51
|
Elizalde-Velázquez GA, Rosas-Ramírez JR, Raldua D, García-Medina S, Orozco-Hernández JM, Rosales-Pérez K, Islas-Flores H, Galar-Martínez M, Guzmán-García X, Gómez-Oliván LM. Low concentrations of ciprofloxacin alone and in combination with paracetamol induce oxidative stress, upregulation of apoptotic-related genes, histological alterations in the liver, and genotoxicity in Danio rerio. CHEMOSPHERE 2022; 294:133667. [PMID: 35077737 DOI: 10.1016/j.chemosphere.2022.133667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, there are countless articles about the harmful effects of paracetamol (PCM) in non-target organisms. Nonetheless, information regarding the toxicity of ciprofloxacin (CPX) and the CPX-PCM mixture is still limited. Herein, we aimed to evaluate the hepatotoxic and genotoxic effects that ciprofloxacin alone and in combination with paracetamol may induce in Danio rerio adults. For this purpose, we exposed several D. rerio adults to three environmentally relevant concentrations of PCM (0.125, 0.250, and 0.500 μg/L), CPX (0.250, 0.500, and 1 μg/L), and their mixture (0.125 + 0.250, 0.250 + 0.500, and 0.500 + 1 μg/L) for 96 h. The blood samples showed CPX alone and in combination with PCM damaged the liver function of fish by increasing the serum levels of liver enzymes alanine aminotransferase and alkaline phosphatase. Moreover, our histopathological study demonstrated liver of fish suffered several tissue alterations, such as congestion, hyperemia, infiltration, sinusoidal dilatation, macrovascular fatty degeneration, and pyknotic nuclei after exposure to CPX alone and in combination with PCM. Concerning oxidative stress biomarkers and the expression of genes, we demonstrated that CPX and its mixture, with PCM, increased the levels of antioxidant enzymes and oxidative damage biomarkers and altered the expression of Nrf1, Nrf2, BAX, and CASP3, 6, 8, and 9 in the liver of fish. Last but not least, we demonstrated CPX alone and with PCM induced DNA damage via comet assay and increased the frequency of micronuclei in a concentration-dependent manner in fish. Overall, our results let us point out CPX, even at low concentrations, induces hepatotoxic effects in fish and that its combination with PCM has a negative synergic effect in the liver of this organism.
Collapse
Affiliation(s)
| | | | - Demetrio Raldua
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | | | - Karina Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Mexico
| | | | - Xochitl Guzmán-García
- Laboratorio de Ecotoxicología. Departamento de Hidrobiología. Div. CBS. Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | | |
Collapse
|
52
|
Synthesis and antimycobacterial evaluation of fluoroquinolones derivatives coupled with isoprenyl moiety at the C-7 position. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
53
|
Upregulation of wild-type p53 by small molecule-induced elevation of NQO1 in non-small cell lung cancer cells. Acta Pharmacol Sin 2022; 43:692-702. [PMID: 34035487 PMCID: PMC8888561 DOI: 10.1038/s41401-021-00691-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 11/08/2022] Open
Abstract
The tumor suppressor p53 is usually inactivated by somatic mutations in malignant neoplasms, and its reactivation represents an attractive therapeutic strategy for cancers. Here, we reported that a new quinolone compound RYL-687 significantly inhibited non-small cell lung cancer (NSCLC) cells which express wild type (wt) p53, in contract to its much weaker cytotoxicity on cells with mutant p53. RYL-687 upregulated p53 in cells with wt but not mutant p53, and ectopic expression of wt p53 significantly enhanced the anti-NSCLC activity of this compound. RYL-687 induced production of reactive oxygen species (ROS) and upregulation of Nrf2, leading to an elevation of the NAD(P)H:quinoneoxidoreductase-1 (NQO1) that can protect p53 by inhibiting its degradation by 20S proteasome. RYL-687 bound NQO1, facilitating the physical interaction between NQO1 and p53. NQO1 was required for RYL-687-induced p53 accumulation, because silencing of NQO1 by specific siRNA or an NQO1 inhibitor uridine, drastically suppressed RYL-687-induced p53 upregulation. Moreover, a RYL-687-related prodrug significantly inhibited tumor growth in NOD-SCID mice inoculated with NSCLC cells and in a wt p53-NSCLC patient-derived xenograft mouse model. These data indicate that targeting NQO1 is a rational strategy to reactivate p53, and RYL-687 as a p53 stabilizer bears therapeutic potentials in NSCLCs with wt p53.
Collapse
|
54
|
Durdagi S, Orhan MD, Aksoydan B, Calis S, Dogan B, Sahin K, Shahraki A, Iyison NB, Avsar T. Screening of Clinically Approved and Investigation Drugs as Potential Inhibitors of SARS-CoV-2: A Combined in silico and in vitro Study. Mol Inform 2022; 41:e2100062. [PMID: 34529322 PMCID: PMC8646260 DOI: 10.1002/minf.202100062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
In the current study, we used 7922 FDA approved small molecule drugs as well as compounds in clinical investigation from NIH's NPC database in our drug repurposing study. SARS-CoV-2 main protease as well as Spike protein/ACE2 targets were used in virtual screening and top-100 compounds from each docking simulations were considered initially in short molecular dynamics (MD) simulations and their average binding energies were calculated by MM/GBSA method. Promising hit compounds selected based on average MM/GBSA scores were then used in long MD simulations. Based on these numerical calculations following compounds were found as hit inhibitors for the SARS-CoV-2 main protease: Pinokalant, terlakiren, ritonavir, cefotiam, telinavir, rotigaptide, and cefpiramide. In addition, following 3 compounds were identified as inhibitors for Spike/ACE2: Denopamine, bometolol, and rotigaptide. In order to verify the predictions of in silico analyses, 4 compounds (ritonavir, rotigaptide, cefotiam, and cefpiramide) for the main protease and 2 compounds (rotigaptide and denopamine) for the Spike/ACE2 interactions were tested by in vitro experiments. While the concentration-dependent inhibition of the ritonavir, rotigaptide, and cefotiam was observed for the main protease; denopamine was effective at the inhibition of Spike/ACE2 binding.
Collapse
Affiliation(s)
- Serdar Durdagi
- Computational Biology and Molecular Simulations LaboratoryDepartment of BiophysicsSchool of MedicineBahcesehir University34734IstanbulTurkey
- Neuroscience ProgramGraduate School of Health SciencesBahçeşehir University34353IstanbulTurkey
- Virtual Drug Screening and Development LaboratorySchool of MedicineBahcesehir University34734IstanbulTurkey
- Head of Department of Basic Medical SciencesHead of Department of BiophysicsSchool of MedicineBahcesehir UniversityDurdagi Research Group (DRG)34734IstanbulTurkey
| | - Muge Didem Orhan
- Department of Medical BiologySchool of MedicineBahcesehir University34734IstanbulTurkey
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations LaboratoryDepartment of BiophysicsSchool of MedicineBahcesehir University34734IstanbulTurkey
- Neuroscience ProgramGraduate School of Health SciencesBahçeşehir University34353IstanbulTurkey
| | - Seyma Calis
- Department of Medical BiologySchool of MedicineBahcesehir University34734IstanbulTurkey
| | - Berna Dogan
- Computational Biology and Molecular Simulations LaboratoryDepartment of BiophysicsSchool of MedicineBahcesehir University34734IstanbulTurkey
| | - Kader Sahin
- Computational Biology and Molecular Simulations LaboratoryDepartment of BiophysicsSchool of MedicineBahcesehir University34734IstanbulTurkey
| | - Aida Shahraki
- Computational Biology and Molecular Simulations LaboratoryDepartment of BiophysicsSchool of MedicineBahcesehir University34734IstanbulTurkey
- Department of Molecular Biology and GeneticsBogazici University34470IstanbulTurkey
| | - Necla Birgül Iyison
- Department of Molecular Biology and GeneticsBogazici University34470IstanbulTurkey
| | - Timucin Avsar
- Department of Medical BiologySchool of MedicineBahcesehir University34734IstanbulTurkey
- Head of Department of Medical Biology
| |
Collapse
|
55
|
The Effect of Fatty Acids on Ciprofloxacin Cytotoxic Activity in Prostate Cancer Cell Lines. Does Lipid Component Enhance Anticancer Ciprofloxacin Potential? Cancers (Basel) 2022; 14:cancers14020409. [PMID: 35053570 PMCID: PMC8773529 DOI: 10.3390/cancers14020409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Most prostate cancers are initially hormone-dependent but later gain a hormone-independent phenotype associated with changes in lipid metabolism, including enhanced absorption of extracellular fatty acids. The aim of our study was to assess the effect of ciprofloxacin conjugates with fatty acids on different type of prostate cancer (LNCaP and DU-145) and normal (RWPE-1) cells, as well as their influence on cell lipid metabolism by proteomic analysis. All tested conjugates exhibited cytotoxic potential, the most powerful for oleic, elaidic and docosahexaenoic acids. The hormone-independent DU145 line was more sensitive to derivatives than the hormone-dependent LNCaP line. These results are consistent with previously observed pronounced cytotoxic effect of conjugates on a hormone-insensitive PC3 line. Tested derivatives decreased intensity of proteins involved in prostate cancer lipid metabolism. Our findings confirm the involvement of lipid metabolism in prostate carcinogenesis indicating a target for fatty acids as drug carriers. Abstract Purpose: To assess cytotoxic effect of ciprofloxacin conjugates with fatty acids on prostate cancer cells (LNCaP and DU-145) with different hormone sensitivity, based on previous promising results from the PC3 cells. Methods: Cytotoxicity were estimated using MTT and LDH tests, whereas its mechanisms were estimated by apoptosis and IL-6 assays. The intensity of proteins involved in lipid metabolism was determined using ML-CS assay. Results: The hormone insensitive DU-145 cells were more vulnerable than the hormone sensitive LNCaP cells. The IC50 values for oleic (4), elaidic (5) and docosahexaenoic acid (8) conjugates were 20.2 µM, 17.8 µM and 16.5 µM, respectively, in DU-145 cells, whereas in LNCaP cells IC50 exceeded 20 µM. The strong conjugate cytotoxicity was confirmed in the LDH test, the highest (70.8%) for compound (5) and 64.2% for compound (8) in DU-145 cells. This effect was weaker for LNCaP cells (around 60%). The cytotoxic effect of unconjugated ciprofloxacin and fatty acids was weaker. The early apoptosis was predominant in LNCaP while in DU-145 cells both early and late apoptosis was induced. The tested conjugates decreased IL-6 release in both cancer cell lines by almost 50%. Proteomic analysis indicated influence of the ciprofloxacin conjugates on lipid metabolic proteins in prostatic cancer. Conclusion: Our findings suggested the cytotoxic potential of ciprofloxacin conjugates with reduction in proteins involved in prostate cancer progress.
