51
|
Wang Y, Sun W, Wang J, Wang X, Xu Y, Guo Y, Wang Y, Zhang M, Jiang L, Liu S, Huang J. Ultrasensitive Uracil-DNA Glycosylase Activity Assay and Its Inhibitor Screening Based on Primer Remodeling Jointly via Repair Enzyme and Polymerase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3868-3875. [PMID: 35298179 DOI: 10.1021/acs.langmuir.2c00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of isothermal nucleic acid amplification techniques has great significance for highly sensitive biosensing in modern biology and biomedicine. A facile and robust exponential rolling circle amplification (RCA) strategy is proposed based on primer-remodeling amplification jointly via a repair enzyme and polymerase, and uracil-DNA glycosylase (UDG) is selected as a model analyte. Two kinds of complexes, complex I and complex II, are preprepared by hybridizing a circular template (CT) with a uracil-containing hairpin probe and tetrahydrofuran abasic site mimic (AP site)-embedded fluorescence-quenched probe (AFP), respectively. The target UDG specifically binds to complex I, resulting in the generation of an AP site, followed by cleavage via endonuclease IV (Endo IV) and the successive trimming of unmatched 3' terminus via phi29 DNA polymerase, thus producing a useable primer-CT complex that actuates the primary RCA. Then, numerous complex II anneal with the first-generation RCA product (RP), generating a complex II-RP assembly containing AP sites within the DNA duplex. With the aid of Endo IV and phi29, AFP, as a pre-primer in complex II, is converted into a mature primer to initiate additional rounds of RCA. So, countless AFPs are cleaved, releasing remarkably strong fluorescent signals. The biosensor is demonstrated to enable rapid and accurate detection of the UDG activity with an improved detection limit as low as 4.7 × 10-5 U·mL-1. Moreover, this biosensor is successfully applied for UDG inhibitor screening and complicated biological samples analysis. Compared to the previous exponential RCA methods, our proposed strategy offers additional advantages, including excellent stability, optional design of CT, and simplified operating steps. Therefore, this proposed strategy may create a useful and practical platform for ultrasensitive detection of low levels of analytes in clinical diagnosis and fundamental biomedicine research.
Collapse
Affiliation(s)
- Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Wenyu Sun
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Jingfeng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xu Wang
- Shandong Institute of Metrology and Science, Jinan 250014, P. R. China
| | - Yicheng Xu
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Yuanzhen Guo
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Yeru Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Manru Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Long Jiang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
52
|
Smith DD, Girodat D, Abbott DW, Wieden HJ. Construction of a highly selective and sensitive carbohydrate-detecting biosensor utilizing Computational Identification of Non-disruptive Conjugation sites (CINC) for flexible and streamlined biosensor design. Biosens Bioelectron 2022; 200:113899. [PMID: 34974264 DOI: 10.1016/j.bios.2021.113899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 01/30/2023]
Abstract
Fluorescently-labeled solute-binding proteins that alter their fluorescence output in response to ligand binding have been utilized as biosensors for a variety of applications. Coupling protein ligand binding to altered fluorescence output often requires trial and error-based testing of both multiple labeling positions and fluorophores to produce a functional biosensor with the desired properties. This approach is laborious and can lead to reduced ligand binding affinity or altered ligand specificity. Here we report the Computational Identification of Non-disruptive Conjugation sites (CINC) for streamlined identification of fluorophore conjugation sites. By exploiting the structural dynamics properties of proteins, CINC identifies positions where conjugation of a fluorophore results in a fluorescence change upon ligand binding without disrupting protein function. We show that a CINC-developed maltooligosaccharide (MOS)-detecting biosensor is capable of rapid (kon = 20 μM-1s-1), sensitive (sub-μM KD) and selective MOS detection. The MOS-detecting biosensor is modular with respect to the spectroscopic properties and demonstrates portability to detecting MOS released via α-amylase-catalyzed depolymerization of starch using both a stopped-flow and a microplate reader assay. Our MOS-detecting biosensor represents a first-in-class probe whose design was guided by changes in localized dynamics of individual amino acid positions, supporting expansion of the CINC pipeline as an indispensable tool for a wide range of protein engineering applications.
Collapse
Affiliation(s)
- Dustin D Smith
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Dylan Girodat
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - D Wade Abbott
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
53
|
Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater Sci Eng 2022; 8:964-1000. [PMID: 35229605 DOI: 10.1021/acsbiomaterials.1c00710] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphene- and carbon-based nanomaterials are key materials to develop advanced biosensors for the sensitive detection of many biomarkers owing to their unique properties. Biosensors have attracted increasing interest because they allow efficacious, sensitive, selective, rapid, and low-cost diagnosis. Biosensors are analytical devices based on receptors for the process of detection and transducers for response measuring. Biosensors can be based on electrochemical, piezoelectric, thermal, and optical transduction mechanisms. Early virus identification provides critical information about potentially effective and selective therapies, extends the therapeutic window, and thereby reduces morbidity. The sensitivity and selectivity of graphene can be amended via functionalizing it or conjoining it with further materials. Amendment of the optical and electrical features of the hybrid structure by introducing appropriate functional groups or counterparts is especially appealing for quick and easy-to-use virus detection. Various techniques for the electrochemical detection of viruses depending on antigen-antibody interactions or DNA hybridization are discussed in this work, and the reasons behind using graphene and related carbon nanomaterials for the fabrication are presented and discussed. We review the existing state-of-the-art directions of graphene-based classifications for detecting DNA, protein, and hormone biomarkers and summarize the use of the different biosensors to detect several diseases, like cancer, Alzheimer's disease, and diabetes, to sense numerous viruses, including SARS-CoV-2, human immunodeficiency virus, rotavirus, Zika virus, and hepatitis B virus, and to detect the recent pandemic virus COVID-19. The general concepts, mechanisms of action, benefits, and disadvantages of advanced virus biosensors are discussed to afford beneficial evidence of the creation and manufacture of innovative virus biosensors. We emphasize that graphene-based nanomaterials are ideal candidates for electrochemical biosensor engineering due to their special and tunable physicochemical properties.
Collapse
Affiliation(s)
- Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Esraa Samy Abu Serea
- Chemistry and Biochemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Reem Essam Salah-Eldin
- Chemistry and Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Miar Khaled Ali
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11422 Cairo, Egypt
| | - Senentxu Lanceros-Méndez
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
54
|
Zhang X, Zhang J, Zhang Y, Zhang Y, Hou T, Wang S. Homing peptide combined with DNAzyme-based ELISA-like assay for highly specific and sensitive detection of fibrin. Talanta 2022; 238:122995. [PMID: 34857328 DOI: 10.1016/j.talanta.2021.122995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
Abstract
A highly sensitive and specific ELISA-like chemiluminescence method for detection of fibrin has been developed. In the sensing platform, the homing peptide (CREKA), as recognition molecule, which can specially recognize the fibrin on microtiter plate, combined with G-quadruplex-based DNAzyme to form the probe of G-quadruplex-hemin DNAzyme-CREKA. After the sample solution was coated on the plates, the probe was crosslinked with fibrin through the interaction of CREKA and fibrin. Finally, luminol-H2O2 chemiluminesecence (CL) reaction was exploited for quantitative analysis of fibrin. The liner range for fibrin detection was from 0.112 pmol L-1 to 5.6 pmol L-1 with the detection limit of fibrin as low as 0.04 pmol L-1, based on a signal-to-noise ratio (S/N) of 3. Furthermore, on the basis of the high amplification efficiency of the rolling circle amplification (RCA) reaction, the method enabled to analyze fibrin with a detection limit corresponding to 0.06 fmol L-1, whose sensitivity increased 3 orders of magnitude than that of above method in the absence of RCA reaction. In particular, combined with the separation and washing steps of ELISA, the proposed method possessed higher selectivity, high-throughput and low cost, which shows promise for applications in clinical diagnosis.
