51
|
Biochar reinforced the populations of cbbL-containing autotrophic microbes and humic substance formation via sequestrating CO 2 in composting process. J Biotechnol 2021; 333:39-48. [PMID: 33945823 DOI: 10.1016/j.jbiotec.2021.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 01/03/2023]
Abstract
The quality of compost is drastically reduced due to the loss of carbon, which negatively impacts the environment. Carbon emission reduction and carbon dioxide (CO2) fixation have attracted much attention in composting research. In this study, the relationship between CO2 emission, humic substances (HS) formation and cbbL-containing autotrophic microbes (CCAM) was analyzed by adding biochar during cow manure composting. The results showed that biochar can facilitate the degradation of organic matter (OM) and formation of HS, as well as reinforce the diversity and abundance of CCAM community, thereby promoting CO2 fixation and reducing carbon loss during composting. High-throughput sequencing analysis revealed significant increase in Actinobacteriota and Proteobacteria abundance by 30.97 % and 10.48 %, respectively, thus increasing carbon fixation by 32.07 %. Additionally, Alpha diversity index increased significantly during thermophilic phase, while Shannon index increased by 143.12 % and Sobs index increased by 51.62 %. Redundancy analysis (RDA) indicated that CO2 was positively correlated with C/N, temperature, HS and dissolved organic matter (DOM), while the abundance of Paeniclostridium, Corynebacterium, Bifidobacterium, Clostridium, Turicibacter and Romboutsia were positively correlated with temperature, CO2, C/N and E2/E4 (p < 0.01).
Collapse
|
52
|
Xu Z, Ma Y, Zhang L, Han Y, Yuan J, Li G, Luo W. Relating bacterial dynamics and functions to gaseous emissions during composting of kitchen and garden wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144210. [PMID: 33429280 DOI: 10.1016/j.scitotenv.2020.144210] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
This study aims to relate bacterial dynamics to gaseous emissions during the composting of kitchen and garden wastes. High-throughput sequencing and Functional Annotation of Prokaryotic Taxa (FAPROTAX) were used to analyse the bacterial community and potential functions during composting, respectively. Results show that the addition of garden waste up to 15% of the total wet weight of composting materials notably mitigated gaseous emissions and improved maturity during kitchen waste composting. Ammonium nitrogen, temperature, oxygen content, and electrical conductivity were identified as critical factors to impact gaseous emissions. The bacterial community analysis indicated that the proliferation of anaerobes during the storage of kitchen waste induced the dramatic emission of methane (CH4) and nitrous oxide (N2O) at the beginning of composting. Adding garden waste could effectively amend the physiochemical properties of composting materials to reduce the relative abundance of microbes (e.g. Desulfotomaculum and Caldicoprobacter) that contributed to gaseous emissions, but enrich those (e.g. Bacillus and Pseudoxanthomonas) for organic biodegradation. Further analysis by FAPROTAX corroborated that adding garden waste could effectively inhibit relevant microbial metabolisms (e.g. fermentation, nitrite/nitrate respiration and sulphate respiration) and thus alleviate the emission of greenhouse gases and odours during kitchen waste composting.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyu Han
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
53
|
Zhu P, Shen Y, Pan X, Dong B, Zhou J, Zhang W, Li X. Reducing odor emissions from feces aerobic composting: additives. RSC Adv 2021; 11:15977-15988. [PMID: 35481176 PMCID: PMC9031696 DOI: 10.1039/d1ra00355k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
Aerobic composting is a reliable technology for treating human and animal feces, and converting them into resources. Odor emissions in compost (mainly NH3 and VSCs) not only cause serious environmental problems, but also cause element loss and reduce compost quality. This review introduces recent progresses on odor mitigation in feces composting. The mechanism of odor generation, and the path of element transfer and transformation are clarified. Several strategies, mainly additives for reducing odors proven effective in the literature are proposed. The characteristics of these methods are compared, and their respective limitations are analyzed. The mechanism and characteristics of different additives are different, and the composting plant needs to be chosen according to the actual situation. The application of adsorbent and biological additives has a broad prospect in feces composting, but the existing research is not enough. In the end, some future research topics are highlighted, and further research is needed to improve odor mitigation and element retention in feces compost. Aerobic composting is a reliable technology for treating human and animal feces, and converting them into resources. The addition of additives can reduce the production of odor during the composting process.![]()