Collapse
|
56
|
Synthesis and Evaluation of the Antibacterial and Antioxidant Activities of Some Novel Chloroquinoline Analogs. J CHEM-NY 2021. [DOI: 10.1155/2021/2408006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quinoline heterocycle is a useful scaffold to develop bioactive molecules used as anticancer, antimalaria, and antimicrobials. Inspired by their numerous biological activities, an attempt was made to synthesize a series of novel 7-chloroquinoline derivatives, including 2,7-dichloroquinoline-3-carbonitrile (5), 2,7-dichloroquinoline-3-carboxamide (6), 7-chloro-2-methoxyquinoline-3-carbaldehyde (7), 7-chloro-2-ethoxyquinoline-3-carbaldehyde (8), and 2-chloroquinoline-3-carbonitrile (12) by the application of Vilsmeier–Haack reaction and aromatic nucleophilic substitution of 2,7-dichloroquinoline-3-carbaldehyde. The carbaldehyde functional group was transformed into nitriles using POCl3 and NaN3, which was subsequently converted to amide using CH3CO2H and H2SO4. The compounds synthesized were screened for their antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pyogenes. Compounds 6 and 8 showed good activity against E. coli with an inhibition zone of 11.00 ± 0.04 and 12.00 ± 0.00 mm, respectively. Compound 5 had good activity against S. aureus and P. aeruginosa with an inhibition zone of 11.00 ± 0.03 mm relative to standard amoxicillin (18 ± 0.00 mm). Compound 7 displayed good activity against S. pyogenes with an inhibition zone of 11.00 ± 0.02 mm. The radical scavenging activity of these compounds was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), and compounds 5 and 6 displayed the strongest antioxidant activity with IC50 of 2.17 and 0.31 µg/mL relative to ascorbic acid (2.41 µg/mL), respectively. The molecular docking study of the synthesized compounds was conducted to investigate their binding pattern with topoisomerase IIβ and E. coli DNA gyrase B. Compounds 6 (−6.4 kcal/mol) and 8 (−6.6 kcal/mol) exhibited better binding affinity in their in silico molecular docking against E. coli DNA gyrase. The synthesized compounds were also found to have minimum binding energy ranging from −6.9 to −7.3 kcal/mol against topoisomerase IIβ. The SwissADME predicted results showed that the synthesized compounds 5–8 and 12 satisfy Lipinski’s rule of five with zero violations. The ProTox-II predicted organ toxicity results revealed that all the synthesized compounds were inactive in hepatotoxicity, immunotoxicity, mutagenicity, and cytotoxicity. The findings of the in vitro antibacterial and molecular docking analysis suggested that compound 8 might be considered a hit compound for further analysis as antibacterial and anticancer drug. The radical scavenging activity displayed by compounds 5 and 6 suggests these compounds as a radical scavenger.
Collapse
|
57
|
Kaur R, Rani P, Atanasov AG, Alzahrani Q, Gupta R, Kapoor B, Gulati M, Chawla P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev Med Chem 2021; 22:984-1029. [PMID: 34939541 DOI: 10.2174/1570193x19666211221150119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.
Collapse
Affiliation(s)
- Ravleen Kaur
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia. Canada
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara. India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, Vienna. Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville. Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan Moga, Punjab 142001. India
| |
Collapse
|
58
|
Antibacterial Therapy by Ag+ Ions Complexed with Titan Yellow/Congo Red and Albumin during Anticancer Therapy of Urinary Bladder Cancer. Int J Mol Sci 2021; 23:ijms23010026. [PMID: 35008445 PMCID: PMC8744882 DOI: 10.3390/ijms23010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/20/2022] Open
Abstract
According to the World Health Organization report, the increasing antibiotic resistance of microorganisms is one of the biggest global health problems. The percentage of bacterial strains showing multidrug resistance (MDR) to commonly used antibiotics is growing rapidly. Therefore, the search for alternative solutions to antibiotic therapy has become critical to combat this phenomenon. It is especially important as frequent and recurring infections can cause cancer. One example of this phenomenon is urinary tract infections that can contribute to the development of human urinary bladder carcinoma. This tumor is one of the most common malignant neoplasms in humans. It occurs almost three times more often in men than in women, and in terms of the number of cases, it is the fifth malignant neoplasm after prostate, lung, colon, and stomach cancer. The risk of developing the disease increases with age. Despite the improvement of its treatment methods, the current outcome in the advanced stages of this tumor is not satisfactory. Hence, there is an urgent need to introduce innovative solutions that will prove effective even in the advanced stage of the disease. In our study, a nanosystem based on ionic silver (Ag+) bound to a carrier—Titan yellow (TY) was analyzed. The possibility of binding the thus formed TY-Ag system to Congo red (CR) and albumin (BSA) was determined. TY-Ag binding to CR provides for better nanosystem solubility and enables its targeted intracellular transport and binding to immune complexes. The binding of TY-Ag or CR-TY-Ag to albumin also protects the system against the uncontrolled release of silver ions. It will also allow the delivery of silver in a targeted manner directly to the desired site in the case of intravenous administration of such a system. In this study, the MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values of the TY-Ag or BSA-TY-Ag systems were determined in two reference strains (Escherichia coli and Staphylococcus aureus). The paper presents nanosystems with a size of about 40–50 nm, with an intense antibacterial effect obtained at concentrations of 0.019 mM. We have also discovered that TY-Ag free or complexed with BSA (with a minimal Ag+ dose of 15–20 μM) inhibited cancer cells proliferation. TY-Ag complex diminished migration and effectively inhibited the T24 cell viability and induced apoptosis. On the basis of the obtained results, it has been shown that the presented systems may have anti-inflammatory and antitumor properties at the same time. TY-Ag or BSA-TY-Ag are new potential drugs and may become in future important therapeutic compounds in human urinary bladder carcinoma treatment and/or potent antimicrobial factors as an alternative to antibiotics.
Collapse
|
59
|
Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021; 26:7153. [PMID: 34885734 PMCID: PMC8658791 DOI: 10.3390/molecules26237153] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.
Collapse
Affiliation(s)
- Ana R. Millanao
- Facultad de Ciencias, Instituto de Farmacia, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Aracely Y. Mora
- Programa de Doctorado en Bioquímica, Universidad de Chile, Santiago 8380544, Chile;
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Sergio A. Bucarey
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago 8370071, Chile
| |
Collapse
|
60
|
Ciprofloxacin and Levofloxacin as Potential Drugs in Genitourinary Cancer Treatment-The Effect of Dose-Response on 2D and 3D Cell Cultures. Int J Mol Sci 2021; 22:ijms222111970. [PMID: 34769400 PMCID: PMC8584631 DOI: 10.3390/ijms222111970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Introducing new drugs for clinical application is a very difficult, long, drawn-out, and costly process, which is why drug repositioning is increasingly gaining in importance. The aim of this study was to analyze the cytotoxic properties of ciprofloxacin and levofloxacin on bladder and prostate cell lines in vitro. Methods: Bladder and prostate cancer cell lines together with their non-malignant counterparts were used in this study. In order to evaluate the cytotoxic effect of both drugs on tested cell lines, MTT assay, real-time cell growth analysis, apoptosis detection, cell cycle changes, molecular analysis, and 3D cultures were examined. Results: Both fluoroquinolones exhibited a toxic effect on all of the tested cell lines. In the case of non-malignant cell lines, the cytotoxic effect was weaker, which was especially pronounced in the bladder cell line. A comparison of both fluoroquinolones showed the advantage of ciprofloxacin (lower doses of drug caused a stronger cytotoxic effect). Both fluoroquinolones led to an increase in late apoptotic cells and an inhibition of cell cycle mainly in the S phase. Molecular analysis showed changes in BAX, BCL2, TP53, and CDKN1 expression in tested cell lines following incubation with ciprofloxacin and levofloxacin. The downregulation of topoisomerase II genes (TOP2A and TOP2B) was noticed. Three-dimensional (3D) cell culture analysis confirmed the higher cytotoxic effect of tested fluoroquinolone against cancer cell lines. Conclusions: Our results suggest that both ciprofloxacin and levofloxacin may have great potential, especially in the supportive therapy of bladder cancer treatment. Taking into account the low costs of such therapy, fluoroquinolones seem to be ideal candidates for repositioning into bladder cancer therapeutics.
