51
|
Therapeutic Mechanism of Lapatinib Combined with Sulforaphane on Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9933274. [PMID: 34589134 PMCID: PMC8476239 DOI: 10.1155/2021/9933274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/06/2021] [Indexed: 01/18/2023]
Abstract
Background Lapatinib is a small-molecule tyrosine kinase inhibitor that plays important roles in cell proliferation and survival. Administration of lapatinib with capecitabine is an effective treatment for HER2-positive metastatic BC. However, the effects of lapatinib on gastric cancer (GC) remain to be clear. In this study, we aimed to investigate the therapeutic effects of lapatinib combined with sulforaphane on GC and its underlying mechanisms. Methods SGC-7901 and lapatinib-resistant SGC-7901 cells were treated with lapatinib (0.2 μM), sulforaphane (5 μM), or their combinations. Cell viability, invasion, cycle, and apoptosis of SGC-7901 and lapatinib-resistant SGC-7901 cells were evaluated by thiazolyl blue tetrazolium bromide (MTT), Boyden chamber assay, and flow cytometer. The protein expressions of HER-2, p-HER-2, AKT, p-AKT, ERK, and p-ERK were detected by Western blotting. Results We observed that lapatinib combined with sulforaphane significantly decreased cell viability and inhibited cell migration of drug-sensitive and drug-resistant cells. Lapatinib sulforaphane also remarkably induced cell apoptosis with G0/G1 arrest. In addition, Western blotting revealed that the expressions of HER-2, p-HER-2, AKT, p-AKT, ERK, and p-ERK were downregulated by lapatinib-sulforaphane treatment. Conclusion Combination of lapatinib and sulforaphane might be a novel and promising therapeutic treatment for lapatinib-sensitive or lapatinib-resistant GC patients.
Collapse
|
52
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
53
|
El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49343-49361. [PMID: 34319520 PMCID: PMC8316543 DOI: 10.1007/s11356-021-15623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2021] [Indexed: 04/15/2023]
Abstract
The direct/indirect responsibility of the gut microbiome in disease induction in and outside the digestive tract is well studied. These results are usually from the overpopulation of certain species on the cost of others, interaction with beneficial microflora, interference with normal epigenetic control mechanisms, or suppression of the immune system. Consequently, it is theoretically possible to cure such disorders by rebalancing the microbiome inside our bodies. This can be achieved by changing the lifestyle pattern and diet or by supplementation with beneficial bacteria or their metabolites. Various approaches have been explored to manipulate the normal microbial inhabitants, including nutraceutical, supplementations with prebiotics, probiotics, postbiotics, synbiotics, and antibiotics, or through microbiome transplantation (fecal, skin, or vaginal microbiome transplantation). In the present review, the interaction between the microbiome and epigenetics and their role in disease induction is discussed. Possible future therapeutic approaches via the reestablishment of equilibrium in our internal micro-ecosystem are also highlighted.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
54
|
Gao L, Du F, Wang J, Zhao Y, Liu J, Cai D, Zhang X, Wang Y, Zhang S. Examination of the differences between sulforaphane and sulforaphene in colon cancer: A study based on next-generation sequencing. Oncol Lett 2021; 22:690. [PMID: 34457045 PMCID: PMC8358736 DOI: 10.3892/ol.2021.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Sulforaphane and sulforaphene are isothiocyanate compounds derived from cruciferous vegetables that have demonstrated antiproliferative properties against colon cancer. However, the underlying mechanism of action of these two compounds has yet to be elucidated. The aim of the present study was to examine the effects of sulforaphane and sulforaphene on colon cancer using next-generation sequencing (NGS). The SW480 colon cancer cell line was cultured with 25 µmol/l sulforaphane or sulforaphene. Total RNA was extracted from the cells following 48 h of incubation with these compounds, and NGS was performed. Pearson's correlation and principal component analyses were performed on the NGS data in order to determine sample homogeneity followed by hierarchical clustering, chromosomal location, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A total of 873 probes in the sulforaphene group were differentially expressed compared with the control group. Similarly, 959 probes in the sulforaphane group were differentially expressed compared with the control group. The differentially expressed genes were dispersed on the chromosomes, across 22 pairs of autosomes, as well as the X and Y chromosomes. GO and KEGG analyses demonstrated that both drugs affected the ‘p53 signaling pathway’, ‘MAPK signaling pathway’, ‘FOXO signaling pathway’ and ‘estrogen signaling pathway’, while ‘Wnt signaling pathway’ was enriched in the sulforaphane group, and ‘ubiquitin mediated proteolysis’ and ‘estrogen signaling pathway’ in the sulforaphene group. Thus, sulforaphane and sulforaphene exhibited similar biological activities on colon cancer cells. Sulforaphane and sulforaphene may be associated with Wnt and estrogen signaling, respectively.
Collapse
Affiliation(s)
- Lei Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Fengying Du
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuhua Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Junhua Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Da Cai
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Xiao Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Yutao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Shuqiu Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
55
|
Uddin MS, Kabir MT, Mamun AA, Sarwar MS, Nasrin F, Emran TB, Alanazi IS, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM. Natural Small Molecules Targeting NF-κB Signaling in Glioblastoma. Front Pharmacol 2021; 12:703761. [PMID: 34512336 PMCID: PMC8429794 DOI: 10.3389/fphar.2021.703761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that regulates various genes that mediate various cellular activities, including propagation, differentiation, motility, and survival. Abnormal activation of NF-κB is a common incidence in several cancers. Glioblastoma multiforme (GBM) is the most aggressive brain cancer described by high cellular heterogeneity and almost unavoidable relapse following surgery and resistance to traditional therapy. In GBM, NF-κB is abnormally activated by various stimuli. Its function has been associated with different processes, including regulation of cancer cells with stem-like phenotypes, invasion of cancer cells, and radiotherapy resistance identification of mesenchymal cells. Even though multimodal therapeutic approaches such as surgery, radiation therapy, and chemotherapeutic drugs are used for treating GBM, however; the estimated mortality rate for GBM patients is around 1 year. Therefore, it is necessary to find out new therapeutic approaches for treating GBM. Many studies are focusing on therapeutics having less adverse effects owing to the failure of conventional chemotherapy and targeted agents. Several studies of compounds suggested the involvement of NF-κB signaling pathways in the growth and development of a tumor and GBM cell apoptosis. In this review, we highlight the involvement of NF-κB signaling in the molecular understanding of GBM and natural compounds targeting NF-κB signaling.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Md. Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Nasrin
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, QLD, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
56
|
Sulforaphane inhibits self-renewal of lung cancer stem cells through the modulation of sonic Hedgehog signaling pathway and polyhomeotic homolog 3. AMB Express 2021; 11:121. [PMID: 34424425 PMCID: PMC8382806 DOI: 10.1186/s13568-021-01281-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Sulforaphane (SFN), an active compound in cruciferous vegetables, has been characterized by its antiproliferative capacity. We investigated the role and molecular mechanism through which SFN regulates proliferation and self-renewal of lung cancer stem cells. CD133+ cells were isolated with MACs from lung cancer A549 and H460 cells. In this study, we found that SFN inhibited the proliferation of lung cancer cells and self-renewal of lung cancer stem cells simultaneously. Meanwhile, the mRNA and protein expressions of Shh, Smo, Gli1 and PHC3 were highly activated in CD133+ lung cancer cells. Compared with siRNA-control group, Knock-down of Shh inhibited proliferation of CD133+ lung cancer cells, and decreased the protein expression of PHC3 in CD133+ lung cancer cells. Knock-down of PHC3 also affected the proliferation and decreased the Shh expression level in CD133+ lung cancer cells. In addition, SFN inhibited the activities of Shh, Smo, Gli1 and PHC3 in CD133+ lung cancer cells. Furthermore, the inhibitory effect of SFN on the proliferation of siRNA-Shh and siRNA-PHC3 cells was weaker than that on the proliferation of siRNA-control cells. Sonic Hedgehog signaling pathway might undergo a cross-talk with PHC3 in self-renewal of lung cancer stem cells. SFN might be an effective new drug which could inhibit self-renewal of lung cancer stem cells through the modulation of Sonic Hedgehog signaling pathways and PHC3. This study could provide a novel way to improve therapeutic efficacy for lung cancer stem cells.
