51
|
Kanzawa-Lee GA, Knoerl R, Donohoe C, Bridges CM, Smith EML. Mechanisms, Predictors, and Challenges in Assessing and Managing Painful Chemotherapy-Induced Peripheral Neuropathy. Semin Oncol Nurs 2019; 35:253-260. [PMID: 31053396 DOI: 10.1016/j.soncn.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To describe the known predictors and pathophysiological mechanisms of chronic painful chemotherapy-induced peripheral neuropathy (CIPN) in cancer survivors and the challenges in assessing and managing it. DATA SOURCES PubMed/Medline, CINAHL, Scopus, and PsycINFO. CONCLUSION The research on chronic painful CIPN is limited. Additional research is needed to identify the predictors and pathophysiological mechanisms of chronic painful CIPN to inform the development of assessment tools and management options for this painful and possibly debilitating condition. IMPLICATIONS FOR NURSING PRACTICE Recognition of the predictors of chronic painful CIPN and proactive CIPN assessment and palliative management are important steps in reducing its impact on physical function and quality of life.
Collapse
Affiliation(s)
| | - Robert Knoerl
- Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA
| | - Clare Donohoe
- School of Nursing, University of Michigan, Ann Arbor, MI
| | | | | |
Collapse
|
52
|
Sekiguchi F, Domoto R, Nakashima K, Yamasoba D, Yamanishi H, Tsubota M, Wake H, Nishibori M, Kawabata A. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. Neuropharmacology 2018; 141:201-213. [PMID: 30179591 DOI: 10.1016/j.neuropharm.2018.08.040] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/01/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
Abstract
Given our recent evidence for the role of high mobility group box 1 (HMGB1) in chemotherapy-induced peripheral neuropathy (CIPN) in rats, we examined the origin of HMGB1 and the upstream and downstream mechanisms of HMGB1 release involved in paclitaxel-induced neuropathy in mice. Paclitaxel treatment developed mechanical allodynia in mice, as assessed by von Frey test, which was prevented by an anti-HMGB1-neutralizing antibody or thrombomodulin alfa capable of inactivating HMGB1. RAGE or CXCR4 antagonists, ethyl pyruvate or minocycline, known to inhibit HMGB1 release from macrophages, and liposomal clodronate, a macrophage depletor, prevented the paclitaxel-induced allodynia. Paclitaxel caused upregulation of RAGE and CXCR4 in the dorsal root ganglia and macrophage accumulation in the sciatic nerve. In macrophage-like RAW264.7 cells, paclitaxel evoked cytoplasmic translocation of nuclear HMGB1 followed by its extracellular release, and overexpression of CBP and PCAF, histone acetyltransferases (HATs), known to cause acetylation and cytoplasmic translocation of HMGB1, which were suppressed by ethyl pyruvate, N-acetyl-l-cysteine, an anti-oxidant, and SB203580 and PDTC, inhibitors of p38 MAP kinase (p38MAPK) and NF-κB, respectively. Paclitaxel increased accumulation of reactive oxygen species (ROS) and phosphorylation of p38MAPK, NF-κB p65 and I-κB in RAW264.7 cells. In mice, N-acetyl-l-cysteine or PDTC prevented the paclitaxel-induced allodynia. Co-culture of neuron-like NG108-15 cells or stimulation with their conditioned medium promoted paclitaxel-induced HMGB1 release from RAW264.7 cells. Our data indicate that HMGB1 released from macrophages through the ROS/p38MAPK/NF-κB/HAT pathway participates in the paclitaxel-induced peripheral neuropathy in mice, and unveils an emerging therapeutic avenue targeting a neuroimmune crosstalk in CIPN.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Risa Domoto
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Kana Nakashima
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Daichi Yamasoba
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Hiroki Yamanishi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
53
|
Ba X, Wang J, Zhou S, Luo X, Peng Y, Yang S, Hao Y, Jin G. Cinobufacini protects against paclitaxel-induced peripheral neuropathic pain and suppresses TRPV1 up-regulation and spinal astrocyte activation in rats. Biomed Pharmacother 2018; 108:76-84. [PMID: 30218861 DOI: 10.1016/j.biopha.2018.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathic pain is a major limiting factor affecting cancer patients. No effective treatment is currently available. Cinobufacini, an aqueous extract from toad skin, is a widely used anti-cancer drug in China. Clinical evidence has demonstrated the safety and effectiveness of cinobufacini in combination with chemotherapy to promote the therapeutic efficacy while alleviating side effects, especially cancer-related pain symptoms. In this study, the effects of cinobufacini were investigated in a rat model of paclitaxel-induced peripheral neuropathic pain (PIPNP) to better understand and expand its clinical application. A single injection of cinobufacini (2.5 g/kg, i.p.) alleviated pre-established PIPNP, as indicated by decreased mechanical and thermal hypersensitivity compared with paclitaxel-treated rats. Repeated cinobufacini (1.25 and 2.5 g/kg, i.p.), given during the induction of PIPNP, prevented the establishment of paclitaxel-induced mechanical and thermal hypersensitivity. This preventative effect was associated with suppressed paclitaxel-induced TRPV1 up-regulation and spinal astrocyte activation, as well as decreased production of spinal TNF-α and IL-1β. These findings reveal cinobufacini as a therapeutic potential to treat and prevent paclitaxel-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
- Xiyuan Ba
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China; Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jiali Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shiyang Zhou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xinxin Luo
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yun Peng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shimin Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Guangyi Jin
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
54
|
Curry ZA, Wilkerson JL, Bagdas D, Kyte SL, Patel N, Donvito G, Mustafa MA, Poklis JL, Niphakis MJ, Hsu KL, Cravatt BF, Gewirtz DA, Damaj MI, Lichtman AH. Monoacylglycerol Lipase Inhibitors Reverse Paclitaxel-Induced Nociceptive Behavior and Proinflammatory Markers in a Mouse Model of Chemotherapy-Induced Neuropathy. J Pharmacol Exp Ther 2018; 366:169-183. [PMID: 29540562 PMCID: PMC6038031 DOI: 10.1124/jpet.117.245704] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/08/2018] [Indexed: 02/01/2023] Open
Abstract
Although paclitaxel effectively treats various cancers, its debilitating peripheral neuropathic pain side effects often persist long after treatment has ended. Therefore, a compelling need exists for the identification of novel pharmacologic strategies to mitigate this condition. As inhibitors of monoacylglycerol lipase (MAGL), the primary hydrolytic enzyme of the endogenous cannabinoid, 2-arachidonyolglycerol, produces antinociceptive effects in numerous rodent models of pain, we investigated whether inhibitors of this enzyme (i.e., JZL184 and MJN110) would reverse paclitaxel-induced mechanical allodynia in mice. These drugs dose dependently reversed allodynia with respective ED50 values (95% confidence limit) of 8.4 (5.2-13.6) and 1.8 (1.0-3.3) mg/kg. Complementary genetic and pharmacologic approaches revealed that the antiallodynic effects of each drug require both cannabinoid receptors, CB1 and CB2 MJN110 reduced paclitaxel-mediated increased expression of monocyte chemoattractant protein-1 (MCP-1, CCL2) and phospho-p38 MAPK in dorsal root ganglia as well as MCP-1 in spinal dorsal horn. Whereas the antinociceptive effects of high dose JZL184 (40 mg/kg) underwent tolerance following 6 days of repeated dosing, repeated administration of a threshold dose (i.e., 4 mg/kg) completely reversed paclitaxel-induced allodynia. In addition, we found that the administration of MJN110 to control mice lacked intrinsic rewarding effects in the conditioned place preference (CPP) paradigm. However, it produced a CPP in paclitaxel-treated animals, suggesting a reduced paclitaxel-induced aversive state. Importantly, JZL184 did not alter the antiproliferative and apoptotic effects of paclitaxel in A549 and H460 non-small cell lung cancer cells. Taken together, these data indicate that MAGL inhibitors reverse paclitaxel-induced neuropathic pain without interfering with chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Zachary A Curry
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - S Lauren Kyte
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Nipa Patel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Mohammed A Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Micah J Niphakis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Ku-Lung Hsu
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Benjamin F Cravatt
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (Z.A.C., J.L.W., D.B., S.L.K., N.P., G.D., M.A.M., J.L.P., D.A.G., M.I.D., A.H.L.); The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.); and Department of Chemistry, University of Virginia, Charlottesville, Virginia (K.-L.H.)
| |
Collapse
|
55
|
Salinas-Abarca AB, Velazquez-Lagunas I, Franco-Enzástiga Ú, Torres-López JE, Rocha-González HI, Granados-Soto V. ATF2, but not ATF3, participates in the maintenance of nerve injury-induced tactile allodynia and thermal hyperalgesia. Mol Pain 2018; 14:1744806918787427. [PMID: 29921170 PMCID: PMC6050803 DOI: 10.1177/1744806918787427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcription factors are proteins that modulate the transcriptional rate of target genes in the nucleus in response to extracellular or cytoplasmic signals. Activating transcription factors 2 (ATF2) and 3 (ATF3) respond to environmental signals and maintain cellular homeostasis. There is evidence that inflammation and nerve injury modulate ATF2 and ATF3 expression. However, the function of these transcription factors in pain is unknown. The purpose of this study was to investigate the contribution of ATF2 and ATF3 to nerve injury-induced neuropathic pain. L5/6 spinal nerve ligation induced tactile allodynia and thermal hyperalgesia. Moreover, nerve damage enhanced ATF2 and ATF3 protein expression in injured L5/6 dorsal root ganglia and spinal cord but not in uninjured L4 dorsal root ganglia. Nerve damage also enhanced ATF2 immunoreactivity in dorsal root ganglia and spinal cord 7 to 21 days post-injury. Repeated intrathecal post-treatment with a small-interfering RNA targeted against ATF2 (ATF2 siRNA) or anti-ATF2 antibody partially reversed tactile allodynia and thermal hyperalgesia. In contrast, ATF3 siRNA or anti-ATF3 antibody did not modify nociceptive behaviors. ATF2 immunoreactivity was found in dorsal root ganglia and spinal cord co-labeling with NeuN mainly in non-peptidergic (IB4+) but also in peptidergic (CGRP+) neurons. ATF2 was found mainly in small- and medium-sized neurons. These results suggest that ATF2, but not ATF3, is found in strategic sites related to spinal nociceptive processing and participates in the maintenance of neuropathic pain in rats.