Collapse
|
61
|
Bekebrede AF, Keijer J, Gerrits WJJ, de Boer VCJ. Mitochondrial and glycolytic extracellular flux analysis optimization for isolated pig intestinal epithelial cells. Sci Rep 2021; 11:19961. [PMID: 34620944 PMCID: PMC8497502 DOI: 10.1038/s41598-021-99460-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal epithelial cells (IECs) are crucial to maintain intestinal function and the barrier against the outside world. To support their function they rely on energy production, and failure to produce enough energy can lead to IEC malfunction and thus decrease intestinal barrier function. However, IEC metabolic function is not often used as an outcome parameter in intervention studies, perhaps because of the lack of available methods. We therefore developed a method to isolate viable IECs, suitable to faithfully measure their metabolic function by determining extracellular glycolytic and mitochondrial flux. First, various methods were assessed to obtain viable IECs. We then adapted a previously in-house generated image-analysis algorithm to quantify the amount of seeded IECs. Correcting basal respiration data of a group of piglets using this algorithm reduced the variation, showing that this algorithm allows for more accurate analysis of metabolic function. We found that delay in metabolic analysis after IEC isolation decreases their metabolic function and should therefore be prevented. The presence of antibiotics during isolation and metabolic assessment also decreased the metabolic function of IECs. Finally, we found that primary pig IECs did not respond to Oligomycin, a drug that inhibits complex V of the electron transport chain, which may be because of the presence of drug exporters. A method was established to faithfully measure extracellular glycolytic and mitochondrial flux of pig primary IECs. This tool is suitable to gain a better understanding of how interventions affect IEC metabolic function.
Collapse
Affiliation(s)
- A F Bekebrede
- Human and Animal Physiology, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands.,Animal Nutrition Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - J Keijer
- Human and Animal Physiology, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - W J J Gerrits
- Animal Nutrition Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - V C J de Boer
- Human and Animal Physiology, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
62
|
Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int J Pharm 2021; 607:121046. [PMID: 34450225 DOI: 10.1016/j.ijpharm.2021.121046] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 11/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths globally. Treatment-related adverse effects and development of drug resistance limit the available treatment options for most patients. Therefore, newer drug candidates and drug delivery systems that have limited adverse effects with significant anti-cancer efficacy are needed. For NSCLC treatment, delivering drugs via inhalation is highly beneficial as it requires lower doses and limits systemic toxicity. Bedaquiline (BQ), an FDA-approved anti-tuberculosis drug has previously shown excellent anti-cancer efficacy. However, poor aqueous solubility limits its delivery via the lungs. In this project, we developed inhalable BQ-loaded cubosome (BQLC) nanocarriers against NSCLC. The BQLC were prepared using a solvent evaporation technique with the cubosomal nanocarriers exhibiting a particle size of 150.2 ± 5.1 nm, zeta potential of (+) 35.4 ± 2.3 mV, and encapsulation efficiency of 51.85 ± 4.83%. The solid-state characterization (DSC and XRD) confirmed drug encapsulation and in an amorphous form within the cubosomes. The BQLC nanocarriers showed excellent aerodynamic properties after nebulization (MMAD of 4.21 ± 0.53 µm and FPF > 75%). The BQLC displayed enhanced cellular internalization and cytotoxicity with a ~ 3-fold reduction in IC50 compared to free BQ in NSCLC (A549) cells, after 48 h treatment. The BQLC suppressed cell proliferation via apoptotic pathway, further inhibited colony formation, and cancer metastasis in vitro. Additionally, 3D-tumor simulation studies established the anti-cancer efficacy of cubosomal nanocarriers as compared to free BQ. This is the first study exploring the potential of cubosomes as inhalation therapy of repurposed drug, BQ and the results suggest that BQLC may be a promising NSCLC therapy due to excellent aerosolization performance and enhanced anti-cancer activity.
Collapse
|
63
|
Yadav V, Misra R. A review emphasizing on utility of heptad repeat sequence as a tool to design pharmacologically safe peptide-based antibiotics. Biochimie 2021; 191:126-139. [PMID: 34492334 DOI: 10.1016/j.biochi.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Extensive usage of antibiotics has created an unprecedented scenario of the rapid emergence of many drug-resistant bacteria, which has become an alarming public health concern around the globe. Search for better alternatives that are as efficacious as antibiotics led to the discovery of antimicrobial peptides (AMPs). These small cationic amphiphilic peptides have emerged as a promising option as antimicrobial agents, owing to their multifaceted implications against varied pathogens. Recent years have witnessed tremendous growth in research on AMPs resulting in them being tested in clinical trials of which six got approved for topical application. The relatively less successful outcome has been attributed to the poor cell selectivity shown by most of the naturally occurring AMPs. This drawback needs to be circumvented by identifying strategies to design safe and effective peptides. In the present review, we have emphasized the importance of heptad repeat sequence (leucine and/or phenylalanine zipper motif) as a tool that has shown great promise in remodeling the toxic AMPs to safe antimicrobial agents.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden; Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULiège), Liège, Belgium.
| | - Richa Misra
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhi, India
| |
Collapse
|
64
|
Aziz HA, El-Saghier AMM, Badr M, Abuo-Rahma GEDA, Shoman ME. Thiazolidine-2,4-dione-linked ciprofloxacin derivatives with broad-spectrum antibacterial, MRSA and topoisomerase inhibitory activities. Mol Divers 2021; 26:1743-1759. [PMID: 34455532 DOI: 10.1007/s11030-021-10302-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/21/2021] [Indexed: 11/25/2022]
Abstract
A series of ciprofloxacin/thiazolidine-2,4-dione hybrids 3a-m were prepared and identified by IR, 1HNMR, 13CNMR and elemental analysis. The antibacterial activity results of the designed hybrids revealed a shift of spectrum toward Gram-positive bacteria. They exhibited excellent activity against S. aureus ATCC 6538, with the most potent compounds being 3a, 3e, 3g, 3i, 3k, 3l and 3m possessing MICs of 0.02, 2.03, 0.64, 0.35, 1.04, 0.22 and 0.36 µM, respectively, compared to their parent compound ciprofloxacin (MIC: 5.49 µM). They also showed interesting activity against MRSA AUMC 261 with 3a, 3e and 3l showing MIC values of 5 nM. Reduced activity was observed against Gram-negative bacteria with compound 3l exhibiting a slightly higher activity against K. pneumoniae ATCC10031 with a MIC value of 0. 08 µM. Mechanistically, the incorporation of thiazolidine-2,4-dione ring into ciprofloxacin retained its ability to inhibit DNA synthesis via inhibiting both topoisomerase IV and DNA gyrase of S. aureus. Compounds 3a, 3l and 3m were more potent than ciprofloxacin for topoisomerase IV (IC50 = 0.3-1.9 μM) and gyrase (IC50 = 0.22-0.31 µM) inhibition, which coincide with their antibacterial activity against S. aureus ATCC 6538. Docking against DNA gyrase active site confirmed the ability of the tested compounds to form stable complexes with the enzyme; like that of ciprofloxacin, 3a, 3i, 3k, 3m and 3l reconsidered promising broad-spectrum antibacterial agents targeting topoisomerase IV and gyrase enzymes and have good activity against MRSA.
Collapse
Affiliation(s)
- Hossameldin A Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Sohag Cancer Center, Sohag, Egypt
| | | | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt. .,Department of Pharmaceutical Chemistry, Deraya University, New Minia, Minia, Egypt.
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
65
|
Acharya M, Kim T, Li C. Broad-Spectrum Antibiotic Use and Disease Progression in Early-Stage Melanoma Patients: A Retrospective Cohort Study. Cancers (Basel) 2021; 13:4367. [PMID: 34503177 PMCID: PMC8431240 DOI: 10.3390/cancers13174367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Animal studies and a few clinical studies have reported mixed findings on the association between antibiotics and cancer incidence. Antibiotics may inhibit tumor cell growth, but could also alter the gut-microbiome-modulated immune system and increase the risk of cancer. Studies that assess how antibiotics affect the progression of cancer are limited. We evaluated the association between broad-spectrum antibiotic use and melanoma progression. We conducted a retrospective cohort study using IQVIA PharMetrics® Plus data (2008-2018). We identified patients with malignant melanoma who underwent wide local excision or Mohs micrographic surgery within 90 days of first diagnosis. Surgery date was the index date. Patients were excluded if they had any other cancer diagnosis or autoimmune disorders in 1 year before the index date ("baseline"). Exposure to broad-spectrum antibiotics was identified in three time windows using three cohorts: 3 months prior to the index date, 1 month after the index date, and 3 months after the index date. The covariates were patients' demographic and clinical characteristics identified in the 1-year baseline period. The patients were followed from the index date until cancer progression, loss of enrollment, or the end of 2 years after the index date. Progression was defined as: (i) any hospice care after surgery, (ii) a new round of treatment for melanoma (surgery, chemotherapy, immunotherapy, targeted therapy, or radiotherapy) 180 days after prior treatment, or (iii) a metastasis diagnosis or a diagnosis of a new nonmelanoma primary cancer at least 180 days after first melanoma diagnosis or prior treatment. A high-dimensional propensity score approach with inverse weighting was used to adjust for the patients' baseline differences. Cox proportional hazard regression was used for estimating the association. The final samples included 3930, 3831, and 3587 patients (mean age: 56 years). Exposure to antibiotics was 16% in the prior-3-months, 22% in the post-1-month, and 22% in the post-3-months. In the pre-3-months analysis, 9% of the exposed group and 9% of the unexposed group had progressed. Antibiotic use was not associated with melanoma progression (HR: 0.81; 95% CI: 0.57-1.14). However, antibiotic use in subsequent 1 month and subsequent 3 months was associated with 31% reduction (HR: 0.69; 95% CI: 0.51-0.92) and 32% reduction (HR: 0.68; 95% CI: 0.51-0.91) in progression, respectively. In this cohort of patients with likely early-stage melanoma cancer, antibiotic use in 1 month and 3 months after melanoma surgery was associated with a lower risk of melanoma progression. Future studies are warranted to validate the findings.