Collapse
|
57
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
58
|
Guerrero-Alonso A, Antunez-Mojica M, Medina-Franco JL. Chemoinformatic Analysis of Isothiocyanates: Their Impact in Nature and Medicine. Mol Inform 2021; 40:e2100172. [PMID: 34363333 DOI: 10.1002/minf.202100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Isothiocyanates (ITCs) have a significant impact on food and natural product chemistry. Several dietary components and food chemicals contain the isothiocyanate moiety. In addition, many ITCs interact with macromolecules of biological relevance, making these compounds relevant for potential therapeutic applications and disease prevention. However, there is a lack of systematic analysis of ITCs in chemical and biological databases. Herein, we conducted a comprehensive analysis of ITCs present in public domain databases, including natural products, food chemicals, macromolecular targets of drugs, and the Protein Data Bank. A total of 154 ITCs were found, which can be classified into seven categories: acyclic, cyclic, polycyclic, aromatic, polyaromatic, indolic, and glycosylated. 24 ITCs were reported in 18 vegetable sources, mainly in cruciferous vegetables (Brassica oleracea L.). Calculated properties of pharmaceutical relevance indicated that 11 % of the 154 ITCs would be suitable to be orally absorbed and 48 % permeate the blood-brain-barrier. It was also found that seven molecular targets have been co-crystallized with ITCs and the most frequent is the macrophage migration inhibitory factor. It is expected that this work will contribute to the sub-disciplines of natural products and food informatics.
Collapse
Affiliation(s)
- Araceli Guerrero-Alonso
- Centro de Investigaciones Químicas IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, MOR, 62209, México
| | - Mayra Antunez-Mojica
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209, Morelos, México
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
59
|
Iahtisham-Ul-Haq, Khan S, Awan KA, Iqbal MJ. Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review. J Food Biochem 2021; 46:e13886. [PMID: 34350614 DOI: 10.1111/jfbc.13886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Sulforaphane belongs to the active class of isothiocyanates capable of delivering various biological benefits for health promotion and disease prevention. This compound is considered vital to curtail numerous metabolic disorders. Various studies have proven its beneficial effects against cancer prevention and its possible utilization as a therapeutic agent in cancer treatment. Understanding the mechanistic pathways and possible interactions at cellular and subcellular levels is key to design and develop cancer therapeutics for humans. In this respect, a number of mechanisms such as modulation of carcinogen metabolism & phase II enzymatic activities, cell cycle arrest, activation of Nrf2, cytotoxic, proapoptotic and apoptotic pathways have been reported to be involved in cancer prevention. This article provides sufficient information by critical analysis to understand the mechanisms involved in cancer prevention attributed to sulforaphane. Furthermore, various clinical studies have also been included for design and development of novel therapies for cancer prevention and cure. PRACTICAL APPLICATIONS: Diet and dietary components are potential tools to address various lifestyle-related disorders. Due to plenty of environmental and cellular toxicants, the chances of cancer prevalence are quite large which are worsen by adopting unhealthy lifestyles. Cancer can be treated with various therapies but those are acquiring side effects causing the patients to suffer the treatment regime. Nutraceuticals and functional foods provide safer options to prevent or delay the onset of cancer. In this regard, sulforaphane is a pivotal compound to be targeted as a potential agent for cancer treatment both in preventive and therapeutic regimes. This article provides sufficient evidence via discussing the underlying mechanisms of positive effects of sulforaphane to further the research for developing anticancer drugs that will help assuage this lethal morbidity.
Collapse
Affiliation(s)
- Iahtisham-Ul-Haq
- School of Food and Nutrition, Faculty of Allied Health Sciences, Minhaj University, Lahore, Pakistan
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
60
|
Ezeka G, Adhikary G, Kandasamy S, Friedberg JS, Eckert RL. Sulforaphane inhibits PRMT5 and MEP50 function to suppress the mesothelioma cancer cell phenotype. Mol Carcinog 2021; 60:429-439. [PMID: 33872411 PMCID: PMC10074327 DOI: 10.1002/mc.23301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/26/2023]
Abstract
Mesothelioma is a highly aggressive cancer of the mesothelial lining that is caused by exposure to asbestos. Surgical resection followed by chemotherapy is the current treatment strategy, but this is marginally successful and leads to drug-resistant disease. We are interested in factors that maintain the aggressive mesothelioma cancer phenotype as therapy targets. Protein arginine methyltransferase 5 (PRMT5) functions in concert with the methylosome protein 50 (MEP50) cofactor to catalyze symmetric dimethylation of key arginine resides in histones 3 and 4 which modifies the chromatin environment to alter tumor suppressor and oncogene expression and enhance cancer cell survival. Our studies show that PRMT5 or MEP50 loss reduces H4R3me2s formation and that this is associated with reduced cancer cell spheroid formation, invasion, and migration. Treatment with sulforaphane (SFN), a diet-derived anticancer agent, reduces PRMT5/MEP50 level and H4R3me2s formation and suppresses the cancer phenotype. We further show that SFN treatment reduces PRMT5 and MEP50 levels and that this reduction is required for SFN suppression of the cancer phenotype. SFN treatment also reduces tumor formation which is associated with reduced PRMT5/MEP50 expression and activity. These findings suggest that SFN may be a useful mesothelioma treatment agent that operates, at least in part, via suppression of PRMT5/MEP50 function.