Collapse
Affiliation(s)
- Xifang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Jinrong Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Yuanfu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Yinghong Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Tingting Hou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Shuhao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
55
|
Li Y, Dai X, He L, Bu Y, Ao JP. Crystal-reconstructed BiVO 4 semiconductor photoelectrochemical sensor for ultra-sensitive tumor biomarker detection. J Mater Chem B 2022; 10:870-879. [PMID: 35050300 DOI: 10.1039/d1tb02576g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, we developed a crystal-reconstructed-BiVO4 aptamer photoelectrochemical (PEC) biosensor by a high-energy laser treatment technique. This biosensor achieves a limit of detection (LOD) (0.82 ag mL-1), linear detection range (1 ag mL-1 to 2 ng mL-1), and resolution ratio (∼18 molecules per mL) for prostate-specific antigen (PSA) tumor biomarker detection. Furthermore, reconstructed surface microstructure and oxygen vacancy doping energy formation after crystal reconstruction induce the stereo-hindrance effect and photogenerated hole energy is reduced during PSA target detection. In this case, a photocurrent inhibition phenomenon for PSA detection is noticed. Based on this photocurrent inversion phenomenon, some dysoxidizable nucleonic acid tumor (miRNA-21) and virus biomarkers (RdRp-COVID) can be detected with a LOD level of ∼10-16 M by linking the corresponding base paring probe on the surface of the crystal-reconstructed photoanode. In addition to high sensitivity, this PEC biosensor presents high detection specificity, stability, and accuracy in clinical verification. Thus, this crystal-reconstructed PEC biosensor shows application potential in the fields of multi-tumor or viral biomarker detection.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Xianying Dai
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Lin He
- Shaanxi Provincial Cancer Hospital, Xi'an, 710061, China
| | - Yuyu Bu
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Jin-Ping Ao
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| |
Collapse
|
56
|
pH-Responsive Magnetic I-Motif Container Coupled with DNA Walker for Construction of Dual-Signal Electrochemical Biosensor. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-021-00205-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
57
|
Han Y, Liu X, Zhao Q, Gao Y, Zhou D, Long W, Wang Y, Song Y. Aptazyme-induced cascade amplification integrated with a volumetric bar-chart chip for highly sensitive detection of aflatoxin B1 and adenosine triphosphate. Analyst 2022; 147:2500-2507. [DOI: 10.1039/d2an00650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triple-channel volumetric bar-chart chip based on aptazyme-induced cascade signal amplification empowers visual readout of aflatoxin B1 and adenosine triphosphate concentration.
Collapse
Affiliation(s)
- Yuanyue Han
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xinli Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qiao Zhao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
58
|
Dai S, Huang H, Liu S, Deng W, Tan Y, Xie Q. Au nanoclusters-decorated WO 3 nanorods for ultrasensitive photoelectrochemical sensing of Hg 2+. Analyst 2022; 147:5747-5753. [DOI: 10.1039/d2an01324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ultrasensitive photoelectrochemical sensing of Hg2+ is achieved using Au nanocluster-decorated WO3 nanorods as photoactive materials.
Collapse
Affiliation(s)
- Si Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hui Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shihan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
59
|
Zhang Z, Cai F, Chen J, Luo S, Lin Y, Zheng T. Ion-selective electrode-based potentiometric immunoassays for the quantitative monitoring of alpha-fetoprotein by coupling rolling cycle amplification with silver nanoclusters. Analyst 2022; 147:4752-4760. [DOI: 10.1039/d2an01282k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports an ion-selective electrode-based potentiometric immunoassay for AFP detection coupling rolling cycle amplification with silver nanoclusters.
Collapse
Affiliation(s)
- Zhishan Zhang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Fan Cai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Jintu Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Shimu Luo
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Tingjin Zheng
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| |
Collapse
|
60
|
Li J, Wu H, Yan Y, Yuan T, Shu Y, Gao X, Zhang L, Li S, Ding S, Cheng W. Zippered G-quadruplex/hemin DNAzyme: exceptional catalyst for universal bioanalytical applications. Nucleic Acids Res 2021; 49:13031-13044. [PMID: 34878146 PMCID: PMC8682752 DOI: 10.1093/nar/gkab1178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/04/2022] Open
Abstract
G-quadruplex (G4)/hemin DNAzyme is promising horseradish peroxidase (HRP)-mimic candidate in the biological field. However, its relatively unsatisfactory catalytic capacity limits the potential applications. Inspired by nature protease, we conducted a proximity-enhanced cofactor assembly strategy (PECA) to form an exceptional HRP mimic, namely zippered G4/hemin DNAzyme (Z-G4/H). The hybridization of short oligonucleotides induced proximity assembly of the DNA-grafted hemin (DGH) with the complementary G4 sequences (cG4s), mimicking the tight configuration of protease cofactor and apoenzyme. The detailed investigations of catalytic efficiency and mechanism verified the higher activity, more rapid catalytic rate and high environmental tolerance of the Z-G4/H than the classical G4/hemin DNAzymes (C-G4/H). Furthermore, a proximity recognition transducer has been developed based on the PECA for sensitive detection of gene rearrangement and imaging human epidermal growth factor receptor 2 protein (HER2) dimerization on cell surfaces. Our studies demonstrate the high efficiency of Z-G4/H and its universal application potential in clinical diagnostics and biomolecule interaction research. It also may offer significant opportunities and inspiration for the engineering of the protease-free mimic enzyme.
Collapse
Affiliation(s)
- Jia Li
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Taixian Yuan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yue Shu
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin Gao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Siqiao Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
61
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
62
|
Antioxidative Reactivity of L-Ascorbic Acid and D-Isoascorbic Acid Species towards Reduction of Hexachloroiridate (IV). J CHEM-NY 2021. [DOI: 10.1155/2021/5505741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pair [IrCl6]2–/[IrCl6]3– has been demonstrated to be a good redox probe in biological systems while L-ascorbic acid (AA) is one of the most important antioxidants. D-isoascorbic acid (IAA) is an epimer of AA and is widely used as an antioxidant in various foods, beverages, meat, and fisher products. Reductions of [IrCl6]2– by AA and IAA have been analyzed kinetically and mechanistically in this work. The reductions strictly follow overall second-order kinetics and the observed second-order rate constants were collected in the pH region of 0 ≤ pH ≤ 2.33 at 25.0°C. Spectrophotometric titration experiments revealed a well-defined 1 : 2 stoichiometry, namely Δ[AA] : Δ[Ir(IV)] or Δ[IAA] : Δ[Ir(IV)] = 1 : 2, indicating that L-dehydroascorbic acid (DHA) and D-dehydroisoascorbic acid (DHIA) were the oxidation products of AA and IAA, respectively. A reaction mechanism is suggested involving parallel reactions of [IrCl6]2– with three protolysis species of AA/IAA (fully protonated, monoanionic, and dianionic forms) as the rate-determining steps and formation of ascorbic/isoascorbic and ascorbate/isoascorbate radicals; in each of the steps, [IrCl6]2– acquires an electron via an outer-sphere electron transfer mode. Rate constants of the rate-determining steps have been derived or estimated. The fully protonated forms of AA and IAA display virtually identical reactivity whereas ascorbate and isoascorbate monoanions have a significant reactivity difference. The ascorbate and isoascorbate dianions are extremely reactive and their reactions with [IrCl6]2– proceed with the diffusion-controlled rate. The species versus pH and the species reactivity versus pH distribution diagrams were constructed endowing that the ascorbate/isoascorbate monoanionic form dominated the total reactivity at physiological pH. In addition, the value of pKa1 = 3.74 ± 0.05 for IAA at 25.0°C and 1.0 M ionic strength was determined in this work.