Collapse
Affiliation(s)
- Ana B Salinas-Abarca
- 1 Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico
| | | | | | - Jorge E Torres-López
- 2 Laboratorio Mecanismos del Dolor, Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Mexico.,3 Hospital Regional de Alta Especialidad Dr. Juan Graham Casasús, Mexico
| | - Héctor I Rocha-González
- 4 Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Vinicio Granados-Soto
- 1 Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico
| |
Collapse
|
56
|
Cavaletti G, Marmiroli P. Pharmacotherapy options for managing chemotherapy-induced peripheral neurotoxicity. Expert Opin Pharmacother 2017; 19:113-121. [DOI: 10.1080/14656566.2017.1415326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guido Cavaletti
- School of Medicine and Surgery and Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Paola Marmiroli
- School of Medicine and Surgery and Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
57
|
Kim ST, Kyung EJ, Suh JS, Lee HS, Lee JH, Chae SI, Park ES, Chung YH, Bae J, Lee TJ, Lee WM, Sohn UD, Jeong JH. Phosphatidylcholine attenuated docetaxel-induced peripheral neurotoxicity in rats. Drug Chem Toxicol 2017; 41:476-485. [PMID: 29210293 DOI: 10.1080/01480545.2017.1390580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Docetaxel is a taxane chemotherapeutic agent used in the treatment of breast cancer, prostate cancer and gastric cancer, but several side effects such as peripheral neurotoxicity could occur. The present study was designed to investigate the therapeutic potential of phosphatidylcholine (PC) on docetaxel-induced peripheral neurotoxicity. Rats were randomly divided into three groups and treated for 4 weeks. Behavioral tests were conducted to measure the effects of PC on docetaxel-induced decreases in mechanical & thermal nociceptive threshold. Biochemical tests were conducted to measure the level of oxidative stress on sciatic nerve. Histopathological and immunohistochemical experiments were also conducted to assess neuronal damage and glial activation. PC treatment significantly attenuated docetaxel-induced changes in mechanical & thermal nociceptive response latencies. PC decreased oxidative stress in sciatic nerve by increasing antioxidant levels (glutathione, glutathione peroxidase and superoxide dismutase activity). In immunohistochemical evaluation, PC treatment ameliorated docetaxel-induced neuronal damage and microglial activation in the sciatic nerve and spinal cord. Thus, PC showed protective effects against docetaxel-induced peripheral neurotoxicity. These effects may be attributed to its antioxidant properties and modulation of microglia.
Collapse
Affiliation(s)
- Sung Tae Kim
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Eun Jung Kyung
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Jung Sook Suh
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Ho Sung Lee
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Jun Ho Lee
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Soo In Chae
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Eon Sub Park
- b Department of Pathology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Yoon Hee Chung
- d Department of Anatomy, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Jinhyung Bae
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Tae Jin Lee
- b Department of Pathology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Won Mo Lee
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Uy Dong Sohn
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Ji Hoon Jeong
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| |
Collapse
|
58
|
LoCoco PM, Risinger AL, Smith HR, Chavera TS, Berg KA, Clarke WP. Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy. eLife 2017; 6:e29626. [PMID: 29125463 PMCID: PMC5701795 DOI: 10.7554/elife.29626] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) arises from collateral damage to peripheral afferent sensory neurons by anticancer pharmacotherapy, leading to debilitating neuropathic pain. No effective treatment for CIPN exists, short of dose-reduction which worsens cancer prognosis. Here, we report that stimulation of nicotinamide phosphoribosyltransferase (NAMPT) produced robust neuroprotection in an aggressive CIPN model utilizing the frontline anticancer drug, paclitaxel (PTX). Daily treatment of rats with the first-in-class NAMPT stimulator, P7C3-A20, prevented behavioral and histologic indicators of peripheral neuropathy, stimulated tissue NAD recovery, improved general health, and abolished attrition produced by a near maximum-tolerated dose of PTX. Inhibition of NAMPT blocked P7C3-A20-mediated neuroprotection, whereas supplementation with the NAMPT substrate, nicotinamide, potentiated a subthreshold dose of P7C3-A20 to full efficacy. Importantly, P7C3-A20 blocked PTX-induced allodynia in tumored mice without reducing antitumoral efficacy. These findings identify enhancement of NAMPT activity as a promising new therapeutic strategy to protect against anticancer drug-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Peter M LoCoco
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - April L Risinger
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Hudson R Smith
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Teresa S Chavera
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Kelly A Berg
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - William P Clarke
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| |
Collapse
|
59
|
Kholodova NB, Ponkratova YA, Sinkin MV. [Clinical and electromyography characteristics of chemotherapy-induced polyneuropathy]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:59-66. [PMID: 29053122 DOI: 10.17116/jnevro20171179159-66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM The study aimed at determining clinical and electromyography characteristics and developing the methods of CIPN treatment. MATERIAL AND METHODS A clinical and electromyographic examinations and treatment of 30 with CIPN symptoms developed after polychemotherapy were performed. The authors developed treatment schemes included allopathic, homeopathic drugs, hydrotherapy and pharmacopuncture. RESULTS AND CONCLUSION Most of the patients were diagnosed with axonal polyneuropathy with affection of long nerves of the limbs, some patients had a combination of axonopathy with myelopathy. After treatment, regression of neuropathy symptoms and improvement of quality of life was noted in all patients.
Collapse
Affiliation(s)
- N B Kholodova
- Research and Clinical Center 'Premed - European Technologies', Moscow, Russia
| | - Yu A Ponkratova
- Russian Research Center of Roentgenoradiology, Moscow, Russia
| | - M V Sinkin
- Sklifosovsky Emergency Medicine Institute, Moscow, Russia
| |
Collapse
|
60
|
Pease-Raissi SE, Pazyra-Murphy MF, Li Y, Wachter F, Fukuda Y, Fenstermacher SJ, Barclay LA, Bird GH, Walensky LD, Segal RA. Paclitaxel Reduces Axonal Bclw to Initiate IP 3R1-Dependent Axon Degeneration. Neuron 2017; 96:373-386.e6. [PMID: 29024661 DOI: 10.1016/j.neuron.2017.09.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/19/2017] [Accepted: 09/22/2017] [Indexed: 01/23/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many cancer treatments. The hallmark of CIPN is degeneration of long axons required for transmission of sensory information; axonal degeneration causes impaired tactile sensation and persistent pain. Currently the molecular mechanisms of CIPN are not understood, and there are no available treatments. Here we show that the chemotherapeutic agent paclitaxel triggers CIPN by altering IP3 receptor phosphorylation and intracellular calcium flux, and activating calcium-dependent calpain proteases. Concomitantly paclitaxel impairs axonal trafficking of RNA-granules and reduces synthesis of Bclw (bcl2l2), a Bcl2 family member that binds IP3R1 and restrains axon degeneration. Surprisingly, Bclw or a stapled peptide corresponding to the Bclw BH4 domain interact with axonal IP3R1 and prevent paclitaxel-induced degeneration, while Bcl2 and BclxL cannot do so. Together these data identify a Bclw-IP3R1-dependent cascade that causes axon degeneration and suggest that Bclw-mimetics could provide effective therapy to prevent CIPN.