Collapse
Affiliation(s)
- Geraldine Ezeka
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | | | - Joseph S. Friedberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
61
|
El-Sayed A, Aleya L, Kamel M. The link among microbiota, epigenetics, and disease development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28926-28964. [PMID: 33860421 DOI: 10.1007/s11356-021-13862-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The microbiome is a community of various microorganisms that inhabit or live on the skin of humans/animals, sharing the body space with their hosts. It is a sort of complex ecosystem of trillions of commensals, symbiotic, and pathogenic microorganisms, including trillions of bacteria, archaea, protozoa, fungi, and viruses. The microbiota plays a role in the health and disease status of the host. Their number, species dominance, and viability are dynamic. Their long-term disturbance is usually accompanied by serious diseases such as metabolic disorders, cardiovascular diseases, or even cancer. While epigenetics is a term that refers to different stimuli that induce modifications in gene expression patterns without structural changes in the inherited DNA sequence, these changes can be reversible or even persist for several generations. Epigenetics can be described as cell memory that stores experience against internal and external factors. Results from multiple institutions have contributed to the role and close interaction of both microbiota and epigenetics in disease induction. Understanding the mechanisms of both players enables a better understanding of disease induction and development and also opens the horizon to revolutionary therapeutic approaches. The present review illustrates the roles of diet, microbiome, and epigenetics in the induction of several chronic diseases. In addition, it discusses the application of epigenetic data to develop diagnostic biomarkers and therapeutics and evaluate their safety for patients. Understanding the interaction among all these elements enables the development of innovative preventive/therapeutic approaches for disease control.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
62
|
Wang Q, Bao Y. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Free Radic Biol Med 2021; 167:125-140. [PMID: 33711418 DOI: 10.1016/j.freeradbiomed.2021.02.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Natural isothiocyanates (ITCs) are phytochemicals abundant in cruciferous vegetables with the general structure, R-NCS. They are bioactive organosulfur compounds derived from the hydrolysis of glucosinolates by myrosinase. A significant number of isothiocyanates have been isolated from different plant sources that include broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, wasabi, and watercress. Several ITCs have been demonstrated to possess significant pharmacological properties including: antioxidant, anti-inflammatory, anti-cancer and antimicrobial activities. Due to their chemopreventive effects on many types of cancer, ITCs have been regarded as a promising anti-cancer therapeutic agent without major toxicity concerns. However, their clinical application has been hindered by several factors including their low aqueous solubility, low bioavailability, instability as well as their hormetic effect. Moreover, the typical dietary uptake of ITCs consumed for promotion of good health may be far from their bioactive (or cytotoxic) dose necessary for cancer prevention and/or treatment. Nanotechnology is one of best options to attain enhanced efficacy and minimize hormetic effect for ITCs. Nanoformulation of ITCs leads to enhance stability of ITCs in plasma and emphasize on their chemopreventive effects. This review provides a summary of the potential bioactivities of ITCs, their mechanisms of action for the prevention and treatment of cancer, as well as the recent research progress in their nanodelivery strategies to enhance solubility, bioavailability, and anti-cancer efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| |
Collapse
|
63
|
Lu Z, Ren Y, Yang L, Jia A, Hu Y, Zhao Y, Zhao W, Yu B, Zhao W, Zhang J, Hou G. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B 2021; 11:1246-1260. [PMID: 34094831 PMCID: PMC8148075 DOI: 10.1016/j.apsb.2020.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Sulforaphane (SFN), a natural anti-tumor compound from cruciferous vegetables, has been reported to induce protective autophagy to cancer cells, which might impair the anti-tumor efficiency of SFN. However, the accurate function and mechanism of SFN inducing autophagy in cancers are still obscure, especially in esophageal squamous cell carcinoma (ESCC), one of malignancies with high incidence in North China. Here, we mainly explored the potential function of autophagy upon SFN treatment in ESCC and molecular mechanism. We demonstrated that SFN could inhibit cell proliferation and induce apoptosis by activating caspase pathway. Moreover, we found activation of NRF2 pathway by SFN was responsible for the induction of autophagy and also a disadvantage element to the anti-tumor effects of SFN on ESCC, indicating that SFN might induce protective autophagy in ESCC. We, therefore, investigated effects of autophagy inhibition on sensitivity of ESCC cells to SFN and found that chloroquine (CQ) could neutralize the activation of SFN on NRF2 and enhance the activation of SFN on caspase pathway, thus improved the anti-tumor efficiency of SFN on ESCC in vitro and in vivo. Our study provides a preclinical rationale for development of SFN and its analogs to the future treatment of ESCC.
Collapse
|
64
|
Rabben HL, Kodama Y, Nakamura M, Bones AM, Wang TC, Chen D, Zhao CM, Øverby A. Chemopreventive Effects of Dietary Isothiocyanates in Animal Models of Gastric Cancer and Synergistic Anticancer Effects With Cisplatin in Human Gastric Cancer Cells. Front Pharmacol 2021; 12:613458. [PMID: 33897415 PMCID: PMC8060630 DOI: 10.3389/fphar.2021.613458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring isothiocyanates (ITCs) from edible vegetables have shown potential as chemopreventive agents against several types of cancer. The aims of the present study were to study the potential of ITCs in chemoprevention and in potentiating the efficacy of cytotoxic drugs in gastric cancer treatment. The chemoprevention was studied in chemically induced mouse model of gastric cancer, namely N-methyl-N-nitrosourea (MNU) in drinking water, and in a genetically engineered mouse model of gastric cancer (the so-called INS-GAS mice). The pharmacological effects of ITCs with or without cisplatin were studied in human gastric cell lines MKN45, AGS, MKN74 and KATO-III, which were derived from either intestinal or diffused types of gastric carcinoma. The results showed that dietary phenethyl isothiocyanate (PEITC) reduced the tumor size when PEITC was given simultaneously with MNU, but neither when administrated after MNU nor in INS-GAS mice. Treatments of gastric cancer cells with ITCs resulted in a time- and concentration-dependent inhibition on cell proliferation. Pretreatment of gastric cancer cells with ITCs enhanced the inhibitory effects of cisplatin (but not 5-fluorouracil) in time- and concentration-dependent manners. Treatments of gastric cancer cells with PEITC plus cisplatin simultaneously at different concentrations of either PEITC or cisplatin exhibited neither additive nor synergetic inhibitory effect. Furthermore, PEITC depleted glutathione and induced G2/M cell cycle arrest in gastric cancer cells. In conclusion, the results of the present study showed that PEITC displayed anti-cancer effects, particularly when given before the tumor initiation, suggesting a chemopreventive effect in gastric cancer, and that pretreatment of PEITC potentiated the anti-cancer effects of cisplatin, possibly by reducing the intracellular pool of glutathione, suggesting a possible combination strategy of chemotherapy with pretreatment with PEITC.
