51
|
Konyakhina TM, Feigenson GW. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:153-61. [PMID: 26525664 DOI: 10.1016/j.bbamem.2015.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/28/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022]
Abstract
Phospholipids having a polyunsaturated acyl chain are abundant in biological membranes, but their behavior in lipid mixtures is difficult to study. Here we elucidate the nature of such mixtures with this report of the first ternary phase diagram containing the polyunsaturated lipid SDPC in mixtures of BSM/SDPC/Chol (brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol). These mixtures show coexisting macroscopic liquid-disordered (Ld) and liquid-ordered (Lo) phase separation, with phase boundaries determined by FRET and by fluorescence microscopy imaging of giant unilamellar vesicles (GUVs). Surprisingly, SDPC mixes with BSM/Chol similarly to how DOPC and POPC mix with BSM/Chol. Notably, intermediate states are produced within the Ld+Lo liquid-liquid immiscibility region upon addition of fourth component POPC. These mixtures of BSM/SDPC/POPC/Chol exhibit nanoscopic Ld+Lo domains over a very large volume of composition space, possibly because Ld/Lo line tension is not high.
Collapse
Affiliation(s)
- Tatyana M Konyakhina
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
52
|
Khalifat N, Rahimi M, Bitbol AF, Seigneuret M, Fournier JB, Puff N, Arroyo M, Angelova MI. Interplay of packing and flip-flop in local bilayer deformation. How phosphatidylglycerol could rescue mitochondrial function in a cardiolipin-deficient yeast mutant. Biophys J 2015; 107:879-90. [PMID: 25140423 DOI: 10.1016/j.bpj.2014.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/28/2014] [Accepted: 07/09/2014] [Indexed: 10/24/2022] Open
Abstract
In a previous work, we have shown that a spatially localized transmembrane pH gradient, produced by acid micro-injection near the external side of cardiolipin-containing giant unilamellar vesicles, leads to the formation of tubules that retract after the dissipation of this gradient. These tubules have morphologies similar to mitochondrial cristae. The tubulation effect is attributable to direct phospholipid packing modification in the outer leaflet, that is promoted by protonation of cardiolipin headgroups. In this study, we compare the case of cardiolipin-containing giant unilamellar vesicles with that of giant unilamellar vesicles that contain phosphatidylglycerol (PG). Local acidification also promotes formation of tubules in the latter. However, compared with cardiolipin-containing giant unilamellar vesicles the tubules are longer, exhibit a visible pearling, and have a much longer lifetime after acid micro-injection is stopped. We attribute these differences to an additional mechanism that increases monolayer surface imbalance, namely inward PG flip-flop promoted by the local transmembrane pH gradient. Simulations using a fully nonlinear membrane model as well as geometrical calculations are in agreement with this hypothesis. Interestingly, among yeast mutants deficient in cardiolipin biosynthesis, only the crd1-null mutant, which accumulates phosphatidylglycerol, displays significant mitochondrial activity. Our work provides a possible explanation of such a property and further emphasizes the salient role of specific lipids in mitochondrial function.
Collapse
Affiliation(s)
- Nada Khalifat
- UPMC Université Paris 06, UMR 168, Institut Curie, Paris, France; CNRS, UMR 168, Institut Curie, Paris, France
| | - Mohammad Rahimi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Anne-Florence Bitbol
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey; Department of Physics, Princeton University, Princeton, New Jersey
| | - Michel Seigneuret
- Université Paris Diderot-Paris 7, Matière et Systèmes Complexes CNRS UMR 7057, Paris, France.