Collapse
Affiliation(s)
- Mahip Acharya
- Division of Pharmaceutical Evaluation and Policy, University of Arkansas for Medical Sciences College of Pharmacy, Little Rock, AR 72205, USA;
| | - Thomas Kim
- Department of Radiation Oncology, Rush University Medical College, Chicago, IL 60612, USA;
| | - Chenghui Li
- Division of Pharmaceutical Evaluation and Policy, University of Arkansas for Medical Sciences College of Pharmacy, Little Rock, AR 72205, USA;
| |
Collapse
|
66
|
Sibilio P, Bini S, Fiscon G, Sponziello M, Conte F, Pecce V, Durante C, Paci P, Falcone R, Norata GD, Farina L, Verrienti A. In silico drug repurposing in COVID-19: A network-based analysis. Biomed Pharmacother 2021; 142:111954. [PMID: 34358753 PMCID: PMC8316014 DOI: 10.1016/j.biopha.2021.111954] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
The SARS-CoV-2 pandemic is a worldwide public health emergency. Despite the beginning of a vaccination campaign, the search for new drugs to appropriately treat COVID-19 patients remains a priority. Drug repurposing represents a faster and cheaper method than de novo drug discovery. In this study, we examined three different network-based approaches to identify potentially repurposable drugs to treat COVID-19. We analyzed transcriptomic data from whole blood cells of patients with COVID-19 and 21 other related conditions, as compared with those of healthy subjects. In addition to conventionally used drugs (e.g., anticoagulants, antihistaminics, anti-TNFα antibodies, corticosteroids), unconventional candidate compounds, such as SCN5A inhibitors and drugs active in the central nervous system, were identified. Clinical judgment and validation through clinical trials are always mandatory before use of the identified drugs in a clinical setting.
Collapse
Affiliation(s)
- Pasquale Sibilio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy; Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy; Fondazione per la Medicina Personalizzata, Via Goffredo Mameli, 3/1, Genova, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy; Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy.
| | - Rosa Falcone
- Phase 1 Unit-Clinical Trial Center Gemelli University Hospital, Rome, Italy
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, University of Milan and Center for the Study of Atherosclerosis, SISA Bassini Hospital, Milan, Italy
| | - Lorenzo Farina
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
67
|
Interaction between DNA, Albumin and Apo-Transferrin and Iridium(III) Complexes with Phosphines Derived from Fluoroquinolones as a Potent Anticancer Drug. Pharmaceuticals (Basel) 2021; 14:ph14070685. [PMID: 34358111 PMCID: PMC8308524 DOI: 10.3390/ph14070685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
A group of cytotoxic half-sandwich iridium(III) complexes with aminomethyl(diphenyl)phosphine derived from fluoroquinolone antibiotics exhibit the ability to (i) accumulate in the nucleus, (ii) induce apoptosis, (iii) activate caspase-3/7 activity, (iv) induce the changes in cell cycle leading to G2/M phase arrest, and (v) radicals generation. Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, circular dichroism, and molecular docking studies. DNA binding experiments established that the complexes interact with DNA by moderate intercalation and predominance of minor groove binding without the capability to cause a double-strand cleavage. The molecular docking study confirmed two binding modes: minor groove binding and threading intercalation with the fluoroquinolone part of the molecule involved in pi stacking interactions and the Ir(III)-containing region positioned within the major or minor groove. Fluorescence spectroscopic data (HSA and apo-Tf titration), together with molecular docking, provided evidence that Ir(III) complexes can bind to the proteins in order to be transferred. All the compounds considered herein were found to bind to the tryptophan residues of HSA within site I (subdomain II A). Furthermore, Ir(III) complexes were found to dock within the apo-Tf binding site, including nearby tyrosine residues.
Collapse
|
68
|
Chrysostomou S, Roy R, Prischi F, Thamlikitkul L, Chapman KL, Mufti U, Peach R, Ding L, Hancock D, Moore C, Molina-Arcas M, Mauri F, Pinato DJ, Abrahams JM, Ottaviani S, Castellano L, Giamas G, Pascoe J, Moonamale D, Pirrie S, Gaunt C, Billingham L, Steven NM, Cullen M, Hrouda D, Winkler M, Post J, Cohen P, Salpeter SJ, Bar V, Zundelevich A, Golan S, Leibovici D, Lara R, Klug DR, Yaliraki SN, Barahona M, Wang Y, Downward J, Skehel JM, Ali MMU, Seckl MJ, Pardo OE. Repurposed floxacins targeting RSK4 prevent chemoresistance and metastasis in lung and bladder cancer. Sci Transl Med 2021; 13:eaba4627. [PMID: 34261798 PMCID: PMC7611705 DOI: 10.1126/scitranslmed.aba4627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 10/26/2020] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Lung and bladder cancers are mostly incurable because of the early development of drug resistance and metastatic dissemination. Hence, improved therapies that tackle these two processes are urgently needed to improve clinical outcome. We have identified RSK4 as a promoter of drug resistance and metastasis in lung and bladder cancer cells. Silencing this kinase, through either RNA interference or CRISPR, sensitized tumor cells to chemotherapy and hindered metastasis in vitro and in vivo in a tail vein injection model. Drug screening revealed several floxacin antibiotics as potent RSK4 activation inhibitors, and trovafloxacin reproduced all effects of RSK4 silencing in vitro and in/ex vivo using lung cancer xenograft and genetically engineered mouse models and bladder tumor explants. Through x-ray structure determination and Markov transient and Deuterium exchange analyses, we identified the allosteric binding site and revealed how this compound blocks RSK4 kinase activation through binding to an allosteric site and mimicking a kinase autoinhibitory mechanism involving the RSK4's hydrophobic motif. Last, we show that patients undergoing chemotherapy and adhering to prophylactic levofloxacin in the large placebo-controlled randomized phase 3 SIGNIFICANT trial had significantly increased (P = 0.048) long-term overall survival times. Hence, we suggest that RSK4 inhibition may represent an effective therapeutic strategy for treating lung and bladder cancer.
Collapse
Affiliation(s)
- Stelios Chrysostomou
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Rajat Roy
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Filippo Prischi
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Lucksamon Thamlikitkul
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kathryn L Chapman
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Assay Biology, Domainex Ltd, Cambridge CB10 1XL, UK
| | - Uwais Mufti
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Robert Peach
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Laifeng Ding
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - David Hancock
- Oncogene Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Christopher Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Miriam Molina-Arcas
- Oncogene Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Francesco Mauri
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - David J Pinato
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Joel M Abrahams
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Silvia Ottaviani
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Leandro Castellano
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Jennifer Pascoe
- Department of Oncology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Devmini Moonamale
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Sarah Pirrie
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Gaunt
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucinda Billingham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham B15 2TT, UK
| | - Neil M Steven
- Department of Oncology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Michael Cullen
- Department of Oncology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - David Hrouda
- Department Urology, Charing Cross Hospital, London W6 8RF, UK
| | - Mathias Winkler
- Department Urology, Charing Cross Hospital, London W6 8RF, UK
| | - John Post
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH. UK
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH. UK
| | | | - Vered Bar
- Curesponse, 6 Weizmann Street, 6423906 Tel Aviv, Israel
| | | | - Shay Golan
- Department of Urology, Rabin Medical Center, Jabotinsky St. 39, 4941492 Petah Tikva, Israel
| | - Dan Leibovici
- Department of Urology, Kaplan Medical Center, 7610001 Rehovot, Israel
| | - Romain Lara
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- AstraZeneca, Discovery Science, R&D, Discovery Biology, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - David R Klug
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Sophia N Yaliraki
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | - Yulan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - J Mark Skehel
- Biological Mass Spectrometry and Proteomics, MRC LMB, Cambridge CB2 0QH, UK
| | - Maruf M U Ali
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Michael J Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK.
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
69
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
70
|
Levofloxacin might be safe to use for OSCC patients. Med Oncol 2021; 38:87. [PMID: 34170451 DOI: 10.1007/s12032-021-01538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Oral squamous cell carcinoma patients are exhausted against the powerful chemotherapies, radiotherapies after the surgery, and their immune system is devastated during the process and antibiotic usage become inescapable. Although prescribing an antibiotic might be fraught for such as drug interaction and undesirable proliferation danger, studies still look for the new ideas such as antibiotic combinations that might be safe to use. The antiproliferative and apoptotic outcomes of levofloxacin with cisplatin combination as well as their single usage were examined with WST-1, Caspase-3/BCA and Annexin V methods on SCC-15 cells and a healthy cell line (MRC-5). 24 h treatment of 50 mM single levofloxacin, 50 mM single cisplatin and 50 mM levofloxacin-cisplatin combination resulted in viability rates of SCC-15 cells as 90%, 67% and 80.8%, respectively. Caspase-3 enzyme activity was enhanced 0.92-fold for single levofloxacin, 13.05-fold for single cisplatin and 9.73-fold for the combination of levofloxacin-cisplatin, the total apoptotic activity of single levofloxacin, single cisplatin and levofloxacin-cisplatin combination were observed as 4.88%, 21.14%, 16.21%, respectively on SCC-15. The apoptotic effect of cisplatin on MRC-5 has been shown to be suppressed when combined with levofloxacin. Considering the cell viability, caspase-3, and apoptotic activity results, it's conclude that the levofloxacin-cisplatin combination was also effective compared to the only cisplatin treatment on OSCC cells. The combination has shown less toxicity for healthy cells than single cisplatin treatment. Therefore, our apoptotic findings suggest that the different dosage combinations are necessary to understand the interaction for the treatment of tongue squamous cell carcinoma.