Collapse
|
63
|
Zhu Q, Tian D, Guo W, He J. Determination of Hydrogen Peroxide and Silver Ions Using G-Quadruplex/Hemin Catalyzed Luminol Chemiluminescence. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1991365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qiyong Zhu
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
| | - Dong Tian
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
| | - Wei Guo
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Jiahao He
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
| |
Collapse
|
64
|
Aayanifard Z, Alebrahim T, Pourmadadi M, Yazdian F, Dinani HS, Rashedi H, Omidi M. Ultra pH-sensitive detection of total and free prostate-specific antigen using electrochemical aptasensor based on reduced graphene oxide/gold nanoparticles emphasis on TiO 2/carbon quantum dots as a redox probe. Eng Life Sci 2021; 21:739-752. [PMID: 34764826 PMCID: PMC8576073 DOI: 10.1002/elsc.202000118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/30/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The development of a rapid, sensitive, and straightforward detection method of prostate-specific antigen (PSA) is indispensable for the early diagnosis of prostate cancer (PCa). This work relates an electrochemical method using functionalized single-stranded DNA aptamer to diagnose PCa and benign prostate hyperplasia. The sensing platform relies on PSA recognition by aptamer/Au/GO-nanohybrid-modified glassy carbon electrode. Besides ferrocyanide TiO2/carbon quantum dots (CQDs) probe is used to investigate the effect of nanoparticle-containing electrolyte. Optimization of incubation time of aptamer/Au/GO-nanohybrid and volume fraction of nafion were done using Design Expert 10 software reporting 42.4 h and 0.095% V/V, respectively. In ferrocyanide medium, PSA detection as low as 3, 2.96, and 0.85 ng mL-1 was achieved with a dynamic range from 0.5 to 7 ng ml-1, in accord with clinical values, using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy, respectively. Moreover, this sensor exhibited conspicuous performance in TiO2/CQDs-containing medium with different pH values of 5.4 and 8 to distinguish total PSA and free PSA, resulting in very low limit of detections, 0.028, and 0.007 ng ml-1, respectively. The results manifested the proposed system as a forthcoming sensor in a clinical and point of care analysis of PSA.
Collapse
Affiliation(s)
- Zahra Aayanifard
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Talieh Alebrahim
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | | | - Fatemeh Yazdian
- Department of Life Science EngineeringFaculty of New Science and TechnologiesUniversity of TehranTehranIran
| | | | - Hamid Rashedi
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Meisam Omidi
- Protein Research CenterShahid Beheshti UniversityTehranIran
| |
Collapse
|
65
|
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. Nanotechnology-Based Delivery Systems for Antimicrobial Peptides. Pharmaceutics 2021; 13:pharmaceutics13111795. [PMID: 34834210 PMCID: PMC8620809 DOI: 10.3390/pharmaceutics13111795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant threat to global health. The conventional antibiotic pool has been depleted, forcing the investigation of novel and alternative antimicrobial strategies. Antimicrobial peptides (AMPs) have shown potential as alternative diagnostic and therapeutic agents in biomedical applications. To date, over 3000 AMPs have been identified, but only a fraction of these have been approved for clinical trials. Their clinical applications are limited to topical application due to their systemic toxicity, susceptibility to protease degradation, short half-life, and rapid renal clearance. To circumvent these challenges and improve AMP’s efficacy, different approaches such as peptide chemical modifications and the development of AMP delivery systems have been employed. Nanomaterials have been shown to improve the activity of antimicrobial drugs by providing support and synergistic effect against pathogenic microbes. This paper describes the role of nanotechnology in the targeted delivery of AMPs, and some of the nano-based delivery strategies for AMPs are discussed with a clear focus on metallic nanoparticle (MNP) formulations.
Collapse
Affiliation(s)
| | | | | | - Mervin Meyer
- Correspondence: (A.O.F.); (N.R.S.S.); (A.M.M.); (M.M.)
| |
Collapse
|
66
|
Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. BIOSENSORS-BASEL 2021; 11:bios11100352. [PMID: 34677308 PMCID: PMC8533700 DOI: 10.3390/bios11100352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Environmental contaminants are a global concern, and an effective strategy for remediation is to develop a rapid, on-site, and affordable monitoring method. However, this remains challenging, especially with regard to the detection of various contaminants in complex water environments. The application of molecular methods has recently attracted increasing attention; for example, rolling circle amplification (RCA) is an isothermal enzymatic process in which a short nucleic acid primer is amplified to form a long single-stranded nucleic acid using a circular template and special nucleic acid polymerases. Furthermore, this approach can be further engineered into a device for point-of-need monitoring of environmental pollutants. In this paper, we describe the fundamental principles of RCA and the advantages and disadvantages of RCA assays. Then, we discuss the recently developed RCA-based tools for environmental analysis to determine various targets, including heavy metals, organic small molecules, nucleic acids, peptides, proteins, and even microorganisms in aqueous environments. Finally, we summarize the challenges and outline strategies for the advancement of this technique for application in contaminant monitoring.
Collapse
|
67
|
Pattiya Arachchillage KGG, Chandra S, Piso A, Qattan T, Artes Vivancos JM. RNA BioMolecular Electronics: towards new tools for biophysics and biomedicine. J Mater Chem B 2021; 9:6994-7006. [PMID: 34494636 DOI: 10.1039/d1tb01141c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The last half-century has witnessed the birth and development of a new multidisciplinary field at the edge between materials science, nanoscience, engineering, and chemistry known as Molecular Electronics. This field deals with the electronic properties of individual molecules and their integration as active components in electronic circuits and has also been applied to biomolecules, leading to BioMolecular Electronics and opening new perspectives for single-molecule biophysics and biomedicine. Herein, we provide a brief introduction and overview of the BioMolecular electronics field, focusing on nucleic acids and potential applications for these measurements. In particular, we review the recent demonstration of the first single-molecule electrical detection of a biologically-relevant nucleic acid. We also show how this could be used to study biomolecular interactions and applications in liquid biopsy for early cancer detection, among others. Finally, we discuss future perspectives and challenges in the applications of this fascinating research field.
Collapse
Affiliation(s)
| | - Subrata Chandra
- Department of Chemistry, University of Massachusetts Lowell, One University Ave, 01854 Lowell, MA, USA.
| | - Angela Piso
- Department of Chemistry, University of Massachusetts Lowell, One University Ave, 01854 Lowell, MA, USA.
| | - Tiba Qattan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave, 01854 Lowell, MA, USA.
| | - Juan M Artes Vivancos
- Department of Chemistry, University of Massachusetts Lowell, One University Ave, 01854 Lowell, MA, USA.
| |
Collapse
|
68
|
Zhu Q, Li C, Chang H, Jiang M, Sun X, Jing W, Huang H, Huang D, Kong L, Chen Z, Sang F, Zhang X. A label-free photoelectrochemical immunosensor for prostate specific antigen detection based on Ag 2S sensitized Ag/AgBr/BiOBr heterojunction by in-situ growth method. Bioelectrochemistry 2021; 142:107928. [PMID: 34428614 DOI: 10.1016/j.bioelechem.2021.107928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Prostate cancer is one of the most common cancers in the world, and its early detection is vital to saving the lives of patients. In this research, a novel label-free photoelectrochemical immunosensor was designed for sensitive detection of prostate specific antigen (PSA). Ag2S sensitized on Ag/AgBr/BiOBr heterojunction could effectively inhibit photogenic holes recombination and improve photocurrent response and sensitivity. Ascorbic acid was an effective electron donor, which can effectively eliminate photo-generated holes. The photocurrent reduced linearly with the logarithm of PSA concentration ranged from 0.001 to 50 ng·mL-1 and the limit of detection was 0.25 pg·mL-1. The designed sensor had the advantages of wide linear range, good stability, high reproducibility, and good selectivity. This study not only provided a method for efficient and sensitive detection of PSA, but also provided valuable reference ideas for the detection of other tumor markers.
Collapse
Affiliation(s)
- Qiying Zhu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Canguo Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Huiqin Chang
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, PR China
| | - Meng Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Xiaokai Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Wei Jing
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Haowei Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Di Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Ling Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| | - Zhiwei Chen
- Institute of Food and Nutrition Science, Shandong University of Technology, Zibo 255049, PR China.
