51
|
Tawfik KM, Moustafa YM, El-Azab MF. Neuroprotective mechanisms of sildenafil and selenium in PTZ-kindling model: Implications in epilepsy. Eur J Pharmacol 2018; 833:131-144. [DOI: 10.1016/j.ejphar.2018.05.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022]
|
52
|
|
53
|
Li W, Talukder M, Sun XT, Zhang C, Li XN, Ge J, Li JL. Selenoprotein W as a molecular target of d-amino acid oxidase is regulated by d-amino acid in chicken neurons. Metallomics 2018; 10:751-758. [DOI: 10.1039/c8mt00042e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenoprotein W (SelW), an important member of the avian selenoprotein family, can combine with d-amino acid oxidase (DAAO). Selenium (Se) can inhibit the toxicity of d-serine and maybe has a detoxifying ability by increasing the expression of SelW and decreasing the activity of DAAO.
Collapse
Affiliation(s)
- Wei Li
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Milton Talukder
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
- Department of Physiology and Pharmacology
| | - Xue-Tong Sun
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Cong Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Jing Ge
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine
| |
Collapse
|
54
|
Yüksel E, Nazıroğlu M, Şahin M, Çiğ B. Involvement of TRPM2 and TRPV1 channels on hyperalgesia, apoptosis and oxidative stress in rat fibromyalgia model: Protective role of selenium. Sci Rep 2017; 7:17543. [PMID: 29235496 PMCID: PMC5727501 DOI: 10.1038/s41598-017-17715-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
Fibromyalgia (FM) results in pain characterized by low selenium (Se) levels, excessive Ca2+ influx, reactive oxygen species (ROS) production, and acidic pH. TRPM2 and TRPV1 are activated by ROS and acid; nevertheless, their roles have not been elucidated in FM. Therefore, we investigated the contribution of TRPM2 and TRPV1 to pain, oxidative stress, and apoptosis in a rat model of FM and the therapeutic potential of Se. Thirty-six rats were divided into four groups: control, Se, FM, and FM + Se. The Se treatment reduced the FM-induced increase in TRPM2 and TRPV1 currents, pain intensity, intracellular free Ca2+, ROS, and mitochondrial membrane depolarization in the sciatic (SciN) and dorsal root ganglion (DRGN) neurons. Furthermore, Se treatment attenuated the FM-induced decrease in cell viability in the DRGN and SciN, glutathione peroxidase, and reduced glutathione and α-tocopherol values in the DRGN, SciN, brain, muscle, and plasma; however, lipid peroxidation levels were decreased. Se also attenuated PARP1, caspase 3, and 9 expressions in the SciN, DRGN, and muscle. In conclusion, Se treatment decreased the FM-induced increase in hyperalgesia, ROS, apoptosis, and Ca2+ entry through TRPM2 and TRPV1 in the SciN and DRGN. Our findings may be relevant to the elucidation and treatment of FM.
Collapse
Affiliation(s)
- Esra Yüksel
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey.
| | - Mehmet Şahin
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
55
|
Hu XF, Sharin T, Chan HM. Dietary and blood selenium are inversely associated with the prevalence of stroke among Inuit in Canada. J Trace Elem Med Biol 2017; 44:322-330. [PMID: 28965595 DOI: 10.1016/j.jtemb.2017.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/14/2023]
Abstract
Inuit in Canada have high selenium intake from the consumption of country food such as fish and marine mammals. The health consequence is not known. This study examines the association between blood selenium concentration and prevalence of stroke among Canadian Inuit. The International Polar Year Inuit Health Survey was conducted in 2007-2008. Among the 2077 adults participants (≥18years old) who completed a questionnaire and gave blood samples, 49 stroke cases were reported, 31 of which were from women. The crude prevalence of stroke was 2.4% in the participants. Participants with stroke had lower blood selenium (geometric mean: 260μg/L vs. 319μg/L) and dietary selenium (144μg/day vs. 190μg/day) compared to individuals without stroke. Participants with high blood/dietary selenium exposure (quartiles 3 and 4) had a lower prevalence of stroke compared to those with low selenium exposure (quartile 1). The adjusted odds ratio ranged from 0.09 to 0.25 among subgroups (e.g. age, sex, and blood mercury). An L-shaped relationship between prevalence of stroke with blood and dietary selenium was observed, based on the cubic restricted spline and segmented regression analyses. The estimated turning points of the L-shaped curve for blood selenium and dietary selenium were 450μg/L and 350μg/day, respectively. Below the turning points, it was estimated that each 50-μg/L increase in blood selenium was associated with a 38% reduction in the prevalence of stroke, and each 50-μg/day increase in dietary selenium was associated with a 30% reduction in the prevalence of stroke. In conclusion, blood and dietary selenium are reversely associated with the prevalence of stroke in Inuit, which follows an L-shaped relationship. Whether this relationship applies to other population needs further investigation.
Collapse
Affiliation(s)
- Xue Feng Hu
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| | - Tasnia Sharin
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada.
| |
Collapse
|
56
|
Chmatalova Z, Vyhnalek M, Laczo J, Hort J, Pospisilova R, Pechova M, Skoumalova A. Relation of plasma selenium and lipid peroxidation end products in patients with Alzheimer's disease. Physiol Res 2017; 66:1049-1056. [PMID: 28937243 DOI: 10.33549/physiolres.933601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Increased oxidative stress in the brain during the course of Alzheimer's disease (AD) leads to an imbalance of antioxidants and formation of free radical reaction end-products which may be detected in blood as fluorescent lipofuscin-like pigments (LFPs). The aim of this study was to evaluate and compare LFPs with plasma selenium concentrations representing an integral part of the antioxidant system. Plasma samples from subjects with AD dementia (ADD; n=11), mild cognitive impairment (MCI; n=17) and controls (n=12), were collected. The concentration of selenium was measured using atomic absorption spectroscopy. LFPs were analyzed by fluorescence spectroscopy and quantified for different fluorescent maxima and then correlated with plasma selenium. Lower levels of selenium were detected in MCI and ADD patients than in controls (P=0.003 and P=0.049, respectively). Additionally, higher fluorescence intensities of LFPs were observed in MCI patients than in controls in four fluorescence maxima and higher fluorescence intensities were also observed in MCI patients than in ADD patients in three fluorescence maxima, respectively. A negative correlation between selenium concentrations and LFPs fluorescence was observed in the three fluorescence maxima. This is the first study focused on correlation of plasma selenium with specific lipofuscin-like products of oxidative stress in plasma of patients with Alzheimer´s disease and mild cognitive impairment.
Collapse
Affiliation(s)
- Z Chmatalova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
57
|
El-Ansary A, Bjørklund G, Tinkov AA, Skalny AV, Al Dera H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab Brain Dis 2017; 32:1073-1080. [PMID: 28326463 DOI: 10.1007/s11011-017-9996-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication and behavioral challenges. Environmental contribution to ASD is due in large part to the sensitivity of the developing brain to external exposures such as lead (Pb), and mercury (Hg) as toxic heavy metals or due to a poor detoxification ability as the phenotype of this disorder. Selenium (Se) as an antioxidant element that counteracts the neurotoxicity of Hg, and Pb, presumably through the formation of nontoxic complexes. In the present study, Pb, Hg, and Se were measured in red blood cells (RBCs) of 35 children with ASD and 30 age- and gender-matched healthy control children using atomic absorption spectrometry. Receiver Operating Characteristics (ROC) analysis of the obtained data was performed to measure the predictive value of their absolute and relative concentrations. The obtained data demonstrates a significant elevation of Hg and Pb together with a significant decrease in the Se levels in RBCs of patients with ASD when compared to the healthy controls. The ratios of Se to both Pb and Hg were remarkably altered, being indicative of heavy metal neurotoxicity in patients with ASD. In conclusion, the present study indicates the importance of Se for prevention and/or therapy of heavy metal neurotoxicity.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Center for Female Scientific and Medical Colleges, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Alexey A Tinkov
- Orenburg State University, Orenburg, Russia
- Orenburg State Medical University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Anatoly V Skalny
- Orenburg State Medical University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
- RUDN University, Moscow, Russia
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Hussain Al Dera
- Basic Medical Science Department, College of Medicine, King Saud bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| |
Collapse
|
58
|
Feng Y, Zhou H, Zhang Y, Perkins A, Wang Y, Sun J. Comparison in executive function in Chinese preterm and full-term infants at eight months. Front Med 2017. [DOI: 10.1007/s11684-017-0540-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
59
|
Li JL, Li W, Sun XT, Xia J, Li XN, Lin J, Zhang C, Sun XC, Xu SW. Selenophosphate synthetase 1 (SPS1) is required for the development and selenium homeostasis of central nervous system in chicken (Gallus gallus). Oncotarget 2017; 8:35919-35932. [PMID: 28415800 PMCID: PMC5482627 DOI: 10.18632/oncotarget.16283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 01/25/2023] Open
Abstract
Selenophosphate synthetase (SPS) is essential for selenoprotein biosynthesis. In two SPS paralogues, SPS1 was only cloned from a cDNA library prepared from avian organ. However, the biological function of SPS1 in chicken central nervous system (CNS) remains largely unclear. To investigate the role of avian SPS1 in the development and selenium (Se) homeostasis of CNS, fertile eggs, chicken embryos, embryo neurons and chicks were employed in this study. The response of SPS1 transcription to the development and Se levels of CNS tissues was analyzed using qRT-PCR. SPS1 gene exists extensively in the development of chicken CNS. The wide expression of avian SPS1 can be controlled by the Se content levels, which suggests that SPS1 is important in the regulation of Se homeostasis. The fundamental mechanism of these effects is that Se alters the half-life and stability of SPS1 mRNA. Therefore, SPS1 exerts an irreplaceable biological function in chicken CNS and Se homeostasis is closely related to the expression of SPS1. These results suggested that SPS1 was required for the development and Se homeostasis of CNS in chicken.