Collapse
Affiliation(s)
- Sarah E Pease-Raissi
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria F Pazyra-Murphy
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yihang Li
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Franziska Wachter
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yusuke Fukuda
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sara J Fenstermacher
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lauren A Barclay
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gregory H Bird
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Loren D Walensky
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
61
|
Ibudilast reduces oxaliplatin-induced tactile allodynia and cognitive impairments in rats. Behav Brain Res 2017; 334:109-118. [DOI: 10.1016/j.bbr.2017.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
|
62
|
Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms. Sci Rep 2017; 7:5947. [PMID: 28729624 PMCID: PMC5519765 DOI: 10.1038/s41598-017-05784-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/05/2017] [Indexed: 12/31/2022] Open
Abstract
Impairment of peripheral neurons by anti-cancer agents, including taxanes and platinum derivatives, has been considered to be a major cause of chemotherapy-induced peripheral neuropathy (CIPN), however, the precise underlying mechanisms are not fully understood. Here, we examined the direct effects of anti-cancer agents on Schwann cells. Exposure of primary cultured rat Schwann cells to paclitaxel (0.01 μM), cisplatin (1 μM), or oxaliplatin (3 μM) for 48 h induced cytotoxicity and reduced myelin basic protein expression at concentrations lower than those required to induce neurotoxicity in cultured rat dorsal root ganglion (DRG) neurons. Similarly, these anti-cancer drugs disrupted myelin formation in Schwann cell/DRG neuron co-cultures without affecting nerve axons. Cisplatin and oxaliplatin, but not paclitaxel, caused mitochondrial dysfunction in cultured Schwann cells. By contrast, paclitaxel led to dedifferentiation of Schwann cells into an immature state, characterized by increased expression of p75 and galectin-3. Consistent with in vitro findings, repeated injection of paclitaxel increased expression of p75 and galectin-3 in Schwann cells within the mouse sciatic nerve. These results suggest that taxanes and platinum derivatives impair Schwan cells by inducing dedifferentiation and mitochondrial dysfunction, respectively, which may be important in the development of CIPN in conjunction with their direct impairment in peripheral neurons.
Collapse
|
63
|
CD8+ T Cells and Endogenous IL-10 Are Required for Resolution of Chemotherapy-Induced Neuropathic Pain. J Neurosci 2017; 36:11074-11083. [PMID: 27798187 DOI: 10.1523/jneurosci.3708-15.2016] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), characterized by pain and numbness in hands and feet, is a common side effect of cancer treatment. In most patients, symptoms of CIPN subside after treatment completion. However, in a substantial subgroup, CIPN persists long into survivorship. Impairment in pain resolution pathways may explain persistent CIPN. We investigated the contribution of T cells and endogenous interleukin (IL)-10 to resolution of CIPN. Paclitaxel-induced mechanical allodynia was prolonged in T-cell-deficient (Rag1-/-) mice compared with wild-type (WT) mice. There were no differences between WT and Rag1-/- mice in severity of paclitaxel-induced mechanical allodynia. Adoptive transfer of either CD3+ or CD8+, but not CD4+, T cells to Rag1-/- mice normalized resolution of CIPN. Paclitaxel treatment increased the number of T cells in lumbar dorsal root ganglia (DRG), where CD8+ T cells were the major subset. Inhibition of endogenous IL-10 signaling by intrathecal injection of anti-IL-10 to WT mice or Rag1-/- mice reconstituted with CD8+ T cells delayed recovery from paclitaxel-induced mechanical allodynia. Recovery was also delayed in IL-10 knock-out mice. Conversely, administration of exogenous IL-10 attenuated paclitaxel-induced allodynia. In vitro, IL-10 suppressed abnormal paclitaxel-induced spontaneous discharges in DRG neurons. Paclitaxel increased DRG IL-10 receptor expression and this effect requires CD8+ T cells. In conclusion, we identified a novel mechanism for resolution of CIPN that requires CD8+ T cells and endogenous IL-10. We propose that CD8+ T cells increase DRG IL-10 receptor expression and that IL-10 suppresses the abnormal paclitaxel-induced spontaneous discharges by DRG neurons to promote recovery from CIPN. SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy persists after completion of cancer treatment in a significant subset of patients, whereas others recover. Persistent neuropathy after completion of cancer treatment severely affects quality of life. We propose that understanding how neuropathy resolves will identify novel avenues for treatment. We identified a novel and critical role for CD8+ T cells and for endogenous IL-10 in recovery from paclitaxel-induced neuropathy in mice. Enhancing the capacity of CD8+ T cells to promote resolution or increasing IL-10 signaling are promising targets for novel interventions. Clinically, peripheral blood CD8+ T-cell function and/or the capacity of individuals to produce IL-10 may represent biomarkers of risk for developing persistent peripheral neuropathy after completion of cancer treatment.
Collapse
|
64
|
Marmiroli P, Scuteri A, Cornblath DR, Cavaletti G. Pain in chemotherapy-induced peripheral neurotoxicity. J Peripher Nerv Syst 2017; 22:156-161. [PMID: 28600844 DOI: 10.1111/jns.12226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022]
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a potentially dose-limiting side effect of the treatment of several cancers. CIPN is predominantly or exclusively sensory, and it is frequently associated with unpleasant symptoms, overall referred to as "pain." However, given the markedly different clinical presentation and course of CIPN depending on the antineoplastic drug used, the broad term "pain" in the specific context of CIPN needs to be reconsidered and refined. In fact, a precise identification of the features of CIPN has relevant implication in the design of rational-based clinical trials and in the selection of possible active drugs.
Collapse
Affiliation(s)
- Paola Marmiroli
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, MB, Italy
| | - Arianna Scuteri
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, MB, Italy
| | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, MB, Italy
| |
Collapse
|
65
|
Pachman DR, Dockter T, Zekan PJ, Fruth B, Ruddy KJ, Ta LE, Lafky JM, Dentchev T, Le-Lindqwister NA, Sikov WM, Staff N, Beutler AS, Loprinzi CL. A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy: ACCRU study RU221408I. Support Care Cancer 2017; 25:3407-3416. [PMID: 28551844 DOI: 10.1007/s00520-017-3760-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/16/2017] [Indexed: 01/26/2023]
Abstract
PURPOSE Paclitaxel is associated with both an acute pain syndrome (P-APS) and chronic chemotherapy-induced peripheral neuropathy (CIPN). Given that extensive animal data suggest that minocycline may prevent chemotherapy-induced neurotoxicity, the purpose of this pilot study was to investigate the efficacy of minocycline for the prevention of CIPN and the P-APS. METHODS Patients with breast cancer were enrolled prior to initiating neoadjuvant or adjuvant weekly paclitaxel for 12 weeks and were randomized to receive minocycline 200 mg on day 1 followed by 100 mg twice daily or a matching placebo. Patients completed (1) an acute pain syndrome questionnaire daily during chemotherapy to measure P-APS and (2) the EORTC QLQ-CIPN20 questionnaire at baseline, prior to each dose of paclitaxel, and monthly for 6 months post treatment, to measure CIPN. RESULTS Forty-seven patients were randomized. There were no remarkable differences noted between the minocycline and placebo groups for the overall sensory neuropathy score of the EORTC QLQ-CIPN20 or its individual components, which evaluate tingling, numbness and shooting/burning pain in hands and feet. However, patients taking minocycline had a significant reduction in the daily average pain score attributed to P-APS (p = 0.02). Not only were no increased toxicities reported with minocycline, but there was a significant reduction in fatigue (p = 0.02). CONCLUSIONS Results of this pilot study do not support the use of minocycline to prevent CIPN, but suggest that it may reduce P-APS and decrease fatigue; further study of the impact of this agent on those endpoints may be warranted.
Collapse
Affiliation(s)
- Deirdre R Pachman
- Department of Oncology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Travis Dockter
- Department of Statistics, Mayo Clinic, Rochester, MN, USA
| | | | - Briant Fruth
- Department of Statistics, Mayo Clinic, Rochester, MN, USA
| | - Kathryn J Ruddy
- Department of Oncology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Lauren E Ta
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jacqueline M Lafky
- Department of Oncology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | | | | | - William M Sikov
- Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Nathan Staff
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Andreas S Beutler
- Department of Oncology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Charles L Loprinzi
- Department of Oncology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
66
|
Benbow SJ, Wozniak KM, Kulesh B, Savage A, Slusher BS, Littlefield BA, Jordan MA, Wilson L, Feinstein SC. Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy. Neurotox Res 2017; 32:151-162. [PMID: 28391556 DOI: 10.1007/s12640-017-9729-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment with microtubule-targeted agents (MTAs). The frequency of severe CIPN, which can be dose limiting and even life threatening, varies widely among different MTAs. For example, paclitaxel induces a higher frequency of severe CIPN than does eribulin. Different MTAs also possess distinct mechanisms of microtubule-targeted action. Recently, we demonstrated that paclitaxel and eribulin differentially affect sciatic nerve axons, with paclitaxel inducing more pronounced neurodegenerative effects and eribulin inducing greater microtubule stabilizing biochemical effects. Here, we complement and extend these axonal studies by assessing the effects of paclitaxel and eribulin in the cell bodies of sciatic nerve axons, housed in the dorsal root ganglia (DRG). Importantly, the microtubule network in cell bodies is known to be significantly more dynamic than in axons. Paclitaxel induced activating transcription factor 3 expression, a marker of neuronal stress/injury. Paclitaxel also increased expression levels of acetylated tubulin and end binding protein 1, markers of microtubule stability and growth, respectively. These effects are hypothesized to be detrimental to the dynamic microtubule network within the cell bodies. In contrast, eribulin had no significant effect on any of these parameters in the cell bodies. Taken together, DRG cell bodies and their axons, two distinct neuronal cell compartments, contain functionally distinct microtubule networks that exhibit unique biochemical responses to different MTA treatments. We hypothesize that these distinct mechanistic actions may underlie the variability seen in the initiation, progression, persistence, and recovery from CIPN.