| | - Jean-Baptiste Fournier
- Université Paris Diderot-Paris 7, Matière et Systèmes Complexes CNRS UMR 7057, Paris, France
| | - Nicolas Puff
- Université Paris Diderot-Paris 7, Matière et Systèmes Complexes CNRS UMR 7057, Paris, France; Department of Physics-UFR 925, Université Pierre et Marie Curie, Paris, France
| | - Marino Arroyo
- Departament de Matemàtica Aplicada III, LaCàN, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Miglena I Angelova
- Université Paris Diderot-Paris 7, Matière et Systèmes Complexes CNRS UMR 7057, Paris, France; Department of Physics-UFR 925, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
53
|
Runas KA, Malmstadt N. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. SOFT MATTER 2015; 11:499-505. [PMID: 25415555 PMCID: PMC4477792 DOI: 10.1039/c4sm01478b] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Oxidation of unsaturated lipids in cellular membranes has been shown to cause severe membrane damage and potentially cell death. The presence of oxidized lipid species in the membrane is known to cause changes in membrane properties, such as decreased fluidity. This study uses giant unilamellar vesicles (GUVs) to measure passive transport across membranes containing defined concentrations of oxidized lipid species. GUVs consisting of a saturated phospholipid, an unsaturated phospholipid, and cholesterol were used as model membranes. By replacing defined amounts of the unsaturated lipid with a corresponding oxidized product, the oxidation process could be mimicked, yielding vesicles of varying oxidized lipid concentration. Oxidized lipid concentration was varied from 0 mol% to 18 mol% of the total lipid concentration. Passive transport of PEG12-NBD, an uncharged fluorescent molecule, was measured using a microfluidic trap to capture the GUVs and spinning disk confocal microscopy (SDCM) to track the transport of a fluorescent species in the equatorial plane of each GUV. Membrane permeability was determined by fitting the resulting concentration profiles to a finite difference model of diffusion and permeation around and through the membrane. Experiments showed three permeability regimes. Without oxidation, transport was slow, with a measured permeability on the order of 1.5 × 10(-6) cm s(-1). At 2.5-10% oxidized species permeation was fast (1.5 × 10(-5) cm s(-1)). Above 12.5% oxidized species, the bilayer was disrupted by the formation of pore defects. As passive transport is an important mechanism for drug delivery, understanding the relationship between oxidation and permeation could provide insight into the pharmaceutical characteristics of tissues with oxidative damage.
Collapse
Affiliation(s)
- Kristina A Runas
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
54
|
Liang R, Zhang JP, Skibsted LH. Evaluation of physical integrity of lipid bilayer under oxidative stress: application of fluorescence microscopy and digital image processing. Methods Mol Biol 2015; 1208:111-121. [PMID: 25323503 DOI: 10.1007/978-1-4939-1441-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Membrane damage as a result of oxidative stress is quantified using digital image heterogeneity analysis of single giant unilamellar vesicles (GUVs) composed of soy phosphatidylcholine (PC), which were found to undergo budding when containing chlorophyll a (Chla) as photosensitizer in the lipid bilayer. Based on digital image heterogeneity analysis, a dimensionless scalar parameter "entropy" for the budding process was found to change linearly during an initial budding stage. Photo-induced peroxidation of PC to form linoleoyl hydroperoxides, further leading to domains of higher polarities in GUVs, was suggested to initiate the budding process. The effect on budding process of GUVs was suggested for use in assays for evaluation of potential protectors of lipid bilayer integrity under oxidative stress, and "entropy" seemed to be a valid descriptor of such membranal integrity. The one-step procedure for quantification of prooxidative effects and antioxidative protection provided by drug candidates and potential food ingredients in membranes could be easily automated for direct measurement of oxidative and antioxidative effects on cellular integrity.
Collapse
Affiliation(s)
- Ran Liang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | | | | |
Collapse
|
55
|
Mertins O, Bacellar IOL, Thalmann F, Marques CM, Baptista MS, Itri R. Physical damage on giant vesicles membrane as a result of methylene blue photoirradiation. Biophys J 2014; 106:162-71. [PMID: 24411248 DOI: 10.1016/j.bpj.2013.11.4457] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023] Open
Abstract
In this study we pursue a closer analysis of the photodamage promoted on giant unilamellar vesicles membranes made of dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), by irradiating methylene blue present in the giant unilamellar vesicles solution. By means of optical microscopy and electro-deformation experiments, the physical damage on the vesicle membrane was followed and the phospholipids oxidation was evaluated in terms of changes in the membrane surface area and permeability. As expected, oxidation modifies structural characteristics of the phospholipids that lead to remarkable membrane alterations. By comparing DOPC- with POPC-made membranes, we observed that the rate of pore formation and vesicle degradation as a function of methylene blue concentration follows a diffusion law in the case of DOPC and a linear variation in the case of POPC. We attributed this scenario to the nucleation process of oxidized species following a diffusion-limited growth regime for DOPC and in the case of POPC a homogeneous nucleation process. On the basis of these premises, we constructed models based on reaction-diffusion equations that fit well with the experimental data. This information shows that the outcome of the photosensitization reactions is critically dependent on the type of lipid present in the membrane.