Collapse
Affiliation(s)
- Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Xue-Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jun Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Xiao-Chen Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
60
|
Nazıroğlu M, Muhamad S, Pecze L. Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles. Expert Rev Clin Pharmacol 2017; 10:773-782. [PMID: 28463572 DOI: 10.1080/17512433.2017.1324781] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION In etiology of Alzheimer's disease (AD), involvement of amyloid β (Aβ) plaque accumulation and oxidative stress in the brain have important roles. Several nanoparticles such as titanium dioxide, silica dioxide, silver and zinc oxide have been experimentally using for treatment of neurological disease. In the last decade, there has been a great interest on combination of antioxidant bioactive compounds such as selenium (Se) and flavonoids with the oxidant nanoparticles in AD. We evaluated the most current data available on the physiological effects of oxidant and antioxidant nanoparticles. Areas covered: Oxidative nanoparticles decreased the activities of reactive oxygen species (ROS) scavenging enzymes such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase in the brain of rats and mice. However, Se-rich nanoparticles in small size (5-15 nm) depleted Aβ formation through decreasing ROS production. Reports on low levels of Se in blood and tissue samples and the low activities of GSH-Px, catalase and SOD enzymes in AD patients and animal models support the proposed crucial role of oxidative stress in the pathogenesis of AD. Expert commentary: In conclusion, present literature suggests that Se-rich nanoparticles appeared to be a potential therapeutic compound for the treatment of AD.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- a Neuroscience Research Center , Suleyman Demirel University , Isparta , Turkey
| | - Salina Muhamad
- b NANO Elec-Tronic Centre, Faculty of Electrical Engineering , Universiti Teknologi MARA , Shah Alam , Selangor , Malaysia
| | - Laszlo Pecze
- c Institute of Anatomy, Department of Medicine , University of Fribourg , Fribourg , Switzerland
| |
Collapse
|
61
|
Gümüş S, Yarıktaş M, Nazıroğlu M, Uğuz AC, Aynali G, Başpınar Ş. Effect of a corticosteroid (triamcinolone) and chlorhexidine on chemotherapy-induced oxidative stress in the buccal mucosa of rats. EAR, NOSE & THROAT JOURNAL 2017; 95:E36-E43. [PMID: 27929606 DOI: 10.1177/014556131609501211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oral mucositis manifests as erythematous and ulcerative lesions of the oral mucosa. Among its various causes, cancer treatment (e.g., chemotherapy with or without radiation therapy) is one of the more well known. It has been widely mentioned that oxidative stress parameters such as lipid peroxidation levels increase during the cancer process. Glutathione is one of the major intracellular enzymes used to detoxify oxidant molecules; it exists in both a reduced and oxidized state. Reduced glutathione is used as a substrate to synthesize glutathione peroxidase. We conducted a study to investigate and compare the effects of triamcinolone (a synthetic steroid) and chlorhexidine (a chemical antiseptic) on 5-fluorouracil (5-FU; a chemotherapeutic agent)-induced oral mucositis in the buccal mucosa of 36 rats. Oral mucositis was induced through a combination of 5-FU treatment and mild abrasion of the cheek pouch with a wire brush. The rats were treated with one of four regimens: saline placebo (group I), 5-FU only (group II), 5-FU plus triamcinolone (group III), and 5-FU plus chlorhexidine (group IV). Three rats in the triamcinolone group died of unknown causes on days 7 and 8, and 3 rats in the chlorhexidine group died on days 7 and 9. On day 9, the remaining 30 rats were sacrificed and examined. Buccal mucosa lipid peroxidation levels were significantly higher in the 5-FU-only group than in the control group and significantly higher in the control group than in the triamcinolone group (p < 0.05 for both). Levels of reduced glutathione were significantly lower in the 5-FU-only group than in both the triamcinolone group and the chlorhexidine group (p < 0.05). Glutathione peroxidase activity was significantly higher in the triamcinolone group than in the 5-FU-only group (p < 0.01). Histopathologic analysis revealed that treatment with triamcinolone significantly reduced 5-FU-induced inflammatory cell infiltration and ulceration (p < 0.001); no such reduction was seen with chlorhexidine. In conclusion, we observed that triamcinolone and chlorhexidine treatment modulated chemotherapy-induced oxidative injury in rat oral mucositis. However, only triamcinolone histopathologically ameliorated 5-FU-induced oral mucositis. These findings suggest that triamcinolone is a useful agent for the management of experimental oxidative injury and oral mucositis caused by 5-FU chemotherapy.
Collapse
Affiliation(s)
- Sami Gümüş
- Department of Otorhinolaryngology Süleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | | | | | | | | | | |
Collapse
|
62
|
Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny AV, Skalnaya MG, Tinkov AA. Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Jiang XQ, Cao CY, Li ZY, Li W, Zhang C, Lin J, Li XN, Li JL. Delineating hierarchy of selenotranscriptome expression and their response to selenium status in chicken central nervous system. J Inorg Biochem 2017; 169:13-22. [PMID: 28088013 DOI: 10.1016/j.jinorgbio.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022]
Abstract
Selenium (Se) incorporated in selenoproteins as selenocysteine and supports various important cellular and organismal functions. We recently reported that chicken brain exhibited high priority for Se supply and retention under conditions of dietary Se deficiency and supernutrition Li et al. (2012) . However, the selenotranscriptome expressions and their response to Se status in chicken central nervous system (CNS) are unclear. To better understand the relationship of Se homeostasis and selenoproteins expression in chicken CNS, 1day-old HyLine White chickens were fed a low Se diet (Se-L, 0.028mg/g) supplemented with 4 levels of dietary Se (0 to 5.0mgSe/kg) as Na2SeO3 for 8weeks. Then chickens were dissected for getting the CNS, which included cerebral cortex, cerebellum, thalamus, bulbus cinereus and marrow. The expressions of selenoproteome which have 24 selenoproteins were detected by the quantitative real-time PCR array. The concept of a selenoprotein hierarchy was developed and the hierarchy of different regions in chicken CNS was existence, especially cerebral cortex and bulbus cinereus. The expression of selenoproteins has a hierarch while changing Se content, and Selenoprotein T (Selt), Selenoprotein K (Selk), Selenoprotein W (Selw), Selenoprotein U (Selu), Glutathione peroxidase 3 (Gpx3), Glutathione peroxidase 4 (Gpx4), Selenoprotein P (Sepp1), Selenoprotein O (Selo), Selenoprotein 15 (Sel15), Selenoprotein N (Seln), Glutathione peroxidase 2 (Gpx2) and Selenoprotein P 2 (Sepp2) take more necessary function in the chicken CNS. Therefore, we hypothesize that hierarchy of regulated the transcriptions of selenoproteome makes an important role of CNS Se metabolism and transport in birds.
Collapse
Affiliation(s)
- Xiu-Qing Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chang-Yu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhao-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jing-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
64
|
Dominiak A, Wilkaniec A, Wroczyński P, Adamczyk A. Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr Neuropharmacol 2016; 14:282-99. [PMID: 26549649 PMCID: PMC4857624 DOI: 10.2174/1570159x14666151223100011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income.
Collapse
Affiliation(s)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
65
|
Kędzierska E, Dudka J, Poleszak E, Kotlińska JH. Antidepressant and anxiolytic-like activity of sodium selenite after acute treatment in mice. Pharmacol Rep 2016; 69:276-280. [PMID: 28167456 DOI: 10.1016/j.pharep.2016.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Selenium (Se) is an essential trace element for humans and animals, that is needed for a broad variety of physiological functions including thyroid hormone metabolism, protection against oxidative stress, and immunity associated functions. Human nutritional Se deficiencies are associated with neuropsychiatric diseases, like Alzheimer's disease, Parkinson's disease, obsessive - compulsive disorder, stroke, epilepsy as well as depressive behaviours. In this study we examined antidepressant- and anxiolytic-like activity of Se in the inorganic form of sodium selenite and investigated whether Se influence on the locomotor activity in mice. METHODS The antidepressant-like and anxiolytic-like activity of Se was assessed using forced swim test (FST) and elevated plus-maze test (EPM), respectively. Spontaneous locomotor activity was measured using photoresistor actimeters. RESULTS Sodium selenite administered at the doses of 0.5, 1, and 2mg/kg, ip reduced immobility time in the FST exerting antidepressant-like activity. In the EPM test, sodium selenite at the same doses, produced anxiolytic-like effect; the doses active in both tests did not affect locomotor activity, indicating that these effects of Se are specific. CONCLUSIONS These potential antidepressant- and anxiolytic-like effects of Se require more detailed experimental study using animal models to approach a clear conclusion regarding the potential mechanism of the observed effect.
Collapse
Affiliation(s)
- Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland.