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Xiuzhen Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| |
Collapse
|
69
|
Nooranian S, Mohammadinejad A, Mohajeri T, Aleyaghoob G, Kazemi Oskuee R. Biosensors based on aptamer-conjugated gold nanoparticles: A review. Biotechnol Appl Biochem 2021; 69:1517-1534. [PMID: 34269486 DOI: 10.1002/bab.2224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Simply synthetized gold nanoparticles have been highly used in medicine and biotechnology as a result of their biocompatibility, conductivity, and being easily functionalized with biomolecules such as aptamer. Aptamer-conjugated gold nanoparticle structures synergically possess characteristics of both aptamer and gold nanoparticles including high binding affinity, high biocompatibility, enhanced target selectivity, and long circulatory half-life. Aptamer-conjugated gold nanoparticles have extensively gained considerable attention for designing of biosensing systems due to their interesting optical and electrochemical features. Moreover, biosensors based on aptamer-gold nanoparticles are easy to use, with fast response, and inexpensive which make them ideal in individualized medicine, disease markers detection, food safety, and so forth. Moreover, due to high selectivity and biocompatibility of aptamer-gold nanoparticles, these biosensing platforms are ideal tools for targeted drug delivery systems. The application of this nanostructure as diagnostic and therapeutic tool has been developed for detection of cancer in the early stage by detecting cancer biomarkers, pathogens, proteins, toxins, antibiotics, adenosine triphosphate, and other small molecules. This review obviously demonstrates that this nanostructure effectively is applicable in the field of biomedicine and possesses potential of commercialization aims.
Collapse
Affiliation(s)
- Samin Nooranian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
70
|
Wang Q, Yin H, Zhou Y, Wang J, Ai S. Investigation of the inhibited biotoxicity of heavy metals towards 5- formylcytosine in rice by hydrochar based on photoelectrochemical biosensor. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125293. [PMID: 33647617 DOI: 10.1016/j.jhazmat.2021.125293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
A photoelectrochemical (PEC) biosensor was constructed for 5-formylcytosine (5fC) nucleotide detection based on Ag2S@WS2 photoactive material and FeVO4 catalytic signal quenching. After Ag2S@WS2 was modified onto the ITO substrate surface, 5fC recognition reagent of Au@4-amino3hydrazino5mercapto-1,2,4-triazol (Au@AHMT) was further modified through electrostatic adsorption. Afterwards, based on the specific chemical reaction between -NH2 and -CHO, 5fC can be selectively recognized and captured. Subsequently, the nanoenzyme of FeVO4 was recognized based on the specific reaction between the phosphate group of 5fC nucleotide and Fe3+. Under the catalysis of FeVO4, the 4-chloro-1-naphthol in the detection solution can be oxidized to generate a precipitate, which will be retained on the electrode surface to inhibit the PEC signal. The developed method presented a widely dynamic range from 0.1 to 400 nM. The detection limit was 0.062 nM (3σ). This method also showed good detection selectivity, reproducibility and stability. The applicability was verified by investigating 5fC content change in genomic DNA of rice tissues after incubated with heavy metals. Moreover, the inhibited influence of hydrochar towards heavy metals was also assessed.
Collapse
Affiliation(s)
- Qian Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, PR China
| |
Collapse
|
71
|
Aydın EB, Aydın M, Sezgintürk MK. Ultrasensitive and Selective Impedimetric Determination of Prostate Specific Membrane Antigen Based on Di-Succinimide Functionalized Polythiophene Covered Cost-Effective Indium Tin Oxide. Macromol Biosci 2021; 21:e2100173. [PMID: 34263542 DOI: 10.1002/mabi.202100173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/26/2021] [Indexed: 11/09/2022]
Abstract
A new and ultrasensitive impedimetric biosensor fabricated by using conjugated di-succinimide substituted polythiophene (P(ThidiSuc)) polymer modified indium tin oxide electrode is developed for the first time to detect the prostate specific membrane antigen (PSMA). The polymer P(Thi-diSuc) is synthesized by using a simple way and used in the fabrication of the proposed biosensor. The synthesized polymer contains di-succinimide groups, which offers covalent immobilization of PSMA specific antibodies. The developed strategy shortens the biosensor fabrication steps, because these active groups bind covalently to the amino ends of PSMA specific antibodies and this reaction does not require any crosslinking agent. Various characterization studies like impedimetric and voltammetric measurements, and morphological analyses are utilized to confirm the successful development of the biosensor. Under optimum conditions, the biosensing ability of the PSMA determination has a wide linear determination range from 0.015 to 14.4 pg mL-1 , as well as a low limit of detection of 6.4 fg mL-1 and a high sensitivity of 1.36 kohm pg-1 mL cm-2 . Furthermore, the proposed biosensor is able to measure the PSMA antigen in real human serums, which offers that it is a simple, low-cost, and sensitive tool with excellent potential for application in the quantification of PSMA.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, 59100, Turkey
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, 59100, Turkey
| | - Mustafa Kemal Sezgintürk
- Faculty of Engineering, Bioengineering Department, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey
| |
Collapse
|
72
|
Liu M, Chen G, Qin Y, Li J, Hu L, Gu W, Zhu C. Proton-Regulated Catalytic Activity of Nanozymes for Dual-Modal Bioassay of Urease Activity. Anal Chem 2021; 93:9897-9903. [PMID: 34240847 DOI: 10.1021/acs.analchem.1c01999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benefiting from the merits of high stability and superior activity, nanozymes are recognized as promising alternatives to natural enzymes. Despite the great leaps in the field of therapy and colorimetric sensing, the development of highly sensitive nanozyme-involved photoelectrochemical (PEC) biosensors is still in its infancy. Specifically, the investigation of multifunctional nanozymes facilitating different catalytic reactions remains largely unexplored due to the difficulty in synergistically amplifying the PEC signals. In this work, mesoporous trimetallic AuPtPd nanospheres were synthesized with both efficient oxidase and peroxidase-like activities, which can synergistically catalyze the oxidation of 4-chloro-1-naphthol to produce benzo-4-chlorohexadienone precipitation on the surface of photoactive materials, and thus lead to the decreased photocurrent as well as increased charge-transfer resistance. Inspired by the proton-dependent catalytic activity of nanozymes, a self-regulated dual-modal PEC and electrochemical bioassay of urease activity was innovatively established by in situ regulating the activity of AuPtPd nanozymes through urease-mediated proton-consuming enzymatic reactions, which can remarkably improve the accuracy of the assay. Meanwhile, the determination of urease activity in spiked human saliva samples was successfully realized, indicating the reliability of the biosensor and its application prospects in clinical diagnosis.
Collapse
Affiliation(s)
- Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guojuan Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
73
|
Xie Y, Wang N, Sun X, Chu H, Wang Y, Hu X. Triple-signaling amplification strategy based electrochemical sensor design: boosting synergistic catalysis in metal-metalloporphyrin-covalent organic frameworks for sensitive bisphenol A detection. Analyst 2021; 146:4585-4594. [PMID: 34159957 DOI: 10.1039/d1an00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A covalent organic framework (COF) is a promising type of porous material with customizable surface characteristics. Confining multiple catalytic units within a mesoporous COF can generate abundant active sites and improve the catalytic performance. In this work, a COF with both metalloporphyrin and a metal nanoparticle complex denoted as hemin/TAPB-DMTP-COF/AuNPs (TAPB: 1,3,5-tris(4-amino-phenyl)benzene, DMTP: 2,5-dimethoxyterephaldehyde, AuNPs: Au nanoparticles) has been successfully fabricated through a hierarchical encapsulation method. The as-synthesized composite was then employed to construct an electrochemical sensing platform for the efficient detection of bisphenol A (BPA). Under the optimal conditions, the hemin/TAPB-DMTP-COF/AuNP sensor presented a linear range of 0.01-3 μmol L-1 and a low detection limit of 3.5 nmol L-1. The satisfactory signal amplification is based on a triple-signaling amplification strategy due to the abundant Fe3+ sites of Fe-porphyrin, high conductivity of AuNPs and a large specific surface area of the TAPB-DMTP-COF. The proposed method was used to measure the content of BPA in different water samples with a satisfactory recovery from 95.5 to 104.0%, suggesting the great potential of the sensor in practical applications.