Collapse
Affiliation(s)
- Omar Mertins
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo.
| | - Isabel O L Bacellar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabrice Thalmann
- Institut Charles Sadron, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Carlos M Marques
- Institut Charles Sadron, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Maurício S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rosangela Itri
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo.
| |
Collapse
|
56
|
Larson MC, Hillery CA, Hogg N. Circulating membrane-derived microvesicles in redox biology. Free Radic Biol Med 2014; 73:214-28. [PMID: 24751526 PMCID: PMC4465756 DOI: 10.1016/j.freeradbiomed.2014.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/20/2023]
Abstract
Microparticles or microvesicles (MVs) are subcellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or as a result of cellular redox signaling, has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown that circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids and harbor redox-regulated matrix metalloproteinases and procoagulative surface molecules; and circulating MVs from red blood cells and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. Although our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes-developmental, homeostatic, and pathological-and the role of MVs in redox signaling is a rich and exciting area of investigation.
Collapse
Affiliation(s)
- Michael Craig Larson
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA; Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl A Hillery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
57
|
Wang HJ, Liang R, Fu LM, Han RM, Zhang JP, Skibsted LH. Nutritional aspects of β-carotene and resveratrol antioxidant synergism in giant unilamellar vesicles. Food Funct 2014; 5:1573-8. [PMID: 24867711 DOI: 10.1039/c4fo00225c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Giant unilamellar vesicles of soy phosphatidylcholine are found to undergo budding when sensitized with chlorophyll a ([phosphatidylcholine] : [chlorophyll a] = 1500 : 1) under light irradiation (400-440 nm, 16 mW mm(-2)). 'Entropy' as a dimensionless image heterogeneity measurement is found to increase linearly with time during an initial budding process. For β-carotene addition ([phosphatidylcholine] : [β-carotene] = 500 : 1), a lag phase of 23 s is observed, followed by a budding process at an initial rate lowered by a factor of 3.8, whereas resveratrol ([phosphatidylcholine] : [resveratrol] = 500 : 1) has little if any protective effect against budding. However, resveratrol, when combined with β-carotene, is found to further reduce the initial budding rate by a total factor of 4.7, exhibiting synergistic antioxidation effects. It is also interesting that β-carotene alone determines the lag phase for the initiation of budding, while resveratrol supports β-carotene in reducing the rate of the budding process following the lag phase; however, it alone has no observable effect on the lag phase. Resveratrol is suggested to regenerate β-carotene following its sacrificial protection of unsaturated lipids from oxidative stress, modeling the synergistic effects in cell membranes by combinations of dietary antioxidants.
Collapse
Affiliation(s)
- Hui-Jing Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | | | | | | | | | | |
Collapse
|
58
|
Weber G, Charitat T, Baptista MS, Uchoa AF, Pavani C, Junqueira HC, Guo Y, Baulin VA, Itri R, Marques CM, Schroder AP. Lipid oxidation induces structural changes in biomimetic membranes. SOFT MATTER 2014; 10:4241-7. [PMID: 24871383 DOI: 10.1039/c3sm52740a] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Oxidation can intimately influence and structurally compromise the levels of biological self-assembly embodied by intracellular and plasma membranes. Lipid peroxidation, a natural metabolic outcome of life with oxygen under light, is also a salient oxidation reaction in photomedicine treatments. However, the effect of peroxidation on the fate of lipid membranes remains elusive. Here we use a new photosensitizer that anchors and disperses in the membrane to achieve spatial control of the oxidizing species. We find, surprisingly, that the integrity of unsaturated unilamellar vesicles is preserved even for fully oxidized membranes. Membrane survival allows for the quantification of the transformations of the peroxidized bilayers, providing key physical and chemical information to understand the effect of lipid oxidation on protein insertion and on other mechanisms of cell function. We anticipate that spatially controlled oxidation will emerge as a new powerful strategy for tuning and evaluating lipid membranes in biomimetic media under oxidative stress.