Collapse
|
71
|
Khaleel S, Al-Hiari Y, Kasabri V, Haddadin R, Albashiti R, Al-Zweri M, Bustanji Y. Antiproliferative properties of 7,8-Ethylene Diamine Chelator-Lipophilic Fluoroquinolone Derivatives Against colorectal cancer Cell Lines. Anticancer Agents Med Chem 2021; 22:1012-1028. [PMID: 34165411 DOI: 10.2174/1871520621666210623111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the most overwhelming diseases nowadays. It is considered the second cause of death after cardiovascular diseases. Due to the diversity of its types, stages, and genetic origin, there is no available drug to treat all cancers. Serious side effects and resistance to existing drugs are other problems in this struggle against cancer. In such quest, fluoroquinolones (FQs) offer a future promise as antiproliferative compounds due to safety, low cost, and lack of resistance. OBJECTIVES Therefore, this work aims at developing lipophilic FQs and screening their antiproliferative activity against colorectal cancer. METHODS Nine prepared FQs were investigated for antiproliferative activity utilizing in vitro SRB method. In comparison to the antiproliferative agent cisplatin, the assessment of antiproliferative activities of these novel FQs in a panel of colorectal cancer cell (crc) lines (HT29, HCT116, SW620, CACO2, SW480) and normal periodontal ligament fibroblasts for safety examination was performed. Antibacterial activity (MIC) was conducted against Staphylococcus aureus and Escherichia coli standard strains using the broth double dilution method. Antioxidant properties were suspected as the mechanism of antiproliferative activity; thus, a DPPH test was performed to analyze the radical scavenging potency of FQs compared to ascorbic acid as a reference agent. FQs compounds 3-5(a-c) were prepared, characterized and their structure was confirmed using spectroscopy techniques. RESULTS All compounds manifested good to excellent antiproliferative activity on HT29, HCT116, and SW620 with high safety index. The reduced series 4a, 4b, and 4c exerted excellent micro to nanomolar antiproliferative activities on HT29, HCT116, and SW620, which were stronger than the reference cisplatin against all cells. The reduced group of compounds 4(a-c) revealed higher potency vs. both nitro and triazolo groups. On cell lines HT29, HCT116, and SW620 reduced 4a with 7,8-ethylene diamine substitution revealed the highest antiproliferative efficacy (IC50 value) approaching nanomolar affinity with higher safety vs. cisplatin. The most active compound, 4a, exhibited significant potency against HCT116 and SW620 with IC50 0.6 and 0.16 µM, respectively. Novel FQs (4a, 4b, and 4c) also showed strong radical scavenging activity with IC50 values (µM) 0.06, 23, and 7.99, respectively. Exquisitely 4a revealed a similar pattern of activity to doxorubicin, indicating a similar mechanism of action. Strong antiproliferative and weak antibacterial activities of series 4 endorse that their mechanism involves eukaryotic topoisomerase II inhibition. This work has revealed novel FQs with excellent anticancer activity against 5 colorectal cancer (HT29, HCT116, SW620, CACO2, SW480) cell lines with a potential chelation mechanism due to 7,8-ethylene diamine chelator bridge. CONCLUSIONS The new FQs have confirmed that more lipophilic compounds could be more active as hypothesized. The p-halogenated aniline, N1-Butyl group in addition to 3-COOH, 8-NH2 are all essential requirements for strong antiproliferative FQ of our FQ scaffold. This work emphasizes the role of C-8 amino as part of ethylene diamine group as an essential requirement for antiproliferative FQs for the first time in the literature, entailing its role toward potential antneoplastic FQs.
Collapse
Affiliation(s)
| | - Yusuf Al-Hiari
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Violet Kasabri
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Randa Haddadin
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Rabab Albashiti
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Muhammad Al-Zweri
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Yasser Bustanji
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| |
Collapse
|
72
|
New promising levofloxacin derivatives: Design, synthesis, cytotoxic activity screening, Topo2β polymerase inhibition assay, cell cycle apoptosis profile analysis. Bioorg Chem 2021; 113:105029. [PMID: 34091290 DOI: 10.1016/j.bioorg.2021.105029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023]
Abstract
Newly designed levofloxacin analogues were synthesized to act as topoisomerase II beta inhibitors (Topo2β). Their cytotoxic activity was screened against breast, liver, and leukemia cancer cell lines. The best activity against liver cancer cell line (Hep3B) was exhibited by the target compounds 3c, 3e, 4a, and 6d (IC50 = 2.33, 1.38, 0.60 and 0.43, respectively). (L-SR) leukemia cancer cell line was pronouncedly affected by compounds 3b, 3g and 4a (IC50 = 1.62, 1.41 and 1.61, sequentially). 3c possessed the best activity against breast cancer cell line (MCF-7) with IC50 = 0.66. Compounds 3c, 3e, 3g, 4a and 4c exhibited Topo2β inhibition activities exceeding etoposide and levofloxacin as reference drugs and variant cell lines. In DNA-Flow cytometry cell cycle analysis, compound 3c arrested the cell cycle at G2/M phase like etoposide and levofloxacin, while compounds 3e and 4a exhibit its arrest at S phase. In addition, 3c, 3e and 4a showed a significant elevation in active caspase-3 levels (10.01, 8.98 and 10.71 folds, respectively). The effect of the new compounds on normal cells was also investigated including breast (MCF10a), liver (THLE2), and lymphocytic (PCS-800-011) normal cell lines.
Collapse
|
73
|
Ahmadi A, Moradi S. In silico analysis suggests the RNAi-enhancing antibiotic enoxacin as a potential inhibitor of SARS-CoV-2 infection. Sci Rep 2021; 11:10271. [PMID: 33986351 PMCID: PMC8119475 DOI: 10.1038/s41598-021-89605-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has currently become the biggest challenge in the world. There is still no specific medicine for COVID-19, which leaves a critical gap for the identification of new drug candidates for the disease. Recent studies have reported that the small-molecule enoxacin exerts an antiviral activity by enhancing the RNAi pathway. The aim of this study is to analyze if enoxacin can exert anti-SARS-CoV-2 effects. We exploit multiple computational tools and databases to examine (i) whether the RNAi mechanism, as the target pathway of enoxacin, could act on the SARS-CoV-2 genome, and (ii) microRNAs induced by enoxacin might directly silence viral components as well as the host cell proteins mediating the viral entry and replication. We find that the RNA genome of SARS-CoV-2 might be a suitable substrate for DICER activity. We also highlight several enoxacin-enhanced microRNAs which could target SARS-CoV-2 components, pro-inflammatory cytokines, host cell components facilitating viral replication, and transcription factors enriched in lung stem cells, thereby promoting their differentiation and lung regeneration. Finally, our analyses identify several enoxacin-targeted regulatory modules that were critically associated with exacerbation of the SARS-CoV-2 infection. Overall, our analysis suggests that enoxacin could be a promising candidate for COVID-19 treatment through enhancing the RNAi pathway.
Collapse
Affiliation(s)
- Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169,, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
74
|
Arshad M, Khan MS, Nami SAA. Norfloxacin Analogues: Drug Likeness, Synthesis, Biological, and Molecular Docking Assessment. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
The Antibacterial Activity of Human Amniotic Membrane against Multidrug-Resistant Bacteria Associated with Urinary Tract Infections: New Insights from Normal and Cancerous Urothelial Models. Biomedicines 2021; 9:biomedicines9020218. [PMID: 33672670 PMCID: PMC7924402 DOI: 10.3390/biomedicines9020218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Urinary tract infections (UTIs) represent a serious global health issue, especially due to emerging multidrug-resistant UTI-causing bacteria. Recently, we showed that the human amniotic membrane (hAM) could be a candidate for treatments and prevention of UPEC and Staphylococcus aureus infections. However, its role against multidrug-resistant bacteria, namely methicillin-resistant S. aureus (MRSA), extended-spectrum beta-lactamases (ESBL) producing Escherichia coli and Klebsiella pneumoniae, vancomycin-resistant Enterococci (VRE), carbapenem-resistant Acinetobacter baumannii, and Pseudomonas aeruginosa has not yet been thoroughly explored. Here, we demonstrate for the first time that the hAM homogenate had antibacterial activity against 7 out of 11 tested multidrug-resistant strains, the greatest effect was on MRSA. Using novel approaches, its activity against MRSA was further evaluated in a complex microenvironment of normal and cancerous urinary bladder urothelia. Even short-term incubation in hAM homogenate significantly decreased the number of bacteria in MRSA-infected urothelial models, while it did not affect the viability, number, and ultrastructure of urothelial cells. The hAM patches had no antibacterial activity against any of the tested strains, which further exposes the importance of the hAM preparation. Our study substantially contributes to basic knowledge on the antibacterial activity of hAM and reveals its potential to be used as an antibacterial agent against multidrug-resistant bacteria.
