure and endometriosis (EMs) risk were inconsistent, and were limited by inappropriate control selection, incorrect BPA detection method, and the generalization of different subtypes of EMs. Upregulated matrix metalloproteinase (MMP) 2 and MMP9 are involved in the development of EMs. We conducted a case-control study among 120 EMs patients and 100 healthy women to evaluate the relationships between BPA exposure and MMP2, MMP9 expressions, and the risk of EMs subtypes. Besides, we used human endometrial stromal cell lines (HESCs) to investigate the underlying mechanisms. Creatinine-adjusted urinary BPA concentrations were positively correlated with serum MMP2, MMP9 levels, and the risk of peritoneal EMs (third vs lowest quartile: OR 4.92, 95% CI 1.47, 16.50; fourth versus lowest quartile: OR 3.70, 95% CI 1.07, 12.74, Ptrend = 0.030). The risk of peritoneal EMs increased approximately tenfold when creatinine-adjusted urinary BPA concentration was 2 μg/g. In vitro study found that BPA exposure increased MMP2, MMP9 expressions in a dose-dependent manner. The effects of BPA on HESCs could be blocked by G protein-coupled estrogen receptor (GPER) inhibitor or mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) inhibitor. This study provides evidence that BPA exposure promotes peritoneal EMs, and raises a concern about the potential toxicity of BPA on the female reproductive system.
Collapse
Affiliation(s)
- Xue Wen
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Ling Jin
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Lei Huang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Yanhong Mao
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Chun Zhou
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Yuan Qiao
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China.
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
57
|
Yanagisawa R, Koike E, Win-Shwe TT, Takano H. Oral exposure to low dose bisphenol A aggravates allergic airway inflammation in mice. Toxicol Rep 2019; 6:1253-1262. [PMID: 31788436 PMCID: PMC6880024 DOI: 10.1016/j.toxrep.2019.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
Oral exposure to BPA relevant to human exposure aggravated allergic asthma. Low dose BPA with allergen reduced lung mRNA levels of hormone receptors. Low dose BPA with allergen altered lymph node and bone marrow microenvironments.
Bisphenol A (BPA) is widely used in many consumer products and has adverse effects on human health including allergic diseases. We investigated the effects of low dose BPA, comparable to actual human oral exposure, on allergic asthma in mice. C3H/HeJ male mice were fed a chow diet containing BPA (equivalent to 0.09, 0.90, or 9.01 μg/kg/day) and were intratracheally administered ovalbumin (OVA, 1 μg/animal) every two weeks from 5–11 weeks of age. All doses of BPA plus OVA enhanced pulmonary inflammation and airway hyperresponsiveness, and increased lung mRNA levels of Th2 cytokine/chemokine, and serum OVA-specific IgE and IgG1 compared to OVA alone, with greater effects observed in the middle- and high-dose BPA plus OVA groups. Furthermore, high-dose BPA with OVA decreased lung mRNA levels of ERβ and AR compared with OVA. Furthermore, BPA enhanced OVA-restimulated cell proliferation and protein levels of IL-4 and IL-5 in mediastinal lymph node (MLN) cells in OVA-sensitized mice. In bone marrow (BM) cells, middle-dose BPA with OVA increased Gr-1 expression. In conclusion, oral exposure to low-dose BPA at levels equivalent to human exposure can aggravate allergic asthmatic responses through enhancement of Th2-skewed responses, lung hormone receptor downregulation, and MLN and BM microenvironment change.
Collapse
Key Words
- AhR, aryl hydrocarbon receptor
- Allergic asthma
- Ar, androgen receptor
- BM, bone marrow
- BPA, bisphenol a
- Bisphenol A
- ER, estrogen receptor
- Endocrine disruptor
- FACS, fluorescence-activated cell-sorting
- GR, glucocorticoid receptor
- Gr-1, granulocyte-differentiation antigen
- Hormone receptor
- Hprt1, hypoxanthine phosphoribosyltransferase 1
- IFN-γ, interferon-gamma
- IL, interleukin
- Ig, immunoglobulin
- Low dose effects
- MCP-1, monocyte chemoattractant protein-1
- MIP-1α, macrophage inflammatory protein 1-alpha
- MLN, mediastinal lymph node
- OVA, ovalbumin
- RANTES, normal T cell expressed and secreted
- SDF-1α, stromal cell derived factor 1 alpha
- Th, T helper
- Th2 response
Collapse
Affiliation(s)
- Rie Yanagisawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
58
|
Zhang S, Li J, Fan J, Wu X. Bisphenol A triggers the malignancy of acute myeloid leukemia cells via regulation of IL‐4 and IL‐6. J Biochem Mol Toxicol 2019; 34:e22412. [PMID: 31714645 DOI: 10.1002/jbt.22412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/17/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Suwei Zhang
- Department of Clinical LaboratoryShantou Central Hospital Shantou Guangdong China
| | - Jiazhen Li
- Department of Clinical LaboratoryShantou Central Hospital Shantou Guangdong China
| | - Jingru Fan
- Department of EmergencyShantou Central Hospital Shantou Guangdong China
| | - Xianheng Wu
- Department of RadiologyShantou Central Hospital Shantou Guangdong China
| |
Collapse
|
59
|
High bisphenol A concentrations augment the invasiveness of tumor cells through Snail-1/Cx43/ERRγ-dependent epithelial-mesenchymal transition. Toxicol In Vitro 2019; 62:104676. [PMID: 31629898 DOI: 10.1016/j.tiv.2019.104676] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/05/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
Bisphenol A (BPA) is commonly present in plastics used for food storage and preservation. The release of BPA from these products results in a permanent human exposition to BPA; however, the quality and quantity of BPA adverse effects remain a matter of controversy. The common presence of BPA in the human environment and the controversies concerning the relations of human exposition to BPA and cancer incidence justify the research on the interactions between BPA and pro-metastatic signaling in cancer cells. Here, we describe a novel BPA-reactive signaling axis that induces the epithelial-mesenchymal transition (EMT) in lung adenocarcinoma A549 cells. BPA exerted negligible effects on their properties in a wide range of concentrations (10 nM - 100 nM), whereas it considerably induced A549 invasiveness at high concentrations (10 μM). The BPA-induced EMT was illustrated by morphologic changes, E/N-cadherin switch and vimentin/Snail-1/connexin(Cx)43 up-regulation in A549 populations. It was followed by enhancement of A549 drug-resistance. Corresponding effects of BPA were observed in prostate cancer cell populations. Concomitantly, we observed increased levels and perinuclear accumulation of estrogen-related receptor gamma (ERRγ) in BPA-treated cells, its interactions with Cx43/Snail-1, and the corresponding effects of phenol red on A549 cells. Collectively, these data identify a novel, pro-metastatic Snail-1/Cx43/ERRγ signaling pathway. Its reactivity to BPA underlies the induction of cancer cells' invasiveness in the presence of high BPA concentrations in vitro. Thus, the chronic exposition of cancer cells to extrinsic and intrinsic BPA should be considered as a potential obstacle in a cancer therapy.
