51
|
Roy R, Mukherjee S, Lakkaraju R, Chakraborty S. Streaming potential in bio-mimetic microvessels mediated by capillary glycocalyx. Microvasc Res 2020; 132:104039. [PMID: 32645366 DOI: 10.1016/j.mvr.2020.104039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Implantable medical devices and biosensors are pivotal in revolutionizing the field of medical technology by opening new dimensions in the field of disease detection and cure. These devices need to harness a biocompatible and physiologically sustainable safe power source instead of relying on external stimuli, overcoming the constraints on their applicability in-vivo. Here, by appealing to the interplay of electromechanics and hydrodynamics in physiologically relevant microvessels, we bring out the role of charged endothelial glycocalyx layer (EGL) towards establishing a streaming potential across physiological fluidic conduits. We account for the complex rheology of blood-mimicking fluid by appealing to Newtonian fluid model representing the blood plasma and a viscoelastic fluid model representing the whole blood. We model the EGL as a poroelastic layer with volumetric charge distribution. Our results reveal that for physiologically relevant micro-flows, the streaming potential induced is typically of the order of 0.1 V/mm, which may turn out to be substantial towards energizing biosensors and implantable medical devices whose power requirements are typically in the range of micro to milliwatts. We also bring out the specific implications of the relevant physiological parameters towards establishment of the streaming potential, with a vision of augmenting the same within plausible functional limits. We further unveil that the dependence of streaming potential on EGL thickness might be one of the key aspects in unlocking the mystery behind the angiogenesis pattern. Our results may open up novel bio-sensing and actuating possibilities in medical diagnostics as well as may provide a possible alternative regarding the development of physiologically safe and biocompatible power sources within the human body.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Siddhartha Mukherjee
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajaram Lakkaraju
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
52
|
Song RB, Zhu W, Fu J, Chen Y, Liu L, Zhang JR, Lin Y, Zhu JJ. Electrode Materials Engineering in Electrocatalytic CO 2 Reduction: Energy Input and Conversion Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903796. [PMID: 31573709 DOI: 10.1002/adma.201903796] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2 -caused climate hazards and ever-increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high-efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo-anode-assisted ECR systems and bio-anode-assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.
Collapse
Affiliation(s)
- Rong-Bin Song
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jiaju Fu
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Chen
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Lixia Liu
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
53
|
Bollella P, Katz E. Enzyme-Based Biosensors: Tackling Electron Transfer Issues. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3517. [PMID: 32575916 PMCID: PMC7349488 DOI: 10.3390/s20123517] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022]
Abstract
This review summarizes the fundamentals of the phenomenon of electron transfer (ET) reactions occurring in redox enzymes that were widely employed for the development of electroanalytical devices, like biosensors, and enzymatic fuel cells (EFCs). A brief introduction on the ET observed in proteins/enzymes and its paradigms (e.g., classification of ET mechanisms, maximal distance at which is observed direct electron transfer, etc.) are given. Moreover, the theoretical aspects related to direct electron transfer (DET) are resumed as a guideline for newcomers to the field. Snapshots on the ET theory formulated by Rudolph A. Marcus and on the mathematical model used to calculate the ET rate constant formulated by Laviron are provided. Particular attention is devoted to the case of glucose oxidase (GOx) that has been erroneously classified as an enzyme able to transfer electrons directly. Thereafter, all tools available to investigate ET issues are reported addressing the discussions toward the development of new methodology to tackle ET issues. In conclusion, the trends toward upcoming practical applications are suggested as well as some directions in fundamental studies of bioelectrochemistry.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, NY 13699-5810, USA;
| | | |
Collapse
|
54
|
Affiliation(s)
- Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| |
Collapse
|
55
|
Cheong JY, Mafi M, Benker L, Zhu J, Mader M, Liang C, Hou H, Agarwal S, Kim ID, Greiner A. Ultralight, Structurally Stable Electrospun Sponges with Tailored Hydrophilicity as a Novel Material Platform. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18002-18011. [PMID: 32157865 DOI: 10.1021/acsami.0c03103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sponges based on short electrospun fibers have received significant attention due to their ultrahigh porosity, lightweight, and multifunctional characteristics. In particular, polyimide (PI) sponges have been researched due to their exceptional mechanical properties and thermal stability. Nevertheless, a number of sponges, including PI, are usually hydrophobic and synthesized in toxic, nonwater solvents (e.g., 1,4-dioxane). Conversely, hydrophilic sponges disintegrate upon contact with water. Here, we suggest a new strategy to fabricate PI sponges in water by introducing a suitable surfactant, sodium dodecylbenzenesulfonate (SDBS) (sPI sponges). With less than 1 wt % of SDBS with respect to PI short fibers, they can be homogeneously dispersed in water and mixed well with poly(amic acid) (PAA) solution. The synthesized sponge, depending on the concentration of SDBS, showed hydrophilic properties and substantial water uptake above 5000%. The hydrophilic properties of the sponges, which are not common, and the preparation from aqueous solution introduce new research opportunities. Such hydrophilic sponges are particularly special because they do not swell in contact with water, which makes them dimensionally stable. The methods presented here can serve as a milestone for the future development of various kinds of hydrophilic sponges applied for various applications, ranging from tissue engineering to oil/water separation.