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, Lublin, Poland; Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Jolanta H Kotlińska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
66
|
Zborowski VA, Sari MH, Heck SO, Stangherlin EC, Neto JS, Nogueira CW, Zeni G. p-Chloro-diphenyl diselenide reverses memory impairment-related to stress caused by corticosterone and modulates hippocampal [3H]glutamate uptake in mice. Physiol Behav 2016; 164:25-33. [DOI: 10.1016/j.physbeh.2016.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/08/2016] [Accepted: 05/16/2016] [Indexed: 01/13/2023]
|
67
|
Ellwanger JH, Franke SIR, Bordin DL, Prá D, Henriques JAP. Biological functions of selenium and its potential influence on Parkinson's disease. AN ACAD BRAS CIENC 2016; 88:1655-1674. [PMID: 27556332 DOI: 10.1590/0001-3765201620150595] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 03/01/2023] Open
Abstract
Parkinson's disease is characterized by the death of dopaminergic neurons, mainly in the substantia nigra, and causes serious locomotor dysfunctions. It is likely that the oxidative damage to cellular biomolecules is among the leading causes of neurodegeneration that occurs in the disease. Selenium is an essential mineral for proper functioning of the brain, and mainly due to its antioxidant activity, it is possible to exert a special role in the prevention and in the nutritional management of Parkinson's disease. Currently, few researchers have investigated the effects of selenium on Parkinson´s disease. However, it is known that very high or very low body levels of selenium can (possibly) contribute to the pathogenesis of Parkinson's disease, because this imbalance results in increased levels of oxidative stress. Therefore, the aim of this work is to review and discuss studies that have addressed these topics and to finally associate the information obtained from them so that these data and associations serve as input to new research.
Collapse
Affiliation(s)
- Joel H Ellwanger
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Silvia I R Franke
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - Diana L Bordin
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Daniel Prá
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil.,Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul/UNISC, Bloco 12, sala 1206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - João A P Henriques
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil.,Instituto de Biotecnologia, Universidade de Caxias do Sul/UCS, Rua Francisco Getúlio Vargas, 1130, 95070-560 Caxias do Sul, RS, Brasil
| |
Collapse
|
68
|
Aaseth J, Alexander J, Bjørklund G, Hestad K, Dusek P, Roos PM, Alehagen U. Treatment strategies in Alzheimer's disease: a review with focus on selenium supplementation. Biometals 2016; 29:827-39. [PMID: 27530256 PMCID: PMC5034004 DOI: 10.1007/s10534-016-9959-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder presenting one of the biggest healthcare challenges in developed countries. No effective treatment exists. In recent years the main focus of AD research has been on the amyloid hypothesis, which postulates that extracellular precipitates of beta amyloid (Aβ) derived from amyloid precursor protein (APP) are responsible for the cognitive impairment seen in AD. Treatment strategies have been to reduce Aβ production through inhibition of enzymes responsible for its formation, or to promote resolution of existing cerebral Aβ plaques. However, these approaches have failed to demonstrate significant cognitive improvements. Intracellular rather than extracellular events may be fundamental in AD pathogenesis. Selenate is a potent inhibitor of tau hyperphosphorylation, a critical step in the formation of neurofibrillary tangles. Some selenium (Se) compounds e.g. selenoprotein P also appear to protect APP against excessive copper and iron deposition. Selenoproteins show anti-inflammatory properties, and protect microtubules in the neuronal cytoskeleton. Optimal function of these selenoenzymes requires higher Se intake than what is common in Europe and also higher intake than traditionally recommended. Supplementary treatment with N-acetylcysteine increases levels of the antioxidative cofactor glutathione and can mediate adjuvant protection. The present review discusses the role of Se in AD treatment and suggests strategies for AD prevention by optimizing selenium intake, in accordance with the metal dysregulation hypothesis. This includes in particular secondary prevention by selenium supplementation to elderly with mild cognitive impairment.
Collapse
Affiliation(s)
- Jan Aaseth
- Department of Research, Innlandet Hospital Trust, Brumunddal, Norway.,Department of Public Health, Hedmark University of Applied Sciences, Elverum, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Knut Hestad
- Department of Research, Innlandet Hospital Trust, Brumunddal, Norway.,Department of Public Health, Hedmark University of Applied Sciences, Elverum, Norway
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Per M Roos
- Institute of Environmental Medicine, IMM, Karolinska Institutet, Nobels väg 13, Box 210, 17177, Stockholm, Sweden. .,Department of Clinical Physiology, St.Goran Hospital, Stockholm, Sweden.
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
69
|
Schweizer U, Fradejas‐Villar N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J 2016; 30:3669-3681. [DOI: 10.1096/fj.201600424] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/18/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und MolekularbiologieRheinische Friedrich‐Wilhelms‐Universitfät Bonn Bonn Germany
| | - Noelia Fradejas‐Villar
- Institut für Biochemie und MolekularbiologieRheinische Friedrich‐Wilhelms‐Universitfät Bonn Bonn Germany
| |
Collapse
|
70
|
Yazğan B, Yazğan Y, Övey İS, Nazıroğlu M. Raloxifene and Tamoxifen Reduce PARP Activity, Cytokine and Oxidative Stress Levels in the Brain and Blood of Ovariectomized Rats. J Mol Neurosci 2016; 60:214-22. [PMID: 27372663 DOI: 10.1007/s12031-016-0785-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/21/2016] [Indexed: 01/14/2023]
Abstract
It is well known that 17β-estradiol (E2) has an antioxidant role on neurological systems in the brain. Raloxifene (RLX) and tamoxifen (TMX) are selective estrogen receptor modulators. An E2 deficiency stimulates mitochondrial functions for promoting apoptosis and increasing reactive oxygen species (ROS) production. However, RLX and TMX may reduce the mitochondrial ROS production via their antioxidant properties in the brain and erythrocytes of ovariectomized (OVX) rats. We aimed to investigate the effects of E2, RLX, and TMX on oxidative stress, apoptosis, and cytokine production in the brain and erythrocytes of OVX rats.Forty female rats were divided into five groups. The first group was used as a control group. The second group was the OVX group. The third, fourth, and fifth groups were OVX + E2, OVX + TMX, and OVX + RLX groups, respectively. E2, TMX, and RLX were given subcutaneously to the OVX + E2 and OVX + TMX, OVX + RLX groups for 14 days after the ovariectomy respectively.While brain and erythrocyte lipid peroxidation levels were high in the OVX group, they were low in the OVX + E2, OVX + RLX, and OVX + TMX groups. OVX + E2, OVX + RLX, and OVX + TMX treatments increased the lowered glutathione peroxidase activity in erythrocytes and the brain and reduced glutathione and vitamin E concentrations in the brain. β-carotene and vitamin A concentrations in the brain and TNF-α and interleukin (IL)-1β levels in the plasma of the five groups were not significantly changed by the treatments. However, increased plasma IL-4 levels and Western blot results for brain poly (ADP-ribose) polymerase (PARP) in the OVX groups were decreased by E2, TMX, and RLX treatments, although proapoptotic procaspase 3 and 9 activities were increased by the treatments.In conclusion, we observed that E2, RLX, and TMX administrations were beneficial on oxidative stress, inflammation, and PARP levels in the serum and brain of OVX rats by modulating antioxidant systems, DNA damage, and cytokine production.
Collapse
Affiliation(s)
- Betül Yazğan
- Department of Physiology, Medical Faculty, Adıyaman University, Adıyaman, Turkey
| | - Yener Yazğan
- Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Turkey
| | - İshak Suat Övey
- Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Turkey. .,Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
71
|
Selenium status during pregnancy and child psychomotor development-Polish Mother and Child Cohort study. Pediatr Res 2016; 79:863-9. [PMID: 26885758 PMCID: PMC4899820 DOI: 10.1038/pr.2016.32] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/13/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The studies on the impact of selenium (Se) levels in different pregnancy periods on child psychomotor functions are limited. The aim of this study was to evaluate the impact of prenatal Se on child neurodevelopment. METHODS The study population consisted of 410 mother-child pairs from Polish Mother and Child Cohort. Se levels were measured in each trimester of pregnancy, at delivery, and in cord blood by graphite furnace atomic absorption spectrometry. Psychomotor development was assessed in children at the age of 1 and 2 y using the Bayley Scales of Infant and Toddler Development. RESULTS Plasma Se levels decreased through pregnancy (from 48.3 ± 10.6 µg/l in the first trimester to 38.4 ± 11.8 µg/l at delivery; P < 0.05). A statistically significant positive association between Se levels in the first trimester of pregnancy and motor development (β = 0.2, P = 0.002) at 1 y of age, and language development (β = 0.2, P = 0.03) at 2 y of age was observed. The positive effect of Se levels on cognitive score at 2 y of age was of borderline significance (β = 0.2, P = 0.05). CONCLUSION Prenatal selenium status was associated with child psychomotor abilities within the first years of life. Further epidemiological and preclinical studies are needed to confirm the association and elucidate the underlying mechanisms of these effects.
Collapse
|
72
|
Ralston NVC, Ralston CR, Raymond LJ. Selenium Health Benefit Values: Updated Criteria for Mercury Risk Assessments. Biol Trace Elem Res 2016; 171:262-269. [PMID: 26463749 PMCID: PMC4856720 DOI: 10.1007/s12011-015-0516-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 09/14/2015] [Indexed: 12/02/2022]
Abstract
Selenium (Se)-dependent enzymes (selenoenzymes) protect brain tissues against oxidative damage and perform other vital functions, but their synthesis requires a steady supply of Se. High methylmercury (CH3Hg) exposures can severely diminish Se transport across the placenta and irreversibly inhibit fetal brain selenoenzymes. However, supplemental dietary Se preserves their activities and thus prevents pathological consequences. The modified Se health benefit value (HBVSe) is a risk assessment criterion based on the molar concentrations of CH3Hg and Se present in a fish or seafood. It was developed to reflect the contrasting effects of maternal CH3Hg and Se intakes on fetal brain selenoenzyme activities. However, the original equation was prone to divide-by-zero-type errors whereby the calculated values increased exponentially in samples with low CH3Hg contents. The equation was refined to provide an improved index to better reflect the risks of CH3Hg exposures and the benefits provided by dietary Se. The HBVSe provides a biochemically based perspective that confirms and supports the FDA/EPA advice for pregnant and breast-feeding women regarding seafoods that should be avoided vs. those that are beneficial to consume. Since Se can be highly variable between watersheds, further evaluation of freshwater fish is needed to identify locations where fish with negative HBVSe may arise and be consumed by vulnerable subpopulation groups.