Collapse
|
60
|
Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, Wang R, Marwa PW, Petlulu P, Chen X, Zhang H. The adverse health effects of bisphenol A and related toxicity mechanisms. ENVIRONMENTAL RESEARCH 2019; 176:108575. [PMID: 31299621 DOI: 10.1016/j.envres.2019.108575] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/09/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) is an industrial component commonly used in synthesis of polycarbonate plastics, epoxy resin and other polymer materials. Due to its mass productions and widespread applications, the presence of BPA is ubiquitous in the environment. BPA can enter the body via different ways such as digestive tract, respiratory tract and dermal tract. As an endocrine disruptor, BPA has estrogen-like and anti-androgen effects causing damages to different tissues and organs, including reproductive system, immune system and neuroendocrine system, etc. Recently, it has been shown that BPA could induce carcinogenesis and mutagenesis in animal models. Here, the underlying mechanisms of BPA-induced multi-organ toxicity were well summarized, involving the receptor pathways, disruption of neuroendocrine system, inhibition of enzymes, modulation of immune and inflammatory responses, as well as genotoxic and epigenetic mechanisms. The aim of this review is to compile the available current research data regarding BPA and provide an overview of the current status of BPA exposure and relevant health effects covering reproductive, developmental, metabolic, immuno, respiratory, hepatic and renal toxicity and carcinogenesis of BPA. This review provides comprehensive data of BPA toxicity on human health and related mechanisms. We also identify any missing data which should be addressed by further studies.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | | | | | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
61
|
Dallio M, Diano N, Masarone M, Gravina AG, Patanè V, Romeo M, Di Sarno R, Errico S, Nicolucci C, Abenavoli L, Scarpellini E, Boccuto L, Persico M, Loguercio C, Federico A. Chemical Effect of Bisphenol A on Non-Alcoholic Fatty Liver Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173134. [PMID: 31466361 PMCID: PMC6747307 DOI: 10.3390/ijerph16173134] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a predominant chronic liver disease worldwide and a component of metabolic syndrome. Due to its relationship with multiple organs, it is extremely complex to precisely define its pathogenesis as well as to set appropriate therapeutic and preventive strategies. Endocrine disruptors (EDCs) in general, and bisphenol A (BPA) in particular, are a heterogeneous group of substances, largely distributed in daily use items, able to interfere with the normal signaling of several hormones that seem to be related to type 2 diabetes mellitus (T2DM), obesity, and other metabolic disorders. It is reasonable to hypothesize a BPA involvement in the pathogenesis and evolution of NAFLD. However, its mechanisms of action as well as its burden in the vicious circle that connects obesity, T2DM, metabolic syndrome, and NAFLD still remain to be completely defined. In this review we analyzed the scientific evidence on this promising research area, in order to provide an overview of the harmful effects linked to the exposure to EDCs as well as to frame the role that BPA would have in all phases of NAFLD evolution.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy.
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, via Salvador Allende, 84081 Salerno, Italy
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Vittorio Patanè
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Mario Romeo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Rosa Di Sarno
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Sonia Errico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Carla Nicolucci
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Viale Europa-Germaneto, 88110 Catanzaro, Italy
| | - Emidio Scarpellini
- Division of Gastroenterology, Department of Internal Medicine, TARGID, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Luigi Boccuto
- Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, via Salvador Allende, 84081 Salerno, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
62
|
Jacenik D, Beswick EJ, Krajewska WM, Prossnitz ER. G protein-coupled estrogen receptor in colon function, immune regulation and carcinogenesis. World J Gastroenterol 2019; 25:4092-4104. [PMID: 31435166 PMCID: PMC6700692 DOI: 10.3748/wjg.v25.i30.4092] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
Estrogens play important roles in the development and progression of multiple tumor types. Accumulating evidence points to the significance of estrogen action not only in tumors of hormonally regulated tissues such as the breast, endometrium and ovary, but also in the development of colorectal cancer (CRC). The effects of estrogens in physiological and pathophysiological conditions are mediated by the nuclear estrogen receptors α and β, as well as the membrane-bound G protein-coupled estrogen receptor (GPER). The roles of GPER in CRC development and progression, however, remain poorly understood. Studies on the functions of GPER in the colon have shown that this estrogen receptor regulates colonic motility as well as immune responses in CRC-associated diseases, such as Crohn’s disease and ulcerative colitis. GPER is also involved in cell cycle regulation, endoplasmic reticulum stress, proliferation, apoptosis, vascularization, cell migration, and the regulation of fatty acid and estrogen metabolism in CRC cells. Thus, multiple lines of evidence suggest that GPER may play an important role in colorectal carcinogenesis. In this review, we present the current state of knowledge regarding the contribution of GPER to colon function and CRC.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
- Department of Internal Medicine, School of Medicine, and UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Ellen J Beswick
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132, United States
| | - Wanda M Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Eric R Prossnitz
- Department of Internal Medicine, School of Medicine, and UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| |
Collapse
|
63
|
Hui L, Li H, Lu G, Chen Z, Sun W, Shi Y, Fu Z, Huang B, Zhu X, Lu W, Xia D, Wu Y. Low Dose of Bisphenol A Modulates Ovarian Cancer Gene Expression Profile and Promotes Epithelial to Mesenchymal Transition Via Canonical Wnt Pathway. Toxicol Sci 2019; 164:527-538. [PMID: 29718440 DOI: 10.1093/toxsci/kfy107] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The xenoestrogen bisphenol A (BPA) is a synthetic endocrine disrupting chemical, having the potential to increase the risk of hormone-dependent ovarian cancer. Thus, a deeper understanding of the molecular and cellular mechanisms is urgently required in the novel cell models of ovarian cancer which express estrogen receptors. To understand the possible mechanisms underlying the effects of BPA, human ovarian adenocarcinoma SKOV3 cells were exposed to BPA (10 or 100 nM) or 0.1% DMSO for 24 h, and then global gene expression profile was determined by high-throughput RNA sequencing. Also, enrichment analysis was carried out to find out relevant functions and pathways within which differentially expressed genes were significantly enriched. Transcriptomic analysis revealed 94 differential expression genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that these genes related to tumorigenesis and metastasis. Further studies were carried out to validate the results of functional annotation, which indicated that BPA (10 and 100 nM) increased migration and invasion as well as induced epithelial to mesenchymal transitions in SKOV3 and A2780 cells. Accordingly, environmentally relevant-dose BPA activated the canonical Wnt signaling pathway. Our study first comprehensively analyzed the possible mechanisms underlying the effects of BPA on ovarian cancer. Environmentally relevant doses of BPA modulated the gene expression profile, promoted epithelial to mesenchymal transition progress via canonical Wnt signaling pathway of ovarian cancer.