Collapse
Affiliation(s)
- Yao Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, 200240, China
| | - Xin Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Huacong Chu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
74
|
Xu J, Jiang R, He H, Ma C, Tang Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
75
|
Liao XJ, Xiao HJ, Cao JT, Ren SW, Liu YM. A novel split-type photoelectrochemical immunosensor based on chemical redox cycling amplification for sensitive detection of cardiac troponin I. Talanta 2021; 233:122564. [PMID: 34215060 DOI: 10.1016/j.talanta.2021.122564] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Photoelectrochemical (PEC) immunoassay is a burgeoning and promising bioanalytical method. However, the practical application of PEC still exist some challenges such as the inevitable damage of biomolecules caused by the PEC system and the unsatisfactory sensitivity for biomarkers with low abundance in real sample. To solve the problems, we integrated the cosensitized structure of Ag2S/ZnO nanocomposities as photoelectrode with photogenerated hole-induced chemical redox cycling amplification (CRCA) strategy to develop a split-type PEC immunosensor for cardiac troponin I (cTnI) with high sensitivity. Initially, the immunoreaction was carried out on the 96-well plates in which alkaline phosphatase (ALP) could catalyze ascorbic acid 2-phosphate (AAP) to generate the signal-reporting species ascorbic acid (AA). Subsequently, the AA participated and the tris (2-carboxyethyl) phosphine (TCEP) mediated chemical redox cycling reaction took place on the photoelectrode, thus leading to signal amplification. Under the optimized conditions, the immunosensor demonstrated a detection limit (LOD) of 3.0 × 10-15 g mL-1 with a detection range of 1.0 × 10-14 g mL-1 to 1.0 × 10-9 g mL-1 for cTnI. Impressively, the proposed method could determine the cTnI in human serum samples with high sensitivity and satisfactory accuracy. Considering the virtues of the photoelectrode and the chemical redox cycling strategy, the method would hold great potential for highly sensitive biosensing and bioanalysis.
Collapse
Affiliation(s)
- Xiao-Jing Liao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Hui-Jin Xiao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China; Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
76
|
Xu M, Tang D. Recent advances in DNA walker machines and their applications coupled with signal amplification strategies: A critical review. Anal Chim Acta 2021; 1171:338523. [PMID: 34112433 DOI: 10.1016/j.aca.2021.338523] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
DNA walkers, a type of dynamic nanomachines, have become the subject of burgeoning research in the field of biology. These walkers are powered by driving forces based on strand displacement reactions, protein enzyme/DNAzyme reactions and conformational transitions. With the unique properties of high directionality, flexibility and efficiency, DNA walkers move progressively and autonomously along multiple dimensional tracks, offering abundant and promising applications in biosensing, material assembly and synthesis, and early cancer diagnosis. Notably, DNA walkers identified as signal amplifiers can be combined with various amplification approaches to enhance signal transduction and amplify biosensor sensing signals. Herein, we systematically and comprehensively review the walking principles of various DNA walkers and the recent progress on multiple dimensional tracks by presenting representative examples and an insightful discussion. We also summarized and categorized the diverse signal amplification strategies with which DNA walkers have coupled. Finally, we outline the challenges and future trends of DNA walker machines in emerging analytical fields.
Collapse
Affiliation(s)
- Mingdi Xu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, People's Republic of China; Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
77
|
Qiu Z, Tang D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B 2021; 8:2541-2561. [PMID: 32162629 DOI: 10.1039/c9tb02844g] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a newly developed and powerful analytical method, the use of photoelectrochemical (PEC) biosensors opens up new opportunities to provide wide applications in the early diagnosis of diseases, environmental monitoring and food safety detection. The properties of diverse photoactive materials are one of the essential factors, which can greatly impact the PEC performance. The continuous development of nanotechnology has injected new vitality into the field of PEC biosensors. In many studies, much effort on PEC sensing with semiconductor materials is highlighted. Thus, we propose a systematic introduction to the recent progress in nanostructure-based PEC biosensors to exploit more promising materials and advanced PEC technologies. This review briefly evaluates the several advanced photoactive nanomaterials in the PEC field with an emphasis on the charge separation and transfer mechanism over the past few years. In addition, we introduce the application and research progress of PEC sensors from the perspective of basic principles, and give a brief overview of the main advances in the versatile sensing pattern of nanostructure-based PEC platforms. This last section covers the aspects of future prospects and challenges in the nanostructure-based PEC analysis field.
Collapse
Affiliation(s)
- Zhenli Qiu
- Ocean College, Minjiang University, Fuzhou 350108, China and Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
78
|
Li Z, Xu H, Li S, Wu S, Miao X. Zettomole electrochemical HIV DNA detection using 2D DNA-Au nanowire structure, hemin/G-quadruplex and polymerase chain reaction multi-signal synergistic amplification. Anal Chim Acta 2021; 1159:338428. [PMID: 33867042 DOI: 10.1016/j.aca.2021.338428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023]
Abstract
Multi-signal synergistically amplified electrochemical sensing of HIV DNA was proposed based on two-dimensional (2D) DNA-Au nanowire structure coupled with hemin/G-quadruplex and polymerase chain reaction (PCR). In the design, by using target HIV DNA as the template, PCR generated numbers of double-stranded DNA (dsDNA) with free single-stranded DNA (ssDNA) tails on one side and free G-quadruplex sequences on the other side. Then, the ssDNA tails of the PCR products were hybridized with the capture probe (CP) to introduce the hemin/G-quadruplex to the electrode surface as a redox-active reporter and to amplify the electrochemical signal as mimic peroxidase catalysis in the presence of H2O2. Meanwhile, (+)AuNPs were electrostatically adsorbed onto dsDNA surface for the formation of 2D DNA-Au nanowire structure, amplifying the electrochemical signal further as another mimic peroxidase and electric conductor together. By effectively combining these signal amplification processes, ultrasensitive HIV DNA detection was achieved with a detection limit of 1.3 aM, indicating that it has potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Zongbing Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Huanwen Xu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shiqiang Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shujie Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
79
|
Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol 2021; 39:1160-1172. [PMID: 33715868 DOI: 10.1016/j.tibtech.2021.02.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle replication (RCR), including rolling circle amplification (RCA) and rolling circle transcription (RCT), is an isothermal enzymatic reaction. Because of its high amplification efficiency, RCR is a powerful biosensing tool for detecting biomolecules. In recent years, RCR has also been extended to the field of bioimaging to better understand biological pathways. Furthermore, RCR provides a simple technique to design and generate DNA/RNA structures with unique advantages in delivering drugs and enhanced targeting ability. In this review, we introduce the fundamentals of RCR and describe the most recent advances in RCR-based detection methods and delivery vehicles for biosensing, bioimaging, and biomedicine. Finally, some challenges and further opportunities of RCR-based biotechnology are discussed.
Collapse
|
80
|
Shi H, Cui J, Sulemana H, Wang W, Gao L. Protein detection based on rolling circle amplification sensors. LUMINESCENCE 2021; 36:842-848. [PMID: 33502072 DOI: 10.1002/bio.4017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 12/22/2022]
Abstract
Rolling circle amplification (RCA) is an isothermal process under the action of DNA polymerases. Large-scale DNA templates have been generated using RCA for target detection. Some signal amplification strategies including optical sensors and electrochemical sensors based on RCA have been applied to achieve sensitive detection. Sensors based on RCA have attracted increasing interest. Advances in RCA-based sensors for protein detection are reviewed in this paper. The advantages and detection mechanisms of sensors based on RCA are revealed and discussed. Finally, possible challenges and future perspectives are also outlined.