Collapse
Affiliation(s)
- Hanne-Line Rabben
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,The Central Norway Regional Health Authority, Stjørdal, Norway
| | - Yosuke Kodama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Masahiko Nakamura
- Center for Clinical Pharmacy and Clinical Sciences, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Atle Magnar Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Timothy Cragin Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chun-Mei Zhao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,The Central Norway Regional Health Authority, Stjørdal, Norway
| | - Anders Øverby
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Center for Clinical Pharmacy and Clinical Sciences, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
65
|
Harris CM, Zamperoni KE, Sernoskie SC, Chow NSM, Massey TE. Effects of in vivo treatment of mice with sulforaphane on repair of DNA pyridyloxylbutylation. Toxicology 2021; 454:152753. [PMID: 33741493 DOI: 10.1016/j.tox.2021.152753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023]
Abstract
The phytochemical sulforaphane (SF) has gained interest for its apparent association with reduced cancer risk and other cytoprotective properties, at least some of which are attributed to activation of the transcription factor Nrf2. Repair of bulky DNA adducts is important for mitigating carcinogenesis from exogenous DNA damaging agents, but it is unknown whether in vivo treatment with SF affects adduct repair. At 12 h following a single oral dose of 100 mg/kg SF, an almost doubling in activity for repair of pyridyloxobutylated DNA was observed in CD-1 mouse liver nuclear extracts, but not in lung extracts. This change at 12 h in repair activity was preceded by the induction of Nrf2-regulated genes but not accompanied by changes in levels of the specific nucleotide excision repair (NER) proteins XPC, XPA, XPB and p53 or in binding of hepatic XPC, XPA and XPB to damaged DNA. SF also did not significantly alter histone deacetylase activity as measured by acetylated histone H3 levels, or stimulate formation of γ-H2A.X, a marker of DNA damage. A significant reduction in oxidative DNA damage, as measured by 8-OHdG (a biomarker of oxidative DNA damage), was observed only in DNA from the lungs of SF-treated mice 3 h post-dosing. These results suggest that the ability of SF to increase bulky adduct repair activity is organ-selective and is consistent with activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Christopher M Harris
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kristen E Zamperoni
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Samantha C Sernoskie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Natalie S M Chow
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Thomas E Massey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
66
|
Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021; 13:cancers13061274. [PMID: 33805687 PMCID: PMC8001769 DOI: 10.3390/cancers13061274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is caused by the rapid and uncontrolled growth of cells that eventually lead to tumor formation. Genetic and epigenetic alterations are among the most critical factors in the onset of carcinoma. Phytochemicals are a group of natural compounds that play an essential role in cancer prevention and treatment. Long non-coding RNAs (lncRNAs) are potential therapeutic targets of bioactive phytochemicals, and these compounds could regulate the expression of lncRNAs directly and indirectly. Here, we critically evaluate in vitro and in vivo anticancer effects of phytochemicals in numerous human cancers via regulation of lncRNA expression and their downstream target genes. Abstract Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play an essential role in various cellular activities, such as differentiation, proliferation, and apoptosis. Dysregulation of lncRNAs serves a fundamental role in the progression and initiation of various diseases, including cancer. Precision medicine is a suitable and optimal treatment method for cancer so that based on each patient’s genetic content, a specific treatment or drug is prescribed. The rapid advancement of science and technology in recent years has led to many successes in this particular treatment. Phytochemicals are a group of natural compounds extracted from fruits, vegetables, and plants. Through the downregulation of oncogenic lncRNAs or upregulation of tumor suppressor lncRNAs, these bioactive compounds can inhibit metastasis, proliferation, invasion, migration, and cancer cells. These natural products can be a novel and alternative strategy for cancer treatment and improve tumor cells’ sensitivity to standard adjuvant therapies. This review will discuss the antineoplastic effects of bioactive plant secondary metabolites (phytochemicals) via regulation of expression of lncRNAs in various human cancers and their potential for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Hamid Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
67
|
Li Y, Li R, Sawada Y, Boerzhijin S, Kuwahara A, Sato M, Hirai MY. Abscisic acid-mediated induction of FLAVIN-CONTAINING MONOOXYGENASE 2 leads to reduced accumulation of methylthioalkyl glucosinolates in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110764. [PMID: 33487349 DOI: 10.1016/j.plantsci.2020.110764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 05/29/2023]
Abstract
Side-chain modification contributes to the structural diversity of aliphatic glucosinolates (GSLs), a class of sulfur-containing secondary metabolites found in Brassicales. The first step in side-chain modification of aliphatic GSLs is the S-oxygenation of the methylthioalkyl (MT) moiety to the methylsulfinylalkyl (MS) moiety. This reaction is catalyzed by flavin-containing monooxygenase (FMOGS-OX), which is encoded by seven genes in Arabidopsis thaliana. Therefore, the regulation of FMOGS-OX gene expression is key to controlling side-chain structural diversity. In this study, we demonstrated that the expression of FMOGS-OX2 and FMOGS-OX4 was induced by glucose treatment, independent of MYB28/29 and MYC2/3/4, the transcription factors that positively regulate aliphatic GSL biosynthesis. Glucose treatment of the abscisic acid (ABA)-related mutants indicated that glucose-triggered upregulation of FMOGS-OX2 and FMOGS-OX4 was partially regulated by ABA through the key negative regulators ABI1 and ABI2, and the positive regulator SnRK2, but not via the transcription factor ABI5. In wild-type plants, glucose treatment drastically reduced the accumulation of 4-methylthiobutyl (4MT) GSL, whereas a decrease in 4MT GSL was not observed in the fmogs-ox2, abi1-1, abi2-1, aba2-1, or aba3-1 mutants. This result indicated that the decreased accumulation of 4MT GSL by glucose treatment was attributed to upregulation of FMOGS-OX2 via the ABA signaling pathway.
Collapse
Affiliation(s)
- Yimeng Li
- School of Pharmacy, Lanzhou University, LanZhou, 730000, China; RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Rui Li
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Surina Boerzhijin
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
68
|
Gupta E, Mishra P. Functional Food with Some Health Benefits, So Called Superfood: A Review. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200717171048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible beneficial properties of functional foods are due to their content in bioactive
ingredients, with specific biological properties. A number of processed functional foods are available
in the market - probiotic yogurt, calcium and ω-3 fatty acids enriched orange juice and milk. Simultaneously,
new research studies confer potential health benefits of various conventional foods (salmon,
berries, green tea, vegetables, fruits, nuts, cereals and breads, etc.) termed as “superfood” which
is a marketing term and there is no established medical definition. Following suitable dietary patterns,
superfood reduces the risk of degenerative diseases by promoting physical and emotional
health. Scientific evidences suggest that superfoods are a dense source of antioxidants, minerals, vitamins
and other nutrients. There is insufficient research on the exact explanation of the term ‘superfood’and
its health claims by different companies without any legislation. This buzz word has created
confusion among consumers, that how much and what quantity should make a food superfood, as
no single food may be as nutritious to be stated as a superfood. This article introduces further investigation
on superfood which was categorized on the basis of their major constituents and potential
health benefits. Further, there is a need for more reviews, researches, clinical trials and human case
studies to investigate or test superfood.