Collapse
Affiliation(s)
- Ping Zhu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Yilin Shen
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Xusheng Pan
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 PR China +86-021-66137747
| | - John Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney 15 Broadway Sydney NSW 2007 Australia
| | - Weidong Zhang
- School of Petroleum and Chemical Engineering, Shenyang University of Technology 30 Guanghua Street, Hongwei District Liaoyang City Liaoning Province 111003 People's Republic of China
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| |
Collapse
|
54
|
Li S, Li J, Shi L, Li Y, Wang Y. Role of phosphorous additives on nitrogen conservation and maturity during pig manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17981-17991. [PMID: 33405112 DOI: 10.1007/s11356-020-11694-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
This study compared different types and addition amounts of phosphorous additives on nitrogen conservation and maturity during pig manure composting. Phosphogypsum and superphosphate were applied with the same amount of phosphorus (5% of the initial total nitrogen, molar basis) or weight (10% of initial dry matter) and compared to a control treatment without additives. Results show that phosphorous additives could effectively conserve nitrogen. Adding phosphogypsum could significantly reduce NH3 emission and total nitrogen loss, but increase N2O emission. Application of 10% superphosphate mitigated NH3 emissions and total nitrogen loss but inhibited the organic matter degradation and compost maturity. More importantly, with the addition of 5% initial total nitrogen (i.e., 2.5% dry matter), superphosphate could synchronously reduce NH3 and N2O emissions and improve compost quality by introducing additional nutrients into the compost. In comprehensive evolution of gaseous emissions, nitrogen loss, and compost maturity, superphosphate addition with 2.5% of initial dry matter was suggested to be used in practice.
Collapse
Affiliation(s)
- Shuyan Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Jijin Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lianhui Shi
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Yangyang Li
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yaya Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
55
|
A Conceptual Framework for Incorporation of Composting in Closed-Loop Urban Controlled Environment Agriculture. SUSTAINABILITY 2021. [DOI: 10.3390/su13052471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Controlled environment agriculture (CEA), specifically advanced greenhouses, plant factories, and vertical farms, has a significant role to play in the urban agri-food landscape through provision of fresh and nutritious food for urban populations. With the push towards improving sustainability of these systems, a circular or closed-loop approach for managing resources is desirable. These crop production systems generate biowaste in the form of crop and growing substrate residues, the disposal of which not only impacts the immediate environment, but also represents a loss of valuable resources. Closing the resource loop through composting of crop residues and urban biowaste is presented. Composting allows for the recovery of carbon dioxide and plant nutrients that can be reused as inputs for crop production, while also providing a mechanism for managing and valorizing biowastes. A conceptual framework for integrating carbon dioxide and nutrient recovery through composting in a CEA system is described along with potential environmental benefits over conventional inputs. Challenges involved in the recovery and reuse of each component, as well as possible solutions, are discussed. Supplementary technologies such as biofiltration, bioponics, ozonation, and electrochemical oxidation are presented as means to overcome some operational challenges. Gaps in research are identified and future research directions are proposed.