Collapse
Affiliation(s)
- Haixia Shi
- P. E. Department of Jiangsu University, Zhenjiang, China
| | - Jingjie Cui
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | | | - Wunian Wang
- P. E. Department of Jiangsu University, Zhenjiang, China
| | - Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
81
|
Determination of plasma β-amyloids by rolling circle amplification chemiluminescent immunoassay for noninvasive diagnosis of Alzheimer's disease. Mikrochim Acta 2021; 188:24. [PMID: 33404755 DOI: 10.1007/s00604-020-04650-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
A rolling circle amplification chemiluminescence immunoassay (RCA-CLIA) was developed for precise quantitation of Aβ in plasma. Capture antibodies conjugated with magnetic beads and detection antibodies with collateral single-stranded DNA (ssDNA) were bound to Aβ42/Aβ40 antigens to form a typical double-antibody sandwich structure. The RCA reaction was triggered by the addition of ssDNA, which generated products with a large number of sites for the binding of acridinium ester (AE)-labeled detection probes, thereby realizing the purpose of the amplification. The RCA-CLIA method had higher sensitivity than conventional CLIA without loss of specificity. Under optimum conditions, the linear range of Aβ42 and Aβ40 detection was 3.9-140 pg/mL and 3.9-180 pg/mL, respectively, with corresponding low detection limits of 1.99 pg/mL and 3.14 pg/mL, respectively. Plasma Aβ42 and Aβ40 were detected in the blood of 21 AD patients and 22 healthy people, wherein this ratio could significantly distinguish AD patients from healthy individuals with a sensitivity of 90.48% and specificity of 63.64% for a cutoff value of 154. The Aβ42/Aβ40 ratio of plasma acts as an accurate indicator for AD diagnosis; therefore, detection of plasma Aβ using the RCA-CLIA exhibits great potential in noninvasive diagnosis and progressive assessment of AD.
Collapse
|
82
|
Cao JT, Zhao LZ, Zhang WS, Ma SH, Liu YM. Engineering WS2–Au–HRP-assisted multiple signal amplification strategy for chemiluminescence immunoassay of prostate specific antigen. NEW J CHEM 2021. [DOI: 10.1039/d1nj01811f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering of a WS2–Au–HRP-assisted multiple signal amplification strategy for CL immunoassay of PSA.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Li-Zhen Zhao
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Wen-Sheng Zhang
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Shu-Hui Ma
- Xinyang Central Hospital
- Xinyang 464000
- China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| |
Collapse
|
83
|
Zhang J, Lin J, Zheng T, Jiang Y, Luo S, Lin Y, Zhang Z. DNAzyme concatemer-catalyzed precipitation on an interdigitated micro-comb electrode for capacitance immunosensing of interleukin-6 with rolling circle amplification. NEW J CHEM 2021. [DOI: 10.1039/d0nj05507g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel capacitance immunosensor based on DNAzyme concatemer-amplified signal-generation tags was developed for the sensitive detection of interleukin-6 (IL-6) on an interdigitated micro-comb electrode.
Collapse
Affiliation(s)
- Jianming Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| | - Jia Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University
- Collaborative Innovation Center for Rehabilitation Technology
- Fujian University of Traditional Chinese Medicine
- Fuzhou 350122
- P. R. China
| | - Tingjin Zheng
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| | - Yancheng Jiang
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| | - Shimu Luo
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University
- Collaborative Innovation Center for Rehabilitation Technology
- Fujian University of Traditional Chinese Medicine
- Fuzhou 350122
- P. R. China
| | - Zhishan Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| |
Collapse
|
84
|
Xu L, Duan J, Chen J, Ding S, Cheng W. Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal Chim Acta 2020; 1148:238187. [PMID: 33516384 DOI: 10.1016/j.aca.2020.12.062] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023]
Abstract
Rolling circle amplification (RCA) is an efficient enzymatic isothermal reaction that using circular probe as a template to generate long tandem single-stranded DNA or RNA products under the initiation of short DNA or RNA primers. As a simplified derivative of natural rolling circle replication which synthesizes copies of circular nucleic acids molecules such as plasmids, RCA amplifies the circular template rapidly without thermal cycling and finds various applications in molecular biology. Compared with other amplification strategies, RCA has many obvious advantages. Firstly, because of the strict complementarity required in ligation of a padlock probe, it endows the RCA reaction with high specificity and can even be utilized to distinguish single base mismatches. Secondly, through the introduction of multiple primers, exponential amplification can be achieved easily and leads to a good sensitivity. Thirdly, RCA products can be customized by manipulating circular templates to generate functional nucleic acids such as aptamer, DNAzymes and restriction enzyme sites. Moreover, the RCA has good biocompatibility and is especially suitable for in situ detection. Therefore, RCA has attracted considerable attention as an efficient and potential tool for highly sensitive detection of biomarkers. Herein, we comprehensively introduce the fundamental principles of RCA technology, summarize it from three aspects including initiation mode, amplification mode and signal output mode, and discuss the recent application of RCA-based biosensor in this review.
Collapse
Affiliation(s)
- Lulu Xu
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaxin Duan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
85
|
Liu J, Hu Q, Qi L, Lin JM, Yu L. Liquid crystal-based sensing platform for detection of Pb 2+ assisted by DNAzyme and rolling circle amplification. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123218. [PMID: 32593940 DOI: 10.1016/j.jhazmat.2020.123218] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 05/22/2023]
Abstract
Lead ions (Pb2+) are one of the most widespread heavy metal contaminants that pose detrimental impact on environment and human health. We demonstrate a highly sensitive and specific liquid crystal (LC)-based sensing platform for detecting Pb2+ assisted by DNAzyme and rolling circle amplification (RCA). Magnetic beads (MBs) are functionalized with DNA duplexes of the catalytic strands (DNAzymes) and the substrate strands. In the presence of Pb2+, the substrate strands are disassembled due to activation of the DNAzyme, which allows initiation of DNA RCA on MBs. The amplified DNA strands can disrupt arrangement of octadecy trimethyl ammonium bromide monolayers (OTAB), thereby inducing planar orientation of LC molecules at the interface of aqueous and LCs. Thus, LCs exhibit bright appearance. In contrast, RCA cannot be triggered in the absence of Pb2+. Therefore, LC molecules adopt perpendicular orientation at the interface, which induces the dark morphology of LCs. The limit of detection reaches as low as 16.7 pM. It is an improvement of more than two orders of magnitude compared to that of previously reported LC-based sensing approaches. This approach also shows excellent performance in monitoring Pb2+ in tap water and lake water.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China.
| | - Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Ministry of Education, Beijing, 100084, PR China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
86
|
Hu Q, Gan S, Bao Y, Zhang Y, Han D, Niu L. Electrochemically Controlled ATRP for Cleavage-Based Electrochemical Detection of the Prostate-Specific Antigen at Femtomolar Level Concentrations. Anal Chem 2020; 92:15982-15988. [PMID: 33225684 DOI: 10.1021/acs.analchem.0c03467] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a single-chain glycoprotein with endopeptidase activity, the prostate-specific antigen (PSA) is valuable as an informative serum marker in diagnosing, staging, and prognosis of prostate cancer. In this report, an electrochemical biosensor based on the target-induced cleavage of a specific peptide substrate (PSA peptide) is designed for the highly selective detection of PSA at the femtomolar level, using electrochemically controlled atom transfer radical polymerization (eATRP) as a method for signal amplification. The PSA peptides, without free carboxyl sites, are attached to the gold surface via the N-terminal cysteine residue. The target-induced cleavage of PSA peptides results in the generation of carboxyl sites, to which the alkyl halide initiator α-bromophenylacetic acid (BPAA) is linked via the Zr(IV) linkers. Subsequently, the potentiostatic eATRP of ferrocenylmethyl methacrylate (FcMMA, as the monomer) leads to the surface-initiated grafting of high-density ferrocenyl polymers. As a result, a large amount of Fc redox tags can be recruited for signal amplification, through which the limit of detection (LOD) for PSA can be down to 3.2 fM. As the recognition element, the PSA peptide is easy to synthesize, chemically and thermally stable, and low-cost. Without the necessity of enzyme or nanoparticle labels, the eATRP-based amplification method is easy to operate and low-cost. Results also show that the cleavage-based electrochemical PSA biosensor is highly selective and applicable to PSA detection in complex biological samples. In view of these merits, the integration of the eATRP-based amplification method into cleavage-based recognition is believed to hold great promise for the electrochemical detection of PSA in clinical applications.