Collapse
Affiliation(s)
- Sarah J Benbow
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Krystyna M Wozniak
- Johns Hopkins Drug Discovery Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bridget Kulesh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - April Savage
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Departments of Neurology, Psychiatry, Neuroscience, Medicine and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Mary Ann Jordan
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Leslie Wilson
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA. .,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
67
|
Nakamura I, Ichimura E, Goda R, Hayashi H, Mashiba H, Nagai D, Yokoyama H, Onda T, Masuda A. An in vivo mechanism for the reduced peripheral neurotoxicity of NK105: a paclitaxel-incorporating polymeric micellar nanoparticle formulation. Int J Nanomedicine 2017; 12:1293-1304. [PMID: 28243090 PMCID: PMC5317268 DOI: 10.2147/ijn.s114356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In our previous rodent studies, the paclitaxel (PTX)-incorporating polymeric micellar nanoparticle formulation NK105 had showed significantly stronger antitumor effects and reduced peripheral neurotoxicity than PTX dissolved in Cremophor® EL and ethanol (PTX/CRE). Thus, to elucidate the mechanisms underlying reduced peripheral neurotoxicity due to NK105, we performed pharmacokinetic analyses of NK105 and PTX/CRE in rats. Among neural tissues, the highest PTX concentrations were found in the dorsal root ganglion (DRG). Moreover, exposure of DRG to PTX (Cmax_PTX and AUC0-inf._PTX) in the NK105 group was almost half that in the PTX/CRE group, whereas exposure of sciatic and sural nerves was greater in the NK105 group than in the PTX/CRE group. In histopathological analyses, damage to DRG and both peripheral nerves was less in the NK105 group than in the PTX/CRE group. The consistency of these pharmacokinetic and histopathological data suggests that high levels of PTX in the DRG play an important role in the induction of peripheral neurotoxicity, and reduced distribution of PTX to the DRG of NK105-treated rats limits the ensuing peripheral neurotoxicity. In further analyses of PTX distribution to the DRG, Evans blue (Eb) was injected with BODIPY®-labeled NK105 into rats, and Eb fluorescence was observed only in the DRG. Following injection, most Eb dye bound to albumin particles of ~8 nm and had penetrated the DRG. In contrast, BODIPY®–NK105 particles of ~90 nm were not found in the DRG, suggesting differential penetration based on particle size. Because PTX also circulates as PTX–albumin particles of ~8 nm following injection of PTX/CRE, reduced peripheral neurotoxicity of NK105 may reflect exclusion from the DRG due to particle size, leading to reduced PTX levels in rat DRG (275).
Collapse
Affiliation(s)
- Iwao Nakamura
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Eiji Ichimura
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Rika Goda
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Hitomi Hayashi
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Hiroko Mashiba
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Daichi Nagai
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Hirofumi Yokoyama
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Takeshi Onda
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Akira Masuda
- Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan
| |
Collapse
|
68
|
Effects of Taxol on Regeneration in a Rat Sciatic Nerve Transection Model. Sci Rep 2017; 7:42280. [PMID: 28181572 PMCID: PMC5299405 DOI: 10.1038/srep42280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023] Open
Abstract
Recent studies describe taxol as a candidate treatment for promoting central nerve regeneration. However, taxol has serious side effects including peripheral neurotoxicity, and little information is known about the effect of taxol on peripheral nerve regeneration. We investigated the effects of taxol on regeneration in a rat sciatic nerve transection model. Rats were divided into four groups (n = 10): normal saline (i.p.) as the control, Cremophor EL vehicle, and 2 or 6 mg/kg of taxol in the Cremophor EL solution (four times in day-2, 4, 6, and 8), respectively. We evaluated neuronal electrophysiology, animal behaviour, neuronal connectivity, macrophage infiltration, location and expression levels of calcitonin gene-related peptide (CGRP), and expression levels of both nerve growth factors and immunoregulatory factors. In the high-dose taxol group (6 mg/kg), neuronal electrophysiological function was significantly impaired. Licking latencies were significantly changed while motor coordination was unaffected. Neuronal connectivity, macrophage density, and expression levels of CGRP was dramatically reduced. Expression levels of nerve growth factors and immunoregulatory factors was also reduced, while it was increased in the low-dose taxol group (2 mg/kg). These results indicate that taxol can modulate local inflammatory conditions, impair nerve regeneration, and impede recovery of a severe peripheral nerve injury.
Collapse
|
69
|
Makker PGS, Duffy SS, Lees JG, Perera CJ, Tonkin RS, Butovsky O, Park SB, Goldstein D, Moalem-Taylor G. Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy. PLoS One 2017; 12:e0170814. [PMID: 28125674 PMCID: PMC5268425 DOI: 10.1371/journal.pone.0170814] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain is a debilitating adverse effect of cancer treatment. Current understanding of the mechanisms underpinning CIPN is limited and there are no effective treatment strategies. In this study, we treated male C57BL/6J mice with 4 cycles of either Paclitaxel (PTX) or Oxaliplatin (OXA) over a week and tested pain hypersensitivity and changes in peripheral immune responses and neuroinflammation on days 7 and 13 post 1st injection. We found that both PTX and OXA caused significant mechanical allodynia. In the periphery, PTX and OXA significantly increased circulating CD4+ and CD8+ T-cell populations. OXA caused a significant increase in the percentage of interleukin-4+ lymphocytes in the spleen and significant down-regulation of regulatory T (T-reg) cells in the inguinal lymph nodes. However, conditional depletion of T-reg cells in OXA-treated transgenic DEREG mice had no additional effect on pain sensitivity. Furthermore, there was no leukocyte infiltration into the nervous system of OXA- or PTX-treated mice. In the peripheral nervous system, PTX induced expression of the neuronal injury marker activating transcription factor-3 in IB4+ and NF200+ sensory neurons as well as an increase in the chemokines CCL2 and CCL3 in the lumbar dorsal root ganglion. In the central nervous system, PTX induced significant astrocyte activation in the spinal cord dorsal horn, and both PTX and OXA caused reduction of P2ry12+ homeostatic microglia, with no measurable changes in IBA-1+ microglia/macrophages in the dorsal and ventral horns. We also found that PTX induced up-regulation of several inflammatory cytokines and chemokines (TNF-α, IFN-γ, CCL11, CCL4, CCL3, IL-12p70 and GM-CSF) in the spinal cord. Overall, these findings suggest that PTX and OXA cause distinct pathological changes in the periphery and nervous system, which may contribute to chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Preet G S Makker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Samuel S Duffy
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Justin G Lees
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chamini J Perera
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ryan S Tonkin
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susanna B Park
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, New South Wales, Sydney, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, New South Wales, Randwick, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
70
|
Areti A, Yerra VG, Komirishetty P, Kumar A. Potential Therapeutic Benefits of Maintaining Mitochondrial Health in Peripheral Neuropathies. Curr Neuropharmacol 2017; 14:593-609. [PMID: 26818748 PMCID: PMC4981743 DOI: 10.2174/1570159x14666151126215358] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/31/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background: Peripheral neuropathies are a group of diseases characterized by malfunctioning of peripheral nervous system. Neuropathic pain, one of the core manifestations of peripheral neuropathy remains as the most severe disabling condition affecting the social and daily routine life of patients suffering from peripheral neuropathy. Method: The current review is aimed at unfolding the possible role of mitochondrial dysfunction in peripheral nerve damage and to discuss on the probable therapeutic strategies against neuronal mitotoxicity. The article also highlights the therapeutic significance of maintaining a healthy mitochondrial environment in neuronal cells via pharmacological management in context of peripheral neuropathies. Results: Aberrant cellular signaling coupled with changes in neurotransmission, peripheral and central sensitization are found to be responsible for the pathogenesis of variant toxic neuropathies. Current research reports have indicated the possible involvement of mitochondria mediated redox imbalance as one of the principal causes of neuropathy aetiologies. In addition to imbalance in redox homeostasis, mitochondrial dysfunction is also responsible for alterations in physiological bioenergetic metabolism, apoptosis and autophagy pathways. Conclusions: In spite of various etiological factors, mitochondrial dysfunction has been found to be a major pathomechanism underlying the neuronal dysfunction associated with peripheral neuropathies. Pharmacological modulation of mitochondria either directly or indirectly is expected to yield therapeutic relief from various primary and secondary mitochondrial diseases.