Collapse
Affiliation(s)
- Jun Young Cheong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mahsa Mafi
- Macromolecular Chemistry and Bavarian Polymer Institute, Universität Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Lothar Benker
- Macromolecular Chemistry and Bavarian Polymer Institute, Universität Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Jian Zhu
- Macromolecular Chemistry and Bavarian Polymer Institute, Universität Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Michael Mader
- Macromolecular Chemistry and Bavarian Polymer Institute, Universität Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Chen Liang
- Macromolecular Chemistry and Bavarian Polymer Institute, Universität Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Haoqing Hou
- Department of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99, Ziyang Street, Nanchang 330022, China
| | - Seema Agarwal
- Macromolecular Chemistry and Bavarian Polymer Institute, Universität Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, Universität Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| |
Collapse
|
56
|
Franco JH, Klunder KJ, Lee J, Russell V, de Andrade AR, Minteer SD. Enhanced electrochemical oxidation of ethanol using a hybrid catalyst cascade architecture containing pyrene-TEMPO, oxalate decarboxylase and carboxylated multi-walled carbon nanotube. Biosens Bioelectron 2020; 154:112077. [PMID: 32093895 DOI: 10.1016/j.bios.2020.112077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
The work presented herein demonstrates a hybrid bi-catalytic architecture for the complete electrochemical oxidation of ethanol. The new catalytic system contains pyrene-TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) immobilized on the surface of carboxylated multi-walled carbon nanotubes (MWCNT-COOH), and oxalate decarboxylase enzyme (OxDc) immobilized onto a carbon cloth electrode. Electrolysis revealed a stable amperometric curve and an excellent current density value over a duration of 10 h. In addition, the hybrid system immobilized on the carbon electrode exhibits outstanding stability after electrolysis. Nuclear magnetic resonance (NMR) and gas chromatography (GC) demonstrate that the hybrid electrode system is able to oxidize ethanol to CO2 after 10 h of electrolysis. Overall, this study illustrates the enhancement of an enzymatic biofuel cell through the hybrid multi-catalytic systems, which exhibit high oxidation rates for all substrates involved in complete ethanol oxidation, enabling the collection of up to 12 electrons per molecule of ethanol.
Collapse
Affiliation(s)
- Jefferson Honorio Franco
- Department of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States
| | - Kevin J Klunder
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States
| | - Jack Lee
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States
| | - Victoria Russell
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States
| | - Adalgisa R de Andrade
- Department of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto, SP, Brazil.
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
57
|
Application of Electrically Conducting Nanocomposite Material Polythiophene@NiO/Frt/GOx as Anode for Enzymatic Biofuel Cells. MATERIALS 2020; 13:ma13081823. [PMID: 32290640 PMCID: PMC7215782 DOI: 10.3390/ma13081823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/02/2022]
Abstract
In this work, nano-inspired nickel oxide nanoparticles (NiO) and polythiophene (Pth) modified bioanode was prepared for biofuel cell applications. The chemically prepared nickel oxide nanoparticles and its composite with polythiophene were characterized for elemental composition and microscopic characterization while using scanning electron microscopy. The electrochemical characterizations of polythiophene@NiO composite, biocompatible mediator ferritin (Frt) and glucose oxidase (GOx) catalyst modified glassy carbon (GC) electrode were carried out using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and charge-discharge studies. The current density of Pth@NiO/Frt/GOx bioanode was found to be 5.4 mA/cm2. The bioanode exhibited a good bio-electrocatalytic activity towards the oxidation of the glucose. The experimental studies of the bioanode are justifying its employment in biofuel cells. This will cater a platform for the generation of sustainable energy for low temperature devices.
Collapse
|
58
|
Hu Y, Rehnlund D, Klein E, Gescher J, Niemeyer CM. Cultivation of Exoelectrogenic Bacteria in Conductive DNA Nanocomposite Hydrogels Yields a Programmable Biohybrid Materials System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14806-14813. [PMID: 32191028 DOI: 10.1021/acsami.9b22116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of living microorganisms integrated within electrochemical devices is an expanding field of research, with applications in microbial fuel cells, microbial biosensors or bioreactors. We describe the use of porous nanocomposite materials prepared by DNA polymerization of carbon nanotubes (CNTs) and silica nanoparticles (SiNPs) for the construction of a programmable biohybrid system containing the exoelectrogenic bacterium Shewanella oneidensis. We initially demonstrate the electrical conductivity of the CNT-containing DNA composite by employment of chronopotentiometry, electrochemical impedance spectroscopy, and cyclic voltammetry. Cultivation of Shewanella oneidensis in the conductive materials shows that the exoelectrogenic bacteria populate the matrix of the conductive composite, while nonexoelectrogenic Escherichia coli remain on its surface. Moreover, the ability to use extracellular electron transfer pathways is positively correlated with the number of cells within the conductive synthetic biofilm matrix. The Shewanella-containing composite remains stable for several days and shows electrochemical activity, indicating that the conductive backbone is capable of extracting the metabolic electrons produced by the bacteria under strictly anoxic conditions and conducting them to the anode. Programmability of this biohybrid material system is demonstrated by on-demand release and degradation induced by a short-term enzymatic stimulus. We believe that the application possibilities of such biohybrid materials could even go beyond microbial biosensors, bioreactors, and fuel cell systems.