Collapse
Affiliation(s)
- Lin Hui
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongyi Li
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Zhifeng Chen
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenjie Sun
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Shi
- Key Laboratory of Diagnosis and Treatment for Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhiqin Fu
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Bo Huang
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinqiang Zhu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Dajing Xia
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yihua Wu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
64
|
Kim JH. Di(2-ethylhexyl) phthalate promotes lung cancer cell line A549 progression via Wnt/β-catenin signaling. J Toxicol Sci 2019; 44:237-244. [PMID: 30944277 DOI: 10.2131/jts.44.237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is widely used in polyvinylchloride-based materials and remains intact in the environment. Lungs are one route of entry of DEHP into the body; however, there is limited information on the effects and mechanism of action of DEHP on non-small cell lung cancer (NSCLC). Here, we addressed this by examining the effect of DEHP on the proliferation of A549 human lung adenocarcinoma cells by MTS assay. The induction of inflammation and epithelial-to-mesenchymal transition (EMT), as well as activation of the mitogen-activated protein kinase (MAPK) and Wnt/β-catenin signaling pathways, were assessed by western blot and real-time polymerase chain reaction. Although there were discrepancies in the concentration, DEHP treatment enhanced A549 cell viability accompanied by increased mRNA and protein levels of inflammation-related factors, such as matrix metalloproteinase-9 and nuclear factor-κB. Additionally, EMT was activated in cells according to decreased E-cadherin and increased vimentin expression. Furthermore, MAPK pathway components, including phosphorylated p38 and c-Jun N-terminal kinase, and Wnt/β-catenin pathway components, including phosphorylated glycogen synthase kinase 3β and β-catenin, as well as their downstream genes c-Myc and cyclin D1, were upregulated in the presence of DEHP. These results suggest that DEHP promotes NSCLC progression by promoting cell proliferation, inflammation, and EMT via activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Korea
| |
Collapse
|
65
|
Jung J. Role of G Protein-Coupled Estrogen Receptor in Cancer Progression. Toxicol Res 2019; 35:209-214. [PMID: 31341549 PMCID: PMC6629442 DOI: 10.5487/tr.2019.35.3.209] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. In cancer progression, sex hormones and their receptors are thought to be major factors. Many studies have reported the effects of estrogen and estrogen receptors (ERs) in cancer development and progression. Among them, G protein-coupled estrogen receptor (GPER), a G proteincoupled receptor, has been identified as an estrogen membrane receptor unrelated to nuclear ER. The mechanism of GPER, including its biological action, function, and role, has been studied in various cancer types. In this review, we discuss the relation between GPER and estrogen or estrogen agonists/antagonists and cancer progression.
Collapse
Affiliation(s)
- Joohee Jung
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| |
Collapse
|
66
|
Gao J, Song T, Che D, Li C, Jiang J, Pang J, Yang Y, Goma, Li P. The effect of bisphenol a exposure onto endothelial and decidualized stromal cells on regulation of the invasion ability of trophoblastic spheroids in in vitro co-culture model. Biochem Biophys Res Commun 2019; 516:506-514. [PMID: 31230753 DOI: 10.1016/j.bbrc.2019.06.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
Abstract
Bisphenol A (BPA) is a kind of environmental endocrine disruptors (EEDs) that interfere embryo implantation. Trophoblast invasion plays a crucial role during embryo implantation. In this study, the effects of BPA on invasion ability of human trophoblastic Jeg-3 spheroids and regulation of endothelial and stromal cells on trophoblastic spheroids invasion, and its possible mechanism were investigated. The results showed that BPA at 10 and 100 μM can inhibit the attachment of Jeg-3 spheroid onto Ishikawa cells. BPA at 1-100 μM also activate ERE-Luc reporter expression in the transfected cells, which was through the ERα, but not ERβ or GPR30 binding. Endothelial receptivity ability was harmed by BPA treatment since receptivity markers of LIF, EGF, MUC1 and integrin αVβ3 were decreased after BPA treatment. The invasion ability of trophoblastic spheroids generated from Jeg-3 cell line was inhibited by BPA and this effect was mediated through canonical ERs pathway and MMP2/MMP9 down-regulation and TIMP1/PAI-1 up-regulation. Besides, BPA treated decidualized stromal cells suppressed Jeg-3 spheroid outgrowth and invasion in co-culture assay. Our study would give a better understanding on the possible mechanism of BPA effect on human embryo implantation process.
Collapse
Affiliation(s)
- Jiayin Gao
- Department of Obstetrics and Gynaecolgoy, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Tiefang Song
- Department of Obstetrics and Gynaecolgoy, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Dehong Che
- Department of Obstetrics and Gynaecolgoy, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Changmin Li
- Department of Obstetrics and Gynaecolgoy, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jing Jiang
- Department of Obstetrics and Gynaecolgoy, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jingyao Pang
- Department of Obstetrics and Gynaecolgoy, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yujuan Yang
- Department of Obstetrics and Gynaecolgoy, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Goma
- Department of Obstetrics and Gynaecolgoy, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Peiling Li
- Department of Obstetrics and Gynaecolgoy, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| |
Collapse
|
67
|
Li Z, Lu Q, Ding B, Xu J, Shen Y. Bisphenol A promotes the proliferation of leiomyoma cells by GPR30‐EGFR signaling pathway. J Obstet Gynaecol Res 2019; 45:1277-1285. [DOI: 10.1111/jog.13972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zemin Li
- School of MedicineSoutheast University Nanjing China
| | - Qing Lu
- School of MedicineSoutheast University Nanjing China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, Zhongda HospitalSchool of Medicine, Southeast University Nanjing China
| | - Jingyun Xu
- Department of Obstetrics and Gynaecology, Zhongda HospitalSchool of Medicine, Southeast University Nanjing China
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda HospitalSchool of Medicine, Southeast University Nanjing China
| |
Collapse
|
68
|
Gao F, Huang Y, Zhang L, Liu W. Involvement of estrogen receptor and GPER in bisphenol A induced proliferation of vascular smooth muscle cells. Toxicol In Vitro 2019; 56:156-162. [DOI: 10.1016/j.tiv.2019.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
|
69
|
Sun CH, Chou JC, Chao KP, Chang HC, Lieu FK, Wang PS. 17α-Ethynylestradiol and 4-nonylphenol stimulate lung adenocarcinoma cell production in xenoestrogenic way. CHEMOSPHERE 2019; 218:793-798. [PMID: 30508797 DOI: 10.1016/j.chemosphere.2018.11.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Lung cancer has been one of the major cancers leading to mortalities worldwide. In addition to smoking, estrogen is considered to play an important role in the lung cancer development because women have a higher proportion of adenocarcinoma than men. In the environment, there are many metabolites and waste products that mimic human estrogen structurally and functionally. 17α-Ethynylestradiol (EE2) which is used as an oral contraceptive is released into wastewater after being utilized. Moreover, 4-nonylphenol (NP) which is found in the petrochemical products and air pollutants reveals estrogenic activity. In the present study, 17β-estradiol (E2), EE2, and NP are administered to stimulate male lung adenocarcinoma cells (A549) and female lung adenocarcinoma cells (H1435). The results demonstrate that EE2 and NP stimulate A549 and H1435 cells proliferation in a dose- and time-dependent manner. Both estrogen receptors α and β are simultaneously activated. In response to estrogens, up-regulation of the epidermal growth factor receptor and extracellular signal-regulated kinase expression occurs. In conclusion, this is the first study to report that EE2 and NP exert a biotoxic effect to stimulate the proliferation of both male and female lung cancer cell in a dose- and time- dependent manner. The environmental hormones posing new challenges for lung cancer deserve further investigation.