Collapse
Affiliation(s)
| | | | | | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, TG-500037.
| |
Collapse
|
71
|
Kim HK, Hwang SH, Abdi S. Tempol Ameliorates and Prevents Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain. Front Pharmacol 2017; 7:532. [PMID: 28138318 PMCID: PMC5237846 DOI: 10.3389/fphar.2016.00532] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/22/2016] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy-induced neuropathic pain is difficult to treat and prevent. Tempol decreases cellular superoxide radical levels and oxidative stress. The aims of our study were to investigate the analgesic and preventive effects of tempol on paclitaxel-induced neuropathic pain in rats and to identify the associated mechanisms of action. Neuropathic pain was induced with intraperitoneally injected paclitaxel on four alternate days in male Sprague-Dawley rats. Tempol was administered systemically as a single injection and a continuous infusion before or after the injection of paclitaxel. The mechanical threshold for allodynia, protein levels, and free radical levels were measured using von Frey filaments, Western blotting, and live cell imaging, respectively. After the rats developed neuropathic pain behavior, a single intraperitoneal injection and continuous infusion of tempol ameliorated paclitaxel-induced mechanical allodynia. Systemic infusion of tempol in the early phase of the development of pain behavior prevented the development of paclitaxel-induced pain behavior. Paclitaxel increased the levels of phosphorylated protein kinase C, phosphorylated nuclear factor κB, phosphodiesterase 4D (PDE4D), IL-1β, and monocyte chemoattractant protein-1 in the lumbar dorsal root ganglia; however, tempol decreased these levels. Paclitaxel also increased superoxide levels in a culture of primary dorsal root ganglion cells and tempol decreased these levels. In conclusion, tempol alleviates and prevents chemotherapy-induced neuropathic pain in rats by reducing the levels of inflammatory cytokines and free radicals in dorsal root ganglia.
Collapse
Affiliation(s)
- Hee Kee Kim
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Seon-Hee Hwang
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Salahadin Abdi
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
72
|
Kuyrukluyıldız U, Küpeli İ, Bedir Z, Özmen Ö, Onk D, Süleyman B, Mammadov R, Süleyman H. The Effect of Anakinra on Paclitaxel-Induced Peripheral Neuropathic Pain in Rats. Turk J Anaesthesiol Reanim 2016; 44:287-294. [PMID: 28058139 DOI: 10.5152/tjar.2016.02212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Paclitaxel is used in the treatment of cancer, and it may cause interleukin-1 beta (IL-1β)-related peripheral neuropathic pain. While our primary aim was to investigate the analgesic efficacy of an IL-1β antagonist, a secondary outcome was to assess whether a correlation exists between analgesic effects and antioxidant activity. METHODS A total of 24 albino Wistar male rats were divided into the following groups: paclitaxel-control, paclitaxel+50 mg kg-1 anakinra, paclitaxel+100 mg kg-1 anakinra and healthy group (HG). After the normal paw pain threshold in all animal groups was measured using a Basile algesimeter, a single dose of 2 mg kg-1 paclitaxel was intraperitoneally administered on the 1st, 3rd, 5th and 7th days. Anakinra was intraperitoneally administered following the final paclitaxel administration. The paw pain thresholds in the groups were measured before and seven days after paclitaxel administration and at the 1st and 3rd hours after anakinra administration. After the third hour of measurement, the rats were killed with high doses of ketamine, and the paw tissues were removed. Malondialdehyde, myeloperoxidase and total glutathione levels were measured in claw tissues, and IL-1β gene expression was determined. The biochemical results were compared with the results of the HG; in the meanwhile the claw pain threshold results were compared with the results obtained after the last paclitaxel and the results obtained from the 1st and 3rd hours after the anakinra application. RESULTS The claw paw pain threshold of the rats decreased one and three hours after anakinra administration. Further, 100 mg kg-1 anakinra had greater analgesic activity than 50 mg kg-1 anakinra. A correlation was found between the antioxidant and analgesic activities of 100 mg kg-1 anakinra. CONCLUSION Anakinra may be useful to reduce paclitaxel-induced neuropathic pain; further, 100 mg kg-1 anakinra may have greater analgesic and antioxidant activities.
Collapse
Affiliation(s)
- Ufuk Kuyrukluyıldız
- Department of Anesthesiology and Reanimation, Erzincan University School of Medicine, Erzincan, Turkey
| | - İlke Küpeli
- Department of Anesthesiology and Reanimation, Erzincan University School of Medicine, Erzincan, Turkey
| | - Zehra Bedir
- Department of Anesthesiology and Reanimation, Erzincan University School of Medicine, Erzincan, Turkey
| | - Özgür Özmen
- Department of Anesthesiology and Reanimation, Erzincan University School of Medicine, Erzincan, Turkey
| | - Didem Onk
- Department of Anesthesiology and Reanimation, Erzincan University School of Medicine, Erzincan, Turkey
| | - Bahadır Süleyman
- Department of Pharmacology, Erzincan University School of Medicine, Erzincan, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Erzincan University School of Medicine, Erzincan, Turkey
| | - Halis Süleyman
- Department of Pharmacology, Erzincan University School of Medicine, Erzincan, Turkey
| |
Collapse
|
73
|
Ahn SH, Chang IA, Kim KJ, Kim CJ, Namgung U, Cho CS. Bogijetong decoction and its active herbal components protect the peripheral nerve from damage caused by taxol or nerve crush. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:402. [PMID: 27770785 PMCID: PMC5075155 DOI: 10.1186/s12906-016-1391-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Background Bogijetong decoction (BGJTD) is a herbal drug formulation used in the traditional Asian medicine to treat neuropathic insults associated with diabetes and anticancer therapy. To understand the biological basis of BGJTD on protective effects against neuropathy, we investigated physiological and biochemical responses of the sciatic nerves deranged by taxol injection or crush injury in the rats. Methods Dissociated Schwann cells and neurons were prepared from the sciatic nerve and dorsal root ganglia (DRG) respectively and were treated with taxol and BGJTD. The sciatic nerve in the rat was injected with taxol or given crush injury. Animals were then administered orally with BGJTD. Effects of BGJTD treatment on cultured cells and in vivo sciatic nerves and DRG tissues were examined by immunofluorescence staining and western blot analysis. Sciatic nerve regeneration was assessed by histological observation using retrograde tracing technique and by behavioral hot plate test. Eighteen different herbal components of BGJTD were divided into 4 subgroups and were used to select herbal drugs that enhanced neurite outgrowth in cultured neurons. Results Morphological abnormalities in the sciatic nerve axons and DRG tissue caused by taxol injection were largely improved by BGJTD treatment. BGJTD treatment enhanced neurite outgrowth in cultured DRG neurons and improved Schwann cell survival. Phospho-Erk1/2 levels were elevated by BGJTD administration in the injured- or taxol-injected sciatic nerves. Vimentin phosphorylation catalyzed by cell division cycle 2 (Cdc2) kinase was induced from Schwann cells in the sciatic nerves after taxol injection and crush injury, and phospho-vimentin levels were further upregulated by BGJTD treatment. Retrograde tracing of DiI-labeled DRG sensory neurons revealed growth-promoting activity of BGJTD on axonal regeneration. A drug group (Be) composed of 4 active herbal components which were selected by neurite growth-enhancing activity was as effective as BGJDT for the recovery of thermal sensitivity of the hind paws which had been suppressed by taxol administration. Conclusions These data suggest that BGJTD and its active herbal components may protects the peripheral nerve from damage caused by taxol injection and nerve crush.
Collapse
|
74
|
Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels. Proc Natl Acad Sci U S A 2016; 113:E6686-E6695. [PMID: 27791037 DOI: 10.1073/pnas.1614017113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pain is a critical component hindering recovery and regaining of function after surgery, particularly in the elderly. Understanding the role of pain signaling after surgery may lead to novel interventions for common complications such as delirium and postoperative cognitive dysfunction. Using a model of tibial fracture with intramedullary pinning in male mice, associated with cognitive deficits, we characterized the effects on the primary somatosensory system. Here we show that tibial fracture with pinning triggers cold allodynia and up-regulates nerve injury and inflammatory markers in dorsal root ganglia (DRGs) and spinal cord up to 2 wk after intervention. At 72 h after surgery, there is an increase in activating transcription factor 3 (ATF3), the neuropeptides galanin and neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), as well as neuroinflammatory markers including ionized calcium-binding adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and the fractalkine receptor CX3CR1 in DRGs. Using an established model of complete transection of the sciatic nerve for comparison, we observed similar but more pronounced changes in these markers. However, protein levels of BDNF remained elevated for a longer period after fracture. In the hippocampus, BDNF protein levels were increased, yet there were no changes in Bdnf mRNA in the parent granule cell bodies. Further, c-Fos was down-regulated in the hippocampus, together with a reduction in neurogenesis in the subgranular zone. Taken together, our results suggest that attenuated BDNF release and signaling in the dentate gyrus may account for cognitive and mental deficits sometimes observed after surgery.
Collapse
|
75
|
Camargo G, Elizalde A, Trujillo X, Montoya-Pérez R, Mendoza-Magaña ML, Hernandez-Chavez A, Hernandez L. Inactivation of GABAA receptor is related to heat shock stress response in organism model Caenorhabditis elegans. Cell Stress Chaperones 2016; 21:763-72. [PMID: 27230213 PMCID: PMC5003793 DOI: 10.1007/s12192-016-0701-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.