Collapse
Affiliation(s)
- Yong Hu
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - David Rehnlund
- Institute for Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Edina Klein
- Institute for Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
59
|
Peterbauer CK. Pyranose dehydrogenases: Rare enzymes for electrochemistry and biocatalysis. Bioelectrochemistry 2020; 132:107399. [DOI: 10.1016/j.bioelechem.2019.107399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
60
|
Affiliation(s)
- Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yongzhong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael Bick
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
61
|
Performance comparison with different methods for ethanol/O2 biofuel cell based on NAD+ cofactor immobilized and activated by two types of carbon nanoparticles. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04506-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
62
|
Dong K, Peng X, Wang ZL. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902549. [PMID: 31348590 DOI: 10.1002/adma.201902549] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/27/2019] [Indexed: 05/17/2023]
Abstract
Integration of advanced nanogenerator technology with conventional textile processes fosters the emergence of textile-based nanogenerators (NGs), which will inevitably promote the rapid development and widespread applications of next-generation wearable electronics and multifaceted artificial intelligence systems. NGs endow smart textiles with mechanical energy harvesting and multifunctional self-powered sensing capabilities, while textiles provide a versatile flexible design carrier and extensive wearable application platform for their development. However, due to the lack of an effective interactive platform and communication channel between researchers specializing in NGs and those good at textiles, it is rather difficult to achieve fiber/fabric-based NGs with both excellent electrical output properties and outstanding textile-related performances. To this end, a critical review is presented on the current state of the arts of wearable fiber/fabric-based piezoelectric nanogenerators and triboelectric nanogenerators with respect to basic classifications, material selections, fabrication techniques, structural designs, and working principles, as well as potential applications. Furthermore, the potential difficulties and tough challenges that can impede their large-scale commercial applications are summarized and discussed. It is hoped that this review will not only deepen the ties between smart textiles and wearable NGs, but also push forward further research and applications of future wearable fiber/fabric-based NGs.
Collapse
Affiliation(s)
- Kai Dong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xiao Peng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
63
|
Shitanda I, Kato T, Suzuki R, Aikawa T, Hoshi Y, Itagaki M, Tsujimura S. Stable Immobilization of Enzyme on Pendant Glycidyl Group-Modified Mesoporous Carbon by Graft Polymerization of Poly(glycidyl methacrylate). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190212] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takanao Kato
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryo Suzuki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tatsuo Aikawa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yoshinao Hoshi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masayuki Itagaki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Seiya Tsujimura
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-5358, Japan
| |
Collapse
|
64
|
Rewatkar P, Goel S. 3D Printed Bioelectrodes for Enzymatic Biofuel Cell: Simple, Rapid, Optimized and Enhanced Approach. IEEE Trans Nanobioscience 2020; 19:4-10. [DOI: 10.1109/tnb.2019.2941196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
65
|
Franco JH, Klunder KJ, Russell V, de Andrade AR, Minteer SD. Hybrid enzymatic and organic catalyst cascade for enhanced complete oxidation of ethanol in an electrochemical micro-reactor device. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
66
|
Huang J, Zhao P, Jin X, Wang Y, Yuan H, Zhu X. Enzymatic biofuel cells based on protein engineering: recent advances and future prospects. Biomater Sci 2020; 8:5230-5240. [DOI: 10.1039/d0bm00925c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enzymatic biofuel cells (EBFCs), as one of the most promising sustainable and green energy sources, have attracted significant interest.
Collapse
Affiliation(s)
- Jie Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Peng Zhao
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xin Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yiwen Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Haotian Yuan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
67
|
Al-Nabulsi J, El-Sharo S, Salawy N, Al-Doori H. Methods of energy generation from the human body: a literature review. J Med Eng Technol 2019; 43:255-272. [PMID: 31490086 DOI: 10.1080/03091902.2019.1658818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jamal Al-Nabulsi
- Medical Engineering Department, Al-Ahliyya Amman University, Amman, Jordan
- Biomedical Engineering Department, The Hashemite University, Zarqa, Jordan
| | - Sameh El-Sharo
- Medical Engineering Department, Al-Ahliyya Amman University, Amman, Jordan
| | - Nicole Salawy
- Medical Engineering Department, Al-Ahliyya Amman University, Amman, Jordan
| | - Halah Al-Doori
- Medical Engineering Department, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
68
|
Performance of a glucose-reactive enzyme-based biofuel cell system for biomedical applications. Sci Rep 2019; 9:10872. [PMID: 31350441 PMCID: PMC6659637 DOI: 10.1038/s41598-019-47392-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 01/12/2023] Open
Abstract
A glucose-reactive enzyme-based biofuel cell system (EBFC) was recently introduced in the scientific community for biomedical applications, such as implantable artificial organs and biosensors for drug delivery. Upon direct contact with tissues or organs, an implanted EBFC can exert effects that damage or stimulate intact tissue due to its byproducts or generated electrical cues, which have not been investigated in detail. Here, we perform a fundamental cell culture study using a glucose dehydrogenase (GDH) as an anode enzyme and bilirubin oxidase (BOD) as a cathode enzyme. The fabricated EBFC had power densities of 15.26 to 38.33 nW/cm2 depending on the enzyme concentration in media supplemented with 25 mM glucose. Despite the low power density, the GDH-based EBFC showed increases in cell viability (~150%) and cell migration (~90%) with a relatively low inflammatory response. However, glucose oxidase (GOD), which has been used as an EBFC anode enzyme, revealed extreme cytotoxicity (~10%) due to the lethal concentration of H2O2 byproducts (~1500 µM). Therefore, with its cytocompatibility and cell-stimulating effects, the GDH-based EBFC is considered a promising implantable tool for generating electricity for biomedical applications. Finally, the GDH-based EBFC can be used for introducing electricity during cell culture and the fabrication of organs on a chip and a power source for implantable devices such as biosensors, biopatches, and artificial organs.