Collapse
Affiliation(s)
- Chia-Hung Sun
- Division of Chest Medicine, Department of Internal Medicine, Yang-Ming Branch, Taipei City Hospital, Taipei 11146, Taiwan, ROC; Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Jou-Chun Chou
- Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan, ROC; Department of Life Science, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
| | - Kuan-Po Chao
- Department of Rehabilitation, Cheng Hsin General Hospital, Taipei 11212, Taiwan, ROC
| | - Hsian-Chi Chang
- Department of Rehabilitation, Cheng Hsin General Hospital, Taipei 11212, Taiwan, ROC
| | - Fu-Kong Lieu
- Department of Rehabilitation, Cheng Hsin General Hospital, Taipei 11212, Taiwan, ROC; Department of Physical Medicine and Rehabilitation, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Paulus S Wang
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC; Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan, ROC; Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan, ROC; Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC.
| |
Collapse
|
70
|
Nomiri S, Hoshyar R, Ambrosino C, Tyler CR, Mansouri B. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8459-8467. [PMID: 30712204 DOI: 10.1007/s11356-019-04228-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 04/15/2023]
Abstract
Bisphenol A (BPA) is a plasticizer used widely in many industrial products and is now well established as an endocrine-disrupting chemical (EDC). BPA readily leaches out from these products into the environment and into foodstuffs (from packaging materials) and human exposure can be considerable. Many studies have shown that BPA exposure is associated with a range of chronic human health conditions, including diabetes, cardiovascular disorders, polycystic ovarian disease, hepatotoxicity, and various types of cancer. BPA exerts its effects through deregulating cell signaling pathways associated with cell growth, proliferation, migration, invasion, and apoptosis. Previous studies on the molecular mechanisms of BPA have illustrated a variety of pathways impaired at very low exposure concentrations and that stimulate cellular responses relating to tumorigenesis both in cancer onset and progression. In this mini review, the recent advancements made through in vitro analyses are reported on for the effect of BPA on various cellular signaling pathways focusing on the signaling pathways that play a major role in carcinogenesis.
Collapse
Affiliation(s)
- Samira Nomiri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhane Hoshyar
- Cellular and Molecular Research Center, Clinical Biochemistry Department, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131, Naples, Italy
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| | - Borhan Mansouri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
71
|
Bisphenol S (BPS) triggers the migration of human non-small cell lung cancer cells via upregulation of TGF-β. Toxicol In Vitro 2019; 54:224-231. [DOI: 10.1016/j.tiv.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023]
|
72
|
Effects of BPA on expression of apoptotic genes and migration of ovine trophectoderm (oTr1) cells during the peri-implantation period of pregnancy. Reprod Toxicol 2019; 83:73-79. [DOI: 10.1016/j.reprotox.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
|
73
|
Sidorkiewicz I, Czerniecki J, Jarząbek K, Zbucka-Krętowska M, Wołczyński S. Cellular, transcriptomic and methylome effects of individual and combined exposure to BPA, BPF, BPS on mouse spermatocyte GC-2 cell line. Toxicol Appl Pharmacol 2018; 359:1-11. [DOI: 10.1016/j.taap.2018.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
|
74
|
Kasneci A, Lee JS, Yun TJ, Shang J, Lampen S, Gomolin T, Cheong CC, Chalifour LE. From the Cover: Lifelong Exposure of C57bl/6n Male Mice to Bisphenol A or Bisphenol S Reduces Recovery From a Myocardial Infarction. Toxicol Sci 2018; 159:189-202. [PMID: 28903498 DOI: 10.1093/toxsci/kfx133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bisphenol A (BPA) leaches from plastics to contaminate foodstuffs. Analogs, such as bisphenol S (BPS), are now used increasingly in manufacturing. Greater BPA exposure has been correlated with exacerbation of cardiovascular disease, including myocardial infarction (MI). To test the hypothesis that bisphenol exposure impairs cardiac healing, we exposed C57bl/6n mice to water containing 25ng/ml BPA or BPS from conception and surgically induced an MI in adult male progeny. Increased early death and cardiac dilation, and reduced cardiac function were found post-MI in BPA- and BPS-exposed mice. Flow cytometry revealed increased monocyte and macrophage infiltration that correlated with increased chemokine C-C motif ligand-2 expression in the infarct. In vitro BPA and BPS addition increased matrix metalloproteinase-9 (MMP) protein and secreted activity in RAW264.7 macrophage cells suggesting that invivo increases in MMP2 and MMP9 in exposed infarcts were myeloid-derived. Bone marrow-derived monocytes isolated from exposed mice had greater expression of pro-inflammatory polarization markers when chemokine stimulated indicating an enhanced susceptibility to develop a pro-inflammatory monocyte population. Chronic BPA exposure of estrogen receptor beta (ERβ) deficient mice did not worsen early death, cardiac structure/function, or expression of myeloid markers after an MI. In contrast, BPS exposure of ERβ-deficient mice resulted in greater death and expression of myeloid markers. We conclude that lifelong exposure to BPA or BPS augmented the monocyte/macrophage inflammatory response and adverse remodeling from an MI thereby reducing the ability to survive and successfully recover, and that the adverse effect of BPA, but not BPS, is downstream of ERβ signaling.
Collapse
Affiliation(s)
- Amanda Kasneci
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Jun Seong Lee
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Tae Jin Yun
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Jijun Shang
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Shaun Lampen
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Tamar Gomolin
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Cheolho C Cheong
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec H3A 1A2, Canada
| | - Lorraine E Chalifour
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec H3A 1A2, Canada
| |
Collapse
|
75
|
Effects of Bisphenol-A on proliferation and expression of genes related to synthesis of polyamines, interferon tau and insulin-like growth factor 2 by ovine trophectoderm cells. Reprod Toxicol 2018; 78:90-96. [PMID: 29635046 DOI: 10.1016/j.reprotox.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/05/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
This study evaluated the effects of bisphenol A (BPA) on proliferation of ovine trophectoderm (oTr1) cells, as well as expression of genes for transport of arginine and synthesis of polyamines. BPA reduced proliferation of oTr1 cells at concentrations of 1 × 10-6, 1 × 10-5, 1 × 10-4 M compared to concentrations of 0, 1 × 10-9, and 1 × 10-8 M at 24 and 96 h of culture. Lower concentrations of BPA significantly increased expression of mRNAs for agmatinase (AGMAT), arginine decarboxylase (ADC), ornithine decarboxylase (ODC1) and solute carrier family 7 member 1 (SLC7A1). Similarly, synthesis of polyamines by oTr1 cells was greatest at lower concentrations of BPA and decreased as the dose of BPA increased. Expression of mRNAs for interferon tau (IFNT) and insulin-like growth factor 2 (IGF2) by oTr1 cells was greater than for controls at 1 × 10-9 M BPA. Overall, the effects of BPA on proliferation and gene expression by oTr1 cells were highly dose-dependent.
Collapse
|
76
|
Stolz A, Schönfelder G, Schneider MR. Endocrine Disruptors: Adverse Health Effects Mediated by EGFR? Trends Endocrinol Metab 2018; 29:69-71. [PMID: 29292062 DOI: 10.1016/j.tem.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 02/09/2023]
Abstract
Although endocrine disruptors represent a serious concern to human health, the underlying molecular mechanisms leading to diseases such as cancer remain poorly understood. Recent work has uncovered the epidermal growth factor receptor (EGFR) as a possible mediator of these adverse health effects, with important implications for the role of endocrine disruptors in human diseases.