Collapse
|
76
|
Akinosoglou K, Koutsouri CP, deLastic AL, Kolosaka M, Davoulos C, Niarou V, Kosmopoulou F, Ziazias D, Theodoraki S, Gogos C. Patterns, price and predictors of successful empiric antibiotic therapy in a real-world setting. J Clin Pharm Ther 2021; 46:846-852. [PMID: 33554360 DOI: 10.1111/jcpt.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 11/27/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Prompt and appropriate empiric antibiotic therapy (EAT) remains the cornerstone of successful outcomes, while the majority of blood cultures do not identify pathogen. We aimed to report patterns of EAT and its impact on outcomes and associated medical costs, while exploring predictors of its success in a real-world setting. METHODS We retrospectively utilized the prospective registry of the medical unit of a tertiary university hospital, including patients admitted with diagnosis of infection between 1st May 2016 and 1st May 2018. Costs of hospitalization and unit of antibiotic regimen were retrieved from a database regarding Greek hospitals containing hospitalization-cost data for each ICD-10 code and the national formulary, respectively. RESULTS A total of 489 patients were included in this study. Mean age was 61.3 years, 53% were males, while intra-abdominal infections predominated (55%). The most commonly administered EAT included quinolones (48%), followed by piperacillin/tazobactam (18%), or other regimens alone or in combination. EAT was successful in 67% and failed in 33% of cases. Fourteen patients died of the infection before EAT was switched, while among 55 patients that EAT had to be modified, mortality was 22%. Presence of urinary tract infection and use of quinolones, least predicted for failure of EAT [OR:0.15 (0.07-0.35), p < 0.0001, OR:0.53 (0.32-0.90), p = 0.019, respectively], in contrast to presence of sepsis [OR:3.11 (1.79-5.40), p < 0.0001]. Patients with failure had longer length of stay [7(5-11) versus 4 (3-6) days], higher antibiotic [201.9 (97.8-471.8) vs 104.6 (60.2-187.7) euros] and hospitalization costs [1409.3 (945.4-2311.6) vs 759.4 (516.5-1036.5) euros] (p < 0.0001). DISCUSSION We observed significantly increased antibiotic-related, healthcare-related costs and length of stay in patients with failure of EAT. Moreover, in our cohort, absence of sepsis, presence of urinary tract infection and use of quinolones better predicted for success of EAT. WHAT IS NEW AND CONCLUSIONS Appropriate selection of EAT is crucial to ensure better outcomes and minimize costs.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece.,Department of Infectious Diseases, University Hospital of Patras, Patras, Greece
| | | | - Anne-Lise deLastic
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Martha Kolosaka
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Davoulos
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Vasiliki Niarou
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Foteini Kosmopoulou
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Dimitrios Ziazias
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | | | - Charalambos Gogos
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece.,Department of Infectious Diseases, University Hospital of Patras, Patras, Greece
| |
Collapse
|
77
|
Sharma V, Das R, Mehta DK, Sharma D, Sahu RK. Exploring quinolone scaffold: Unravelling the chemistry of anticancer drug design. Mini Rev Med Chem 2021; 22:69-88. [PMID: 33438536 DOI: 10.2174/1389557521666210112142136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
Globally, cancer is considered as the major leading cause in decreasing the patient health care system of human beings. The growing threat from drug-resistant cancers makes heterocyclic moieties as an urgent need to develop more successful candidates for anti-cancer therapy. In view of outstanding pharmacological activities Quinolone and its derivatives have attracted more attention towards drug designing and biological evaluation in the search of new drug molecules. The inspired researchers attempted efforts in order to discover quinolone based analogs due to its wide range of biological activities. Due to immense pharmacological importance, distinct synthetic methods have been executed to attain new drug entities from quinolones and all the reported molecules have shown constructive anticancer activity. Some of the synthetic protocol like, one pot synthesis, post-Ugi-transformation, catalysed based synthesis, enzyme-based synthesis and nano-catalyst based synthetic procedures are also discussed as recent advancement in production of quinolone derivatives. In this review, recent synthetic approaches in the medicinal chemistry of quinolones and potent quinolone derivatives on the basis of structural activity relationship are outlined. Moreover, their major methods and modifications are discussed.
Collapse
Affiliation(s)
- Vishal Sharma
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr. India
| | - Rina Das
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr. India
| | - Dinesh Kumar Mehta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr. India
| | - Diksha Sharma
- Faculty of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-Hr. India
| | - Ram Kumar Sahu
- Dept of Pharmaceutical Science, Assam University (A Central University), Silchar, Assam-788011. India
| |
Collapse
|
78
|
Pant A, Mackraj I, Govender T. Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology. J Biomed Sci 2021; 28:6. [PMID: 33413364 PMCID: PMC7790597 DOI: 10.1186/s12929-020-00702-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis, a dysregulated immune response due to life-threatening organ dysfunction, caused by drug-resistant pathogens, is a major global health threat contributing to high disease burden. Clinical outcomes in sepsis depend on timely diagnosis and appropriate early therapeutic intervention. There is a growing interest in the evaluation of nanotechnology-based solutions for sepsis management due to the inherent and unique properties of these nano-sized systems. This review presents recent advancements in nanotechnology-based solutions for sepsis diagnosis and management. Development of nanosensors based on electrochemical, immunological or magnetic principals provide highly sensitive, selective and rapid detection of sepsis biomarkers such as procalcitonin and C-reactive protein and are reviewed extensively. Nanoparticle-based drug delivery of antibiotics in sepsis models have shown promising results in combating drug resistance. Surface functionalization with antimicrobial peptides further enhances efficacy by targeting pathogens or specific microenvironments. Various strategies in nanoformulations have demonstrated the ability to deliver antibiotics and anti-inflammatory agents, simultaneously, have been reviewed. The critical role of nanoformulations of other adjuvant therapies including antioxidant, antitoxins and extracorporeal blood purification in sepsis management are also highlighted. Nanodiagnostics and nanotherapeutics in sepsis have enormous potential and provide new perspectives in sepsis management, supported by promising future biomedical applications included in the review.
Collapse
Affiliation(s)
- Amit Pant
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
79
|
Islan GA, Gonçalves LMD, Marto J, Duarte A, Alvarez VA, Castro GR, Almeida AJ. Effect of α-tocopherol on the physicochemical, antioxidant and antibacterial properties of levofloxacin loaded hybrid lipid nanocarriers. NEW J CHEM 2021. [DOI: 10.1039/d0nj03781h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-toxic hybrid lipidic nanoparticles become a promising tool for enhanced lung delivery of levofloxacin in combination with antioxidant properties.
Collapse
Affiliation(s)
- Germán A. Islan
- Laboratorio de Nanobiomateriales
- CINDEFI
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP) – CONICET (CCT La Plata)
| | - Lídia M. D. Gonçalves
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| | - Aida Duarte
- Laboratory of Microbiology
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| | - Vera A. Alvarez
- Grupo de Materiales Compuestos de Matriz Polimérica (CoMP)
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)
- Facultad de Ingeniería
- Universidad Nacional de Mar del Plata (UNMDP) – CONICET
- Buenos Aires
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales
- CINDEFI
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP) – CONICET (CCT La Plata)
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| |
Collapse
|
80
|
UVA Radiation Enhances Lomefloxacin-Mediated Cytotoxic, Growth-Inhibitory and Pro-Apoptotic Effect in Human Melanoma Cells through Excessive Reactive Oxygen Species Generation. Int J Mol Sci 2020; 21:ijms21238937. [PMID: 33255659 PMCID: PMC7728064 DOI: 10.3390/ijms21238937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Melanoma, the most dangerous type of cutaneous neoplasia, contributes to about 75% of all skin cancer-related deaths. Thus, searching for new melanoma treatment options is an important field of study. The current study was designed to assess whether the condition of mild and low-dose UVA radiation augments the lomefloxacin-mediated cytotoxic, growth-inhibitory and pro-apoptotic effect of the drug in melanoma cancer cells through excessive oxidative stress generation. C32 amelanotic and COLO829 melanotic (BRAF-mutant) melanoma cell lines were used as an experimental model system. The combined exposure of cells to both lomefloxacin and UVA irradiation caused higher alterations of redox signalling pathways, as shown by intracellular reactive oxygen species overproduction and endogenous glutathione depletion when compared to non-irradiated but lomefloxacin-treated melanoma cells. The obtained results also showed that lomefloxacin decreased both C32 and COLO829 cells’ viability in a concentration-dependent manner. This effect significantly intensified when melanoma cells were exposed to UVA irradiation and the drug. For melanoma cells exposed to lomefloxacin or lomefloxacin co-treatment with UVA irradiation, the concentrations of the drug that decreased the cells’ viability by 50% (EC50) were found to be 0.97, 0.17, 1.01, 0.18 mM, respectively. Moreover, we found that the redox imbalance, mitochondrial membrane potential breakdown, induction of DNA fragmentation, and changes in the melanoma cells’ cell cycle distribution (including G2/M, S as well as Sub-G1-phase blockade) were lomefloxacin in a dose-dependent manner and were significantly augmented by UVA radiation. This is the first experimental work that assesses the impact of excessive reactive oxygen species generation upon UVA radiation exposure on lomefloxacin-mediated cytotoxic, growth-inhibitory and pro-apoptotic effects towards human melanoma cells, indicating the possibility of the usage of this drug in the photochemotherapy of malignant melanoma as an innovative medical treatment option which could improve the effectiveness of therapy. The obtained results also revealed that the redox imbalance intensification mediated by the phototoxic potential of fluoroquinolones may be considered as a more efficient treatment model of malignant melanoma and may constitute the basis for the development of new compounds with a high ability to excessive oxidative stress generation upon UVA radiation in cancer cells.
Collapse
|
81
|
Maciuca AM, Munteanu AC, Mihaila M, Badea M, Olar R, Nitulescu GM, Munteanu CVA, Bostan M, Uivarosi V. Rare-Earth Metal Complexes of the Antibacterial Drug Oxolinic Acid: Synthesis, Characterization, DNA/Protein Binding and Cytotoxicity Studies. Molecules 2020; 25:molecules25225418. [PMID: 33228104 PMCID: PMC7699381 DOI: 10.3390/molecules25225418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023] Open
Abstract
"Drug repositioning" is a current trend which proved useful in the search for new applications for existing, failed, no longer in use or abandoned drugs, particularly when addressing issues such as bacterial or cancer cells resistance to current therapeutic approaches. In this context, six new complexes of the first-generation quinolone oxolinic acid with rare-earth metal cations (Y3+, La3+, Sm3+, Eu3+, Gd3+, Tb3+) have been synthesized and characterized. The experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms; these findings are supported by DFT (density functional theory) calculations for the Sm3+ complex. The cytotoxic activity of the complexes, as well as the ligand, has been studied on MDA-MB 231 (human breast adenocarcinoma), LoVo (human colon adenocarcinoma) and HUVEC (normal human umbilical vein endothelial cells) cell lines. UV-Vis spectroscopy and competitive binding studies show that the complexes display binding affinities (Kb) towards double stranded DNA in the range of 9.33 × 104 - 10.72 × 105. Major and minor groove-binding most likely play a significant role in the interactions of the complexes with DNA. Moreover, the complexes bind human serum albumin more avidly than apo-transferrin.