Collapse
Affiliation(s)
- Georges Weber
- Present address: FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Itri R, Junqueira HC, Mertins O, Baptista MS. Membrane changes under oxidative stress: the impact of oxidized lipids. Biophys Rev 2014; 6:47-61. [PMID: 28509959 DOI: 10.1007/s12551-013-0128-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
Studying photosensitized oxidation of unsaturated phospholipids is of importance for understanding the basic processes underlying photodynamic therapy, photoaging and many other biological dysfunctions. In this review we show that the giant unilamellar vesicle, when used as a simplified model of biological membranes, is a powerful tool to investigate how in situ photogenerated oxidative species impact the phospholipid bilayer. The extent of membrane damage can be modulated by choosing a specific photosensitizer (PS) which is activated by light irradiation and can react by either type I and or type II mechanism. We will show that type II PS generates only singlet oxygen which reacts to the phospholipid acyl double bond. The byproduct thus formed is a lipid hydroperoxide which accumulates in the membrane as a function of singlet oxygen production and induces an increase in its area without significantly affecting membrane permeability. The presence of a lipid hydroperoxide can also play an important role in the formation of the lipid domain for mimetic plasma membranes. Lipid hydroperoxides can be also transformed in shortened chain compounds, such as aldehydes and carboxylic acids, in the presence of a PS that reacts via the type I mechanism. The presence of such byproducts may form hydrophilic pores in the membrane for moderate oxidative stress or promote membrane disruption for massive oxidation. Our results provide a new tool to explore membrane response to an oxidative stress and may have implications in biological signaling of redox misbalance.
Collapse
Affiliation(s)
- Rosangela Itri
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, Brazil.
| | - Helena C Junqueira
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
| | - Omar Mertins
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
60
|
Aubertin K, Bonneau S, Silva AKA, Bacri JC, Gallet F, Wilhelm C. Impact of photosensitizers activation on intracellular trafficking and viscosity. PLoS One 2013; 8:e84850. [PMID: 24386423 PMCID: PMC3874004 DOI: 10.1371/journal.pone.0084850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact.
Collapse
Affiliation(s)
- Kelly Aubertin
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - Stéphanie Bonneau
- Laboratoire Jean Perrin-CNRS, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - Jean-Claude Bacri
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - François Gallet
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
61
|
Melo T, Santos N, Lopes D, Alves E, Maciel E, Faustino MAF, Tomé JPC, Neves MGPMS, Almeida A, Domingues P, Segundo MA, Domingues MRM. Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1357-1365. [PMID: 24338891 DOI: 10.1002/jms.3301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Photodynamic therapy combines visible light and a photosensitizer (PS) in the presence of molecular oxygen to generate reactive oxygen species able to modify biological structures such as phospholipids. Phosphatidylethanolamines (PEs), being major phospholipid constituents of mammalian cells and membranes of Gram-negative bacteria, are potential targets of photosensitization. In this work, the oxidative modifications induced by white light in combination with cationic porphyrins (Tri-Py(+)-Me-PF and Tetra-Py(+)-Me) were evaluated on PE standards. Electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) were used to identify and characterize the oxidative modifications induced in PEs (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4). Photo-oxidation products of POPE, PLPE and PAPE as hydroxy, hydroperoxy and keteno derivatives and products due to oxidation in ethanolamine polar head were identified. Hydroperoxy-PEs were found to be the major photo-oxidation products. Quantification of hydroperoxides (PE-OOH) allowed differentiating the potential effect in photodamage of the two porphyrins. The highest amounts of PE-OOH were notorious in the presence of Tri-Py(+)-Me-PF, a highly efficient PS against bacteria. The identification of these modifications in PEs is an important key point in the understanding cell damage processes underlying photodynamic therapy approaches.
Collapse
Affiliation(s)
- Tânia Melo
- Mass Spectrometry Centre, UI QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Loew M, Forsythe JC, McCarley RL. Lipid nature and their influence on opening of redox-active liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6615-23. [PMID: 23698020 PMCID: PMC3778659 DOI: 10.1021/la304340e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The pathway for content release from reduction-sensitive liposomes based on a quinone-dioleoylphosphatidylethanolamine lipid conjugate (Q-DOPE) is outlined using results from fluorescent dye content release assays as well as single- and multiple-angle light scattering. Experimental observations are consistent with a shape/size change of the reduced liposomes prior to their aggregation, with subsequent near-quantitative content release achieved only when the lipid membrane experiences conditions favorable to a lamellar to an inverted hexagonal phase transition. Addition of poly(ethyleneglycol)-modified DOPE (PEG-DOPE) to the Q-DOPE liposomal formulation results in stabilization of the lipid bilayer, whereas incorporation of DOPE yields faster content release. At high DOPE concentrations, DOPE/PEG-DOPE/Q-DOPE liposomes exhibit larger content release, indicating a change in pathway for content release. The outcomes here provide a better understanding of the underlying principles of triggered liposomal content release and the potential utility of specific lipid properties for the rational design of drug delivery systems based on the novel Q-DOPE lipid.