Collapse
Affiliation(s)
- Ailine Stolz
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany.
| |
Collapse
|
77
|
Prossnitz ER. GPER modulators: Opportunity Nox on the heels of a class Akt. J Steroid Biochem Mol Biol 2018; 176:73-81. [PMID: 28285016 PMCID: PMC5591048 DOI: 10.1016/j.jsbmb.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
The (patho)physiology of estrogen and its receptors is complex. It is therefore not surprising that therapeutic approaches targeting this hormone include stimulation of its activity through supplementation with either the hormone itself or natural or synthetic agonists, inhibition of its activity through the use of antagonists or inhibitors of its synthesis, and tissue-selective modulation of its activity with biased ligands. The physiology of this hormone is further complicated by the existence of at least three receptors, the classical nuclear estrogen receptors α and β (ERα and ERβ), and the 7-transmembrane G protein-coupled estrogen receptor (GPER/GPR30), with overlapping but distinct pharmacologic profiles, particularly of anti-estrogenic ligands. GPER-selective ligands, as well as GPER knockout mice, have greatly aided our understanding of the physiological roles of GPER. Such ligands have revealed that GPER activation mediates many of the rapid cellular signaling events (including Ca2+ mobilization, ERK and PI3K/Akt activation) associated with estrogen activity, as opposed to the nuclear ERs that are traditionally described to function as ligand-induced transcriptional factors. Many of the salutary effects of estrogen throughout the body are reproduced by the GPER-selective agonist G-1, which, owing to its minimal effects on reproductive tissues, can be considered a non-feminizing estrogenic compound, and thus of potential therapeutic use in both women and men. On the contrary, until recently GPER-selective antagonists had predominantly found preclinical application in cancer models where estrogen stimulates cell growth and survival. This viewpoint changed recently with the discovery that GPER is associated with aging, particularly that of the cardiovascular system, where the GPER antagonist G36 reduced hypertension and GPER deficiency prevented cardiac fibrosis and vascular dysfunction with age, through the downregulation of Nox1 and as a consequence superoxide production. Thus, similar to the classical ERs, both agonists and antagonists of GPER may be of therapeutic benefit depending on the disease or condition to be treated.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
78
|
The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer. Gene 2018; 647:235-243. [PMID: 29317319 DOI: 10.1016/j.gene.2018.01.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/28/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022]
Abstract
The endocrine disrupting chemical (EDC) is an exogenous substance or mixture that alters the function of the endocrine system and consequently causes adverse effects in intact organisms. Bisphenol A (BPA), one of the most common endocrine disrupting chemicals is a carbon-based synthetic compound used in the production of water bottles, cans, and teeth suture materials. It is known to be a xenoestrogen as it interacts with estrogen receptors and acts as agonist or antagonist via estrogen receptor-dependent signaling pathways. BPA has been associated with serious health effects in humans and wildlife. It elicits several endocrine disorders and plays a role in the pathogenesis of several hormone-dependent tumors such as breast, ovarian, prostate cancer and others. More complicate to this picture, its effects rely on several and diverse molecular and epigenetic mechanisms that converge upon endocrine and reproductive systems. The present review gives an overview of general hazards of BPA, its epigenetic modifications and the molecular mechanisms of BPA action in different types of cancers as the increase in information about responses and action mechanisms of BPA may bring a better understanding of the risks of BPA exposure in humans and provide an important platform on which human health can be improved.
Collapse
|
79
|
Murata M, Kang JH. Bisphenol A (BPA) and cell signaling pathways. Biotechnol Adv 2018; 36:311-327. [DOI: 10.1016/j.biotechadv.2017.12.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023]
|
80
|
Cao LY, Ren XM, Li CH, Zhang J, Qin WP, Yang Y, Wan B, Guo LH. Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects than Bisphenol A via G Protein-Coupled Estrogen Receptor Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11423-11430. [PMID: 28858478 DOI: 10.1021/acs.est.7b03336] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Numerous studies have indicated estrogenic disruption effects of bisphenol A (BPA) analogues. Previous mechanistic studies were mainly focused on their genomic activities on nuclear estrogen receptor pathway. However, their nongenomic effects through G protein-coupled estrogen receptor (GPER) pathway remain poorly understood. Here, using a SKBR3 cell-based fluorescence competitive binding assay, we found six BPA analogues bound to GPER directly, with bisphenol AF (BPAF) and bisphenol B (BPB) displaying much higher (∼9-fold) binding affinity than BPA. Molecular docking also demonstrated the binding of these BPA analogues to GPER. By measuring calcium mobilization and cAMP production in SKBR3 cells, we found the binding of these BPA analogues to GPER lead to the activation of subsequent signaling pathways. Consistent with the binding results, BPAF and BPB presented higher agonistic activity than BPA with the lowest effective concentration (LOEC) of 10 nM. Moreover, based on the results of Boyden chamber and wound-healing assays, BPAF and BPB displayed higher activity in promoting GPER mediated SKBR3 cell migration than BPA with the LOEC of 100 nM. Overall, we found two BPA analogues BPAF and BPB could exert higher estrogenic effects than BPA via GPER pathway at nanomolar concentrations.
Collapse
Affiliation(s)
- Lin-Ying Cao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
| | - Chuan-Hai Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Jing Zhang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
| | - Wei-Ping Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| |
Collapse
|
81
|
Xiong S, Wang Y, Li H, Zhang X. Low Dose of Bisphenol A Activates NF-κB/IL-6 Signals to Increase Malignancy of Neuroblastoma Cells. Cell Mol Neurobiol 2017; 37:1095-1103. [PMID: 27866306 DOI: 10.1007/s10571-016-0443-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA) can accumulate in the human body and promote the progression of various cancers. However, its role in the development of neuroblastoma (NB) is largely unknown. Our present study revealed that nanomolar concentrations of BPA can significantly increase the proliferation, migration and invasion of NB SH-SY5Y and SiMa cells, further evidenced by the upregulation of human proliferating cell nuclear antigen, Bcl-2, vimentin and fibronectin. Real-time PCR and ELISA results suggested that nanomolar BPA can increase the expression of interleukin-6 (IL-6), but had no effect on the expression of IL-2, IL-8, IL-10 or IL-12. The neutralization antibody of IL-6 can abolish BPA-induced proliferation and invasion of NB cells. The inhibitor of NF-κB (BAY 11-7082), but not PD98059 (PD, ERK1/2 inhibitor) or LY294002 (LY, PI3 K/Akt inhibitor), attenuated BPA-induced IL-6 expression and cell proliferation and invasion. In addition, BPA treatment also rapidly increased the phosphorylation of p65 since treatment for 5 min. Collectively, our data revealed that nanomolar BPA can trigger the malignancy of NB cells via activation of NF-κB/IL-6 signals, suggesting that more attention should be paid to the potential health risks of daily BPA intake.