Collapse
Affiliation(s)
- Gabriela Camargo
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias dela Salud, Universidad de Guadalajara, Sierra Mojada # 950, Guadalajara, 44340, Jalisco, Mexico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Av. 25 de Julio # 965, Colima, 28045, Colima, Mexico
- Laboratorio de Biotecnología, Departamento de Botánica y Zoología, Centro Universitariode Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez # 2100, Zapopan, 45110, Jalisco, Mexico
| | - Alejandro Elizalde
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Av. 25 de Julio # 965, Colima, 28045, Colima, Mexico
| | - Xochitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Av. 25 de Julio # 965, Colima, 28045, Colima, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Mújica S/N, Morelia, 58030, Michoacán, Mexico
| | - María Luisa Mendoza-Magaña
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias dela Salud, Universidad de Guadalajara, Sierra Mojada # 950, Guadalajara, 44340, Jalisco, Mexico
| | - Abel Hernandez-Chavez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, SierraMojada # 950, Guadalajara, 44340, Jalisco, Mexico
| | - Leonardo Hernandez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias dela Salud, Universidad de Guadalajara, Sierra Mojada # 950, Guadalajara, 44340, Jalisco, Mexico.
| |
Collapse
|
76
|
Sereflican M, Yurttas V, Ozyalvacli G, Terzi EH, Turkoglu SA, Yildiz S, Ilgaz Y, Seyhan S, Oral M, Dagli M. The histopathological and electrophysiological effects of thymoquinone and methylprednisolone in a rabbit traumatic facial nerve paralysis model. Am J Otolaryngol 2016; 37:407-15. [PMID: 27311344 DOI: 10.1016/j.amjoto.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVE We aimed to determine the effects of methylprednisolone and thymoquinone on nerve healing in a traumatic facial nerve paralysis animal model. SUBJECTS AND METHODS Twenty-four rabbits were randomly divided into 4 groups: group I: control group received no medication and no trauma; group II: sham group received no medication after facial nerve trauma group III: 5mg/kg/day thymoquinone administered; group IV: 1mg/kg/day methylprednisolone administered. An initial electrophysiological assessment was performed in all the animals. The buccal branch of the facial nerve was then clipped to form a traumatic facial paralysis model. The drugs were administered for two weeks once a day. At the end of the second month, the electrophysiological assessments were performed and the distal part of the traumatic facial nerve were dissected and examined under light microscopy. RESULTS Best nerve regeneration was observed in the control and the thymoquinone groups, respectively, whereas the weakest regeneration was determined in the sham group. Thymoquinone and methylprednisolone significantly increased nerve recovery, as measured by histopathological scores and electrophysiological assessment. In the thymoquinone group, due to postoperative amplitude, axon diameter and thickness of myelin sheath values were significantly further increased nerve regeneration compared to that of the methylprednisolone group and these values were close to those of the values of the control group. CONCLUSION Thymoquinone was slightly better than methylprednisolone for functional nerve recovery. The neuroprotective effect of thymoquinone was attributed to its antioxidant and anti-inflammatory effects. Thymoquinone can have a new treatment option to ameliorate the nerve injury.
Collapse
Affiliation(s)
- Murat Sereflican
- Department of Otolaryngology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey.
| | - Veysel Yurttas
- Department of Otolaryngology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Gulzade Ozyalvacli
- Department of Pathology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Elcin Hakan Terzi
- Department of Medical Histology and Embryology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Sule Aydin Turkoglu
- Department of Neurology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Serpil Yildiz
- Department of Neurology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Yasin Ilgaz
- Department of Medical Histology and Embryology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Sinan Seyhan
- Department of Otolaryngology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Mesut Oral
- Department of Otolaryngology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Muharrem Dagli
- Department of Otolaryngology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| |
Collapse
|
77
|
Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505). Support Care Cancer 2016; 24:5059-5068. [PMID: 27534963 DOI: 10.1007/s00520-016-3373-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Oxaliplatin and paclitaxel are commonly used chemotherapies associated with acute and chronic neuropathies. There is a need to better understand the similarities and differences of these clinical syndromes. METHODS Neuropathy data were pooled from patients receiving adjuvant oxaliplatin and weekly paclitaxel or every 3 weeks of paclitaxel. Patients completed daily questionnaires after each chemotherapy dose and the European Organization for Research and Treatment of Cancer quality-of-life questionnaire for patients with chemotherapy-induced peripheral neuropathy before each chemotherapy cycle and for 12 months post-treatment. RESULTS Acute neuropathy symptoms from both drugs peaked around day 3. Acute symptoms experienced in cycle 1 predicted occurrence in subsequent cycles. Paclitaxel-induced acute symptoms were similar in intensity in each cycle and largely resolved between cycles. Oxaliplatin-induced acute symptoms were about half as severe in the first cycle as in later cycles and did not resolve completely between cycles. Both drugs caused a predominantly sensory chronic neuropathy (with numbness and tingling being more common than pain). Oxaliplatin-induced neuropathy worsened after the completion of treatment and began to improve 3 months post-treatment. In contrast, paclitaxel-induced neuropathy began improving immediately after chemotherapy cessation. During treatment, the incidence of paclitaxel sensory symptoms was similar in the hands and feet; with oxaliplatin, the hands were affected more than the feet. Both paclitaxel- and oxaliplatin-induced acute neurotoxicity appeared to predict the severity of chronic neuropathy, more prominently with oxaliplatin. CONCLUSIONS Knowledge of the similarities and differences between neuropathy syndromes may provide insight into their underlying pathophysiology and inform future research to identify preventative treatment approaches.
Collapse
|
78
|
Tasnim A, Rammelkamp Z, Slusher AB, Wozniak K, Slusher BS, Farah MH. Paclitaxel causes degeneration of both central and peripheral axon branches of dorsal root ganglia in mice. BMC Neurosci 2016; 17:47. [PMID: 27401104 PMCID: PMC4940970 DOI: 10.1186/s12868-016-0285-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/25/2016] [Indexed: 01/05/2023] Open
Abstract
Background Peripheral neuropathy is a common and dose-limiting side effect of many cancer chemotherapies. The taxane agents, including paclitaxel (Taxol®), are effective chemotherapeutic drugs but cause degeneration of predominantly large myelinated afferent sensory fibers of the peripheral nervous system in humans and animal models. Dorsal root ganglia (DRG) neurons are sensory neurons that have unipolar axons each with two branches: peripheral and central. While taxane agents induce degeneration of peripheral axons, whether they also cause degeneration of central nervous system axons is not clear. Using a mouse model of paclitaxel-induced neuropathy, we investigated the effects of paclitaxel on the central branches of sensory axons. Results We observed that in the spinal cords of paclitaxel-intoxicated mice, degenerated axons were present in the dorsal columns, where the central branches of DRG axons ascend rostrally. In the peripheral nerves, degenerated myelinated fibers were present in significantly greater numbers in distal segments than in proximal segments indicating that this model exhibits the distal-to-proximal degeneration pattern generally observed in human peripheral nerve disorders. Conclusions We conclude that paclitaxel causes degeneration of both the peripheral and central branches of DRG axons, a finding that has implications for the site and mode of action of chemotherapy agents on the nervous system.
Collapse
Affiliation(s)
- Aniqa Tasnim
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.,Harvard University, Boston, MA, USA
| | - Zoe Rammelkamp
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.,University of Maryland Medical School, Baltimore, MD, USA
| | - Amy B Slusher
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Krystyna Wozniak
- Johns Hopkins Drug Discovery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.,Johns Hopkins Drug Discovery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamed H Farah
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
79
|
The α9α10 nicotinic receptor antagonist α-conotoxin RgIA prevents neuropathic pain induced by oxaliplatin treatment. Exp Neurol 2016; 282:37-48. [PMID: 27132993 DOI: 10.1016/j.expneurol.2016.04.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/14/2016] [Accepted: 04/27/2016] [Indexed: 12/29/2022]
Abstract
Oxaliplatin, a third-generation diaminocyclohexane platinum drug, is widely used alone or in combination with 5-fluorouracil and leucovorin to treat metastatic colorectal, ovarian, and pancreatic cancers. Oxaliplatin long-term treatment is associated with the development of a dose-limiting painful neuropathy that dramatically impairs the patient's quality of life and therapy possibility. To study novel strategies to treat oxaliplatin-induced neuropathy, we evaluated α-conotoxin RgIA, a peptide that potently blocks the α9α10 nicotinic acetylcholine receptor (nAChR) subtype in a rat model of oxaliplatin-dependent neurotoxicity (2.4mgkg(-1) oxaliplatin intraperitoneally daily for 21days). The administration of RgIA (2 and 10nmol injected intramuscularly once a day concomitantly with oxaliplatin treatment), reduced the oxaliplatin-dependent hypersensitivity to mechanical and thermal noxious and non-noxious stimuli. Moreover, morphological modifications of L4-L5 dorsal root ganglia were significantly prevented. In the spinal cord the numerical increase of astrocyte cell density present in oxaliplatin-treated rats is partially prevented by RgIA treatment. Nevertheless, the administration of the α-conotoxin is able per se to elicit a numerical increase and a morphological activation of microglia and astrocytes in specific brain areas.
Collapse
|
80
|
Benbow SJ, Cook BM, Reifert J, Wozniak KM, Slusher BS, Littlefield BA, Wilson L, Jordan MA, Feinstein SC. Effects of Paclitaxel and Eribulin in Mouse Sciatic Nerve: A Microtubule-Based Rationale for the Differential Induction of Chemotherapy-Induced Peripheral Neuropathy. Neurotox Res 2015; 29:299-313. [DOI: 10.1007/s12640-015-9580-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/15/2022]
|
81
|
Brewer JR, Morrison G, Dolan ME, Fleming GF. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecol Oncol 2015; 140:176-83. [PMID: 26556766 DOI: 10.1016/j.ygyno.2015.11.011] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022]
Abstract
As there are increasing numbers of cancer survivors, more attention is being paid to the long term unwanted effects patients may experience as a result of their treatment and the impact these side effects can have on their quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxicities from chemotherapy. In this review we will briefly review the clinical presentation, evaluation and management of chemotherapy-induced peripheral neuropathy, with a focus on CIPN related to platinum and taxane agents. We will then discuss current clinical models of peripheral neuropathy and ongoing research to better understand CIPN and develop potential treatment options.