Collapse
Affiliation(s)
- Ena Gupta
- Department of Homescience, University of Allahabad, Allahabad-211002, India
| | - Pragya Mishra
- Food Processing and Management, DDU Kaushal Kendra, RGSC, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
69
|
Gupta J, Ahuja A, Gupta R. Green Approaches for Cancer Management: an Effective Tool for Health Care. Anticancer Agents Med Chem 2021; 22:101-114. [PMID: 33463475 DOI: 10.2174/1871520621666210119091826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of an increasing number of death incidences in modern society. As the population increases, there is increased thrust for screening newer anticancer (phytoconstituents) agents to manage cancers. Around 35000 herbal phytoconstituents are obtained from plants, animals and marine sources to create awareness of green therapy in managing, reducing, minimizing side effects of modern chemotherapeutics and radiation therapy. The herbal plants are the richest sources of natural remedies and bioactive compounds that promote medicines' alternative systems as a green approach for managing various cancers. The terpenoids, saponins, volatile oils, and flavonoid phytoconstituents are most efficiently used to manage cancer with minimal side effects. OBJECTIVE The objectives of the present study are to investigate the efficacious, potent and safe use of herbal phytoconstituents extracts in the management of cancers and study their mechanism of action through alteration of transcription proteins, blocking G-2/M phase, distortion of tubulin structure, generation of reactive oxygen species, lipid peroxidation, cell cycle arrest, anti-proliferation induced cell apoptosis for target specific cancer treatment. The information was collected from databases such as ScienceDirect, PubMed, Google Scholar, Academia, MedLine, and WoS. METHODS The Literature was surveyed and screened keywords like cancer therapeutics, metastasis, proliferation, cell apoptosis, cell lines, phytoconstituents for cancer management, and related disorders. RESULTS The findings suggested that the crude extracts act as an antioxidant, free radical scavenger, or anti-aging agent exploited in the management of cancers along with treatment of other infectious diseases like ulcers, gout, liver diseases, respiratory tract infection, renal disorders, blood disorders, CVD, anti-inflammatory and several wound infections. CONCLUSION The phytoactive moieties having herbal extracts help improve the compromised immunity status of affected patients and provide measures for scientific studies of newer anticancer agents in herbal industries.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh. India
| | - Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh. India
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh. India
| |
Collapse
|
70
|
Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev 2020; 79:1204-1224. [DOI: 10.1093/nutrit/nuaa129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Sulforaphane (SFN) is a sulfur-containing isothiocyanate found in cruciferous vegetables (Brassicaceae) and a well-known activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), considered a master regulator of cellular antioxidant responses. Patients with chronic diseases, such as diabetes, cardiovascular disease, cancer, and chronic kidney disease (CKD) present with high levels of oxidative stress and a massive inflammatory burden associated with diminished Nrf2 and elevated nuclear transcription factor-κB-κB expression. Because it is a common constituent of dietary vegetables, the salutogenic properties of sulforaphane, especially it’s antioxidative and anti-inflammatory properties, have been explored as a nutritional intervention in a range of diseases of ageing, though data on CKD remain scarce. In this brief review, the effects of SFN as a senotherapeutic agent are described and a rationale is provided for studies that aim to explore the potential benefits of SFN-rich foods in patients with CKD.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Livia A Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
71
|
Iida Y, Okamoto-Katsuyama M, Maruoka S, Mizumura K, Shimizu T, Shikano S, Hikichi M, Takahashi M, Tsuya K, Okamoto S, Inoue T, Nakanishi Y, Takahashi N, Masuda S, Hashimoto S, Gon Y. Effective ferroptotic small-cell lung cancer cell death from SLC7A11 inhibition by sulforaphane. Oncol Lett 2020; 21:71. [PMID: 33365082 PMCID: PMC7716721 DOI: 10.3892/ol.2020.12332] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive cancer with poor prognosis, due to a lack of therapeutic targets. Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables and has shown anticancer effects against numerous types of cancer. However, its anticancer effect against SCLC remains unclear. The present study aimed to demonstrate the anticancer effects of SFN in SCLC cells by investigating cell death (ferroptosis, necroptosis and caspase inhibition). The human SCLC cell lines NCI-H69, NCI-H69AR (H69AR) and NCI-H82 and the normal bronchial epithelial cell line, 16HBE14o- were used to determine cell growth and cytotoxicity, evaluate the levels of iron and glutathione, and quantify lipid peroxidation following treatment with SFN. mRNA expression levels of cystine/glutamate antiporter xCT (SLC7A11), a key component of the cysteine/glutamate antiporter, were measured using reverse transcription-quantitative PCR, while the levels of SLC7A11 protein were measured using western blot analysis. Following the addition of SFN to the cell culture, cell growth was significantly inhibited, and cell death was shown in SCLC and multidrug-resistant H69AR cells. The ferroptotic effects of SFN were confirmed following culture with the ferroptosis inhibitor, ferrostatin-1, and deferoxamine; iron levels were elevated, which resulted in the accumulation of lipid reactive oxygen species. The mRNA and protein expression levels of SLC7A11 were significantly lower in SFN-treated cells compared with that in the control cells (P<0.0001 and P=0.0006, respectively). These results indicated that the anticancer effects of SFN may be caused by ferroptosis in the SCLC cells, which was hypothesized to be triggered from the inhibition of mRNA and protein expression levels of SLC7A11. In conclusion, the present study demonstrated that SFN-induced cell death was mediated via ferroptosis and inhibition of the mRNA and protein expression levels of SLC7A11 in SCLC cells. The anticancer effects of SFN may provide novel options for SCLC treatment.
Collapse
Affiliation(s)
- Yuko Iida
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Mayumi Okamoto-Katsuyama
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Sotaro Shikano
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Mari Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Mai Takahashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kota Tsuya
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shinichi Okamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Toshio Inoue
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Noriaki Takahashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shu Hashimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.,Shonan University of Medical Science, Kanagawa 244-0806, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
72
|
Schepici G, Bramanti P, Mazzon E. Efficacy of Sulforaphane in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21228637. [PMID: 33207780 PMCID: PMC7698208 DOI: 10.3390/ijms21228637] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/14/2022] Open
Abstract
Sulforaphane (SFN) is a phytocompound belonging to the isothiocyanate family. Although it was also found in seeds and mature plants, SFN is mainly present in sprouts of many cruciferous vegetables, including cabbage, broccoli, cauliflower, and Brussels sprouts. SFN is produced by the conversion of glucoraphanin through the enzyme myrosinase, which leads to the formation of this isothiocyanate. SFN is especially characterized by antioxidant, anti-inflammatory, and anti-apoptotic properties, and for this reason, it aroused the interest of researchers. The aim of this review is to summarize the experimental studies present on Pubmed that report the efficacy of SFN in the treatment of neurodegenerative disease, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS). Therefore, thanks to its beneficial effects, SFN could be useful as a supplement to counteracting neurodegenerative diseases.