Collapse
Affiliation(s)
- Ana-Madalina Maciuca
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
| | - Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
- Correspondence: (A.-C.M.); (V.U.); Tel.: +4-021-318-0742 (V.U.); Fax: +4-021-318-0750 (V.U.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave, 030304 Bucharest, Romania; (M.M.); (M.B.)
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str, 050663 Bucharest, Romania; (M.B.); (R.O.)
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str, 050663 Bucharest, Romania; (M.B.); (R.O.)
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str, 020956 Bucharest, Romania;
| | - Cristian V. A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy (IBRA), 296 Spl. Independenţei, 060031 Bucharest, Romania;
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave, 030304 Bucharest, Romania; (M.M.); (M.B.)
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
- Correspondence: (A.-C.M.); (V.U.); Tel.: +4-021-318-0742 (V.U.); Fax: +4-021-318-0750 (V.U.)
| |
Collapse
|
82
|
Felicetti T, Cecchetti V, Manfroni G. Modulating microRNA Processing: Enoxacin, the Progenitor of a New Class of Drugs. J Med Chem 2020; 63:12275-12289. [PMID: 32672457 PMCID: PMC8009507 DOI: 10.1021/acs.jmedchem.0c00510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 12/16/2022]
Abstract
The RNA interference (RNAi) process encompasses the cellular mechanisms by which short-noncoding RNAs posttranscriptionally modulate gene expression. First discovered in 1998, today RNAi represents the foundation underlying complex biological mechanisms that are dysregulated in many diseases. MicroRNAs are effector molecules of gene silencing in RNAi, and their modulation can lead to a wide response in cells. Enoxacin was reported as the first and unique small-molecule enhancer of microRNA (SMER) maturation. Herein, the biological activity of enoxacin as SMER is discussed to shed light on its innovative mode of action, its potential in treating different diseases, and the feasibility of using enoxacin as a chemical template for inspiring medicinal chemists. We debate its mechanism of action at the molecular level and the possible impact on future ligand and/or structure-guided chemical optimizations, as well as opportunities and drawbacks associated with the development of quinolones such as SMERs.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
83
|
Development and Validation of Stability-Indicating HPLC Methods for the Estimation of Lomefloxacin and Balofloxacin Oxidation Process under ACVA, H 2O 2, or KMnO 4 Treatment. Kinetic Evaluation and Identification of Degradation Products by Mass Spectrometry. Molecules 2020; 25:molecules25225251. [PMID: 33187198 PMCID: PMC7697971 DOI: 10.3390/molecules25225251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
The oxidation of lomefloxacin (LOM) and balofloxacin (BAL) under the influence of azo initiator of radical reactions of 4,4′-azobis(4-cyanopentanoic acid) (ACVA) and H2O2 was examined. Oxidation using H2O2 was performed at room temperature while using ACVA at temperatures: 40, 50, 60 °C. Additionally, the oxidation process of BAL under the influence of KMnO4 in an acidic medium was investigated. New stability-indicating HPLC methods were developed in order to evaluate the oxidation process. Chromatographic analysis was carried out using the Kinetex 5u XB—C18 100A column, Phenomenex (Torrance, CA, USA) (250 × 4.6 mm, 5 μm particle size, core shell type). The chromatographic separation was achieved while using isocratic elution and a mobile phase with the composition of 0.05 M phosphate buffer (pH = 3.20 adjusted with o-phosphoric acid) and acetonitrile (87:13 v/v for LOM; 80:20 v/v for BAL). The column was maintained at 30 °C. The methods were validated according to the ICH guidelines, and it was found that they met the acceptance criteria. An oxidation process followed kinetics of the second order reaction. The most probable structures of LOM and BAL degradation products formed were assigned by the UHPLC/MS/MS method.
Collapse
|
84
|
Eslami F, Mahdavi M, Babaei E, Hussen BM, Mostafavi H, Shahbazi A, Hidayat HJ. Down-regulation of Survivin and Bcl-2 concomitant with the activation of caspase-3 as a mechanism of apoptotic death in KG1a and K562 cells upon exposure to a derivative from ciprofloxacin family. Toxicol Appl Pharmacol 2020; 409:115331. [PMID: 33171188 DOI: 10.1016/j.taap.2020.115331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Ciprofloxacin derivatives belong to a family of antibiotics called fluoroquinolones. Recently, these compounds have been recommended for the treatment of cancer. In the present study, we assessed the cytotoxicity of several new synthetic ciprofloxacin derivatives and the apoptosis-inducing activity of the most efficient derivative in two human myeloid leukemia K562 and KG1-a cell lines. Among the prepared ciprofloxacin derivatives, 1-cyclopropyl-7-(4-(2-((3,7-dimethyloct-6-en-1-yl)oxy)-2-oxoethyl)piperazin-1-yl)-6-fluoro-4-oxo-1,4dihydroquinoline-3-carboxylic acid (4-DMOCP) was more active compound with IC50 of 19.56 and 22.13 μM for K562 and KG1-a, respectively. Apoptotic activity of the 4-DMOCP was examined morphologically through Hoechst 33258 staining, Annexin V/PI double staining, and caspase-3 activity assays. Changes in the expression level of some apoptosis-related genes and protein, including Bcl-2, Bax, Survivin, p53, Caspase-8 and Caspase-9 were evaluated by the real-time quantitative PCR (qRT PCR) and western blotting. The qRT PCR analysis showed that 4-DMOCP induces apoptosis in both cell lines via the down-regulation of Survivin and Bcl2, up-regulation of caspase-8 and -9, as well as a time-dependent increase in the Bax/Bcl2 transcripts. The mRNA level of p53 was also increased in both cell lines. In addition, western blot analysis revealed that treatment with the compound, down-regulated the protein expression levels of Bcl2 and Survivin and up-regulated the protein level of Bax in both cell lines. These findings suggest that these new compounds can be good candidates for the treatment of acute and chronic myeloid leukemia.
Collapse
Affiliation(s)
- Farhad Eslami
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hossein Mostafavi
- Department of Organic Chemistry & Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahmad Shahbazi
- Department of Organic Chemistry & Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
85
|
Ahadi H, Shokrzadeh M, Hosseini-Khah Z, Ghassemi Barghi N, Ghasemian M, Emadi E, Zargari M, Razzaghi-Asl N, Emami S. Synthesis and biological assessment of ciprofloxacin-derived 1,3,4-thiadiazoles as anticancer agents. Bioorg Chem 2020; 105:104383. [PMID: 33130342 DOI: 10.1016/j.bioorg.2020.104383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
Abstract
The quinolone-3-carboxylic acid scaffold is essential structure for antibacterial activity of fluoroquinolones such as ciprofloxacin. Modification of 3-carboxylic functionality in this structure can be used for switching its activity from antibacterial to anticancer. Accordingly, a series of C-3 modified ciprofloxacin derivatives containing N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-carboxamide moiety was synthesized as novel anticancer agents. Most of compounds showed significant activity against MCF-7, A549 and SKOV-3 cancer cells in the MTT assay. In particular, compounds 13a-e and 13g were found to be as potent as standard drug doxorubicin against MCF-7 cell line (IC50s = 3.26-3.90 µM). Furthermore, the 4-fluorobenzyl derivatives 13h and 14b with IC50 values of 3.58 and 2.79 µM exhibited the highest activity against SKOV-3 and A549 cells, being as potent as doxorubicin. Two promising compounds 13e and 13g were further tested for their apoptosis inducing activity and cell cycle arrest. Both compounds could significantly induce apoptosis in MCF-7 cells, while compound 13e was more potent apoptosis inducer resulting in an 18-fold increase in the proportion of apoptotic cells at the IC50 concentration in MCF-7 cells. The cell cycle analysis revealed that compounds 13e and 13g could increase cell portions in the sub-G1 phase, inducing oligonucleosomal DNA fragmentation and apoptosis confirmed by comet assay.
Collapse
Affiliation(s)
- Hamideh Ahadi
- Department of Medicinal Chemistry, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseini-Khah
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Ghassemi Barghi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Elnaz Emadi
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nima Razzaghi-Asl
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
86
|
Feng LS. Development and Advances of Drugs for Cancer Theranostics – PART-II. Curr Top Med Chem 2020; 20:1910. [DOI: 10.2174/156802662021200817164319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
87
|
Wang LP, Xu Z, Deng GY, Xu SL. Antiproliferative Activity of 8-methoxy Ciprofloxacin-Hydrozone/Acylhydrazone Scaffolds. Curr Top Med Chem 2020; 20:1911-1915. [PMID: 32493190 DOI: 10.2174/1568026620666200603105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
AIMS A series of 8-methoxy ciprofloxacin- hydrazone/acylhydrazone hybrids were evaluated for their activity against a panel of cancer cell lines including HepG2 liver cancer cells, MCF-7, doxorubicin- resistant MCF-7 (MCF-7/DOX) breast cancer cells, DU-145 and multidrug-resistant DU145 (MDR DU-145) prostate cancer cells to seek for novel anticancer agents. BACKGROUND Ciprofloxacin with excellent pharmacokinetic properties as well as few side effects, is one of the most common used antibacterial agents. Notably, Ciprofloxacin could induce cancer cells apoptosis, and cell cycle arrest at the S/G2 stage. The structure-activity relationship reveals that the introduction of the methoxy group into the C-8 position of the fluoroquinolone moiety has resulted in a greater binding affinity to the binding site, and 8-methoxy ciprofloxacin derivatives have proved a variety of biological activities even against drug-resistant organisms. However, to the best of our current knowledge, there are no studies that have reported the anticancer activity of 8-methoxy ciprofloxacin derivatives so far. Furthermore, many fluoroquinolone-hydrazone/acylhydrazone hybrids possess promising anticancer activity. Thus, it is rational to screen the anticancer activity of 8-methoxy ciprofloxacin derivatives. OBJECTIVE To enrich the structure-activity relationship and provide new anticancer candidates for further investigations. METHODS The desired 8-methoxy ciprofloxacin-hydrazone/acylhydrazone hybrids 5 and 6 were screened for their in vitro anticancer activity against liver cancer cells HepG2, breast cancer cells MCF-7, MCF7/DOX, prostate cancer cells DU-145 and MDR DU-145 by MTT assay. RESULTS Some of 8-methoxy ciprofloxacin-hydrazone hybrids showed potential activity against HepG2, MCF-7, MCF-7/DOX, DU-145 and MDR DU-145 cancer cell lines, low cytotoxicity towards VERO cells and promising inhibitory activity on tubulin polymerization. CONCLUSION Compounds 5d and 5f showed promising anticancer activity, low cytotoxicity, and potential tubulin polymerization inhibitory activity, were worthy of investigation. Other: The structure-activity relationship was enriched.