Collapse
|
56
|
Lei L, Gu J, Wang X, Song Z, Wang J, Yu J, Hu T, Dai X, Xie J, Zhao W. Microbial succession and molecular ecological networks response to the addition of superphosphate and phosphogypsum during swine manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111560. [PMID: 33172706 DOI: 10.1016/j.jenvman.2020.111560] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
This study assessed the effects of superphosphate (SPP) and phosphogypsum (PPG) on the bacterial and fungal community succession and molecular ecological networks during composting. Adding SPP and PPG had positive effects on the bacterial richness and diversity, negative effects on the fungal richness and diversity. The microbial diversity and richness were higher in PPG than SPP. Non-metric multidimensional scaling analysis clearly separated SPP and PPG from the control treatment with no additives. The dominant genera comprised Turicibacter, Bacillus, norank_o_SBR1031, Thermobifida, norank_f_Limnochordaceae, Truepera, Thermopolyspora, Mycothermus, Dipodascus, Thermomyces, and unclassified_p_Ascomycota. In all treatments, the major bacterial species differed clearly in the later thermophilic, cooling, and maturation composting stages, whereas the main fungal species varied significantly in the thermophilic stage. The changes in the dominant microorganisms in SPP and PPG may have inhibited or promoted the degradation of organic matter during various composting stages. Adding SPP and PPG led to more complex bacterial networks and less complex fungal networks, where SPP had more adverse effects on the fungal networks than PPG. SPP and PPG could potentially alter the co-occurrence patterns of the bacterial and fungal communities by changing the most influential species. SPP and PPG changed the composition and succession of the microbial community by influencing different physiochemical properties during various composting stages where the pH was the main explanatory factor. Overall, this study provides new insights into the effects of SPP and PPG on the microbial community and its interactions during composting.
Collapse
Affiliation(s)
- Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
57
|
Lei L, Gu J, Wang X, Song Z, Yu J, Wang J, Dai X, Zhao W. Effects of phosphogypsum and medical stone on nitrogen transformation, nitrogen functional genes, and bacterial community during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141746. [PMID: 33207482 DOI: 10.1016/j.scitotenv.2020.141746] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
This study explored the effects of adding phosphogypsum (PPG), medical stone (MS), and both (PPM) during composting on nitrogen transformation, nitrogen functional genes, the bacterial community, and their relationships with NH3 and N2O emissions. Adding MS and PPM reduced NH3 emissions by 25.78-68.37% and N2O emissions by 19.00-42.86%. PPG reduced NH3 emissions by 59.74% but slightly increased N2O emissions by 8.15%. MS was strongly correlated with the amoA-dominated nitrification process. PPG and PPM had strong correlations with nirS- and nirK-dominated, and nosZ-dominated denitrification processes, respectively. PPM promoted nitrification and denitrification processes more than PPG and MS. Different functional bacteria had key roles in nitrification and denitrification during different composting stages. Firmicutes probably contributed to the conversion and release of nitrogen in the thermophilic period, whereas Proteobacteria, Chloroflexi, Bacteroidetes, and other phyla might have played important roles in the cooling and maturation periods. PPM obtained the greatest reductions in NH3 and N2O release via the regulation of environmental variables, nitrogen functional genes, and the bacterial community. Overall, these results provide insights at a molecular level into the effects of PPG and MS on nitrogen transformation and NH3 and N2O emissions during composting.
Collapse
Affiliation(s)
- Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
58
|
Khoshnevisan B, Duan N, Tsapekos P, Awasthi MK, Liu Z, Mohammadi A, Angelidaki I, Tsang DCW, Zhang Z, Pan J, Ma L, Aghbashlo M, Tabatabaei M, Liu H. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 135:110033. [DOI: 10.1016/j.rser.2020.110033] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
59
|
Jin Y, Miao Y, Geng Y, Huang M, Zhang Y, Song X, Li S, Zou J. Calcium Superphosphate-Mediated Reshaping of Denitrifying Bacteria Community Contributed to N 2O Mitigation in Pig Manure Windrow Composting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E171. [PMID: 33383657 PMCID: PMC7795020 DOI: 10.3390/ijerph18010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022]
Abstract
Composting is recognized as an effective strategy for the sustainable use of organic wastes, but also as an important emission source of nitrous oxide (N2O) contributing to global warming. The effects of calcium superphosphate (CaSSP) on N2O production during composting are reported to be controversial, and the intrinsic microbial mechanism remains unclear. Here, a pig manure windrow composting experiment lasting for ~60 days was performed to evaluate the effects of CaSSP amendment (5%, w/w) on N2O fluxes in situ, and to determine the denitrifiers' response, and their driving factors. Results indicated that CaSSP amendment significantly reduced N2O emissions as compared to the control pile (maximum N2O emission rate reduced by 64.5% and total emission decreased by 49.8%). CaSSP amendment reduced the abundance of nirK gene encoding for nitrite reductase, while the abundance of nosZ gene (N2O reductase) was enriched. Finally, we built a schematic model and indicated that the abundance of nirK gene was likely to play a key role in mediating N2O production, which were correlated with NH4+-N and NO3--N changing responsive to CaSSP. Our finding implicates that CaSSP application could be a potential strategy for N2O mitigation in manure windrow composting, and the revealed microbial mechanism is helpful for deepening the understanding of the interaction among N-cycle functional genes, physicochemical factors, and greenhouse gases (GHG) emissions.