Collapse
|
73
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
74
|
Abouzed TK, Beltagy EER, Kahilo KA, Ibrahim WM. Molecular changes associated with the anticancer effect of sulforaphane against Ehrlich solid tumour in mice. J Biochem Mol Toxicol 2020; 35:e22655. [PMID: 33094879 DOI: 10.1002/jbt.22655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023]
Abstract
The anticancer effect of sulforaphane (SFN) is mediated by several signalling pathways. However, little is known regarding the underlying mechanism in Ehrlich solid tumours (ESTs) in mice. This study was conducted to determine molecular changes associated with the anticancer effect of SFN and to compare its preventive (cotreatment) and therapeutic (posttreatment) effects. Ehrlich (murine mammary adenocarcinoma) solid tumour was selected and changes in the gene expression were determined in tumour tissues by the real-time polymerase chain reaction. The results showed that SFN increased the expression of the oxidative stress gene NrF2 and its downstream targets (HO1 and CAT). Conversely, SFN administration decreased the expression of the epigenesis-related genes (HDAC1 and DNMT1) and inflammation-related genes (TNFa, NFkB and Cox2). Overall, SFN cotreatment presented notable molecular changes than the posttreatment strategy. These data suggest that molecular changes associated with the anticancer effects of SFN against EST involved induction of oxidative stress, inhibition of inflammation and epigenetic modifications.
Collapse
Affiliation(s)
- Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Esraa-Elden R Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.,Department of Clinical Pathology and Clinical Chemistry, Kafrelsheikh University Hospital, Kafr El-Sheikh, Egypt
| | - Khaled A Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Wafaa M Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
75
|
Bhattacharjee S, Li J, Dashwood RH. Emerging crosstalk between long non-coding RNAs and Nrf2 signaling. Cancer Lett 2020; 490:154-164. [DOI: 10.1016/j.canlet.2020.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|
76
|
Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants (Basel) 2020; 9:antiox9090865. [PMID: 32938017 PMCID: PMC7555619 DOI: 10.3390/antiox9090865] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetics has provided a new dimension to our understanding of nuclear factor erythroid 2–related factor 2/Kelch-like ECH-associated protein 1 (human NRF2/KEAP1 and murine Nrf2/Keap1) signaling. Unlike the genetic changes affecting DNA sequence, the reversible nature of epigenetic alterations provides an attractive avenue for cancer interception. Thus, targeting epigenetic mechanisms in the corresponding signaling networks represents an enticing strategy for therapeutic intervention with dietary phytochemicals acting at transcriptional, post-transcriptional, and post-translational levels. This regulation involves the interplay of histone modifications and DNA methylation states in the human NFE2L2/KEAP1 and murine Nfe2l2/Keap1 genes, acetylation of lysine residues in NRF2 and Nrf2, interaction with bromodomain and extraterminal domain (BET) acetyl “reader” proteins, and non-coding RNAs such as microRNA (miRNA) and long non-coding RNA (lncRNA). Phytochemicals documented to modulate NRF2 signaling act by reversing hypermethylated states in the CpG islands of NFE2L2 or Nfe2l2, via the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), through the induction of ten-eleven translocation (TET) enzymes, or by inducing miRNA to target the 3′-UTR of the corresponding mRNA transcripts. To date, fewer than twenty phytochemicals have been reported as NRF2 epigenetic modifiers, including curcumin, sulforaphane, resveratrol, reserpine, and ursolic acid. This opens avenues for exploring additional dietary phytochemicals that regulate the human epigenome, and the potential for novel strategies to target NRF2 signaling with a view to beneficial interception of cancer and other chronic diseases.
Collapse
|
77
|
Parachini-Winter C, Bracha S, Ramsey SA, Yang L, Ho E, Leeper HJ, Curran KM. Prospective evaluation of the lymph node proteome in dogs with multicentric lymphoma supplemented with sulforaphane. J Vet Intern Med 2020; 34:2036-2047. [PMID: 32926463 PMCID: PMC7517837 DOI: 10.1111/jvim.15898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lymphoma (LSA) is a common malignancy in dogs. Epigenetic changes are linked to LSA pathogenesis and poor prognosis in humans, and LSA pathogenesis in dogs. Sulforaphane (SFN), an epigenetic‐targeting compound, has recently gained interest in relation to cancer prevention and therapy. Objective Examine the impact of oral supplementation with SFN on the lymph node proteome of dogs with multicentric LSA. Animals Seven client‐owned dogs with multicentric LSA. Methods Prospective, nonrandomized, noncontrolled study in treatment‐naïve dogs with intermediate or large cell multicentric LSA. Lymph node cell aspirates were obtained before and after 7 days of oral supplementation with SFN, and analyzed via label‐free mass spectrometry, immunoblots, and Gene Set Enrichment Analysis. Results There was no clinical response and no adverse events attributed to SFN. For individual dogs, the expression of up to 650 proteins changed by at least 2‐fold (range, 2‐100) after supplementation with SFN. When all dogs where analyzed together, 14 proteins were significantly downregulated, and 10 proteins were significantly upregulated after supplementation with SFN (P < .05). Proteins and gene sets impacted by SFN were commonly involved in immunity, response to oxidative stress, gene transcription, apoptosis, protein transport, maturation and ubiquitination. Conclusions and Clinical Importance Sulforaphane is associated with major changes in the proteome of neoplastic lymphocytes in dogs.
Collapse
Affiliation(s)
- Cyril Parachini-Winter
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Shay Bracha
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Liping Yang
- Department of Chemistry, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- Linus Pauling Institute and College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Haley J Leeper
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin M Curran
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
78
|
Catalán M, Ferreira J, Carrasco-Pozo C. The Microbiota-Derived Metabolite of Quercetin, 3,4-Dihydroxyphenylacetic Acid Prevents Malignant Transformation and Mitochondrial Dysfunction Induced by Hemin in Colon Cancer and Normal Colon Epithelia Cell Lines. Molecules 2020; 25:E4138. [PMID: 32927689 PMCID: PMC7571211 DOI: 10.3390/molecules25184138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Meat diet plays a pivotal role in colorectal cancer (CRC). Hemin, a metabolite of myoglobin, produced after meat intake, has been involved in CRC initiation. The compound, 3,4-dihydroxyphenylacetic acid (3,4HPAA) is a scarcely studied microbiota-derived metabolite of the flavonoid quercetin (QUE), which exert antioxidant properties. The aim of this study was to determine the protective effect of 3,4HPAA against malignant transformation (increased cell proliferation, decreased apoptosis, DNA oxidative damage and augmented reactive oxidative species (ROS) levels) and mitochondrial dysfunction induced by hemin in normal colon epithelial cells and colon cancer cells. The effect of 3,4HPAA was assessed in comparison to its precursor, QUE and to a known CRC protective agent, sulforaphane (SFN). The results showed that both, tumor and normal cells, exposed to hemin, presented increased cell proliferation, decreased caspase 3 activity and cytochrome c release, as well as augmented production of intracellular and mitochondrial ROS. In addition, hemin decreased the mitochondrial membrane potential (MMP) and the activity of complexes I and II of the electron transport chain. These effects of hemin were prevented by the action of 3,4HPAA. The metabolite showed to be more active than QUE and slightly less active than SFN. In conclusion, 3,4HPAA administration could represent a promising strategy for preventing malignant transformation and mitochondrial dysfunction in colon epithelia induced by hemin.