Collapse
|
69
|
Plekhanova Y, Tarasov S, Bykov A, Reshetilov A. Electrochemical assessment of the interaction of microbial living cells and carbon nanomaterials. IET Nanobiotechnol 2019; 13:332-338. [PMID: 31053698 PMCID: PMC8676533 DOI: 10.1049/iet-nbt.2018.5172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022] Open
Abstract
This work considers the effects of various carbon nanomaterials and fibres on bioelectrocatalytic and respiratory activity of bacterial cells during the oxidation of ethanol in the presence of an electron transport mediator. Gluconobacter oxydans sbsp. industrius VKM B-1280 cells were immobilised on the surfaces of graphite electrodes and had an adsorption contact with a nanomaterial (multi-walled carbon nanotubes, thermally expanded graphite, highly oriented pyrolytic graphite, graphene oxide, reduced graphene oxide). The electrochemical parameters of the electrodes (the polarisation curves, the value of generated current at the introduction of substrate, the impedance characteristics) were measured in two-electrode configuration. Modification by multi-walled carbon nanotubes led to the increase of microbial fuel cell (MFC) electric power by 26%. The charge transfer resistance of modified electrodes was 47% lower than unmodified ones. Thermally expanded and pyrolytic graphites had a slight negative effect on the electrochemical properties of modified electrodes. The respiratory activity of bacterial cells did not change in the presence of nanomaterials. The data can be used in the development of microbial biosensors and MFC electrodes based on Gluconobacter cells.
Collapse
Affiliation(s)
- Yulia Plekhanova
- Laboratory of Biosensors, FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki, 5, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Sergei Tarasov
- Laboratory of Biosensors, FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki, 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Aleksandr Bykov
- Laboratory of Biosensors, FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki, 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Anatoly Reshetilov
- Laboratory of Biosensors, FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki, 5, Pushchino, Moscow Region, 142290, Russian Federation
| |
Collapse
|
70
|
Li SL, Wang YJ, Chen YC, Liu SM, Yu CP. Chemical Characteristics of Electron Shuttles Affect Extracellular Electron Transfer: Shewanella decolorationis NTOU1 Simultaneously Exploiting Acetate and Mediators. Front Microbiol 2019; 10:399. [PMID: 30891020 PMCID: PMC6411715 DOI: 10.3389/fmicb.2019.00399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/15/2019] [Indexed: 01/16/2023] Open
Abstract
In the present study, we found that our isolate Shewanella decolorationis NTOU1 is able to degrade acetate under anaerobic condition with concomitant implementation of extracellular electron transfer (EET). With +0.63 V (vs. SHE) poised on the anode, in a 72-h experiment digesting acetate, only 2 mM acetate was consumed, which provides 6% of the electron equivalents derived from the initial substrate mass to support biomass (5%) and current generation (1%). To clarify the effects on EET of the addition of electron-shuttles, riboflavin, anthraquinone-2,6-disulfonate (AQDS), hexaammineruthenium, and hexacyanoferrate were selected to be spiked into the electrochemical cell in four individual experiments. It was found that the mediators with proton-associated characteristics (i.e., riboflavin and AQDS) would not enhance current generation, but the metal-complex mediators (i.e., hexaammineruthenium, and hexacyanoferrate) significantly enhanced current generation as the concentration increased. According to the results of electrochemical analyses, the i-V graphs represent that the catalytic current induced by the primitive electron shuttles started at the onset potential of −0.27 V and continued increasing until +0.73 V. In the riboflavin-addition experiment, the catalytic current initiated at the same potential but rapid saturated beyond −0.07 V; this indicated that the addition of riboflavin affects mediator secretion by S. decolorationis NTOU1. It was also found that the current was eliminated after adding 48 mM N-acetyl-L-methionine (i.e., the cytochrome inhibitor) when using acetate as a substrate, indicating the importance of outer-membrane cytochrome.