Collapse
Affiliation(s)
- Yaguo Jin
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Yingcheng Miao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Yajun Geng
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Mengyuan Huang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Yihe Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Xiuchao Song
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Shuqing Li
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
60
|
Liu Y, Ma R, Li D, Qi C, Han L, Chen M, Fu F, Yuan J, Li G. Effects of calcium magnesium phosphate fertilizer, biochar and spent mushroom substrate on compost maturity and gaseous emissions during pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110649. [PMID: 32364133 DOI: 10.1016/j.jenvman.2020.110649] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
This study used a laboratory-scale system to investigate the effects of calcium magnesium phosphate fertilizer (CaMgP), biochar, and spent mushroom substrate (SMS) on compost maturity and gasous emissions during pig manure composting. The results showed that the addition of CaMgP, Biochar or SMS had no negative effect on the quality and maturity of compost, and all three additives could reduce the emissions of ammonia (NH3), hydrogen sulfide (H2S), dimethyl sulfide (Me2S) and dimethyl disulfide (Me2SS). Among them, the effect of adding CaMgP on NH3 emission reduction was the most obvious, reduced 42.90%. The emission reduction of CaMgP to H2S was similar to that of SMS, which decreased by 34.91% and 32.88% respectively. The emission reduction effects of the three additives on Me2S and Me2SS were obvious, all of which were over 50%. However, only adding SMS reduced the N2O emission by 37.08%.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Danyang Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Lina Han
- Yangpulvbaofeng Agricultural Materials Co., Ltd, Danzhou, Hainan, 571744, China
| | - Mei Chen
- Yangpulvbaofeng Agricultural Materials Co., Ltd, Danzhou, Hainan, 571744, China
| | - Feng Fu
- Yangpulvbaofeng Agricultural Materials Co., Ltd, Danzhou, Hainan, 571744, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
61
|
Awasthi MK, Duan Y, Awasthi SK, Liu T, Zhang Z, Kim SH, Pandey A. Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing. RENEWABLE ENERGY 2020; 152:421-429. [DOI: 10.1016/j.renene.2020.01.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
62
|
Li H, Zhang T, Tsang DCW, Li G. Effects of external additives: Biochar, bentonite, phosphate, on co-composting for swine manure and corn straw. CHEMOSPHERE 2020; 248:125927. [PMID: 32014634 DOI: 10.1016/j.chemosphere.2020.125927] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/29/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Composting is an acceptable and economically feasible process for recycling agricultural biomass waste. The addition of external additives to adjust the process of composting has been attracted lots of research attention. To investigate the effects of external additives on nutrients transformation process of composting, a laboratory reactors scale co-composting based on swine manure and corn straw (CK) with the additives of phosphate (MP), calcium bentonite (CB) and biochar (BC) were performed for 30 days. The results showed the addition of phosphate and biochar could contribute to accelerating temperature rise and shorten the thermophilic phase. The germination index (GI) of MP and BC achieved 180% and 150%, respectively. The excitation-emission matrix (EEM) demonstrated the intensities of the peak C (humic acids) of the MP treatment was 829.5, and the PV,n/PIII,n value (9.59) of MP treatment was particularly higher compared to other three treatments according to the fluorescence regional integration (FRI) analysis. The Fourier Transform Infrared spectroscopy (FTIR) indicated the rate of decomposition of aliphatic C substances was higher than that of aromatic C substances. According to the X-ray diffraction (XRD) spectra results, characteristic peaks at both 16° and 22° were decreased, indicating cellulose and amorphous components were degraded. It further proved the formation of struvite component in MP treatment. Therefore, based on the maturity indicators, EEM and XRD results, phosphate is an efficient additive and recommended for swine manure and corn straw co-composting.