Collapse
|
73
|
Gashu D, Stoecker BJ, Bougma K, Adish A, Haki GD, Marquis GS. Stunting, selenium deficiency and anemia are associated with poor cognitive performance in preschool children from rural Ethiopia. Nutr J 2016; 15:38. [PMID: 27067274 PMCID: PMC4828825 DOI: 10.1186/s12937-016-0155-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/05/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Anthropometric characteristics and iron status affect cognitive performance in children. In addition, selenium can influence cognitive outcomes; protection of the brain from oxidative stress and its role in thyroid hormone metabolism are putative mechanisms. METHODS To investigate their association with cognitive performance, anthropometric indicators, iron biomarkers, and serum selenium of children (n = 541) of 54-60mo of age from rural Ethiopia were assessed. Cognitive assessment was conducted with the administration of two reasoning subtests of the Wechsler Preschool and Primary Scale of Intelligence and the school readiness test. RESULTS Stunting was found in 41.4 % of children, 28.7 % were underweight, and 6.3 % were wasted. The mean score of stunted children was lower than that of non-stunted children on non-verbal reasoning (7.0 ± 3.2vs7.9 ± 3.1; p = 0.01) and the school readiness tests (4.3 ± 2.2 vs 3.3 ± 2.1; p < 0.001). Compared to non-anemic children, anemic children had lower score for the verbal reasoning test (9.5 ± 1.7 vs 8.9 ± 2.2; p = 0.02). However, except for hemoglobin, none of the iron biomarkers had significant associations with the cognitive score of the study children (p > 0.05). Selenium deficient children had lower scores on all cognitive tests than normal children (p < 0.05). CONCLUSION The present study finding linking chronic undernutrition and micronutrient deficiency to cognitive deficits suggests the need for designing effective intervention programmes to control for protein energy malnutrition and micronutrient deficiency and address cognitive development in children.
Collapse
Affiliation(s)
- Dawd Gashu
- Center for Food Science and Nutrition, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.
| | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Karim Bougma
- School of Dietetics and Human Nutrition, McGill University, 21111 Lakeshore Road, CINE Building, Sainte Anne-de-Bellevue, QC, H9X 3 V9, Canada
| | | | - Gulelat D Haki
- Department of Food Science and Technology, University of Botswana, Botswana College of Agriculture, Private Bag 0027, Gaborone, Botswana
| | - Grace S Marquis
- School of Dietetics and Human Nutrition, McGill University, 21111 Lakeshore Road, CINE Building, Sainte Anne-de-Bellevue, QC, H9X 3 V9, Canada
| |
Collapse
|
74
|
Huang JQ, Ren FZ, Jiang YY, Lei X. Characterization of Selenoprotein M and Its Response to Selenium Deficiency in Chicken Brain. Biol Trace Elem Res 2016; 170:449-58. [PMID: 26315306 DOI: 10.1007/s12011-015-0486-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Selenoprotein M (SelM) may function as thiol disulfide oxidoreductase that participates in the formation of disulfide bonds and can be implicated in calcium responses. SelM may have a functional role in catalyzing free radicals and has been associated with Alzheimer's disease (AD). However, studies of SelM in chicken remain very limited. In this study, two groups of day-old broiler chicks (n = 40/group) were fed a corn-soy basal diet (BD, 13 μg Se/kg) and BD supplemented with Se (as sodium selenite) at 0.3 mg/kg. The brain was collected at 14, 21, 28, and 42 days of age. We performed a sequence analysis and predicted the structure and function of SelM. We also investigated the effects of Se deficiency on the expression of Selt, Selw, and Selm and the Se status in the chicken brain. The results show that Se deficiency induced the lower (P < 0.05) Se content, glutathione peroxidase (GPx), and catalase (CAT) activities; increased (P < 0.05) malondialdehyde (MDA) content; and reduced (P < 0.05) the expression of Selm messenger RNA (mRNA) and protein abundance of SelM in the brain. However, there were no significant brain Selt and Selw mRNA levels by dietary Se deficiency in chicks. The different regulations of these three redox (Rdx) protein expressions by Se deficiency represent a novel finding of the present study. Our results demonstrated that SelM may have an important role in protecting against oxidative damage in the brain of chicken, which might shed light on the role of SelM in human neurodegenerative disease. More studies are needed to confirm our conclusion.
Collapse
Affiliation(s)
- Jia-Qiang Huang
- The Innovation Centre of Food Nutrition and Human Health (Beijing), College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Beijing, 100083, China
- Beijing Higher Institution Engineering Research Center of Animal Product, Beijing, 100083, China
| | - Fa-Zheng Ren
- The Innovation Centre of Food Nutrition and Human Health (Beijing), College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Beijing, 100083, China.
- Beijing Higher Institution Engineering Research Center of Animal Product, Beijing, 100083, China.
| | - Yun-Yun Jiang
- The Innovation Centre of Food Nutrition and Human Health (Beijing), College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Beijing, 100083, China
| | - XinGen Lei
- The Innovation Centre of Food Nutrition and Human Health (Beijing), College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Beijing, 100083, China
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
75
|
Zevenbergen C, Korevaar TIM, Schuette A, Peeters RP, Medici M, Visser TJ, Schomburg L, Visser WE. Association of antiepileptic drug usage, trace elements and thyroid hormone status. Eur J Endocrinol 2016; 174:425-32. [PMID: 26701870 DOI: 10.1530/eje-15-1081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Levels of thyroid hormone (TH) and trace elements (copper (Cu) and selenium (Se)) are important for development and function of the brain. Anti-epileptic drugs (AEDs) can influence serum TH and trace element levels. As the relationship between AEDs, THs, and trace elements has not yet been studied directly, we explored these interactions. METHOD In total 898 participants, from the Thyroid Origin of Psychomotor Retardation study designed to investigate thyroid parameters in subjects with intellectual disability (ID), had data available on serum Se, Cu, thyroid stimulating hormone (TSH), free thyroxine (FT4), tri-iodothyronine (T3), reverse T3, T4, and thyroxine-binding globulin (TBG); 401 subjects were on AED treatment. Differences in trace elements according to medication usage was investigated using ANOVA, and associations between trace elements and thyroid parameters were analysed using (non-) linear regression models. RESULTS Study participants were not deficient in any of the trace elements analyzed. AED (carbamazepine, valproate and phenytoin) usage was negatively associated with serum Se and showed compound-specific associations with Cu levels. After correction for drug usage, Se was positively associated with TSH levels, negatively associated with FT4 levels, and positively with T3 levels. Cu was positively associated with T4, T3, and rT3, which was largely dependent on TBG levels. CONCLUSION The subjects with ID did not display profound deficiencies in trace element levels. AEDs were associated with serum Se and Cu levels, while serum Se and Cu were also associated with thyroid parameters. Further studies on the underlying mechanisms and potential clinical importance are warranted.
Collapse
Affiliation(s)
- Chantal Zevenbergen
- Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Tim I M Korevaar
- Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Andrea Schuette
- Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Robin P Peeters
- Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Marco Medici
- Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Theo J Visser
- Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Lutz Schomburg
- Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - W Edward Visser
- Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany Department of Internal MedicineRotterdam Thyroid CenterErasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The NetherlandsInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
76
|
Balaban H, Nazıroğlu M, Demirci K, Övey İS. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels. Mol Neurobiol 2016; 54:2852-2868. [PMID: 27021021 DOI: 10.1007/s12035-016-9835-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
Abstract
Inhibition of Ca2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca2+-permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in the hippocampus neurons of aged rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress, although it is inhibited by ACA. The TRPV1 channel is activated by oxidative stress and capsaicin, and it is blocked by capsazepine (CPZ). The beta-amyloid plaque induces oxidative stress in hippocampus. SCOP can result in augmented ROS release in hippocampal neurons, leading to Ca2+ uptake through TRPM2 and TRPV1 channels. Mitochondria were reported to accumulate Ca2+ provided that intracellular Ca2+ rises, thereby leading to the depolarization of mitochondrial membranes and release of apoptosis-inducing factors such as caspase 3 and caspase 9. Se reduced TRPM2 and TRPV1 channel activation through the modulation of aging oxidative reactions and Se-dependent glutathione peroxidase (GSH-Px) antioxidant pathways.