Collapse
Affiliation(s)
- Shiue-Lin Li
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Jie Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Chun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Shiu-Mei Liu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
71
|
Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Biosens Bioelectron 2019; 126:275-291. [DOI: 10.1016/j.bios.2018.10.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
|
72
|
Cevik E, Buyukharman M, Yildiz HB. Construction of efficient bioelectrochemical devices: Improved electricity production from cyanobacteria (Leptolyngbia
sp.) based on π-conjugated conducting polymer/gold nanoparticle composite interfaces. Biotechnol Bioeng 2019; 116:757-768. [DOI: 10.1002/bit.26885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Emre Cevik
- Genetic Research Department; Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University; Dammam Saudi Arabia
| | - Mustafa Buyukharman
- Department of Metallurgical and Materials Engineering; KTO Karatay University; Konya Turkey
| | - Huseyin Bekir Yildiz
- Department of Metallurgical and Materials Engineering; KTO Karatay University; Konya Turkey
- Biotechnology Research Lab, FELSIM Ltd. Inc., Konya Technocity; Konya Turkey
| |
Collapse
|
73
|
Iwasa H, Ozawa K, Sasaki N, Kinoshita N, Yokoyama K, Hiratsuka A. Fungal FAD-dependent glucose dehydrogenases concerning high activity, affinity, and thermostability for maltose-insensitive blood glucose sensor. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
74
|
Jiang Z, Zhang D, Zhou L, Deng D, Duan M, Liu Y. Enhanced catalytic capability of electroactive biofilm modified with different kinds of carbon nanotubes. Anal Chim Acta 2018; 1035:51-59. [DOI: 10.1016/j.aca.2018.06.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022]
|
75
|
Bojórquez-Vázquez L, Cano-Castillo U, Vazquez-Duhalt R. Membrane-less enzymatic fuel cell operated under acidic conditions. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
76
|
Wang Y, Liu X, Wang M, Zhang P, Zong Y, Zhang Q. A single-chamber microbial fuel cell for rapid determination of biochemical oxygen demand using low-cost activated carbon as cathode catalyst. ENVIRONMENTAL TECHNOLOGY 2018; 39:3228-3237. [PMID: 28866963 DOI: 10.1080/09593330.2017.1375998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
The biochemical oxygen demand (BOD) is widely used for the evaluation of water and wastewater quality. However, the conventional method to measure BOD is time-consuming and requires complicated processes. In this study, a Microbial fuel cell (MFC)-based BOD sensor was developed by using low-cost activated carbon as the cathode catalyst. The sensor was calibrated with an aerated nutrient medium containing sodium acetate as the BOD source. When the sensor was operated with an external resistance of 1 K Ω, linear correlation (R2 = 0.9965) was obtained for BOD concentrations ranging from 80 to 1280 mg/L in a reaction time of 50 h. Besides acetate, glucose/glutamic acid (GGA) and ethanol could also be analyzed by the sensor. In a low concentration range (200 mg/L), the relationship between GGA solution concentration and output voltage was in accord with Monod growth kinetics.
Collapse
Affiliation(s)
- Ying Wang
- a School of Marine Science and Technology , Tianjin University , Tianjin , People's Republic of China
- b School of Environmental Science and Engineering , Tianjin University , Tianjin , People's Republic of China
| | - Xianhua Liu
- a School of Marine Science and Technology , Tianjin University , Tianjin , People's Republic of China
- b School of Environmental Science and Engineering , Tianjin University , Tianjin , People's Republic of China
| | - Meiyu Wang
- a School of Marine Science and Technology , Tianjin University , Tianjin , People's Republic of China
| | - Pingping Zhang
- c College of Food Science and Engineering , Tianjin Agricultural University , Tianjin , People's Republic of China
| | - Yanping Zong
- d Tianjin Marine Environmental Center Station, State Oceanic Administration, Tianjin, People's Republic of China
| | - Qiufeng Zhang
- d Tianjin Marine Environmental Center Station, State Oceanic Administration, Tianjin, People's Republic of China
| |
Collapse
|
77
|
|
78
|
Çevik E, Titiz M, Şenel M. Light-dependent photocurrent generation: Novel electrochemical communication between biofilm and electrode by ferrocene cored Poly(amidoamine) dendrimers. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
79
|
Deng L, Hu C, Qin X, Li L, Zhang Y, Li P, Chen X. The remote arginine promoting the dehydrogenation of glucose in glucose oxidase via a proton-coupled double-electron transfer mechanism. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
80
|
Okawa Y, Shimada T, Shiba F. Formation of gold-silver hollow nanostructure via silver halide photographic processes and application to direct electron transfer biosensor using fructose dehydrogenase. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
81
|
Plekhanova Y, Tarasov S, Kolesov V, Kuznetsova I, Signore M, Quaranta F, Reshetilov A. Effects of Polymer Matrices and Carbon Nanotubes on the Generation of Electric Energy in a Microbial Fuel Cell. MEMBRANES 2018; 8:E99. [PMID: 30366368 PMCID: PMC6315946 DOI: 10.3390/membranes8040099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022]
Abstract
The anode of a microbial fuel cell (MFC) was formed on a graphite electrode and immobilized Gluconobacter oxydans VKM-1280 bacterial cells. Immobilization was performed in chitosan, poly(vinyl alcohol) or N-vinylpyrrolidone-modified poly(vinyl alcohol). Ethanol was used as substrate. The anode was modified using multiwalled carbon nanotubes. The aim of the modification was to create a conductive network between cell lipid membranes, containing exposed pyrroloquinoline quinone (PQQ)-dependent alcoholdehydrogenases, and the electrode to facilitate electron transfer in the system. The bioelectrochemical characteristics of modified anodes at various cell/polymer ratios were assessed via current density, power density, polarization curves and impedance spectres. Microbial fuel cells based on chitosan at a matrix/cell volume ratio of 5:1 produced maximal power characteristics of the system (8.3 μW/cm²) at a minimal resistance (1111 Ohm cm²). Modification of the anode by multiwalled carbon nanotubes (MWCNT) led to a slight decrease of internal resistance (down to 1078 Ohm cm²) and to an increase of generated power density up to 10.6 μW/cm². We explored the possibility of accumulating electric energy from an MFC on a 6800-μF capacitor via a boost converter. Generated voltage was increased from 0.3 V up to 3.2 V. Accumulated energy was used to power a Clark-type biosensor and a Bluetooth transmitter with three sensors, a miniature electric motor and a light-emitting diode.
Collapse
Affiliation(s)
- Yulia Plekhanova
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Sergei Tarasov
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia.