Collapse
Affiliation(s)
- Shunjun Xiong
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China.
| | - Yanjun Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China
| | - Huijuan Li
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China
| | - Xiaofang Zhang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China
| |
Collapse
|
82
|
Menad R, Fernini M, Smaï S, Bonnet X, Gernigon-Spychalowicz T, Moudilou E, Khammar F, Exbrayat JM. GPER1 in sand rat epididymis: Effects of seasonal variations, castration and efferent ducts ligation. Anim Reprod Sci 2017; 183:9-20. [PMID: 28688795 DOI: 10.1016/j.anireprosci.2017.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/31/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Rafik Menad
- Small Vertebrates Reproduction, Laboratory of Research on Arid Areas, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, DZ-16111 El Alia, Algiers, Algeria; Faculty of Sciences, Department of Natural and Life Sciences, Algiers University I, Algeria.
| | - Meriem Fernini
- Small Vertebrates Reproduction, Laboratory of Research on Arid Areas, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, DZ-16111 El Alia, Algiers, Algeria
| | - Souaâd Smaï
- Small Vertebrates Reproduction, Laboratory of Research on Arid Areas, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, DZ-16111 El Alia, Algiers, Algeria
| | - Xavier Bonnet
- CEBC, UMR-7372 CNRS ULR, 79360 Villiers en Bois France
| | - Thérèse Gernigon-Spychalowicz
- Small Vertebrates Reproduction, Laboratory of Research on Arid Areas, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, DZ-16111 El Alia, Algiers, Algeria
| | - Elara Moudilou
- University of Lyon, UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE,10 place des archives, 69002 Lyon, France
| | - Farida Khammar
- Mammal Ecophysiology, Laboratory of Research on Arid Areas, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, DZ-16111 El Alia, Algiers, Algeria
| | - Jean-Marie Exbrayat
- University of Lyon, UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE,10 place des archives, 69002 Lyon, France.
| |
Collapse
|
83
|
Calvo N, Carriere P, Martin MJ, Gentili C. RSK activation via ERK modulates human colon cancer cells response to PTHrP. J Mol Endocrinol 2017; 59:13-27. [PMID: 28385776 DOI: 10.1530/jme-16-0216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is associated with several human cancers such as colon carcinoma. This disease is a complex multistep process that involves enhanced cell cycle progression and migration. Recently we obtained evidence that in the human colorectal adenocarcinoma Caco2 cells, exogenous PTHrP increases the proliferation and positively modulates cell cycle progression via ERK1/2, p38 MAPK and PI3K. The purpose of this study was to explore if the serine/threonine kinase RSK, which is involved in the progress of many cancers and it is emerging as a potential therapeutic target, mediates PTHrP effects on cancer colon cells. Western blot analysis revealed that PTHrP increases RSK phosphorylation via ERK1/2 signaling pathway but not through p38 MAPK. By performing subcellular fractionation, we found that the peptide also induces the nuclear localization of activated RSK, where many of its substrates are located. RSK participates in cell proliferation, in the upregulation of cyclin D1 and CDK6 and in the downregulation of p53 induced by PTHrP. Wound healing and transwell filter assays revealed that cell migration increased after PTHrP treatment. In addition, the hormone increases the protein expression of the focal adhesion kinase FAK, a regulator of cell motility. We observed that PTHrP induces cell migration and modulates FAK protein expression through ERK/RSK signaling pathway but not via p38 MAPK pathway. Finally, in vivo studies revealed that the hormone activates RSK in xenografts tumor. Taken together, our findings provide new insights into the deregulated cell cycle and migration that is characteristic of tumor intestinal cells.
Collapse
Affiliation(s)
- Natalia Calvo
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| | - Pedro Carriere
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| | - María Julia Martin
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| | - Claudia Gentili
- Departamento de BiologíaBioquímica y Farmacia, INBIOSUR, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
| |
Collapse
|
84
|
Lan X, Fu LJ, Zhang J, Liu XQ, Zhang HJ, Zhang X, Ma MF, Chen XM, He JL, Li LB, Wang YX, Ding YB. Bisphenol A exposure promotes HTR-8/SVneo cell migration and impairs mouse placentation involving upregulation of integrin-β1 and MMP-9 and stimulation of MAPK and PI3K signaling pathways. Oncotarget 2017; 8:51507-51521. [PMID: 28881663 PMCID: PMC5584264 DOI: 10.18632/oncotarget.17882] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated the effect of Bisphenol A (BPA), an endocrine-disrupting chemical, on the migration of human trophoblasts and mouse placentation by using the primary extravillous trophoblast (EVT) and its cell line HTR-8/SVneo, villous explant cultures, and pregnant mice. BPA increased EVT motility and the outgrowth of villous explants in a dose-dependent manner. BPA also increased the protein levels of integrin-β1 and matrix metalloproteinase (MMP)-9 in human EVTs. Low-dose BPA (≤50 mg) increased the protein levels of MMP-9 and MMP-2 as well as integrin-β1 and integrin-α5 in mouse placenta and decreased the proportion of the labyrinth and spongiotrophoblast layers. Inhibitors of mitogen-activated protein kinase (MAPK) U0126 and phosphatidylinositol-3-kinases (PI3K) LY294002 reversed the protein levels of integrin-β1 and MMP-9 as well as the migratory ability induced by BPA. In conclusion, these results indicated that BPA can enhance trophoblast migration and impair placentation in mice by a mechanism involving upregulation of integrin(s) and MMP(s) as well as the stimulation of MAPK and PI3K/Akt (protein kinase B) signaling pathways.
Collapse
Affiliation(s)
- Xi Lan
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Li-Juan Fu
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Jun Zhang
- Center of Molecular Diagnostic Medicine, Life Science Institute, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xue-Qing Liu
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Hui-Jie Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xue Zhang
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ming-Fu Ma
- The Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, 401147, P.R. China
| | - Xue-Mei Chen
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Jun-Lin He
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Lian-Bing Li
- The Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, 401147, P.R. China
| | - Ying-Xiong Wang
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yu-Bin Ding
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| |
Collapse
|
85
|
Li S, Wang B, Tang Q, Liu J, Yang X. Bisphenol A triggers proliferation and migration of laryngeal squamous cell carcinoma via GPER mediated upregulation of IL-6. Cell Biochem Funct 2017; 35:209-216. [PMID: 28466560 DOI: 10.1002/cbf.3265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA) can be accumulated into the human body via food intake and inhalation. Numerous studies indicated that BPA can trigger the tumorigenesis and progression of cancer cells. Laryngeal cancer cells can be exposed to BPA directly via food digestion, while there were very limited data concerning the effect of BPA on the development of laryngeal squamous cell carcinoma (LSCC). Our present study revealed that nanomolar BPA can trigger the proliferation of LSCC cells. Bisphenol A also increased the in vitro migration and invasion of LSCC cells and upregulated the expression of matrix metallopeptidase 2. Among various chemokines tested, the expression of IL-6 was significantly increased in LSCC cells treated with BPA for 24 hours. Neutralization antibody of IL-6 or si-IL-6 can attenuate BPA-induced proliferation and migration of LSCC cells. Targeted inhibition of G protein-coupled estrogen receptor, while not estrogen receptor (ERα), abolished BPA-induced IL-6 expression, proliferation, and migration of LSCC cells. The increased IL-6 can further activate its downstream signal molecule STAT3, which was evidenced by the results of increased phosphorylation and nuclear translocation of STAT3, while si-IL-6 and si-GPER can both reverse BPA-induced activation of STAT3. Collectively, our present study revealed that BPA can trigger the progression of LSCC via GPER-mediated upregulation of IL-6. Therefore, more attention should be paid for the BPA exposure on the development of laryngeal cancer.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bin Wang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Qinglai Tang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jiajia Liu
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xinming Yang
- Department of Otolaryngology, Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
86
|
GPER-novel membrane oestrogen receptor. Clin Sci (Lond) 2017; 130:1005-16. [PMID: 27154744 DOI: 10.1042/cs20160114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
The recent discovery of the G protein-coupled oestrogen receptor (GPER) presents new challenges and opportunities for understanding the physiology, pathophysiology and pharmacology of many diseases. This review will focus on the expression and function of GPER in hypertension, kidney disease, atherosclerosis, vascular remodelling, heart failure, reproduction, metabolic disorders, cancer, environmental health and menopause. Furthermore, this review will highlight the potential of GPER as a therapeutic target.