Collapse
Affiliation(s)
- Hasan Balaban
- Department of Psychiatry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Neuroscience, Institute of Health Science, Suleyman Demirel University, Isparta, Turkey. .,Neuroscience Research Center, University of Suleyman Demirel, TR-32260, Isparta, Turkey.
| | - Kadir Demirci
- Department of Psychiatry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - İshak Suat Övey
- Department of Neuroscience, Institute of Health Science, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
77
|
Kahya MC, Nazıroğlu M, Övey İS. Modulation of Diabetes-Induced Oxidative Stress, Apoptosis, and Ca 2+ Entry Through TRPM2 and TRPV1 Channels in Dorsal Root Ganglion and Hippocampus of Diabetic Rats by Melatonin and Selenium. Mol Neurobiol 2016; 54:2345-2360. [PMID: 26957303 DOI: 10.1007/s12035-016-9727-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
Neuropathic pain and hippocampal injury can arise from the overload of diabetes-induced calcium ion (Ca2+) entry and oxidative stress. The transient receptor potential (TRP) melastatin 2 (TRPM2) and TRP vanilloid type 1 (TRPV1) are expressed in sensory neurons and hippocampus. Moreover, activations of TRPM2 and TRPV1 during oxidative stress have been linked to neuronal death. Melatonin (MEL) and selenium (Se) have been considered potent antioxidants that detoxify a variety of reactive oxygen species (ROS) in neurological diseases. In order to better characterize the actions of MEL and Se in diabetes-induced peripheral pain and hippocampal injury through modulation of TRPM2 and TRPV1, we tested the effects of MEL and Se on apoptosis and oxidative stress in the hippocampal and dorsal root ganglion (DRG) neurons of streptozotocin (STZ)-induced diabetic rats. Fifty-eight rats were divided into six groups. The first group was used as control. The second group was used as the diabetic group. The third and fourth groups received Se and MEL, respectively. Intraperitoneal Se and MEL were given to diabetic rats in the fifth and sixth groups. On the 14th day, hippocampal and DRG neuron samples were freshly taken from all animals. The neurons were stimulated with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We observed a modulator role of MEL and Se on intracellular free Ca2+ concentrations, current densities of TRPM2 and TRPV1 channels, apoptosis, caspase 3, caspase 9, mitochondrial depolarization, reduced glutathione, glutathione peroxidase, lipid peroxidation, and intracellular ROS production values in the neurons. In addition, procaspase 3 and 9 activities in western blot analyses of the brain cortex were also decreased by MEL and Se treatments. In conclusion, in our diabetes experimental model, TRPM2 and TRPV1 channels are involved in the Ca2+ entry-induced neuronal death and modulation of this channel activity by MEL and Se treatment may account for their neuroprotective activity against apoptosis and Ca2+ entry. Graphical Abstract Possible molecular pathways of involvement of melatonin and selenium in diabetes-induced apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in the hippocampus and DRG neurons of rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress although it is inhibited by ACA. The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine (CPZ). Diabetes can result in augmented ROS release in hippocampal and DRG neurons through polyol reactions, leading to Ca2+ uptake through TRPM2 and TRPV1 channels. Mitochondria were reported to accumulate Ca2+ provided intracellular Ca2+ rises, thereby leading to the depolarization of mitochondrial membranes and release of apoptosis-inducing factors such as caspase 3 and caspase 9. Melatonin and selenium reduce TRPM2 and TRPV1 channel activation through the modulation of polyol oxidative reactions and selenium-dependent glutathione peroxidase (GSH-Px) antioxidant pathways.
Collapse
Affiliation(s)
- Mehmet Cemal Kahya
- Department of Biophysics, Faculty of Medicine, University of Izmir Katip Celebi, Izmir, Turkey.
| | - Mustafa Nazıroğlu
- Department of Neuroscience, Health Science Institute, University of Suleyman Demirel, Isparta, Turkey.
- Neuroscience Research Center, University of Suleyman Demirel, Isparta, TR-32260, Turkey.
| | - İshak Suat Övey
- Department of Neuroscience, Health Science Institute, University of Suleyman Demirel, Isparta, Turkey
| |
Collapse
|
78
|
Yoshida S, Hori E, Ura S, Haratake M, Fuchigami T, Nakayama M. A Comprehensive Analysis of Selenium-Binding Proteins in the Brain Using Its Reactive Metabolite. Chem Pharm Bull (Tokyo) 2016; 64:52-8. [DOI: 10.1248/cpb.c15-00689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sakura Yoshida
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Eriko Hori
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Sakiko Ura
- Graduate School of Biomedical Sciences, Nagasaki University
| | | | | | - Morio Nakayama
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
79
|
Viktorinova A, Ursinyova M, Trebaticka J, Uhnakova I, Durackova Z, Masanova V. Changed Plasma Levels of Zinc and Copper to Zinc Ratio and Their Possible Associations with Parent- and Teacher-Rated Symptoms in Children with Attention-Deficit Hyperactivity Disorder. Biol Trace Elem Res 2016; 169:1-7. [PMID: 26063047 DOI: 10.1007/s12011-015-0395-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/01/2015] [Indexed: 11/29/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is associated with alterations in the metabolism of some trace elements which may participate in the pathogenesis of this disorder. The aims of the present study were to investigate the trace element status (copper (Cu), zinc (Zn), copper to zinc ratio (Cu/Zn ratio), selenium (Se), and lead (Pb)) of ADHD children and compare them with the control group. Associations between examined elements and ratings of ADHD symptoms were also assessed. Fifty-eight ADHD children and 50 healthy children (aged 6-14 years) were included in the study. The concentrations of Cu, Zn, and Se in the plasma and Pb in the whole blood were measured by atomic absorption spectrometry. We found lower Zn level (p = 0.0005) and higher Cu/Zn ratio (p = 0.015) in ADHD children when compared with the control group. Copper levels in ADHD children were higher than those in the control group, but not significantly (p > 0.05). No significant differences in levels of Se and Pb between both groups were found. Zinc levels correlated with parent-rated score for inattention (r = -0.231, p = 0.029) as well as with teacher-rated score for inattention (r = -0.328, p = 0.014). Cu/Zn ratio correlated with teacher-rated score for inattention (r = 0.298, p = 0.015). Significant associations of Se and Pb with parent- and teacher-rated symptoms were not observed. The results of this study indicate that there are alterations in plasma levels of Cu and Zn as well as significant relationships to symptoms of ADHD.
Collapse
Affiliation(s)
- Alena Viktorinova
- Institute of Medical Chemistry, Biochemistry, and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08, Bratislava, Slovak Republic.
| | - Monika Ursinyova
- Laboratory of Toxic and Essential Elements, Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Jana Trebaticka
- Department of Pediatric Psychiatry, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Iveta Uhnakova
- Laboratory of Toxic and Essential Elements, Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Zdenka Durackova
- Institute of Medical Chemistry, Biochemistry, and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08, Bratislava, Slovak Republic
| | - Vlasta Masanova
- Laboratory of Toxic and Essential Elements, Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| |
Collapse
|
80
|
Schmoelzl S, Cowley F. The case for pre-parturient selenium and iodine supplementation of ewes for improving lamb survival. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lamb survival is an issue of high relevance to the Australian sheep industry, as lamb-survival rates have direct bearing on overall reproductive performance of the sheep, and also constitute a main concern from an animal welfare perspective (Mellor and Stafford 2004). Both genetic and management factors play an important role in this complex issue (Hinch and Brien 2014). Ewe nutrition is of particular relevance as the intrauterine growth conditions prepare the lamb for the crucial transition to life outside the uterus. Effects of body condition of the ewe during various stages of the pregnancy have been investigated in detail, yet much less is known about the critical role of micronutrient provision to the ewe. Although several risk factors for selenium (Se) and iodine (I) subclinical deficiencies exist for sheep on pasture in Australia, determining micronutrient status in sheep or pasture is not straightforward. Several studies have separately found effects of Se and I supplementation on lamb survival. Studies investigating the interaction of Se and I supplementation have been few but results have demonstrated an interaction between Se and I. With increased twinning rates as a result of increased selection of numbers of lambs weaned, nutritional demands during pregnancy across flocks are increasing, and effects of micronutrients on lamb health and survival have greater impact. New opportunities in nutritional research are encouraging new studies into the effects of Se and I supplementation on lamb survival.
Collapse
|
81
|
Chwiej J, Patulska A, Skoczen A, Janeczko K, Ciarach M, Simon R, Setkowicz Z. Elemental changes in the hippocampal formation following two different formulas of ketogenic diet: an X-ray fluorescence microscopy study. J Biol Inorg Chem 2015; 20:1277-86. [PMID: 26537249 PMCID: PMC4661185 DOI: 10.1007/s00775-015-1306-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/21/2015] [Indexed: 01/13/2023]
Abstract
The main purpose of the following study was the determination of elemental changes occurring within hippocampal formation as a result of high-fat and carbohydrate-restricted ketogenic diet (KD). To realize it, X-ray fluorescence microscopy was applied for topographic and quantitative analysis of P, S, K, Ca, Fe, Cu, Zn and Se in hippocampal formations taken from rats fed with two different KDs and naive controls. The detailed comparisons were done for sectors 1 and 3 of the Ammon's, the dentate gyrus and hilus of dentate gyrus. The results of elemental analysis showed that the KDs induced statistically significant changes in the accumulation of P, K, Ca, Zn and Se in particular areas of hippocampal formation and these alterations strongly depended on the composition of the diets. Much greater influence on the hippocampal areal densities of examined elements was found for the KD which was characterized by a lower content of carbohydrates, higher content of fats and increased proportion of unsaturated fatty acids. The levels of P, K and Zn decreased whilst those of Ca and Se increased as a result of the treatment with the KDs.