Collapse
Affiliation(s)
- Huanhuan Li
- Biomass Engineering Center, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tao Zhang
- Biomass Engineering Center, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Guoxue Li
- Biomass Engineering Center, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
63
|
Sakamoto T, Amano Y, Machida M. Phosphate ion adsorption properties of PAN-based activated carbon fibers prepared with K2CO3 activation. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2465-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
64
|
Awasthi SK, Sarsaiya S, Awasthi MK, Liu T, Zhao J, Kumar S, Zhang Z. Changes in global trends in food waste composting: Research challenges and opportunities. BIORESOURCE TECHNOLOGY 2020; 299:122555. [PMID: 31866141 DOI: 10.1016/j.biortech.2019.122555] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 05/27/2023]
Abstract
Increasing food waste (FW) generation has put significant pressure on the environment and has increased the global financial costs of its appropriate management. Among the traditional organic waste recycling technologies (i.e., incineration, landfilling and anaerobic digestion), composting is an economically feasible and reliable technology for FW recycling regardless of its technical flaws and social issues. The global scenario of FW generation, technical advancement in FW composting and essential nutrient recovery from organic waste with waste recycling are discussed in this article. Recent research on various strategies to improve FW composting, including co-composting, the addition of organic/inorganic additives, the mitigation of gaseous emission, and microbiological variations are comprehensively explained. Subsequently, it is shown that the performing FW composting in an existing mechanical facility can improve organic waste degradation and produce value-added mature compost to save on costs and increase the technological feasibility and viability of FW composting to some extent.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute CSIR-NEERI, Nehru Marg, Nagpur, Maharashtra 440020, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
65
|
Awasthi MK, Duan Y, Awasthi SK, Liu T, Zhang Z. Effect of biochar and bacterial inoculum additions on cow dung composting. BIORESOURCE TECHNOLOGY 2020; 297:122407. [PMID: 31776104 DOI: 10.1016/j.biortech.2019.122407] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
The present study evaluates the effectiveness of different types of biochar additives and bacterial inoculation on gaseous emission, nutrient preservation, and relevant functional bacterial community during cow manure composting. The result revealed that biochar and bacterial consortium inoculation effectively inhibited gaseous emission and improved carbon and nitrogen sequestration, remarkably enriching the abundance of the functional bacteria community. Notably, superior efficacy was found in 12% wheat straw biochar and bacterial consortium amendment composting of T6 with the lowest cumulative CO2-C and NH3-N (308.02 g and 12.71 g, respectively), minimal total C and N losses, and the highest bacterial population. Additionally, gaseous emission exhibited a strong correlation between physicochemical properties with intersection of 66.78% and a unique substrate utilizing bacterial communities. Consequently, the integrated application of biochar and bacterial consortium inoculation was suggested as an efficient method to adjust microbial activity and facilitate cellulose-rich waste degradation, enabling efficient management of organic waste from cow manure and wheat straw by composting.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
66
|
Li Y, Liu Y, Yong X, Wu X, Jia H, Wong JWC, Wu H, Zhou J. Odor emission and microbial community succession during biogas residue composting covered with a molecular membrane. BIORESOURCE TECHNOLOGY 2020; 297:122518. [PMID: 31812915 DOI: 10.1016/j.biortech.2019.122518] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
A membrane-covered composting system was used to investigate the odor emission and microbial community succession during biogas residue composting. Results showed that in comparison with the control (CK) group, the NH3 and H2S emissions outside the membrane of the membrane-covered (CT) group decreased by 58.64% and 38.13%, respectively. The nitrogen preservation rate of the CT group was increased by 17.27% in comparison with the CK group. Moreover, the ammonium nitrogen and nitrate nitrogen contents of the CT group were 37.68% and 11.77% higher than those of the CK group, respectively. Microbial analysis showed that the average abundance and co-occurrence rate of ammonification bacteria dominated by Pseudomonas and Bacillus in the CT group were lower than those in the CK group, and the abundance of anaerobic sulfate-reducing bacteria (SRB) dominated by Desulfovibrio in the CT group was higher than that in the CK group.