Collapse
Affiliation(s)
- Qiong Hu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiyu Gan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuwei Zhang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
87
|
Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP-Abs and Prussian blue nanocomposite for organophosphorus pesticide detection. Bioprocess Biosyst Eng 2020; 44:585-594. [PMID: 33161490 DOI: 10.1007/s00449-020-02472-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022]
Abstract
Broad-spectrum antibodies can effectively recognize substances with similar structures and have broad application prospects in field rapid detection. In this study, broad-spectrum antibodies (Abs) against organophosphorus pesticides (OPs) were used as sensitive recognition elements, which could effectively recognize most OPs. Gold nanoparticles (AuNPs) have good biocompatibility. It combined with Abs to form a gold-labeled probe (AuNPs-Abs), which enhances the effective binding of antibodies to nanomaterials. Prussian blue (PB) was added to electrodeposition solution to enhance the conductivity, resulting in superior electrochemical performance. The AuNP-Abs-PB composite film was prepared by electrodeposition on the electrode surface to improve the anti-interference ability and stability of the immunosensor. Under the optimal experimental conditions, the immunosensor had a wide detection range (IC20-IC80: 1.82 × 10-3-3.29 × 104 ng/mL) and high sensitivity. Most importantly, it was simple to be prepared and could be used to detect multiple OPs.
Collapse
|
88
|
Xi H, Juhas M, Zhang Y. G-quadruplex based biosensor: A potential tool for SARS-CoV-2 detection. Biosens Bioelectron 2020; 167:112494. [PMID: 32791468 PMCID: PMC7403137 DOI: 10.1016/j.bios.2020.112494] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022]
Abstract
G-quadruplex is a non-canonical nucleic acid structure formed by the folding of guanine rich DNA or RNA. The conformation and function of G-quadruplex are determined by a number of factors, including the number and polarity of nucleotide strands, the type of cations and the binding targets. Recent studies led to the discovery of additional advantageous attributes of G-quadruplex with the potential to be used in novel biosensors, such as improved ligand binding and unique folding properties. G-quadruplex based biosensor can detect various substances, such as metal ions, organic macromolecules, proteins and nucleic acids with improved affinity and specificity compared to standard biosensors. The recently developed G-quadruplex based biosensors include electrochemical and optical biosensors. A novel G-quadruplex based biosensors also show better performance and broader applications in the detection of a wide spectrum of pathogens, including SARS-CoV-2, the causative agent of COVID-19 disease. This review highlights the latest developments in the field of G-quadruplex based biosensors, with particular focus on the G-quadruplex sequences and recent applications and the potential of G-quadruplex based biosensors in SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Hui Xi
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Mario Juhas
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
89
|
Photoelectrochemical immunosensor for methylated RNA detection based on WS 2 and poly(U) polymerase-triggered signal amplification. Mikrochim Acta 2020; 187:596. [PMID: 33033870 DOI: 10.1007/s00604-020-04572-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
A novel photoelectrochemical immunosensor has been constructed for the determination of methylated RNA. MoS2 nanosheets with large specific area were employed as photoactive material, gold nanoparticles were used as signal amplification unit and immobilization matrix of 4-mercaptophenylboronic acid, anti-m6A antibody was adopted as methylated RNA recognition reagent, and poly(U) polymerase-mediated RNA chain extension and Ru(NH3)63+ were used as assisted signal amplification unit. With the sensitization effect of Ru(NH3)63+, the photoactivity of WS2 nanosheets was improved greatly, which also improved the sensitivity. Using visible-light excitation and ascorbic acid as electron donor, the sensitive determination of methylated RNA was achieved by monitoring the photocurrent change with different concentrations of methylated RNA. This photoelectrochemical immunosensor has a wide linear relationship with methylated RNA concentration from 0.05 to 35 nM under optimal experimental conditions. The low detection limit of 14.5 pM was realized based on 3σ criterion. In addition to the good selectivity, this sensor also presents high reproducibility with a relative standard deviation of 1.4% for the photocurrent of seven electrodes. The applicability of the developed method was also investigated by detecting the level of methylated RNA in corn seedling leaves with and without sulfadiazine treatment. Graphical abstract A novel photoelectrochemical immunosensor was developed for methylated RNA detection using the photoactive material of MoS2 and poly(U) polymerase-mediated RNA chain extension.
Collapse
|
90
|
Li F, Zhou Y, Yin H, Ai S. Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs. Biosens Bioelectron 2020; 166:112476. [DOI: 10.1016/j.bios.2020.112476] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/23/2023]
|
91
|
Hu P, Wang X, Wei L, Dai R, Yuan X, Huang K, Chen P. Selective recognition of CdTe QDs and strand displacement signal amplification-assisted label-free and homogeneous fluorescence assay of nucleic acid and protein. J Mater Chem B 2020; 7:4778-4783. [PMID: 31389950 DOI: 10.1039/c9tb00753a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to their simplicity of design and operation, homogeneous bioassays have been of great interest to researchers. Herein, a label-free and free separation fluorescence sensing platform was constructed for the determination of nucleic acid and prostate specific antigen (PSA) using CdTe QDs as the signal molecule. In our previous work, we surprisingly found that the CdTe QDs can selectively distinguish Ag+ and the C-Ag+-C complex, which was the basis of the sensor. On the basis of the selective cation exchange reaction (CER), combined with the signal amplification of the strand displacement reaction (SDR), this work was first applied for the sensitive analysis of DNA. There are two types of hairpin structures in this sensing system, including the recognition probe (HP) and Ag+, which formed the C-Ag+-C structure, and the hairpin structure formed by the helper DNA itself. In this work, target DNA can trigger the SDR that generates lots of HP-helper double-stranded DNA (dsDNA) and recycles the target DNA while releasing a large amount of Ag+, thus quenching the fluorescence signal of CdTe QDs to achieve the highly sensitive detection of DNA. In order to verify the versatility of this system using DNA as a bridge and aptamers as recognition probes, we extended the system to the detection of PSA. After examining its experimental performance, it was determined that this method displayed good analytical capability for DNA in the range of 10-13-10-10 M and PSA in the range of 10-13-10-10 g mL-1 with low 25 fM and 30 fg mL-1 limits of detection (LODs), respectively; high selectivity for both the target sequence and protein was shown. In addition, this platform was successfully used for the analysis of PSA in serum samples.