Collapse
Affiliation(s)
- J Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland.
| | - A Patulska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - A Skoczen
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - K Janeczko
- Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - M Ciarach
- Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - R Simon
- ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Z Setkowicz
- Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
82
|
El-Mazary AAM, Abdel-Aziz RA, Mahmoud RA, El-Said MA, Mohammed NR. Correlations between maternal and neonatal serum selenium levels in full term neonates with hypoxic ischemic encephalopathy. Ital J Pediatr 2015; 41:83. [PMID: 26511525 PMCID: PMC4625852 DOI: 10.1186/s13052-015-0185-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/05/2015] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED Perinatal hypoxic-ischemic encephalopathy (HIE) is an important cause of brain injury in the newborn and can result devastating consequences. The principle mechanisms underlying neurological damage in HIE resulting from hypoxemia and/or ischemia is deprivation of glucose and oxygen supply which energy failure. A consequent reperfusion injury often deteriorates the brain metabolism by increasing the oxidative stress damage. Selenium is a constituent of the antioxidant enzyme Glutathione peroxidase and is vital to antioxidant defense. This study aimed to measure the serum selenium levels in full term neonates with HIE and their mothers and to correlate between them and the severity of HIE. METHODS The study included 60 full term neonates with HIE admitted to NICU of Minia university hospital during the period from January 2014 to February 2015. Twenty apparently healthy full term neonates selected as a control group. After history taking and careful clinical examination; all neonates were subjected to: Complete blood count, renal and liver function tests and serum electrolytes. Serum selenium was measured for all neonates and their mothers within 48 h of life using atomic flame spectrophotometer method. RESULTS Neonates with HIE had significant lower serum selenium levels than normal healthy neonates (p = 0.001**) with the lowest levels in neonates with severe HIE but there were no significant differences between patients and controls as regards the maternal serum selenium levels. Significant negative correlations between serum selenium levels and the severity of HIE and base excess were present, while positive significant correlations were present with Apgar score and pH. There were no correlations between serum selenium levels and maternal serum selenium levels urea or creatinine levels. CONCLUSIONS Neonates with HIE had lower serum selenium level than normal healthy neonates which is not dependent on the maternal serum selenium levels and was negatively correlated with the severity of HIE.
Collapse
Affiliation(s)
| | - Reem A Abdel-Aziz
- Department of Pediatrics, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Ramadan A Mahmoud
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt.
| | - Mostafa A El-Said
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Nashwa R Mohammed
- Department of Pediatrics, Faculty of Medicine, Minia University, Minia, Egypt.
| |
Collapse
|
83
|
Saghazadeh A, Mahmoudi M, Meysamie A, Gharedaghi M, Zamponi GW, Rezaei N. Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis. Nutr Rev 2015; 73:760-79. [DOI: 10.1093/nutrit/nuv026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
84
|
Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 2015; 153:1-12. [PMID: 26398431 DOI: 10.1016/j.jinorgbio.2015.09.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Multiple biological functions of selenium manifest themselves mainly via 25 selenoproteins that have selenocysteine at their active centre. Selenium is vital for the brain and seems to participate in the pathology of disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and epilepsy. Since selenium was shown to be involved in diverse functions of the central nervous system, such as motor performance, coordination, memory and cognition, a possible role of selenium and selenoproteins in brain signalling pathways may be assumed. The aim of the present review is to analyse possible relations between selenium and neurotransmission. Selenoproteins seem to be of special importance in the development and functioning of GABAergic (GABA, γ-aminobutyric acid) parvalbumin positive interneurons of the cerebral cortex and hippocampus. Dopamine pathway might be also selenium dependent as selenium shows neuroprotection in the nigrostriatal pathway and also exerts toxicity towards dopaminergic neurons under higher concentrations. Recent findings also point to acetylcholine neurotransmission involvement. The role of selenium and selenoproteins in neurotransmission might not only be limited to their antioxidant properties but also to inflammation, influencing protein phosphorylation and ion channels, alteration of calcium homeostasis and brain cholesterol metabolism. Moreover, a direct signalling function was proposed for selenoprotein P through interaction with post-synaptic apoliprotein E receptors 2 (ApoER2).
Collapse
Affiliation(s)
- Nikolay D Solovyev
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russian Federation.
| |
Collapse
|
85
|
Laureano-Melo R, Império GED, da Silva-Almeida C, Kluck GEG, Cruz Seara FDA, da Rocha FF, da Silveira ALB, Reis LC, Ortiga-Carvalho TM, da Silva Côrtes W. Sodium selenite supplementation during pregnancy and lactation promotes anxiolysis and improves mnemonic performance in wistar rats' offspring. Pharmacol Biochem Behav 2015; 138:123-32. [PMID: 26364924 DOI: 10.1016/j.pbb.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/02/2023]
Abstract
Selenium is a micronutrient which is part of selenoprotein molecules and participates in a vast number of physiological roles and, among them,we have fetal and neonatal development. Therefore, the aimof this studywas to evaluate possible behavioral changes in offspring of female rats supplemented during pregnancy and lactation with sodium selenite. To address that, we treated two groups of female rats by saline or sodium selenite at a dose of 1mg/kg through oral route and performed neurochemical and behavioral tests. In the offspring, the thyroid profile and hippocampal neurochemistrywere evaluated. Behavioral testswere performed in pups both during childhood and adulthood. We found out that selenium (Se) supplementation increased serum levels of triiodothyronine (25%, p b 0.001) and thyroxine (18%, p b 0.05) and promoted a tryptophan hydroxylase 2 (TPH 2) expression decrease (17%, p b 0.01) and tyrosine hydroxylase (TH) expression increase (202%, p b 0.01) in the hippocampus. The cholinesterase activity was decreased (28%, p b 0.01) in Se supplemented rats, suggesting a neurochemical modulation in the hippocampal activity. During childhood, the Sesupplemented offspring had a reduction in anxiety-like behavior both in elevated plus maze test and in light–dark box test. In adulthood, Se-treated pups had an increase in the locomotor activity (36%, p b 0.05) and in rearing episodes (77%, p b 0.001) in the open field test, while in the elevated plus maze test they also exhibited an increase in the time spent in the open arms (243%, p b 0.01). For the object recognition test, Se-treated offspring showed increase in the absolute (230.16%, p b 0.05) and relative index discrimination (234%, p b 0.05). These results demonstrate that maternal supplementation by sodium selenite promoted psychobiological changes both during childhood and adulthood. Therefore, the behavioral profile observed possibly can be explained by neurochemical changes induced by thyroid hormones during the critical period of the central nervous system ontogeny.
Collapse
Affiliation(s)
- Roberto Laureano-Melo
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, Brazil
| | - Güínever Eustáquio do Império
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudio da Silva-Almeida
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoproteins Biochemistry, Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernando de Azevedo Cruz Seara
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, Brazil
| | - Fábio Fagundes da Rocha
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, Brazil
| | - Anderson Luiz Bezerra da Silveira
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, Brazil
| | - Luís Carlos Reis
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, Brazil
| | - Tania Maria Ortiga-Carvalho
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Wellington da Silva Côrtes
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, Brazil.
| |
Collapse
|
86
|
Ferlemi AV, Mermigki PG, Makri OE, Anagnostopoulos D, Koulakiotis NS, Margarity M, Tsarbopoulos A, Georgakopoulos CD, Lamari FN. Cerebral Area Differential Redox Response of Neonatal Rats to Selenite-Induced Oxidative Stress and to Concurrent Administration of Highbush Blueberry Leaf Polyphenols. Neurochem Res 2015; 40:2280-92. [DOI: 10.1007/s11064-015-1718-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/28/2015] [Accepted: 09/04/2015] [Indexed: 12/30/2022]
|
87
|
Abstract
Endoplasmic reticulum (ER) stress is an intricate mechanism that mediates numerous responses during brain ischemia, thus being essential to determine the fate of neurons. In recent years, studies of the mechanisms of brain ischemic injury have centered on ER stress, glutamate excitotoxicity, dysfunction of mitochondria, inflammatory reactions, calcium overload and death receptor pathways. The role of ER stress is highly important. In addition to resulting in neuronal cell death through calcium toxicity and apoptotic pathways, ER stress also triggers a series of adaptive responses including unfolded protein response (UPR), autophagy, the expression of pro-survival proteins and the enhancement of ER self-repair ability, leading to less ischemic brain damage. This paper provides an overview of recent advances in understanding of the relations between ER stress and brain ischemia.
Collapse
Affiliation(s)
- Yingchao Su
- a Department of Neurology, the Second Affiliated Hospital of Harbin Medical University , Harbin 150086 , China
| | - Feng Li
- a Department of Neurology, the Second Affiliated Hospital of Harbin Medical University , Harbin 150086 , China
| |
Collapse
|
88
|
Achilli C, Ciana A, Minetti G. The discovery of methionine sulfoxide reductase enzymes: An historical account and future perspectives. Biofactors 2015; 41:135-52. [PMID: 25963551 DOI: 10.1002/biof.1214] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/19/2015] [Indexed: 01/26/2023]
Abstract
L-Methionine (L-Met) is the only sulphur-containing proteinogenic amino acid together with cysteine. Its importance is highlighted by it being the initiator amino acid for protein synthesis in all known living organisms. L-Met, free or inserted into proteins, is sensitive to oxidation of its sulfide moiety, with formation of L-Met sulfoxide. The sulfoxide could not be inserted into proteins, and the oxidation of L-Met in proteins often leads to the loss of biological activity of the affected molecule. Key discoveries revealed the existence, in rats, of a metabolic pathway for the reduction of free L-Met sulfoxide and, later, in Escherichia coli, of the enzymatic reduction of L-Met sulfoxide inserted in proteins. Upon oxidation, the sulphur atom becomes a new stereogenic center, and two stable diastereoisomers of L-Met sulfoxide exist. A fundamental discovery revealed the existence of two unrelated families of enzymes, MsrA and MsrB, whose members display opposite stereospecificity of reduction for the two sulfoxides. The importance of Msrs is additionally emphasized by the discovery that one of the only 25 selenoproteins expressed in humans is a Msr. The milestones on the road that led to the discovery and characterization of this group of antioxidant enzymes are recounted in this review.