Collapse
Affiliation(s)
- Yinchao Li
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yongdi Liu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiayuan Wu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Honghua Jia
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Hao Wu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
67
|
Tong B, Wang X, Wang S, Ma L, Ma W. Transformation of nitrogen and carbon during composting of manure litter with different methods. BIORESOURCE TECHNOLOGY 2019; 293:122046. [PMID: 31472410 DOI: 10.1016/j.biortech.2019.122046] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
In this study, to investigate the nitrogen and carbon characteristics throughout the composting process in different systems, four methods of composting including static treatment (ST), turning treatment (TT), forced aeration treatment (FAT), and forced aeration with acidification treatment (FAAT) were conducted. Organic matter degradation was improved in TT and FAT that accelerated the composting efficiency. The harmless time based on phytotoxicity was significantly shortened in FAT comparing with ST. However, nitrogen loss through ammonia volatilization increased 14.0%. Ammonia volatilization could be significantly decreased to 17.0% after acidification optimization with FAAT. Compared to FAT, the FAAT got an increased nitrous oxide production and decreased methane emission. Generally, the lowest global warming potential value (52.8 kg CO2-eq/t) was found in FAAT. Therefore, considering the environmental, fertilizer and toxicity indicators, the FAAT composting method is the most promising method, and has the potential to be promoted for implementation in practice.
Collapse
Affiliation(s)
- Bingxin Tong
- College of Resources and Environment Science, Hebei Agricultural University, Baoding 071000, China
| | - Xuan Wang
- Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Shiqiang Wang
- College of Resources and Environment Science, Hebei Agricultural University, Baoding 071000, China
| | - Lin Ma
- Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Wenqi Ma
- College of Resources and Environment Science, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
68
|
Yang WQ, Zhuo Q, Chen Q, Chen Z. Effect of iron nanoparticles on passivation of cadmium in the pig manure aerobic composting process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:900-910. [PMID: 31302554 DOI: 10.1016/j.scitotenv.2019.07.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is a toxic metal ion in pig manure impacting on the ecosystem, and hence the immobilization of Cd by green synthesis of iron nanoparticles (G-nFe) is a potential approach. In this study, transformation of Cd (II) during the pig manure thermophilic aerobic composting process in the presence of G-nFe was investigated. The results show that the addition of G-nFe promoted the composting process and release of available phosphorus (AP). In all six experiments, obvious passivation of Cd occurred during 15 days' composting. Particularly when 500 mL kg-1 of G-nFe was added and Cd (II) was added at 0.6%(w/w%), residual Cd increased from 0.0016% to 55.70% and exchangeable Cd decreased from 98.54% to 7.21%. Batch experiments revealed that the G-nFe promoted the transformation of Cd into a larger passivation fraction. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), SEM-Mapping and Fourier transform infrared (FTIR) analysis was used to characterize residual samples, where indicated that the passivation of Cd in compost was highly correlated with the increase of P, it can be concluded that fixing with compost resulted in the formation of Cd phosphate precipitation or co-precipitation with other phosphates.