Collapse
|
87
|
Wang Y, Zhao M, Liu J, Ni J, Jiao Y, Bai C. Up regulation of IL-6 is involved in di (2-ethylhexyl) phthalate (DEHP) induced migration and invasion of non small cell lung cancer (NSCLC) cells. Biomed Pharmacother 2017; 89:1037-1044. [PMID: 28292012 DOI: 10.1016/j.biopha.2017.02.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/18/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022] Open
Abstract
Di (2-ethylhexyl) phthalate (DEHP), which is widely used in polyvinyl chloride materials, can be easily accumulated into human body. Lung cancer cells can be directly exposed to DEHP via inhalation, however, the effects and related mechanisms of DEHP on the progression of non small cell lung cancer (NSCLC) were not illustrated. Our present study revealed that DEHP less than 10-4M had no significant effect on the proliferation of A549 or H1299 cells, while nanomolar DEHP can trigger the migration and invasion of NSCLC cells. DEHP treatment also increased the expression of interleukin-6 (IL-6) and IL-8. Silencing of IL-6, while not IL-8, can attenuate DEHP induced migration and invasion of NSCLC cells. This was confirmed by result that neutralization antibody of IL-6, while not anti-IL-8, attenuated DEHP induced invasion of A549 cells. The inhibitor of NF-κB, while not ERK1/2 or Akt, abolished DEHP induced up regulation of IL-6 and invasion of NSCLC cells. DEHP treatment can increase the phosphorylation, nuclear localization, and transcriptional activities of p65, one of the major parts of NF-κB complex. Collectively, our study revealed that DEHP can stimulate NSCLC migration and invasion via NF-κB mediated up regulation of IL-6.
Collapse
Affiliation(s)
- Yingyi Wang
- Oncology Department of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng District, Beijing, 100730, PR China
| | - Ming Zhao
- Thoracic Surgery Department of China PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Jieying Liu
- Oncology Department of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng District, Beijing, 100730, PR China
| | - Jianjiao Ni
- Peking Union Medical College, Chinese Academy of Medical Sciences, Dongcheng District, Beijing, 100005, PR China
| | - Yuchen Jiao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Chaoyang District, Beijing, 100021, PR China
| | - Chunmei Bai
- Oncology Department of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng District, Beijing, 100730, PR China.
| |
Collapse
|
88
|
Tao J, Sun LXJ, Le XC. Study of the effects of bisphenol A using human fetal lung fibroblasts. J Environ Sci (China) 2016; 48:6-10. [PMID: 27745673 DOI: 10.1016/j.jes.2016.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Jeffrey Tao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Lily Xiao Jing Sun
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
89
|
Pamungkas AD, Park C, Lee S, Jee SH, Park YH. High resolution metabolomics to discriminate compounds in serum of male lung cancer patients in South Korea. Respir Res 2016; 17:100. [PMID: 27506545 PMCID: PMC4977704 DOI: 10.1186/s12931-016-0419-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The cancer death rate escalated during 20th century. In South Korea, lung cancer is expected to contribute 12,736 deaths in men, the highest amount among all cancers. Several risk factors may increase the chance to acquiring lung cancer, with mostly related to exogenous compounds found in cigarette smoke and synthetic manufacturing materials. As the mortality rate of lung cancer increases, deeper understanding is necessary to explore risk factors that may lead to this malignancy. In this regard, this study aims to apply high resolution metabolomics (HRM) using LC-MS to detect significant compounds that might contribute in inducing lung cancer and find the correlation of these compounds to the subjects' smoking habit. METHODS The comparison was made between healthy control and lung cancer groups for metabolic differences. Further analyses to determine if these differences are related to tobacco-induced lung cancer (past-smoker control vs. past-smoker lung cancer patients (LCPs) and non-smoker control vs. current-smoker LCPs) were selected. The univariate analysis was performed, including a false discovery rate (FDR) of q = 0.05, to determine the significant metabolites between the analyses. Hierarchical clustering analysis (HCA) was done to discriminate metabolites between the control and case subjects. Selected compounds based on significant m/z features of human serum then experienced MS/MS examination, showing that for many m/z, the patterns of ion dissociation matched with standards. Then, the significant metabolites were identified using Metlin database and features were mapped on the human metabolic pathway mapping tool of the Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS Using metabolomics-wide association studies, metabolic changes were observed among control group and lung cancer patients. Bisphenol A (211.11, [M + H-H2O](+)), retinol (287.23, [M + H](+)) and L-proline (116.07, [M + H](+)) were among the significant compounds found to have contributed in the discrimination between these groups, suggesting that these compounds might be related in the development of lung cancer. Retinol has been seen to have a correlation with smoking while both bisphenol A and L-proline were found to be unrelated. CONCLUSIONS Two potential biomarkers, retinol and L-proline, were identified and these findings may create opportunities for the development of new lung cancer diagnostic tools.
Collapse
Affiliation(s)
- Aryo D Pamungkas
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong, 30019, Korea
| | - Changyoung Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong, 30019, Korea
| | - Sungyong Lee
- Korea University Guro Hospital 148, Gurodong-ro, Guro-gu, Seoul, 08308, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion and Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, 03722, Korea
| | - Youngja H Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong, 30019, Korea.
| |
Collapse
|
90
|
Zhai D, He J, Li X, Gong L, Ouyang Y. Bisphenol A regulates Snail-mediated epithelial-mesenchymal transition in hemangioma cells. Cell Biochem Funct 2016; 34:441-8. [PMID: 27480627 DOI: 10.1002/cbf.3206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Denggao Zhai
- Department of General Surgery; XiangYa Hospital; Changsha Hunan China
| | - Jiantai He
- Department of General Surgery; XiangYa Hospital; Changsha Hunan China
| | - Xiaoli Li
- Department of General Surgery; XiangYa Hospital; Changsha Hunan China
| | - Liansheng Gong
- Department of General Surgery; XiangYa Hospital; Changsha Hunan China
| | - Yang Ouyang
- Department of General Surgery; XiangYa Hospital; Changsha Hunan China
| |
Collapse
|
91
|
Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors. J Immunol Res 2016; 2016:7128702. [PMID: 27314054 PMCID: PMC4903118 DOI: 10.1155/2016/7128702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/08/2016] [Accepted: 05/08/2016] [Indexed: 01/13/2023] Open
Abstract
The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers.