Collapse
Affiliation(s)
- Li-Ping Wang
- Liyuan Hospital Affiliated To Tongji Medical College, Huazhong University of Science and Technology, Wuhan 100191, Hubei, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Gui-Ying Deng
- Liyuan Hospital Affiliated To Tongji Medical College, Huazhong University of Science and Technology, Wuhan 100191, Hubei, China
| | - Sha-Li Xu
- Liyuan Hospital Affiliated To Tongji Medical College, Huazhong University of Science and Technology, Wuhan 100191, Hubei, China
| |
Collapse
|
88
|
Affiliation(s)
- Katrina L Schmid
- School of Optometry and Vision Science, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
89
|
Ramuta TŽ, Starčič Erjavec M, Kreft ME. Amniotic Membrane Preparation Crucially Affects Its Broad-Spectrum Activity Against Uropathogenic Bacteria. Front Microbiol 2020; 11:469. [PMID: 32265889 PMCID: PMC7107013 DOI: 10.3389/fmicb.2020.00469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Urinary tract infections are among the most common bacterial infections in humans. Moreover, they are highly recurrent and increasingly often resistant to antibiotics. The antimicrobial properties of the amniotic membrane (AM), the innermost layer of fetal membranes, have been briefly reported in the literature, however, the results of published studies are often inconsistent and unclear; moreover, its effect on uropathogenic bacteria has not yet been investigated. Further, there is no data in the literature about the effect of AM preparation and storage on its antimicrobial properties. To examine the impact of several preparation procedures on the antimicrobial properties of AM, we prepared patches and homogenates of fresh (fAM) and cryopreserved (cAM) human AM and tested them on 14 selected Gram-positive and Gram-negative uropathogenic bacteria. By employing novel antimicrobial efficiency assays we showed that fAM and cAM homogenates have broad-spectrum antimicrobial activity against all here tested uropathogenic bacteria, except for Serratia marcescens. Moreover, they had a potent effect also on the multiple-resistant clinical strains of uropathogenic Escherichia coli. Interestingly, the patches of fAM and cAM had no antimicrobial effect on any of the tested strains. We therefore prepared and stored AM patches according to the standard procedure for clinical use in ophthalmology, which includes the cryopreservation of antibiotic-treated AM, and performed antimicrobial efficiency assays. Our findings suggest that the ultrastructure of AM patches could enable the retention of added antibiotics. In addition, we also prepared gentamicin-resistant uropathogenic E. coli strains, which confirmed that the antimicrobial effect of antibiotic-treated AM patches can be attributed to the antibiotic alone. To summarize, here we describe novel protocols for preparation and storage of AM to ensure the preservation of its antimicrobial factors. Moreover, we describe the mechanism of AM retention of antibiotics, based on which the AM could potentially be used as a drug delivery vehicle in future clinically applicable approaches.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
90
|
Large-Scale Virtual Screening Against the MET Kinase Domain Identifies a New Putative Inhibitor Type. Molecules 2020; 25:molecules25040938. [PMID: 32093126 PMCID: PMC7070486 DOI: 10.3390/molecules25040938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
By using an ensemble-docking strategy, we undertook a large-scale virtual screening campaign in order to identify new putative hits against the MET kinase target. Following a large molecular dynamics sampling of its conformational space, a set of 45 conformers of the kinase was retained as docking targets to take into account the flexibility of the binding site moieties. Our screening funnel started from about 80,000 chemical compounds to be tested in silico for their potential affinities towards the kinase binding site. The top 100 molecules selected—thanks to the molecular docking results—were further analyzed for their interactions, and 25 of the most promising ligands were tested for their ability to inhibit MET activity in cells. F0514-4011 compound was the most efficient and impaired this scattering response to HGF (Hepatocyte Growth Factor) with an IC50 of 7.2 μM. Interestingly, careful docking analysis of this molecule with MET suggests a possible conformation halfway between classical type-I and type-II MET inhibitors, with an additional region of interaction. This compound could therefore be an innovative seed to be repositioned from its initial antiviral purpose towards the field of MET inhibitors. Altogether, these results validate our ensemble docking strategy as a cost-effective functional method for drug development.
Collapse
|
91
|
Ahadi H, Emami S. Modification of 7-piperazinylquinolone antibacterials to promising anticancer lead compounds: Synthesis and in vitro studies. Eur J Med Chem 2020; 187:111970. [DOI: 10.1016/j.ejmech.2019.111970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/03/2023]
|
92
|
Kozieł S, Komarnicka UK, Ziółkowska A, Skórska-Stania A, Pucelik B, Płotek M, Sebastian V, Bieńko A, Stochel G, Kyzioł A. Anticancer potency of novel organometallic Ir(iii) complexes with phosphine derivatives of fluoroquinolones encapsulated in polymeric micelles. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00538j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 3D model of cell culturing (spheroids) was explored and the anticancer potential of the selected novel organometallic Ir(iii) complex encapsulated in Pluronic p-123 micelles was clearly proved.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | | | | | - Barbara Pucelik
- Małopolska Centre of Biotechnology
- Jagiellonian University
- Kraków
- Poland
| | - Michał Płotek
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
- Faculty of Conservation and Restoration of Works of Art
| | - Victor Sebastian
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- The Aragón Materials Science Institute (ICMA)
- University of Zaragoza
- 50018 Zaragoza
| | - Alina Bieńko
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Grażyna Stochel
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| |
Collapse
|
93
|
Wang H, Si X, Wu T, Wang P. Silver nanoparticles enhanced fluorescence for sensitive determination of fluoroquinolones in water solutions. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractA new type of silver nanoparticle (AgNPs) was prepared with simple and fast methods and low-toxic compounds. With the addition of different concentrations of AgNPs, the effects of AgNPs on the fluorescence properties of three different kinds of fluoroquinolones (enrofloxacin ENR, lomefloxacin LMF and norfloxacin NOR) in water solutions were studied, respectively. The experimental results demonstrated that the fluorescence intensity for each of the fluoroquinolones (FQ)was firstly enhanced and then quenched with the increased concentration of AgNPs in water solutions. The possible mechanisms about the AgNPs on the fluorescence behaviors of each FQ were also investigated, respectively. In addition, new silver enhanced nanoparticles materials fluorescence methods were established for the separate determination of ENR, LMF and NOR in water solutions. As compared with the identical control fluorimetric methods with no addition of AgNPs, the new enhanced fluorimetic methods were also investigated, respectively. The experimental results indicated that the new enhanced methods could detect lower concentrations of ENR, LMF and NOR in water solutions. Moreover, the newly enhanced fluorimetric methods were validated and successfully applied for the quantitative assay of ENR, LMF and NOR in different kinds of medicinal preparations, respectively.
Collapse
Affiliation(s)
- Hongling Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuejing Si
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tunhua Wu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou325035, China
| | - Ping Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
94
|
Hernández‐López H, Leyva‐Ramos S, Moncada‐Martínez RD, López JA, Cardoso‐Ortiz J. Copper(I)‐Catalyzed Azide‐Alkyne Cycloaddition Microwave‐Assisted: Preparation of 7‐(4‐Substituted‐1
H
‐1,2,3‐Triazol‐1‐yl)‐Fluoroquinolones. ChemistrySelect 2019. [DOI: 10.1002/slct.201903254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiram Hernández‐López
- Unidad Académica de Ciencias QuímicasUniversidad Autónoma de Zacatecas Carretera Zacatecas-Guadalajara km 6, Ejido la Escondida s/n, Zacatecas Zacatecas 98160 México
| | - Socorro Leyva‐Ramos
- Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíAv. Manuel Nava 6Zona Universitaria San Luis Potosí, San Luis Potosí 78210 México
| | - Rosa Delia Moncada‐Martínez
- Unidad Académica de Ciencias QuímicasUniversidad Autónoma de Zacatecas Carretera Zacatecas-Guadalajara km 6, Ejido la Escondida s/n, Zacatecas Zacatecas 98160 México
| | - Jesús Adrián López
- Unidad Académica de Ciencias BiológicasUniversidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col Hidráulica. Zacatecas, Zacatecas 98068 México
| | - Jaime Cardoso‐Ortiz
- Unidad Académica de Ciencias QuímicasUniversidad Autónoma de Zacatecas Carretera Zacatecas-Guadalajara km 6, Ejido la Escondida s/n, Zacatecas Zacatecas 98160 México
| |
Collapse
|
95
|
Lien VT, Olberg DE, Hagelin G, Klaveness J. Synthesis and antiproliferative evaluation of novel N-arylquinolones. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02504-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
96
|
Toward a repositioning of the antibacterial drug nifuroxazide for cancer treatment. Drug Discov Today 2019; 24:1930-1936. [DOI: 10.1016/j.drudis.2019.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
|