Collapse
Affiliation(s)
- Wen-Qing Yang
- School of Environmental Science and Engineering, Minnan Science and Technology, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Qian Zhuo
- School of Environmental Science and Engineering, Minnan Science and Technology, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Qinghua Chen
- School of Environmental Science and Engineering, Minnan Science and Technology, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Zuliang Chen
- School of Environmental Science and Engineering, Minnan Science and Technology, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
69
|
Chen M, Wang C, Wang B, Bai X, Gao H, Huang Y. Enzymatic mechanism of organic nitrogen conversion and ammonia formation during vegetable waste composting using two amendments. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:306-315. [PMID: 31351616 DOI: 10.1016/j.wasman.2019.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Elucidating the mechanism of nitrogen conversion during composting is crucial for controlling nutrient loss and improving the quality of compost. To explore the enzymatic mechanism of organic conversion during composting, composting experiments using vegetable waste and chicken manure mixed with wheat straw and corn stalk as two separate treatments: WS and CS, respectively, were conducted in 63 L aerated static pile reactors for 33 d. The changes in the nitrogen fractions and related-enzymes activities were analyzed during different periods. The total nitrogen content increased by 34.3% during WS and decreased by 6.22% during CS after 33d of composting. The ammounium nitrogen content decreased by 79.6% and 51.4% during WS and CS. The nitrate, nitrite, organic, acid-insoluble organic nitrogen contents increased by approximately 52.6-123.9%, 590.9-5875%, 59.1-213.8%, and 764.4-7834.1%, respectively. The amount of total hydrolysable organic nitrogen increased by 18.8% during WS and decreased by 26.7% in CS. Structural equation modeling revealed that the contributions of different types of nitrogen to the formation of NH4+ during WS composting decreased as follows: amine nitrogen (AN) > amino acid nitrogen (AAN) > amino sugar nitrogen (ASN) > hydrolysable unknown nitrogen (HUN), while the corresponding nitrogen contributions during CS decreased as follows: AAN > AN > HUN > ASN. The AN and AAN were most easily converted into NH4+ during WS and CS, respectively, while ASN was synthesized from NH4+ during vegetable waste composting. Using redundancy analysis it was revealed that nitrate reductase (50.1%), nitrite reductase (23.2%) and urease (7.1%) played leading roles in nitrogen transformation. Furthermore, total organic carbon (59.6%) was the main factor that affected enzymes activities.
Collapse
Affiliation(s)
- Mengli Chen
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Cong Wang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Baorong Wang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Xuejuan Bai
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100 Shaanxi, China
| | - Han Gao
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China.
| |
Collapse
|
70
|
Yuan J, Zhang D, Ma R, Wang G, Li Y, Li S, Tang H, Zhang B, Li D, Li G. Effects of inoculation amount and application method on the biodrying performance of municipal solid waste and the odor emissions produced. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 93:91-99. [PMID: 31235061 DOI: 10.1016/j.wasman.2019.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/15/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
The effects of inoculation amount and application method on the biodrying of municipal solid waste (MSW) was investigated in this study. Results showed that a low level (5%) of inoculation with mature compost significantly improved the biodrying index (4.96), while adding greater amounts decreased the biodrying performance by increasing the volatile solid degradation rate. Covering the pile with inoculation material resulted in the highest water removal (72.7%) and greatest water content reduction (from 60.2% to 17.7%). Meanwhile, first covering and then incorporating the inoculation material into the biodrying pile did not improve biodrying performance. Clearly, addition of varying amounts of inoculation material via different application methods enhanced cellulose degradation rates by 2.3-14.2%. Using 10% inoculation material reduced the NH3 emissions by 39.1-54.3% regardless of inoculation method, inoculation amount had a greater effect on NH3 emissions than that of inoculation method. The covering inoculation material could reduce 65.08% H2S emission, the inoculation method had a greater effect on H2S emissions than that of inoculation amount. Given the comprehensive considerations of emission reduction and biodrying performance, a covering of 10% inoculating material is a suitable approach to improve biodrying performance and mitigate odorous gases emissions.
Collapse
Affiliation(s)
- Jing Yuan
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Difang Zhang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yun Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shuyan Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huan Tang
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bangxi Zhang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Guizhou Institute of Soil and Fertilizer, Guiyang 550006, China
| | - Danyang Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
71
|
Tu Z, Ren X, Zhao J, Awasthi SK, Wang Q, Awasthi MK, Zhang Z, Li R. Synergistic effects of biochar/microbial inoculation on the enhancement of pig manure composting. BIOCHAR 2019; 1:127-137. [DOI: 10.1007/s42773-019-00003-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/27/2019] [Indexed: 08/20/2023]
|