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia.
| | - Vladimir Kolesov
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia.
| | - Iren Kuznetsova
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia.
| | - Maria Signore
- CNR, Institute for Microelectronics and Microsystems, Via Monteroni, 73100 Lecce, Italy.
| | - Fabio Quaranta
- CNR, Institute for Microelectronics and Microsystems, Via Monteroni, 73100 Lecce, Italy.
| | - Anatoly Reshetilov
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia.
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia.
| |
Collapse
|
82
|
Do MH, Ngo HH, Guo WS, Liu Y, Chang SW, Nguyen DD, Nghiem LD, Ni BJ. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:910-920. [PMID: 29929329 DOI: 10.1016/j.scitotenv.2018.05.136] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Wastewater is now considered to be a vital reusable source of water reuse and saving energy. However, current wastewater has multiple limitations such as high energy costs, large quantities of residuals being generated and lacking in potential resources. Recently, great attention has been paid to microbial fuel cells (MFCs) due to their mild operating conditions where a variety of biodegradable substrates can serve as fuel. MFCs can be used in wastewater treatment facilities to break down organic matter, and they have also been analysed for application as a biosensor such as a sensor for biological oxygen which demands monitoring. MFCs represent an innovation technology solution that is simple and rapid. Despite the advantages of this technology, there are still practical barriers to consider including low electricity production, current instability, high internal resistance and costly materials used. Thus, many problems must be overcome and doing this requires a more detailed analysis of energy production, consumption, and application. Currently, real-world applications of MFCs are limited due to their low power density level of only several thousand mW/m2. Efforts are being made to improve the performance and reduce the construction and operating costs of MFCs. This paper explores several aspects of MFCs such as anode, cathode and membrane, and in an effort to overcome the practical challenges of this system.
Collapse
Affiliation(s)
- M H Do
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Y Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea.
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - L D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - B J Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
83
|
Trigui A, Hached S, Ammari AC, Savaria Y, Sawan M. Maximizing Data Transmission Rate for Implantable Devices Over a Single Inductive Link: Methodological Review. IEEE Rev Biomed Eng 2018; 12:72-87. [PMID: 30295628 DOI: 10.1109/rbme.2018.2873817] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Due to the constantly growing geriatric population and the projected increase of the prevalence of chronic diseases that are refractory to drugs, implantable medical devices (IMDs) such as neurostimulators, endoscopic capsules, artificial retinal prostheses, and brain-machine interfaces are being developed. According to many business forecast firms, the IMD market is expected to grow and they are subject to much research aiming to overcome the numerous challenges of their development. One of these challenges consists of designing a wireless power and data transmission system that has high power efficiency, high data rates, low power consumption, and high robustness against noise. This is in addition to minimal design and implementation complexity. This manuscript concerns a comprehensive survey of the latest techniques used to power up and communicate between an external base station and an IMD. Patient safety considerations related to biological, physical, electromagnetic, and electromagnetic interference concerns for wireless IMDs are also explored. The simultaneous powering and data communication techniques using a single inductive link for both power transfer and bidirectional data communication, including the various data modulation/demodulation techniques, are also reviewed. This review will hopefully contribute to the persistent efforts to implement compact reliable IMDs while lowering their cost and upsurging their benefits.
Collapse
|
84
|
van Dijk B, Hofmann JP, Hetterscheid DGH. Pinpointing the active species of the Cu(DAT) catalyzed oxygen reduction reaction. Phys Chem Chem Phys 2018; 20:19625-19634. [PMID: 30010166 PMCID: PMC6063076 DOI: 10.1039/c8cp03419b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022]
Abstract
Dinuclear CuII complexes bearing two 3,5-diamino-1,2,4-triazole (DAT) ligands have gained considerable attention as a potential model system for laccase due to their low overpotential for the oxygen reduction reaction (ORR). In this study, the active species for the ORR was investigated. The water soluble dinuclear copper complex (Cu(DAT)) was obtained by mixing a 1 : 1 ratio of Cu(OTf)2 and DAT in water. The electron paramagnetic resonance (EPR) spectrum of Cu(DAT) showed a broad axial signal with a g factor of 2.16 as well as a low intensity Ms = ±2 absorption characteristic of the Cu2(μ-DAT)2 moiety. Monitoring the typical 380 nm peak with UV-Vis spectroscopy revealed that the Cu2(μ-DAT)2 core is extremely sensitive to changes in pH, copper to ligand ratios and the presence of anions. Electrochemical quartz crystal microbalance experiments displayed a large decrease in frequency below 0.5 V versus the reversible hydrogen electrode (RHE) in a Cu(DAT) solution implying the formation of deposition. Rotating ring disk electrode experiments showed that this deposition is an active ORR catalyst which reduces O2 all the way to water at pH 5. The activity increased significantly in the course of time. X-ray photoelectron spectroscopy was utilized to analyze the composition of the deposition. Significant shifts in the Cu 2p3/2 and N 1s spectra were observed with respect to Cu(DAT). After ORR catalysis at pH 5, mostly CuI and/or Cu0 species are present and the deposition corresponds to previously reported electrodepositions of copper. This leads us to conclude that the active species is of a heterogeneous nature and lacks any structural similarity with laccase.