Collapse
Affiliation(s)
- Jamie R Brewer
- Section of Hematology-Oncology, Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - Gladys Morrison
- Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Knapp Center for Biomedical Discovery, 900 East 57th Street, Chicago, IL 60637, United States
| | - M Eileen Dolan
- Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Knapp Center for Biomedical Discovery, 900 East 57th Street, Chicago, IL 60637, United States
| | - Gini F Fleming
- Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Knapp Center for Biomedical Discovery, 900 East 57th Street, Chicago, IL 60637, United States.
| |
Collapse
|
82
|
Abstract
Cancer and its treatment exert a heavy psychological and physical toll. Of the myriad symptoms which result, pain is common, encountered in between 30% and 60% of cancer survivors. Pain in cancer survivors is a major and growing problem, impeding the recovery and rehabilitation of patients who have beaten cancer and negatively impacting on cancer patients' quality of life, work prospects and mental health. Persistent pain in cancer survivors remains challenging to treat successfully. Pain can arise both due to the underlying disease and the various treatments the patient has been subjected to. Chemotherapy causes painful chemotherapy-induced peripheral neuropathy (CIPN), radiotherapy can produce late effect radiation toxicity and surgery may lead to the development of persistent post-surgical pain syndromes. This review explores a selection of the common causes of persistent pain in cancer survivors, detailing our current understanding of the pathophysiology and outlining both the clinical manifestations of individual pain states and the treatment options available.
Collapse
Affiliation(s)
- Matthew Rd Brown
- Pain Management Department, The Royal Marsden Hospital, London, UK ; Institute of Cancer Research, London, UK
| | - Juan D Ramirez
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
83
|
Masocha W. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice. PeerJ 2015; 3:e1350. [PMID: 26528412 PMCID: PMC4627912 DOI: 10.7717/peerj.1350] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022] Open
Abstract
Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker) immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC) at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, with no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP.
Collapse
Affiliation(s)
- Willias Masocha
- Department Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University , Safat , Kuwait
| |
Collapse
|
84
|
Up-regulation of CX3CL1 via Nuclear Factor-κB-dependent Histone Acetylation Is Involved in Paclitaxel-induced Peripheral Neuropathy. Anesthesiology 2015; 122:1142-51. [PMID: 25494456 DOI: 10.1097/aln.0000000000000560] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Up-regulation of CX3CL1 has been revealed to be involved in the neuropathic pain induced by nerve injury. However, whether CX3CL1 participates in the paclitaxel-induced painful peripheral neuropathy remains unknown. The aim of the current study was to elucidate the involvement of transcriptional factors nuclear factor-κB (NF-κB) and its causal interaction with CX3CL1 signaling in the paclitaxel-induced painful peripheral neuropathy. METHODS Painful peripheral neuropathy induced by paclitaxel treatment was established in adult male Sprague-Dawley rats. The von Frey test were performed to evaluate neuropathic pain behavior, and real-time quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, Western blot, immunohistochemistry, and small interfering RNA were performed to understand the molecular mechanisms. RESULTS The application of paclitaxel induced an up-regulation of CX3CL1 expression in the spinal neurons, which is reduced significantly by NF-κB inhibitor ammonium pyrrolidinedithiocarbamate or p65 small interfering RNA. Blockade of either CX3CL1 (n = 12 each) or NF-κB (n = 12 each) signaling pathway attenuated mechanical allodynia induced by paclitaxel. Chromatin immunoprecipitation further found that paclitaxel induced an increased recruitment of nuclear factor-κB (NF-κB)p65 to the Cx3cl1 promoter region. Furthermore, an increased acetylation level of H4, but not H3, in Cx3cl1 promoter region in spinal neurons was detected after paclitaxel treatment, which was reversed by inhibition of NF-κB with ammonium pyrrolidinedithiocarbamate or p65 small interfering RNA. CONCLUSIONS These findings suggest that up-regulation of CX3CL1 via NF-κB-dependent H4 acetylation might be critical for paclitaxel-induced mechanical allodynia.
Collapse
|
85
|
Poupon L, Kerckhove N, Vein J, Lamoine S, Authier N, Busserolles J, Balayssac D. Minimizing chemotherapy-induced peripheral neuropathy: preclinical and clinical development of new perspectives. Expert Opin Drug Saf 2015; 14:1269-82. [DOI: 10.1517/14740338.2015.1056777] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
86
|
Cashman CR, Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 2015; 596:33-50. [PMID: 25617478 PMCID: PMC4428955 DOI: 10.1016/j.neulet.2015.01.048] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wld(S)) and Sarm knockout animal models. These studies have shown axonal degeneration to occur through a programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Christopher R Cashman
- Departments of Neuroscience and Neurology, USA; MSTP- MD/PhD Program, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Departments of Neuroscience and Neurology, USA.
| |
Collapse
|
87
|
Bráz JM, Wang X, Guan Z, Rubenstein JL, Basbaum AI. Transplant-mediated enhancement of spinal cord GABAergic inhibition reverses paclitaxel-induced mechanical and heat hypersensitivity. Pain 2015; 156:1084-1091. [PMID: 25760475 PMCID: PMC4431911 DOI: 10.1097/j.pain.0000000000000152] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Decreased spinal cord GABAergic inhibition is a major contributor to the persistent neuropathic pain that can follow peripheral nerve injury. Recently, we reported that restoring spinal cord GABAergic signaling by intraspinal transplantation of cortical precursors of GABAergic interneurons from the embryonic medial ganglionic eminence (MGE) can reverse the mechanical hypersensitivity (allodynia) that characterizes a neuropathic pain model in the mouse. We show that MGE cell transplants are also effective against both the mechanical allodynia and the heat hyperalgesia produced in a paclitaxel-induced chemotherapy model of neuropathic pain. To test the necessity of GABA release by the transplants, we also studied the utility of transplanting MGE cells from mice with a deletion of VGAT, the vesicular GABA transporter. Transplants from these mice, in which GABA is synthesized but cannot be stored or released, had no effect on mechanical hypersensitivity or heat hyperalgesia in the paclitaxel model. Taken together, these results demonstrate the therapeutic potential of GABAergic precursor cell transplantation in diverse neuropathic pain models and support our contention that restoration of inhibitory controls through release of GABA from the transplants is their mode of action.
Collapse
Affiliation(s)
- João M Bráz
- Departments of Anatomy Anesthesia and Critical Care Department of Psychiatry, The Nina Ireland Laboratory Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
88
|
|
89
|
De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S. Taxane induced neuropathy in patients affected by breast cancer: Literature review. Crit Rev Oncol Hematol 2015; 96:34-45. [PMID: 26004917 DOI: 10.1016/j.critrevonc.2015.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
Taxane induced neuropathy (TIN) is the most limiting side effect of taxane based chemotherapy, relative to the majority of breast cancer patients undergoing therapy with both docetaxel and paclitaxel. The symptoms begin symmetrically from the toes, because the tips of the longest nerves are affected for first. The patients report sensory symptoms such as paresthesia, dysesthesia, numbness, electric shock-like sensation, motor impairment and neuropathic pain. There is a great inter-individual variability among breast cancer women treated with taxanes, in fact 20-30% of them don't develop neurotoxicity. Actually, there is no standard therapy for TIN, although many medications, antioxidants and natural substances have been tested in vitro and in vivo. We will summarize all most recent literature data on TIN prevention and treatment, in order to reach an improvement in TIN management. Further studies are needed to evaluate new therapies that restore neuronal function and improve life quality of patients.
Collapse
Affiliation(s)
- Francesca De Iuliis
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Ludovica Taglieri
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Gerardo Salerno
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Rosina Lanza
- Ginecology and Obstetrics Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Susanna Scarpa
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
90
|
Taxane-Induced Peripheral Neurotoxicity. TOXICS 2015; 3:152-169. [PMID: 29056655 PMCID: PMC5634686 DOI: 10.3390/toxics3020152] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/19/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022]
Abstract
Taxane-derived agents are chemotherapy drugs widely employed in cancer treatment. Among them, paclitaxel and docetaxel are most commonly administered, but newer formulations are being investigated. Taxane antineoplastic activity is mainly based on the ability of the drugs to promote microtubule assembly, leading to mitotic arrest and apoptosis in cancer cells. Peripheral neurotoxicity is the major non-hematological adverse effect of taxane, often manifested as painful neuropathy experienced during treatment, and it is sometimes irreversible. Unfortunately, taxane-induced neurotoxicity is an uncertainty prior to the initiation of treatment. The present review aims to dissect current knowledge on real incidence, underlying pathophysiology, clinical features and predisposing factors related with the development of taxane-induced neuropathy.