Collapse
Affiliation(s)
| | | | - Robin L. McCarley
- CORRESPONDING AUTHOR: Telephone: (225) 578-3239. Facsimile: (225) 578-3458.
| |
Collapse
|
63
|
Liu W, Liu J, Liu W, Li T, Liu C. Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate-chitosan-coated nanoliposomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4133-4144. [PMID: 23566223 DOI: 10.1021/jf305329n] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To improve lipid membrane stability and prevent leakage of encapsulated food ingredients, a polyelectrolyte delivery system (PDS) based on sodium alginate (AL) and chitosan (CH) coated on the surface of nanoliposomes (NLs) has been prepared and optimized using a layer-by-layer self-assembly deposition technique. Morphology and FTIR observation confirmed PDS has been successfully coated by polymers. Physical stability studies (pH and heat treatment) indicated that the outer-layer polymers could protect the core (NLs) from damage, and PDS showed more intact structure than NLs. Further enzymic digestion stability studies (particle size, surface charge, free fatty acid, and model functional component release) demonstrated that PDS could better resist lipolytic degradation and facilitate a lower level of encapsulated component release in simulated gastrointestinal conditions. This work suggested that deposition of polyelectrolyte on the surface of NLs can stabilize liposomal structure, and PDS could be developed as a formulation for delivering functional food ingredients in the gastrointestinal tract.
Collapse
Affiliation(s)
- Weilin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, Jiangxi, People's Republic of China
| | | | | | | | | |
Collapse
|
64
|
Membrane lipids and proteins as modulators of urothelial endocytic vesicles pathways. Histochem Cell Biol 2013; 140:507-20. [PMID: 23624723 DOI: 10.1007/s00418-013-1095-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
Abstract
The increased studies on urinary bladder umbrella cells as an important factor for maintaining the permeability barrier have suggested new pathways for the discoidal/fusiform endocytic vesicles which is one of the main features of the umbrella cells. The biological role of these vesicles was defined, for many years, as a membrane reservoir for the umbrella cell apical plasma membrane which are subject to an increased tension during the filling phase of the micturition cycle and, therefore, the vesicles are fused with the apical membrane. Upon voiding, the added membrane is reinserted via a non-clathrin or caveolin-dependant endocytosis thereby restoring the vesicle cytoplasmic pool. However, in the last decade, new evidence appeared indicating alternative pathways of the endocytic vesicles different than the cycling process of exocytosis/endocytosis. The purpose of this review is to analyze the molecular modulators, such as membrane lipids and proteins, in the permeability of endocytic vesicles, the sorting of endocytosed material to lysosomal degradation pathway and recycling of both membrane and fluid phases.
Collapse
|
65
|
Liang R, Liu Y, Fu LM, Ai XC, Zhang JP, Skibsted LH. Antioxidants and physical integrity of lipid bilayers under oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10331-10336. [PMID: 23016668 DOI: 10.1021/jf3030979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Giant unilamellar vesicles (GUVs of diameter 5-25 μm) of soy phosphatidylcholine (PC), resistant to intense light exposure (400-440 nm, ~15 mW·mm(-2)), underwent budding when containing chlorophyll a (Chla) in the lipid bilayer ([PC]:[Chla] = 1500:1). On the basis of image heterogeneity analysis using inverted microscopy, a dimensionless entropy parameter for the budding process was shown to increase linearly during an initial budding process. Lipophilic β-carotene (β-Car, [PC]:[β-Car] = 500:1) reduced the initial budding rate by a factor of 2.4, while the hydrophilic glycoside rutin ([PC]:[rutin] = 500:1) had no effect. Chla photosensitized oxidation of PC to form linoleoyl hydroperoxides, further leading to domains of higher polarity in the vesicles, is suggested to trigger budding. The average dipole moment (μ) of linoleic acid hydroperoxides was calculated using density functional theory (DFT) to have the value of 2.84 D, while unoxidized linoleic acid has μ = 1.86 D. β-Carotene as a lipophilic antioxidant and singlet-oxygen quencher seems to hamper oxidation in the lipid bilayers and delay budding in contrast to rutin located in the aqueous phase. The effect on budding of GUVs as a detrimental process for membranes is suggested for use in assays for evaluation of potential protectors of cellular integrity and functions under oxidative stress.