Collapse
Affiliation(s)
- Bas van Dijk
- Leiden Institute of Chemistry
, Leiden University
,
2300 RA Leiden
, The Netherlands
.
| | - Jan P. Hofmann
- Laboratory of Inorganic Materials Chemistry
, Department of Chemical Engineering and Chemistry
, Eindhoven University of Technology
,
P.O. Box 513
, 5600 MB Eindhoven
, The Netherlands
| | | |
Collapse
|
85
|
Hasan MQ, Yuen J, Slaughter G. Carbon Nanotube-Cellulose Pellicle for Glucose Biofuel Cell. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1-4. [PMID: 30440309 DOI: 10.1109/embc.2018.8513229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon nanotube (CNT)-cellulose pellicle was developed to create a conductive CNT network on 20 μm nanostructured cellulose film. The flexible and electrically conductive film was prepared by the modification of bacterial nanocellulose pellicle with multi-walled carbon nanotubes (MWCNTs). The composite film was further modified with redox enzymes including pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BODx) functioning as the anodic and cathodic catalyst, respectively with glucose as the biofuel source. The enzyme functionalized MWCNT-cellulose based glucose/O2 biofuel cell system harnessed the biochemical energy of glucose via the oxidation of glucose and reduction of molecular oxygen to generate electrical power in the microwatt range. The biofuel cell system exhibited an open circuit voltage and power density of 470 mV and 46.25 μW/cm2, respectively, with a current density of 381 μA/cm2 in the presence of 25 mM glucose. At physiological glucose concentration, the biofuel cell exhibited an open circuit voltage and power density of 418 mV and 24.975 μW/cm2 respectively, with a current density of 293.75μA/cm2. As a result, we expect that this facile strategy to prepare flexible conductive bioelectrodes for the development of glucose biofuel cell system using synthesized bacterial nanocellulose crosslinked with MWCNTs and enzyme can be readily extended to diverse applications in enzymatic biofuel cell and biosensor technology.
Collapse
|
86
|
Xu L, Zhao Y, Owusu KA, Zhuang Z, Liu Q, Wang Z, Li Z, Mai L. Recent Advances in Nanowire-Biosystem Interfaces: From Chemical Conversion, Energy Production to Electrophysiology. Chem 2018. [DOI: 10.1016/j.chempr.2018.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
87
|
Wang Y, Wu J, Yang S, Li H, Li X. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071349. [PMID: 29954125 PMCID: PMC6068820 DOI: 10.3390/ijerph15071349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022]
Abstract
Due to the known problems of microbial fuel cells (MFCs), such as low electricity generation performance and high cost of operation, we modified the electrode with graphene and polyaniline (PANI) is a single-chamber air-cathode MFC and then evaluated the effects of electrode modification on MFC electricity generation performance. Carbon cloth electrodes (unmodified, CC; graphene-modified, G/CC; and polyaniline-graphene-modified, PANI-G/CC) were prepared using the impregnation method. Sulfonated cobalt phthalocyanine (CoPcS) was then introduced as a cathode catalyst. The Co-PANI-G/CC cathode showed higher catalytic activity toward oxygen reduction compared with other electrodes. The maximum power density of the MFC with Co-PANI-G/CC cathode was 32.2 mW/m2, which was 1.8 and 6.1 times higher than the value obtained with Co-G/CC and Co/CC cathodes, respectively. This indicates a significant improvement in the electricity generation of single-chamber MFCs and provides a simple, effective cathode modification method. Furthermore, we constructed single-chamber MFCs using the modified anode and cathode and analyzed electricity generation and oxytetracycline (OTC) degradation with different concentrations of OTC as the fuel. With increasing added OTC concentration, the MFC performance in both electricity generation and OTC degradation gradually decreased. However, when less than 50 mg/L OTC was added, the 5-day degradation rate of OTC reached more than 90%. It is thus feasible to process OTC-containing wastewater and produce electricity using single-chamber MFCs, which provides a new concept for wastewater treatment.
Collapse
Affiliation(s)
- Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China.
| | - Jiayan Wu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China.
| | - Huihui Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China.
| | - Xiaoping Li
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
88
|
Kumar A, Sharma S, Pandey LM, Chandra P. Nanoengineered material based biosensing electrodes for enzymatic biofuel cells applications. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2018; 1:38-48. [DOI: 10.1016/j.mset.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
89
|
Highly efficient charge transfer in Co/Co2P Schottky junctions embedded in nitrogen-doped porous carbon for enhancing bioelectricity generation. Biosens Bioelectron 2018; 102:101-105. [DOI: 10.1016/j.bios.2017.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 11/18/2022]
|
90
|
Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis /graphite felt microbial fuel cells. Bioelectrochemistry 2018; 120:1-9. [DOI: 10.1016/j.bioelechem.2017.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 11/20/2022]
|
91
|
Pagnoncelli KC, Pereira AR, Sedenho GC, Bertaglia T, Crespilho FN. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system. Bioelectrochemistry 2018; 122:11-25. [PMID: 29510261 DOI: 10.1016/j.bioelechem.2018.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/14/2018] [Accepted: 02/25/2018] [Indexed: 11/26/2022]
Abstract
Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds.