Collapse
|
91
|
Abstract
Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain.
Collapse
|
92
|
Janes K, Wahlman C, Little JW, Doyle T, Tosh DK, Jacobson KA, Salvemini D. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun 2015; 44:91-9. [PMID: 25220279 PMCID: PMC4275321 DOI: 10.1016/j.bbi.2014.08.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022] Open
Abstract
Many commonly used chemotherapeutics including oxaliplatin are associated with the development of a painful chemotherapy-induced peripheral neuropathy (CIPN). This dose-limiting complication can appear long after the completion of therapy causing a significant reduction in quality-of-life and impeding cancer treatment. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (i.e., IB-MECA) blocked the development of chemotherapy induced-neuropathic pain in models evoked by distinct agents including oxaliplatin without interfering with their anticancer activities. The mechanism(s) of action underlying these beneficial effects has yet to be explored. Our results herein demonstrate that the development of oxaliplatin-induced mechano-hypersensitivity (allodynia and hyperalgesia) in rats is associated with the hyperactivation of astrocytes, but not microglial cells, increased production of pro-inflammatory and neuroexcitatory cytokines (TNF, IL-1β), and reductions in the levels of anti-inflammatory/neuroprotective cytokines (IL-10, IL-4) in the dorsal horn of the spinal cord. These events did not require lymphocytic mobilization since oxaliplatin did not induce CD45(+)/CD3(+) T-cell infiltration into the spinal cord. A3AR agonists blocked the development of neuropathic pain with beneficial effects strongly associated with the modulation of spinal neuroinflammatory processes: attenuation of astrocytic hyperactivation, inhibition of TNF and IL-1β production, and an increase in IL-10 and IL-4. These results suggest that inhibition of an astrocyte-associated neuroinflammatory response contributes to the protective actions of A3AR signaling and continues to support the pharmacological basis for selective A3AR agonists as adjuncts to chemotherapeutic agents for the management of chronic pain.
Collapse
Affiliation(s)
- Kali Janes
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Carrie Wahlman
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Joshua W. Little
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Timothy Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Dillip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
93
|
Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 2015; 227:145-170. [PMID: 25846618 DOI: 10.1007/978-3-662-46450-2_8] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic pain, both inflammatory and neuropathic, is a debilitating condition in which the pain experience persists after the painful stimulus has resolved. The efficacy of current treatment strategies using opioids, NSAIDS and anticonvulsants is limited by the extensive side effects observed in patients, underlining the necessity for novel therapeutic targets. Preclinical models of chronic pain have recently provided evidence for a critical role played by glial cells in the mechanisms underlying the chronicity of pain, both at the site of damage in the periphery and in the dorsal horn of the spinal cord. Here microglia and astrocytes respond to the increased input from the periphery and change morphology, increase in number and release pro-nociceptive mediators such as ATP, cytokines and chemokines. These gliotransmitters can sensitise neurons by activation of their cognate receptors thereby contributing to central sensitization which is fundamental for the generation of allodynia, hyperalgesia and spontaneous pain.
Collapse
Affiliation(s)
- Elizabeth Amy Old
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | | |
Collapse
|
94
|
Schneider BP, Hershman DL, Loprinzi C. Symptoms: Chemotherapy-Induced Peripheral Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 862:77-87. [PMID: 26059930 DOI: 10.1007/978-3-319-16366-6_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a problematic, treatment-induced toxicity that has the potential to impact quality of life and limit the doses of curative intent therapy. This therapy-induced side effect is one of the most troublesome in oncology clinical practices, considering the morbidity, the frequency, and the potential irreversibility of this problem. Patients with breast cancer are particularly impacted by this side effect as multiple agents commonly used for this disease can cause neuropathy. In this chapter, we provide an overview of CIPN, including: clinical predictors, frequency, and its impact on quality of life. Further, we highlight the pathophysiology and review the literature to date for agents designed to prevent or treat CIPN. We also highlight the most important ongoing clinical and translational research questions that hope to help better predict and prevent this toxicity. This includes optimizing the methods of assessment, using host specific factors (Race and genetics) to predict those more likely to experience CIPN, and determining how CIPN might impact clinical decisions toward therapy.
Collapse
Affiliation(s)
- Bryan P Schneider
- Medicine & Medical/Molecular Genetics, Indiana University Simon Cancer Center, Indianapolis, IN, USA,
| | | | | |
Collapse
|
95
|
|
96
|
Gyejigachulbu-Tang Relieves Oxaliplatin-Induced Neuropathic Cold and Mechanical Hypersensitivity in Rats via the Suppression of Spinal Glial Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:436482. [PMID: 25505922 PMCID: PMC4251814 DOI: 10.1155/2014/436482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/01/2014] [Accepted: 11/01/2014] [Indexed: 12/21/2022]
Abstract
Activation of spinal glial cells plays a crucial role in the pathogenesis of neuropathic pain. An administration of oxaliplatin, an important anticancer drug, often induces acute neuropathic cold hypersensitivity and/or mechanical hypersensitivity in patients. Gyejigachulbu-tang (GBT), a herbal formula comprising Cinnamomi Cortex, Paeoniae Radix, Atractylodis Lanceae Rhizoma, Zizyphi Fructus, Glycyrrhizae Radix, Zingiberis Rhizoma, and Aconiti Tuber, has been used in East Asia to treat various pain symptoms, especially in cold patients. This study investigated whether and how GBT alleviates oxaliplatin-induced cold and mechanical hypersensitivity in rats. The behavioral signs of cold and mechanical hypersensitivity were evaluated by a tail immersion test in cold water (4°C) and a von Frey hair test, respectively. The significant cold and mechanical hypersensitivity were observed 3 days after an oxaliplatin injection (6 mg/kg, i.p.). Daily oral administration of GBT (200, 400, and 600 mg/kg) for 5 days markedly attenuated cold and mechanical hypersensitivity. Immunoreactivities of glial fibrillary acidic protein (GFAP, astrocyte marker) and OX-42 (microglia marker) in the spinal dorsal horn were significantly increased by an oxaliplatin injection, which were restored by GBT administration. These results indicate that GBT relieves oxaliplatin-induced cold and mechanical hypersensitivity in rats possibly through the suppression of spinal glial activation.
Collapse
|
97
|
Sisignano M, Baron R, Scholich K, Geisslinger G. Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol 2014; 10:694-707. [DOI: 10.1038/nrneurol.2014.211] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
98
|
Warwick RA, Ledgerwood CJ, Brenner T, Hanani M. Satellite glial cells in dorsal root ganglia are activated in experimental autoimmune encephalomyelitis. Neurosci Lett 2014; 569:59-62. [PMID: 24686185 DOI: 10.1016/j.neulet.2014.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Pain is a serious and common problem with patients suffering from multiple sclerosis (MS). Very little has been done to investigate the peripheral mechanisms of pain in MS. Here we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to investigate the possible contribution of satellite glial cells (SGCs) to pain in MS. EAE mice had reduced pain thresholds 10 days after disease induction. We examined dorsal root ganglia and found increased expression of glial fibrillary acidic protein in SGCs, a marker of SGC activation, and increased coupling among SGCs, a known component of activated SGCs. Activated SGCs have previously been shown to contribute to pain in other classical neuropathic pain models, suggesting that pain in multiple sclerosis has a peripheral component.
Collapse
Affiliation(s)
- Rebekah A Warwick
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| | - Craig J Ledgerwood
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
| | - Talma Brenner
- Department of Neurology, and the Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
| |
Collapse
|
99
|
Gornstein E, Schwarz TL. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology 2014; 76 Pt A:175-83. [DOI: 10.1016/j.neuropharm.2013.08.016] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/26/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022]
|
100
|
Han Y, Smith MT. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front Pharmacol 2013; 4:156. [PMID: 24385965 PMCID: PMC3866393 DOI: 10.3389/fphar.2013.00156] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/28/2013] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a type of neuropathic pain that is a major dose-limiting side-effect of potentially curative cancer chemotherapy treatment regimens that develops in a "stocking and glove" distribution. When pain is severe, a change to less effective chemotherapy agents may be required, or patients may choose to discontinue treatment. Medications used to alleviate CIPN often lack efficacy and/or have unacceptable side-effects. Hence the unmet medical need for novel analgesics for relief of this painful condition has driven establishment of rodent models of CIPN. New insights on the pathobiology of CIPN gained using these models are discussed in this review. These include mitochondrial dysfunction and oxidative stress that are implicated as key mechanisms in the development of CIPN. Associated structural changes in peripheral nerves include neuronopathy, axonopathy and/or myelinopathy, especially intra-epidermal nerve fiber (IENF) degeneration. In patients with CIPN, loss of heat sensitivity is a hallmark symptom due to preferential damage to myelinated primary afferent sensory nerve fibers in the presence or absence of demyelination. The pathobiology of CIPN is complex as cancer chemotherapy treatment regimens frequently involve drug combinations. Adding to this complexity, there are also subtle differences in the pathobiological consequences of commonly used cancer chemotherapy drugs, viz platinum compounds, taxanes, vincristine, bortezomib, thalidomide and ixabepilone, on peripheral nerves.
Collapse
Affiliation(s)
- Yaqin Han
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
- School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
- School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|