Collapse
Affiliation(s)
- Ran Liang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | | | | | | | | | | |
Collapse
|
66
|
Wang JY, Marks J, Lee KYC. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (I) effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation. Biomacromolecules 2012; 13:2616-23. [PMID: 22808900 PMCID: PMC3689593 DOI: 10.1021/bm300847x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity: they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompanying study on dynamic nuclear polarization (DNP)-derived hydration dynamics (Cheng, C.-Y.; Wang, J.-Y.; Kausik, R.; Lee, K. Y. C.; Han S. Biomacromolecules, 2012, DOI: 10.1021/bm300848c).
Collapse
Affiliation(s)
- Jia-Yu Wang
- Department of Chemistry, Institute for Biophysical Dynamics & James Franck Institute, the University of Chicago, Illinois 60637
| | - Jeremy Marks
- Department of Pediatrics, the University of Chicago, Illinois 60637
| | - Ka Yee C. Lee
- Department of Chemistry, Institute for Biophysical Dynamics & James Franck Institute, the University of Chicago, Illinois 60637
| |
Collapse
|
67
|
Yoda T, Vestergaard MC, Hamada T, Le PTM, Takagi M. Thermo-induced Vesicular Dynamics of Membranes Containing Cholesterol Derivatives. Lipids 2012; 47:813-20. [DOI: 10.1007/s11745-012-3695-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
|
68
|
Reis A, Spickett CM. Chemistry of phospholipid oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2374-87. [PMID: 22342938 DOI: 10.1016/j.bbamem.2012.02.002] [Citation(s) in RCA: 436] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/14/2012] [Accepted: 02/03/2012] [Indexed: 11/25/2022]
Abstract
The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Collapse
|
69
|
Kerdous R, Heuvingh J, Bonneau S. Photo-dynamic induction of oxidative stress within cholesterol-containing membranes: Shape transitions and permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2965-72. [DOI: 10.1016/j.bbamem.2011.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/15/2011] [Accepted: 08/02/2011] [Indexed: 11/16/2022]
|
70
|
|
71
|
Grasso E, Bongiovanni G, Pérez R, Calderón R. Pre-cancerous changes in urothelial endocytic vesicle leakage, fatty acid composition, and As and associated element concentrations after arsenic exposure. Toxicology 2011; 284:26-33. [DOI: 10.1016/j.tox.2011.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
72
|
Kotova EA, Kuzevanov AV, Pashkovskaya AA, Antonenko YN. Selective permeabilization of lipid membranes by photodynamic action via formation of hydrophobic defects or pre-pores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2252-7. [PMID: 21663731 DOI: 10.1016/j.bbamem.2011.05.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/19/2011] [Accepted: 05/23/2011] [Indexed: 01/09/2023]
Abstract
To gain insight into mechanisms of photodynamic modification of biological membranes, we studied an impact of visible light in combination with a photosensitizer on translocation of various substances across artificial (vesicular and planar) bilayer lipid membranes (BLMs). Along with induction of carboxyfluorescein leakage from liposomes, pronounced stimulation of lipid flip-flop between the two monolayers was found after photosensitization, both processes being prevented by the singlet oxygen quencher sodium azide. On the contrary, no enhancement of potassium chloride efflux from liposomes was detected by conductometry under these conditions. Illumination of planar BLMs in the presence of a photosensitizer led to a marked increase in membrane permeability to amphiphilic 2-n-octylmalonic acid, but practically no change in the permeability to ammonia, which agreed with selective character of the photosensitized leakage of fluorescent dyes from liposomes (Pashkovskaya et al., Langmuir, 2010). Thus, the effect on transbilayer movement of molecules elicited by the photodynamic treatment substantially depended on the kind of translocated species, in particular, on their lipophilicity. Based on similarity with results of previous electroporation studies, we hypothesized about photodynamic induction of "pre-pores" or "hydrophobic defects" permeable to amphiphilic compounds and less permeable to hydrophilic substances and inorganic ions.
Collapse
Affiliation(s)
- Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| | | | | | | |
Collapse
|
73
|
Yoda T, Vestergaard MC, Akazawa-Ogawa Y, Yoshida Y, Hamada T, Takagi M. Dynamic Response of a Cholesterol-containing Model Membrane to Oxidative Stress. CHEM LETT 2010. [DOI: 10.1246/cl.2010.1273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
74
|
Walde P, Cosentino K, Engel H, Stano P. Giant Vesicles: Preparations and Applications. Chembiochem 2010; 11:848-65. [DOI: 10.1002/cbic.201000010] [Citation(s) in RCA: 556] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|