Collapse
|
92
|
Zhang XL, Liu N, Weng SF, Wang HS. Bisphenol A Increases the Migration and Invasion of Triple-Negative Breast Cancer Cells via Oestrogen-related Receptor Gamma. Basic Clin Pharmacol Toxicol 2016; 119:389-95. [PMID: 27038254 DOI: 10.1111/bcpt.12591] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by great metastasis and invasion capability. Our study revealed that nanomolar bisphenol A (BPA), one of the most ubiquitous endocrine disruptors, can increase wound closure and invasion of both MDA-MB-231 and BT-549 cells. BPA treatment can increase protein and mRNA expression of matrix metalloproteinase-2 (MMP-2) and MMP-9, while had no effect on the expression of vimentin (Vim) and fibronectin (FN) in TNBC cells. The expression of G-protein-coupled receptor (GPER), which has been suggested to mediate rapid oestrogenic signals, was not varied in BPA-treated MDA-MB-231 and BT-549 cells. Its inhibitor G15 also had no effect on BPA-induced MMPs expression and cell invasion. Interestingly, BPA treatment can significantly increase the mRNA and protein expressions of oestrogen-related receptor γ (ERRγ), but not ERRα or ERRβ, in both MDA-MB-231 and BT-549 cells. The knock-down of ERRγ can markedly attenuate BPA-induced expression of MMP-2 and MMP-9 in TNBC cells. BPA treatment can activate both ERK1/2 and Akt in TNBC cells. Both inhibitors of ERK1/2 (PD98059) and Akt (LY294002) can attenuate BPA-induced ERRγ expression and cell invasion of MDA-MB-231 cells. Collectively, our data revealed that BPA can increase the expression of MMPs and in vitro motility of TNBC cells via ERRγ. Both activation of ERK1/2 and Akt participated in this process. Our study suggests that more attention should be paid to the roles of xenoestrogens such as BPA in the development and progression of TNBC.
Collapse
Affiliation(s)
| | - Na Liu
- Medical School, Foshan University, Foshan, China
| | | | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
93
|
Zhang XL, Wang HS, Liu N, Ge LC. Bisphenol A stimulates the epithelial mesenchymal transition of estrogen negative breast cancer cells via FOXA1 signals. Arch Biochem Biophys 2015; 585:10-16. [DOI: 10.1016/j.abb.2015.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/22/2015] [Accepted: 09/06/2015] [Indexed: 12/26/2022]
|
94
|
Fitzgerald AC, Peyton C, Dong J, Thomas P. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes. Biol Reprod 2015; 93:135. [PMID: 26490843 DOI: 10.1095/biolreprod.115.132316] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/19/2015] [Indexed: 11/01/2022] Open
Abstract
Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10-100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10-200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5-100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway.
Collapse
Affiliation(s)
| | - Candace Peyton
- University of Texas at Austin Marine Science Institute, Port Aransas, Texas
| | - Jing Dong
- University of Texas at Austin Marine Science Institute, Port Aransas, Texas
| | - Peter Thomas
- University of Texas at Austin Marine Science Institute, Port Aransas, Texas
| |
Collapse
|
95
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
96
|
Patel BB, Kasneci A, Bolt AM, Di Lalla V, Di Iorio MR, Raad M, Mann KK, Chalifour LE. Chronic Exposure to Bisphenol A Reduces Successful Cardiac Remodeling After an Experimental Myocardial Infarction in Male C57bl/6n Mice. Toxicol Sci 2015; 146:101-15. [PMID: 25862758 DOI: 10.1093/toxsci/kfv073] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estrogenic compounds such as bisphenol A (BPA) leach from plastics into food and beverage containers. Increased BPA exposure has been correlated with increased cardiovascular disease. To test the hypothesis that increased BPA exposure reduces cardiovascular remodeling, we chronically exposed C57bl/6n male mice to BPA and performed a myocardial infarction (MI). We measured cardiac function, as well as myeloid and cardiac fibroblast accumulation and activity. We found increased early death as well as increased cardiac dilation and reduced cardiac function in surviving BPA-exposed mice. Matrix metalloproteinase-2 (MMP2) protein and activity were increased 1.5-fold in BPA-exposed heart. BPA-exposed mice had similar neutrophil infiltration; however, monocyte and macrophage (MΦ) infiltration into the ischemic area was 5-fold greater than VEH mice potentially due to a 2-fold increase in monocyte chemoattractant protein-1. Monocyte and MΦ exposure to BPA in vitro in primary bone marrow cultures or in isolated peritoneal MΦ increased polarization to an activated MΦ, increased MMP2 and MMP9 expression 2-fold and activity 3-fold, and increased uptake of microspheres 3-fold. Cardiac fibroblasts (CF) differentiate to α-smooth muscle actin (αSMA) expressing myofibroblasts, migrate to the ischemic area and secrete collagen to strengthen the scar. Collagen and αSMA expression were reduced 50% in BPA-exposed hearts. Chronic in vivo or continuous in vitro BPA exposure ablated transforming growth factor beta-mediated differentiation of CF, reduced αSMA expression 50% and reduced migration 40% yet increased secreted MMP2 activity 2-fold. We conclude that chronic BPA exposure reduces the ability to successfully remodel after an MI by increasing MΦ-based inflammation and reducing myofibroblast repair function.
Collapse
Affiliation(s)
- Bhavini B Patel
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Amanda Kasneci
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Alicia M Bolt
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Vanessa Di Lalla
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Massimo R Di Iorio
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Mohamad Raad
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Koren K Mann
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Lorraine E Chalifour
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| |
Collapse
|
97
|
IKKβ/NF-κB mediated the low doses of bisphenol A induced migration of cervical cancer cells. Arch Biochem Biophys 2015; 573:52-8. [PMID: 25797437 DOI: 10.1016/j.abb.2015.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/22/2015] [Accepted: 03/12/2015] [Indexed: 01/04/2023]
Abstract
Cervical cancer is considered as the second most common female malignant disease. There is an urgent need to illustrate risk factors which can trigger the motility of cervical cancer cells. Our present study revealed that nanomolar concentration of bisphenol A (BPA) significantly promoted the in vitro migration and invasion of cervical cancer HeLa, SiHa, and C-33A cells. Further, BPA treatment increased the expression of metalloproteinase-9 (MMP-9) and fibronectin (FN) in both HeLa and SiHa cells, while did not obviously change the expression of MMP-2, vimentin (Vim) or N-Cadherin (N-Cad). BAY 11-7082, the inhibitor of NF-κB, significantly abolished BPA induced up regulation of FN and MMP-9 in cervical cancer cells. While the inhibitors of PKA (H89), ERK1/2 (PD 98059), EGFR (AG1478), or PI3K/Akt (LY294002) had no effect on the expression of either FN or MMP-9. BPA treatment rapidly increased the phosphorylation of both IκBα and p65, stimulated nuclear translocation, and up regulated the promoter activities of NF-κB. The BPA induced up regulation of MMP-9 and FN and activation of NF-κB were mediated by phosphorylation of IKKβ via PKC signals. Collectively, our study found for the first time that BPA stimulated the cervical cancer migration via IKK-β/NF-κB signals.
Collapse
|