Collapse
Affiliation(s)
- Cesare Achilli
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Annarita Ciana
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giampaolo Minetti
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
89
|
Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:732914. [PMID: 25977747 PMCID: PMC4419258 DOI: 10.1155/2015/732914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics data from human cell- and biopsy-based microarrays experiments studying cellular senescence or in vivo tissue ageing, respectively. We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved in cancer, focal adhesion, actin cytoskeleton, MAPK signalling, and metabolism regulation. Genes that are differentially regulated during cellular senescence refer to pathways involved in neurodegeneration, focal adhesion, actin cytoskeleton, proteasome, cell cycle, DNA replication, and oxidative phosphorylation. Finally, we revealed genes and pathways (referring to cancer, Huntington's disease, MAPK signalling, focal adhesion, actin cytoskeleton, oxidative phosphorylation, and metabolic signalling) that are coregulated during cellular senescence and in vivo tissue ageing. The molecular commonalities between cellular senescence and tissue ageing are also highlighted by the fact that pathways that were overrepresented exclusively in the biopsy- or cell-based datasets are modules either of the same reference pathway (e.g., metabolism) or of closely interrelated pathways (e.g., thyroid cancer and melanoma). Our reported meta-analysis has revealed novel age-related genes, setting thus the basis for more detailed future functional studies.
Collapse
|
90
|
Krey A, Ostertag SK, Chan HM. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:237-247. [PMID: 24958011 DOI: 10.1016/j.scitotenv.2014.05.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were <0.5mg/kg ww, whereas the average concentration in beluga whale brain was >3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals.
Collapse
Affiliation(s)
- Anke Krey
- Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
| | - Sonja K Ostertag
- Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
| | - Hing Man Chan
- Center for Advanced Research in Environmental Genomics, University of Ottawa, 20 Marie-Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
91
|
Nazıroğlu M, Çelik Ö, Uğuz AC, Bütün A. Protective effects of riboflavin and selenium on brain microsomal Ca2+-ATPase and oxidative damage caused by glyceryl trinitrate in a rat headache model. Biol Trace Elem Res 2015; 164:72-9. [PMID: 25492827 DOI: 10.1007/s12011-014-0199-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/01/2014] [Indexed: 01/19/2023]
Abstract
Migraine headaches are considered to be associated with increased mitochondrial energy metabolism. Mitochondrial oxidative stress is also important in migraine headache pathophysiology although riboflavin and selenium (Se) induced a modulator role on mitochondrial oxidative stress in the brain. The current study aimed to determine the effects of Se with/without riboflavin on the microsomal membrane Ca(2+)-ATPase (MMCA), lipid peroxidation, antioxidant, and electroencephalography (EEG) values in glyceryl trinitrate (GTN)-induced brain injury rats. Thirty-two rats were randomly divided into four groups. The first group was used as the control, and the second group was the GTN group. Se and Se plus oral riboflavin were administered to rats constituting the third and fourth groups for 10 days prior to GTN administration. The second, third, and fourth groups received GTN to induce headache. Ten hours after the administration of GTN, the EEG records and brain cortex samples were obtained for all groups. Brain cortex microsomes were obtained from the brain samples. The brain and microsomal lipid peroxidation levels were higher in the GTN group compared to the control group, whereas they were decreased by selenium and selenium + riboflavin treatments. Vitamin A, vitamin C, vitamin E, and reduced glutathione (GSH) concentrations of the brain and MMCA, GSH and glutathione peroxidase values of microsomes were decreased by the GTN administration, although the values and β-carotene concentrations were increased by Se and Se + riboflavin treatments. There was no significant change in EEG records of the four groups. In conclusion, Se with/without riboflavin administration protected against GTN-induced brain oxidative toxicity by inhibiting free radicals and the modulation of MMCA activity and supporting the antioxidant redox system.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey,
| | | | | | | |
Collapse
|
92
|
Molecular cloning and sequence analysis of selenoprotein W gene and its mRNA expression patterns in response to metabolic status and cadmium exposure in goldfish, Carassius auratus. Comp Biochem Physiol B Biochem Mol Biol 2015; 184:1-9. [PMID: 25659929 DOI: 10.1016/j.cbpb.2015.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/23/2022]
Abstract
Selenoprotein W (SelW) is a low molecular weight and selenocysteine containing protein with redox activity involved in the antioxidant response. In the present study, the full-length cDNA of goldfish (Carassius auratus) selenoprotein W (gfSelW) was successfully cloned from the liver tissue by rapid amplification of cDNA ends technique. The obtained gfSelW cDNA was 730 bp long with a 79 bp 5'-untranslated region (UTR), a 390 bp 3'-UTR containing the consensus polyadenylation signal AATAAA and a 261 bp open reading frame coding a protein of 86 amino acid residues. gfSelW mRNA was observed in all regions of brain and peripheral tissues by semi-quantitative RT-PCR, and the most abundant was detected in testis. After fasting for 1 week, gfSelW mRNA expression levels were significantly decreased compared to the fed group in hypothalamus and liver. After refeeding for 7 days, gfSelW mRNA expression levels were increased back. Furthermore, the mRNA expressions of gfSelW in hypothalamus and liver were varied in periprandial changes and significantly up-regulated after meal 2 h and 4 h, respectively. With cadmium exposure for 24 h, gfSelW mRNA expression levels in gill and leucocytes were significantly decreased at different cadmium concentrations changing from 0.5 ppm to 10 ppm. However, the gfSelW mRNA expression level was sharply increased in liver, relatively to the control about 4.98-fold at 0.5 ppm. The results in this study provide molecular characterization of SelW in goldfish and imply that SelW mRNA expression may be associated with metabolic status and oxidative stress and regulated by metabolic factors and cadmium in fish.
Collapse
|
93
|
Cengiz M, Bayoglu B, Alansal NO, Cengiz S, Dirican A, Kocabasoglu N. Pro198Leu polymorphism in the oxidative stress gene, glutathione peroxidase-1, is associated with a gender-specific risk for panic disorder. Int J Psychiatry Clin Pract 2015; 19:201-7. [PMID: 25666858 DOI: 10.3109/13651501.2015.1016973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Panic disorder (PD) is an anxiety disorder characterized by sudden attacks of intense fear. Biochemical studies suggest that oxidative stress (OS) index is significantly higher in PD, and OS genes may participate in development of anxiety-like behavioral phenotypes. We aimed to investigate role of polymorphisms in OS gene, glutathione peroxidase-1 (GPX1), and DNA repair enzyme gene, 8-oxoguanine glycosylase-1 (OGG1), in PD patients. METHODS GPX1 Pro198Leu (rs1050450) and OGG1 Ser326Cys (rs1052133) polymorphisms of 127 patients with PD and 151 disease-free controls were analyzed with real-time polymerase chain reaction. Severity of PD symptoms was assessed by Panic and Agoraphobia Scale (PAS). RESULTS No significant relationship was found in genotype distributions of OGG1 Ser326Cys and GPX1 Pro198Leu polymorphisms between PD and control groups (p > 0.05). There was no significant relationship between OGG1 or GPX1 polymorphisms, and age of onset, agoraphobia, or PAS scores in PD group (p > 0.05). However, in GPX1 Pro198Leu polymorphism, C allele (Pro) was found to be more frequent in female subgroup of PD patients compared with that in males (p = 0.027). CONCLUSIONS GPX1 Pro198Leu and OGG1 Ser326Cys polymorphisms were not associated with PD risk in Turkish patients. However, a gender-specific effect of GPX1 Pro198Leu C allele may be associated with PD development.
Collapse
Affiliation(s)
- Mujgan Cengiz
- a Department of Medical Biology , Cerrahpasa Medical Faculty, Istanbul University , Istanbul , Turkey
| | | | | | | | | | | |
Collapse
|
94
|
Yakubov E, Buchfelder M, Eyüpoglu IY, Savaskan NE. Selenium action in neuro-oncology. Biol Trace Elem Res 2014; 161:246-54. [PMID: 25164034 DOI: 10.1007/s12011-014-0111-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022]
Abstract
The trace element selenium and selenocysteine-carrying selenoproteins play a pivotal role in the brain. Beside the essential function during development and maintenance of brain action, selenium has also been associated with several neurological and neuro-oncological conditions. Reliable supply of selenium is important since selenium compounds can affect tumor microenvironment and neoangiogenesis in malignant gliomas (WHO grade III and IV [glioblastoma, GBM]) via induction of apoptosis and alteration of matrix metalloproteinases expression. Here, we summarize recent findings focusing on the anti-toxicity and cancer-preventive properties of selenium and their implication in current multimodal therapies including temozolomide (Temodal), cyclophosphamide (Endoxan), and cisplatin (DDP, Platiblastin, and Platinol). We shed light on unintended side effects in chemotherapy and the developments of novel combinatorial chemotherapeutics with selenium compounds. We found that selenium and selenium compounds have dual action profiles with direct anti-cancer and chemotherapy-intensifier effects as well as neuroprotective and cytoprotective agents. Current selenium trials and selenium supplementation with focus on neuro-oncology will be discussed with regard to low-adequate-to-high/toxic selenium status.