Collapse
Affiliation(s)
- Pingyue Hu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | | | | | | | | | | | | |
Collapse
|
92
|
Reis Lima FM, Soares RP, Sinfrônio FSM, Maciel AP, Menezes AS, Pereira SRF, Damos FS, Luz RDCS. Photoelectrochemical Immunosensor for Sensitive Quantification of Prostate Specific Antigen in Human Serum Samples Exploiting BaTiO
3
−CdS. ChemElectroChem 2020. [DOI: 10.1002/celc.202000801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Rossy‐Eric P. Soares
- Department of BiologyLaboratory of Genetics and Molecular BiologyFederal University of Maranhão-UFMA 65080-805 São Luís, MA Brazil
| | | | - Adeilton P. Maciel
- Department of ChemistryFederal University of Maranhão 65080-805 São Luís, MA Brazil
| | - Alan S. Menezes
- Department of PhysicsFederal University of Maranhão CEP 65080–805 São Luis, MA Brazil
| | - Silma Regina F. Pereira
- Department of BiologyLaboratory of Genetics and Molecular BiologyFederal University of Maranhão-UFMA 65080-805 São Luís, MA Brazil
| | - Flavio S. Damos
- Department of ChemistryFederal University of Maranhão 65080-805 São Luís, MA Brazil
| | | |
Collapse
|
93
|
Tang J, Li J, Xiong P, Sun Y, Zeng Z, Tian X, Tang D. Rolling circle amplification promoted magneto-controlled photoelectrochemical biosensor for organophosphorus pesticides based on dissolution of core-shell MnO 2 nanoflower@CdS mediated by butyrylcholinesterase. Mikrochim Acta 2020; 187:450. [PMID: 32676787 DOI: 10.1007/s00604-020-04434-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
A photoelectrochemical (PEC) aptasensing platform is devised for sensitive detection of an organophosphorus pesticide based on dissolution of core-shell MnO2 nanoflower@CdS (MnO2 NF@CdS) by thiocholine (TCh). TCH is produced from the butyrylcholinesterase-acetylthiocholine system, accompanied by target-triggered rolling circle amplification (RCA). The core-shell MnO2 NF@CdS with excellent PEC performance was synthesized and employed as a photo-sensing platform. The target was detected on a functionalized magnetic probe with the corresponding aptamer. Upon malathion introduction, the aptamer was detached from the magnetic beads, while capture DNA (cDNA, with primer fragment) remained on the beads. The primer fragment in cDNA can trigger the RCA reaction to form a long single-stranded DNA (ssDNA). Furthermore, a large number of butyrylcholinesterase (BChE) were assembled on the long ssDNA strands through the hybridization with the S2-Au-BChE probe. Thereafter, TCh generated from hydrolysis of ATCh by BChE can reduce MnO2 NF (core) to Mn2+ and release the CdS nanoparticles (shell) from the platform electrode, significantly enhancing the PEC signal. Under optimal conditions, the proposed aptasensor exhibited high sensitivity for malathion with a low detection limit of 0.68 pg mL-1. Meanwhile, it also presents outstanding specificity, reproducibility, and stability. Importantly, the sensing platform provides a new concept for detection of pesticide. Graphical abstract Herein, this work devised a photoelectrochemical (PEC) aptasensing platform for sensitive detection of organophosphorus pesticide based on dissolution of core-shell MnO2 nanoflower@CdS (MnO2 NF@CdS) by the as-produced thiocholine (TCh) from the butyrylcholinesterase-acetylthiocholine system, accompanying with the target-triggered rolling circle amplification (RCA).
Collapse
Affiliation(s)
- Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| | - Jingjing Li
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Pengyuan Xiong
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Yuanfang Sun
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Zhiyao Zeng
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Xiaochun Tian
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
94
|
Tian B, Gao F, Fock J, Dufva M, Hansen MF. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens Bioelectron 2020; 165:112356. [PMID: 32510339 DOI: 10.1016/j.bios.2020.112356] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Circle-to-circle amplification (C2CA) is a specific and precise cascade nucleic acid amplification method consisting of more than one round of padlock probe ligation and rolling circle amplification (RCA). Although C2CA provides a high amplification efficiency with a negligible increase of false-positive risk, it contains several step-by-step operation processes. We herein demonstrate a homogeneous and isothermal nucleic acid quantification strategy based on C2CA and optomagnetic analysis of magnetic nanoparticle (MNP) assembly. The proposed homogeneous circle-to-circle amplification eliminates the need for additional monomerization and ligation steps after the first round of RCA, and combines two amplification rounds in a one-pot reaction. The second round of RCA produces amplicon coils that anneal to detection probes grafted onto MNPs, resulting in MNP assembly that can be detected in real-time using an optomagnetic sensor. The proposed methodology was applied for the detection of a synthetic complementary DNA of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2, also known as 2019-nCoV) RdRp (RNA-dependent RNA polymerase) coding sequence, achieving a detection limit of 0.4 fM with a dynamic detection range of 3 orders of magnitude and a total assay time of ca. 100 min. A mathematical model was set up and validated to predict the assay performance. Moreover, the proposed method was specific to distinguish SARS-CoV and SARS-CoV-2 sequences with high similarity.
Collapse
Affiliation(s)
- Bo Tian
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark.
| | - Fei Gao
- Department of Physics, Technical University of Denmark, DTU Physics, Building 307, DK-2800, Kongens Lyngby, Denmark
| | - Jeppe Fock
- Blusense Diagnostics ApS, Fruebjergvej 3, DK-2100, Copenhagen, Denmark
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark
| | - Mikkel Fougt Hansen
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
95
|
Highly sensitive photoelectrochemical immunosensor based on anatase/rutile TiO2 and Bi2S3 for the zero-biased detection of PSA. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04637-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
96
|
Pang YH, Guo LL, Shen XF, Yang NC, Yang C. Rolling circle amplified DNAzyme followed with covalent organic frameworks: Cascade signal amplification of electrochemical ELISA for alfatoxin M1 sensing. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
97
|
Construction of efficient “on-off-on” fluorescence aptasensor for ultrasensitive detection of prostate specific antigen via covalent energy transfer between g-C3N4 quantum dots and palladium triangular plates. Anal Chim Acta 2020; 1104:53-59. [DOI: 10.1016/j.aca.2020.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/26/2019] [Accepted: 01/04/2020] [Indexed: 12/21/2022]
|
98
|
Calabretta MM, Zangheri M, Lopreside A, Marchegiani E, Montali L, Simoni P, Roda A. Precision medicine, bioanalytics and nanomaterials: toward a new generation of personalized portable diagnostics. Analyst 2020; 145:2841-2853. [PMID: 32196042 DOI: 10.1039/c9an02041a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The customization of disease treatment focused on genetic, environmental and lifestyle factors of individual patients, including tailored medical decisions and treatments, is identified as precision medicine. This approach involves the combination of various aspects such as the collection and processing of a large amount of data, the selection of optimized and personalized drug dosage for each patient and the development of selective and reliable analytical tools for the monitoring of clinical, genetic and environmental parameters. In this context, miniaturized, compact and ultrasensitive bioanalytical devices play a crucial role for achieving the goals of personalized medicine. In this review, the latest analytical technologies suitable for providing portable and easy-to-use diagnostic tools in clinical settings will be discussed, highlighting new opportunities arising from nanotechnologies, offering peculiar perspectives and opportunities for precision medicine.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry, Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
99
|
Abbasy L, Mohammadzadeh A, Hasanzadeh M, Ehsani M, Mokhtarzadeh A. Biosensing of prostate specific antigen (PSA) in human plasma samples using biomacromolecule encapsulation into KCC-1-npr-NH 2: A new platform for prostate cancer detection. Int J Biol Macromol 2020; 154:584-595. [PMID: 32173432 DOI: 10.1016/j.ijbiomac.2020.03.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Prostate-specific antigen (PSA) is a high molecular weight glycoprotein that is used as a marker for the diagnosis of prostate cancer and is therefore important in the medical field. In this study, a novel sandwich type immunoassay was designed based on encapsulation of biotinylated antibody into KCC-1-npr-NH2. KCC-1-npr-NH2 stabilized the stability of the primary antibody. So, encapsulated Ab1 was immobilized on the surface of glassy carbon electrode. Field emission scanning electron microscope (FE-SEM) was employed to monitor the sensor fabrication. The engineered immunosensor was used for the detection of PSA using differential pulse voltammetry (DPVs) and square wave voltammetry (SWVs) techniques. The proposed interface lead to enhancement of accessible surface area for immobilizing a high amount of anti-PSA antibody, increasing electrical conductivity, boosting stability, catalytic properties and biocompatibility. The intensity of electrochemical signals is also increased by the use of AuNPs functionalized with CysA used in secondary antibody (HRP conjugated PSA) structure. Under optimal conditions, the designed immuno-assay provide a good analytical performance for quantifying the PSA marker in the linear range of 1 to 60 μg/l.
Collapse
Affiliation(s)
- Leila Abbasy
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz 51664, Iran
| | - Arezoo Mohammadzadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Ehsani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
100
|
|