Collapse
Affiliation(s)
- Kamila C Pagnoncelli
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil
| | - Andressa R Pereira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil
| | - Graziela C Sedenho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil
| | - Thiago Bertaglia
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
92
|
Frei M, Köhler C, Dietel L, Martin J, Wiedenmann F, Zengerle R, Kerzenmacher S. Pulsed Electrodeposition of Highly Porous Pt Alloys for use in Methanol, Formic Acid, and Glucose Fuel Cells. ChemElectroChem 2018. [DOI: 10.1002/celc.201800035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maxi Frei
- IMTEK - Department of Microsystems Engineering; University of Freiburg; Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Christian Köhler
- IMTEK - Department of Microsystems Engineering; University of Freiburg; Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Lisa Dietel
- IMTEK - Department of Microsystems Engineering; University of Freiburg; Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Julian Martin
- IMTEK - Department of Microsystems Engineering; University of Freiburg; Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Felix Wiedenmann
- IMTEK - Department of Microsystems Engineering; University of Freiburg; Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Roland Zengerle
- IMTEK - Department of Microsystems Engineering; University of Freiburg; Georges-Koehler-Allee 103 79110 Freiburg Germany
- BIOSS - Centre for Biological Signalling Studies; University of Freiburg; Schänzlestr. 18 79104 Freiburg Germany
- Hahn-Schickard; Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Sven Kerzenmacher
- IMTEK - Department of Microsystems Engineering; University of Freiburg; Georges-Koehler-Allee 103 79110 Freiburg Germany
- University of Bremen; Center for Environmental Research and Sustainable Technology (UFT); Leobener Strasse 1 28359 Bremen Germany
| |
Collapse
|
93
|
Comprehensive Analysis of Trends and Emerging Technologies in All Types of Fuel Cells Based on a Computational Method. SUSTAINABILITY 2018. [DOI: 10.3390/su10020458] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
94
|
Wei B, Zhang J, Ou X, Lou X, Xia F, Vallée-Bélisle A. Engineering Biosensors with Dual Programmable Dynamic Ranges. Anal Chem 2018; 90:1506-1510. [PMID: 29300471 DOI: 10.1021/acs.analchem.7b04852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although extensively used in all fields of chemistry, molecular recognition still suffers from a significant limitation: host-guest binding displays a fixed, hyperbolic dose-response curve, which limits its usefulness in many applications. Here we take advantage of the high programmability of DNA chemistry and propose a universal strategy to engineer biorecognition-based sensors with dual programmable dynamic ranges. Using DNA aptamers as our model recognition element and electrochemistry as our readout signal, we first designed a dual signaling "signal-on" and "signal-off" adenosine triphosphate (ATP) sensor composed of a ferrocene-labeled ATP aptamer in complex to a complementary, electrode-bound, methylene-blue labeled DNA. Using this simple "dimeric" sensor, we show that we can easily (1) tune the dynamic range of this dual-signaling sensor through base mutations on the electrode-bound DNA, (2) extend the dynamic range of this sensor by 2 orders of magnitude by using a combination of electrode-bound strands with varying affinity for the aptamers, (3) create an ultrasensitive dual signaling sensor by employing a sequestration strategy in which a nonsignaling, high affinity "depletant" DNA aptamer is added to the sensor surface, and (4) engineer a sensor that simultaneously provides extended and ultrasensitive readouts. These strategies, applicable to a wide range of biosensors and chemical systems, should broaden the application of molecular recognition in various fields of chemistry.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Juntao Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Xiaowen Ou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Xiaoding Lou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Fan Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Alexis Vallée-Bélisle
- Laboratory Biosensors & Nanomachines, Département de Chimie, Université de Montréal , Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
95
|
Geng YK, Wang Y, Pan XR, Sheng GP. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor. BIORESOURCE TECHNOLOGY 2018; 247:471-476. [PMID: 28968568 DOI: 10.1016/j.biortech.2017.09.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
In this study, a novel electrodialysis membrane bioreactor was used for EBPR sludge treatment for energy and phosphorus resource recovery simultaneously. After 30days stable voltage outputting, the maximum power density reached 0.32W/m3. Over 90% of phosphorus in EBPR sludge was released while about 50% of phosphorus was concentrated to 4mmol/L as relatively pure phosphate solution. Nitrogen could be removed from EBPR sludge by desalination and denitrification processes. This study provides an optimized way treating sludge for energy production and in situ phosphorus recovery.
Collapse
Affiliation(s)
- Yi-Kun Geng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yunkun Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Xin-Rong Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
96
|
Perveen R, Inamuddin, Nasar A, Beenish, Asiri AM. Synthesis and characterization of a novel electron conducting biocomposite as biofuel cell anode. Int J Biol Macromol 2018; 106:755-762. [DOI: 10.1016/j.ijbiomac.2017.08.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|
97
|
ul Haque S, Inamuddin, Nasar A, Asiri AM. Fabrication and characterization of electrochemically prepared bioanode (polyaniline/ferritin/glucose oxidase) for biofuel cell application. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
98
|
Schlesinger O, Pasi M, Dandela R, Meijler MM, Alfonta L. Electron transfer rate analysis of a site-specifically wired copper oxidase. Phys Chem Chem Phys 2018; 20:6159-6166. [DOI: 10.1039/c8cp00041g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transfer kinetic parameters of site-specifically wired copper oxidase were investigated.
Collapse
Affiliation(s)
- Orr Schlesinger
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - Mor Pasi
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - Rambabu Dandela
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - Michael M. Meijler
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| |
Collapse
|
99
|
Castañeda LF, Walsh FC, Nava JL, Ponce de León C. Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.165] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
100
|
A metabolic-activity-detecting approach to life detection: Restoring a chemostat from stop-feeding using a rapid bioactivity assay. Bioelectrochemistry 2017; 118:147-153. [DOI: 10.1016/j.bioelechem.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 11/22/2022]
|