Collapse
Affiliation(s)
- Mabel Catalán
- Programa de Farmacología Moleculary Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500000, Chile; (M.C.); (J.F.)
| | - Jorge Ferreira
- Programa de Farmacología Moleculary Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500000, Chile; (M.C.); (J.F.)
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Queensland, Australia
| |
Collapse
|
79
|
Rong Y, Huang L, Yi K, Chen H, Liu S, Zhang W, Yuan C, Song X, Wang F. Co-administration of sulforaphane and doxorubicin attenuates breast cancer growth by preventing the accumulation of myeloid-derived suppressor cells. Cancer Lett 2020; 493:189-196. [PMID: 32891712 DOI: 10.1016/j.canlet.2020.08.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/19/2020] [Accepted: 08/29/2020] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN) is a compound derived from cruciferous plants shown to be effective in cancer prevention and suppression. Myeloid-derived suppressor cells (MDSCs) are known to inhibit anti-tumor immunity; however, whether SFN regulates the anti-tumor activity of MDSCs in breast cancer is still unknown. In the current study, we found that SFN blocked prostaglandin E2 (PGE2) synthesis in parental and doxorubicin (DOX)-resistant breast cancer 4T1 cell lines by activating NF-E2-related factor 2 (Nrf2). Nrf2-mediated reduction of PGE2 was dependent on the enhanced expression of heme oxygenase 1 (HO-1) and glutamate-cysteine ligase (GCLC), and decreased COX-2 expression in breast cancer cells. Moreover, our study further revealed that reduced PGE2 secretion from SFN-treated 4T1 cells triggered MDSCs to switch to an immunogenic phenotype, enhancing the anti-tumor activities of CD8+ T cells. Co-administration of SFN and DOX was more efficacious for the treatment of breast cancer in a mouse model than either agent alone, as evidenced by the significant decrease in tumor volume, MDSC expansion, and increase in cytotoxic CD8+ T cells. Taken together, our data indicate that SFN reverses the immunosuppressive microenvironment and is a potent adjuvant chemotherapeutic candidate in breast cancer.
Collapse
Affiliation(s)
- Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Shaoping Liu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Wuwen Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, PR China.
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
80
|
Wu G, Yan Y, Zhou Y, Duan Y, Zeng S, Wang X, Lin W, Ou C, Zhou J, Xu Z. Sulforaphane: Expected to Become a Novel Antitumor Compound. Oncol Res 2020; 28:439-446. [PMID: 32111265 PMCID: PMC7851526 DOI: 10.3727/096504020x15828892654385] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural products are becoming increasingly popular in a variety of traditional, complementary, and alternative systems due to their potency and slight side effects. Natural compounds have been shown to be effective against many human diseases, especially cancers. Sulforaphane (SFE) is a traditional Chinese herbal medicine. In recent years, an increasing number of studies have been conducted to evaluate the antitumor effect of SFE. The roles of SFE in cancers are mainly through the regulation of potential biomarkers to activate or inhibit related signaling pathways. SFE has exhibited promising inhibitory effects on breast cancer, lung cancer, liver cancer, and other malignant tumors. In this review, we summarized the reports on the activity and functional mechanisms of SFE in cancer treatment and explored the efficacy and toxicity of SFE.
Collapse
Affiliation(s)
- Geting Wu
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yuanliang Yan
- †Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yangying Zhou
- §Department of Oncology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yumei Duan
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Shuangshuang Zeng
- †Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiang Wang
- †Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Lin
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Chunlin Ou
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jianhua Zhou
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhijie Xu
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
81
|
Mancilla VJ, Peeri NC, Silzer T, Basha R, Felini M, Jones HP, Phillips N, Tao MH, Thyagarajan S, Vishwanatha JK. Understanding the Interplay Between Health Disparities and Epigenomics. Front Genet 2020; 11:903. [PMID: 32973872 PMCID: PMC7468461 DOI: 10.3389/fgene.2020.00903] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Social epigenomics has emerged as an integrative field of research focused on identification of socio-environmental factors, their influence on human biology through epigenomic modifications, and how they contribute to current health disparities. Several health disparities studies have been published using genetic-based approaches; however, increasing accessibility and affordability of molecular technologies have allowed for an in-depth investigation of the influence of external factors on epigenetic modifications (e.g., DNA methylation, micro-RNA expression). Currently, research is focused on epigenetic changes in response to environment, as well as targeted epigenetic therapies and environmental/social strategies for potentially minimizing certain health disparities. Here, we will review recent findings in this field pertaining to conditions and diseases over life span encompassing prenatal to adult stages.
Collapse
Affiliation(s)
- Viviana J. Mancilla
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Noah C. Peeri
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Talisa Silzer
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Riyaz Basha
- Department of Pediatrics, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Martha Felini
- Department of Pediatrics, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nicole Phillips
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Meng-Hua Tao
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Srikantha Thyagarajan
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Jamboor K. Vishwanatha
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
82
|
Alhazmi N, Pai CP, Albaqami A, Wang H, Zhao X, Chen M, Hu P, Guo S, Starost K, Hajihassani O, Miyagi M, Kao HY. The promyelocytic leukemia protein isoform PML1 is an oncoprotein and a direct target of the antioxidant sulforaphane (SFN). BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118707. [PMID: 32243901 DOI: 10.1016/j.bbamcr.2020.118707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 01/30/2023]
Abstract
The gene encoding promyelocytic leukemia protein (PML) generates several spliced isoforms. Ectopic expression of PML1 promotes the proliferation of ERα-positive MCF-7 breast cancer (BC) cells, while a loss of PML by knockdown or overexpression of PML4 does the opposite. PML is an essential constituent of highly dynamic particles called PML nuclear bodies (NBs). PML NBs are heterogenous multiprotein subnuclear structures that are part of cellular stress sensing machinery. The antioxidant sulforaphane (SFN) inhibits the proliferation of BC cells and causes a redistribution of the subcellular localization of PML, a disruption of disulfide-bond linkages in nuclear PML-containing complexes, and a reduction in the number and size of PML NBs. Mechanistically, SFN modifies several cysteine residues, including C204, located in the RBCC domain of PML. PML is sumoylated and contains a Sumo-interacting motif, and a significant fraction of Sumo1 and Sumo2/3 co-localizes with PML NBs. Ectopic expression of the mutant C204A selectively inhibits the biogenesis of endogenous PML NBs but not PML-less Sumo1-, Sumo2/3, or Daxx-containing nuclear speckles. Importantly, PML1 (C204A) functions as a dominant-negative mutant over endogenous PML protein and promotes anti-proliferation activity. Together, we conclude that SFN elicits its cytotoxic activity in part by inactivating PML1's pro-tumorigenic activity.