Collapse
Affiliation(s)
- Eduard Yakubov
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU-Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | | | | | | |
Collapse
|
95
|
Zwicker JD, Dutton DJ, Emery JCH. Longitudinal analysis of the association between removal of dental amalgam, urine mercury and 14 self-reported health symptoms. Environ Health 2014; 13:95. [PMID: 25404430 PMCID: PMC4273453 DOI: 10.1186/1476-069x-13-95] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/03/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Mercury vapor poses a known health risk with no clearly established safe level of exposure. Consequently there is debate over whether the level of prolonged exposure to mercury vapor from dental amalgam fillings, combining approximately 50% mercury with other metals, is sufficiently high to represent a risk to health. The objective of our study is to determine if mercury exposure from amalgam fillings is associated with risk of adverse health effects. METHODS In a large longitudinal non-blind sample of participants from a preventative health program in Calgary, Canada we compared number of amalgam fillings, urine mercury measures and changes in 14 self-reported health symptoms, proposed to be mercury dependent sub-clinical measures of mental and physical health. The likelihood of change over one year in a sample of persons who had their fillings removed was compared to a sample of persons who had not had their fillings removed. We use non-parametric statistical tests to determine if differences in urine mercury were statistically significant between sample groups. Logistic regression models were used to estimate the likelihood of observing symptom improvement or worsening in the sample groups. RESULTS At baseline, individuals with dental amalgam fillings have double the measured urine mercury compared to a control group of persons who have never had amalgam fillings. Removal of amalgam fillings decreases measured urine mercury to levels in persons without amalgam fillings. Although urine mercury levels in our sample are considered by Health Canada to be too low to pose health risks, removal of amalgam fillings reduced the likelihood of self-reported symptom deterioration and increased the likelihood of symptom improvement in comparison to people who retained their amalgam fillings. CONCLUSIONS Our findings suggest that mercury exposure from amalgam fillings adversely impact health and therefore are a health risk. The use of safer alternative materials for dental fillings should be encouraged to avoid the increased risk of health deterioration associated with unnecessary exposure to mercury.
Collapse
Affiliation(s)
- Jennifer D Zwicker
- />School of Public Policy, University of Calgary, Calgary, AB T2P 1H9 Canada
| | - Daniel J Dutton
- />School of Public Policy, University of Calgary, Calgary, AB T2P 1H9 Canada
| | - John Charles Herbert Emery
- />School of Public Policy, University of Calgary, Calgary, AB T2P 1H9 Canada
- />Department of Economics, University of Calgary, Social Sciences Building, Room 554, 2500 University Dr. NW, Calgary, AB T2N 1 N4 Canada
| |
Collapse
|
96
|
Bellinger FP, Raman AV, Rueli RH, Bellinger MT, Dewing AS, Seale LA, Andres MA, Uyehara-Lock JH, White LR, Ross GW, Berry MJ. Changes in selenoprotein P in substantia nigra and putamen in Parkinson's disease. JOURNAL OF PARKINSONS DISEASE 2014; 2:115-26. [PMID: 23268326 DOI: 10.3233/jpd-2012-11052] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxidative stress and oxidized dopamine contribute to the degeneration of the nigrostriatal pathway in Parkinson's disease (PD). Selenoproteins are a family of proteins containing the element selenium in the form of the amino acid selenocysteine, and many of these proteins have antioxidant functions. We recently reported changes in expression of the selenoprotein, phospholipid hydroperoxide glutathione peroxidase GPX4 and its co-localization with neuromelanin in PD brain. To further understand the changes in GPX4 in PD, we examine here the expression of the selenium transport protein selenoprotein P (Sepp1) in postmortem Parkinson's brain tissue. Sepp1 in midbrain was expressed in neurons of the substantia nigra (SN), and expression was concentrated within the centers of Lewy bodies, the pathological hallmark of PD. As with GPX4, Sepp1 expression was significantly reduced in SN from PD subjects compared with controls, but increased relative to cell density. In putamen, Sepp1 was found in cell bodies and in dopaminergic axons and terminals, although levels of Sepp1 were not altered in PD subjects compared to controls. Expression levels of Sepp1 and GPX4 correlated strongly in the putamen of control subjects but not in the putamen of PD subjects. These findings indicate a role for Sepp1 in the nigrostriatal pathway, and suggest that local release of Sepp1 in striatum may be important for signaling and/or synthesis of other selenoproteins such as GPX4.
Collapse
Affiliation(s)
- Frederick P Bellinger
- Cell and Molecular Biology Department, John A. Burns School of Medicine, University of Hawaii, HI 96813, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Mohamed Moosa Z, Daniels WMU, Mabandla MV. The effects of prenatal methylmercury exposure on trace element and antioxidant levels in rats following 6-hydroxydopamine-induced neuronal insult. Metab Brain Dis 2014; 29:459-69. [PMID: 24338101 DOI: 10.1007/s11011-013-9465-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) is a metal toxin found commonly in the environment. Studies have shown severe neurotoxic effects of MeHg poisoning especially during pregnancy where it crosses the foetoplacental and the blood brain barrier of the foetus leading to neurodevelopmental deficits in the offspring. These deficits may predispose offspring to neurodegenerative diseases later in life. In this study we investigated the effects of prenatal methylmercury exposure (2.5 mg/L in drinking water from GND 1-GND 21) on the trace element status in the brain of adolescent offspring (PND 28). Total antioxidant capacity (TAC) was measured in their blood plasma. In a separate group of animals that was also exposed prenatally to MeHg, 6-hydroydopamine (6-OHDA) was administered at PND 60 as a model of neuronal insult. Trace element and TAC levels were compared before and after 6-OHDA exposure. Prenatal MeHg treatment alone resulted in significantly higher concentrations of zinc, copper, manganese and selenium in the brain of offspring at PND 28 (p < 0.05), when compared to controls. In contrast, brain iron levels in MeHg-exposed adolescent offspring were significantly lower than their controls (p < 0.05). Following 6-OHDA exposure, the levels of iron, zinc, copper and manganese were increased compared to sham-lesioned offspring (p < 0.05). Prenatal MeHg exposure further increased these trace element levels thereby promoting toxicity (p < 0.05). Total antioxidant capacity was not significantly different in MeHg and control groups prior to lesion. However, following 6-OHDA administration, MeHg-exposed animals had a significantly lower TAC than that of controls (p < 0.05). Brain TAC levels were higher in adult male rats than in female rats during adolescence however male rats that had been exposed to MeHg in utero failed to show this increase at PND 74. Prenatal MeHg exposure results in trace element dyshomeostasis in the brain of offspring and reduces total antioxidant capacity. This may reflect a mechanism by which methylmercury exerts its neurotoxicity and/or predispose offspring to further neurological insults during adulthood.
Collapse
Affiliation(s)
- Zulfiah Mohamed Moosa
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa,
| | | | | |
Collapse
|
98
|
The disease intersection of susceptibility and exposure: Chemical exposures and neurodegenerative disease risk. Alzheimers Dement 2014; 10:S213-25. [DOI: 10.1016/j.jalz.2014.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
99
|
Wirth EK, Bharathi BS, Hatfield D, Conrad M, Brielmeier M, Schweizer U. Cerebellar hypoplasia in mice lacking selenoprotein biosynthesis in neurons. Biol Trace Elem Res 2014; 158:203-10. [PMID: 24599700 PMCID: PMC3984410 DOI: 10.1007/s12011-014-9920-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/27/2022]
Abstract
Selenium exerts many, if not most, of its physiological functions as a selenocysteine moiety in proteins. Selenoproteins are involved in many biochemical processes including regulation of cellular redox state, calcium homeostasis, protein biosynthesis, and degradation. A neurodevelopmental syndrome called progressive cerebello-cortical atrophy (PCCA) is caused by mutations in the selenocysteine synthase gene, SEPSECS, demonstrating that selenoproteins are essential for human brain development. While we have shown that selenoproteins are required for correct hippocampal and cortical interneuron development, little is known about the functions of selenoproteins in the cerebellum. Therefore, we have abrogated neuronal selenoprotein biosynthesis by conditional deletion of the gene encoding selenocysteyl tRNA([Ser]Sec) (gene symbol Trsp). Enzymatic activity of cellular glutathione peroxidase and cytosolic thioredoxin reductase is reduced in cerebellar extracts from Trsp-mutant mice. These mice grow slowly and fail to gain postural control or to coordinate their movements. Histological analysis reveals marked cerebellar hypoplasia, associated with Purkinje cell death and decreased granule cell proliferation. Purkinje cell death occurs along parasagittal stripes as observed in other models of Purkinje cell loss. Neuron-specific inactivation of glutathione peroxidase 4 (Gpx4) used the same Cre driver phenocopies tRNA([Ser]Sec) mutants in several aspects: cerebellar hypoplasia, stripe-like Purkinje cell loss, and reduced granule cell proliferation. Parvalbumin-expressing GABAergic interneurons (stellate and/or basket cells) are virtually absent in tRNA([Ser]Sec)-mutant mice, while some remained in Gpx4-mutant mice. Our data show that selenoproteins are specifically required in postmitotic neurons of the developing cerebellum, thus providing a rational explanation for cerebellar hypoplasia as occurring in PCCA patients.
Collapse
Affiliation(s)
- Eva K. Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - B. Suman Bharathi
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dolph Hatfield
- Molecular Biology of Selenium, Mouse Cancer Genetics Program, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Munich Germany
| | - Markus Brielmeier
- Abteilung für Vergleichende Medizin, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Ulrich Schweizer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115 Bonn, Germany
| |
Collapse
|
100
|
Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life 2014; 66:229-39. [PMID: 24668686 DOI: 10.1002/iub.1262] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/14/2023]
Abstract
Selenoproteins are important for normal brain function, and decreased function of selenoproteins can lead to impaired cognitive function and neurological disorders. This review examines the possible roles of selenoproteins in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and epilepsy. Selenium deficiency is associated with cognitive decline, and selenoproteins may be helpful in preventing neurodegeneration in AD. PD is associated with impaired function of glutathione peroxidase selenoenzymes. In HD, selenium deters lipid peroxidation by increasing specific glutathione peroxidases. Selenium deficiency increases risk of seizures in epilepsy, whereas supplementation may help to alleviate seizures. Further studies on the mechanisms of selenoprotein function will increase our understanding of how selenium and selenoproteins can be used in treatment and prevention of brain disorders.
Collapse
Affiliation(s)
- Roshan Pillai
- Department of Cell and Molecular Biology, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI, USA
| | | | | |
Collapse
|