Collapse
Affiliation(s)
- Nada Alhazmi
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Chun-Peng Pai
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Aljawharah Albaqami
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Han Wang
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Xuan Zhao
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Minyue Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Po Hu
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Shuang Guo
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kyle Starost
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Omid Hajihassani
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Masaru Miyagi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH 44106, USA; The Comprehensive Cancer Center of CWRU, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
83
|
Nrf-2 activator sulforaphane protects retinal cells from oxidative stress-induced retinal injury. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
84
|
Zeng H, Hui Y, Qin W, Chen P, Huang L, Zhong W, Lin L, Lv H, Qin X. High-throughput sequencing-based analysis of gene expression of hepatitis B virus infection-associated human hepatocellular carcinoma. Oncol Lett 2020; 20:18. [PMID: 32774491 PMCID: PMC7406887 DOI: 10.3892/ol.2020.11879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/13/2020] [Indexed: 11/08/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a critical factor for the initiation and progression of hepatocellular carcinoma (HCC). Gene expression profiles for HBV-associated HCC may provide valuable insight for the diagnosis and treatment of this type of HCC. The present study aimed to screen the differential genes in human HCC tissues based on high-throughput sequencing and to predict the potential therapeutic targets. Total mRNA was extracted from human HCC tissues and paracancerous tissues and sequenced using the Hiseq4000 sequencing platform. Differential gene expressions were screened and further analyzed using quantitative PCR and immunohistochemistry. A total of 2,386 differentially expressed genes were screened. Of these, 1119 were upregulated and 1,267 were downregulated in paracancerous tissues compared with tumor tissues. Gene Ontology term analysis demonstrated that differentially expressed genes were involved in carboxylic acid catabolism, monocarboxylic acid metabolic processes and α-amino acid metabolic processes. Molecular functional analysis revealed that the differentially expressed genes functioned in oxidoreductase activity, for example acting on CH-OH group of donors and permitting identical protein binding, anion binding, coenzyme binding and monocarxylic acid transporter activity. The Kyoto Encyclopedia of Genes and Genomes analysis reported that the differentially expressed genes were primarily concentrated in 20 signaling pathways, such as valine, leucine and leucine degradation, retinol metabolism and the cell cycle. Differential expression of proteins regulating the cell cycle, including stratifin, cyclin B1 and cyclin-dependent kinase 1, were significantly higher in tumor tissue compared with those in paracancerous tissue at both the mRNA and protein levels. These results were consistent with those obtained from high-throughput sequencing, indicating the reliability of the high-throughput sequencing. Together, these results identified differentially expressed genes and predicted the subsequent signaling pathways, which may be involved in the occurrence and development of HCC. Therefore, the present study may provide novel implications in the therapeutic and diagnosis of HCC.
Collapse
Affiliation(s)
- Hao Zeng
- Department of Clinical Laboratory, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Ying Hui
- Department of Clinical Laboratory, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Wenzhou Qin
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Peisheng Chen
- Department of Hepatobiliary Surgery, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Lifang Huang
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Wenfu Zhong
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Liwen Lin
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Hui Lv
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
85
|
Ruhee RT, Suzuki K. The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective Phytochemical. Antioxidants (Basel) 2020; 9:antiox9060521. [PMID: 32545803 PMCID: PMC7346151 DOI: 10.3390/antiox9060521] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Cruciferous vegetables hold a myriad of bioactive molecules that are renowned for possessing unique medicinal benefits. Sulforaphane (SFN) is one of the potential nutraceuticals contained within cruciferous vegetables that is useful for improving health and diseased conditions. The objective of this review is to discuss the mechanistic role for SFN in preventing oxidative stress, fatigue, and inflammation. Direct and indirect research evidence is reported to identify the nontoxic dose of SFN for human trials, and effectiveness of SFN to attenuate inflammation and/or oxidative stress. SFN treatment modulates redox balance via activating redox regulator nuclear factor E2 factor-related factor (Nrf2). SFN may play a crucial role in altering the Keap1/Nrf2/ARE pathway (an intricate response to many stimuli or stress), which induces Nrf2 target gene activation to reduce oxidative stress. In addition, SFN reduces inflammation by suppressing centrally involved inflammatory regulator nuclear factor-kappa B (NF-κB), which in turn downregulates the expression of proinflammatory cytokines and mediators. Exercise may induce a significant range of fatigue, inflammation, oxidative stress, and/or organ damage due to producing excessive reactive oxygen species (ROS) and inflammatory cytokines. SFN may play an effective role in preventing such damage via inducing phase 2 enzymes, activating the Nrf2/ARE signaling pathway or suppressing nuclear translocation of NF-κB. In this review, we summarize the integrative role of SFN in preventing fatigue, inflammation, and oxidative stress, and briefly introduce the history of cruciferous vegetables and the bioavailability and pharmacokinetics of SFN reported in previous research. To date, very limited research has been conducted on SFN’s effectiveness in improving exercise endurance or performance. Therefore, more research needs to be carried out to determine the effectiveness of SFN in the field of exercise and lifestyle factors.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: ; Tel.: +81-4-2947-6898
| |
Collapse
|
86
|
Zheng K, Ma J, Wang Y, He Z, Deng K. Sulforaphane Inhibits Autophagy and Induces Exosome-Mediated Paracrine Senescence via Regulating mTOR/TFE3. Mol Nutr Food Res 2020; 64:e1901231. [PMID: 32476238 DOI: 10.1002/mnfr.201901231] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/27/2020] [Indexed: 12/11/2022]
Abstract
SCOPE The development of novel compounds that trigger non-apoptotic cell death may represent alternative therapeutic strategies for esophageal squamous cell carcinoma (ESCC) treatment. Cellular senescence suppresses tumorigenesis by halting the proliferation of tumor cells, implying the induction of senescence as a promising anticancer strategy, especially when combined with senolytic agents that specially kill senescent cells. This study is designed to screen novel anti-ESCC compounds from a natural product resource and identify its mechanism-of-action. METHODS AND RESULTS Identified are the significant anti-cancer effect and underlying mechanism of SFN, an isothiocyanate derived from cruciferous vegetables, through RNA sequencing, western blot, and immunofluorescent assays. It is found that SFN inhibits proliferation of ESCC cells through inducing senescence. Mechanistically, SFN induces reactive oxygen species (ROS) via disrupting the balance between glutathione and oxidized glutathione, leading to DNA damage. In addition, ROS deregulates autophagy and promotes lysosome abnormal biogenesis through regulating mTOR/TFE3 axis. Finally, the inhibited autophagic flux facilitates exosome production, resulting in exosome-mediated paracrine senescence. CONCLUSIONS This study suggests the important roles of autophagy and exosome-mediated paracrine senescence in cancer therapy and highlights SFN as a potent anti-ESCC drug candidate.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingxin Ma
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yifei Wang
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhendan He
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China.,Guangdong Key laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen, 518060, P. R. China
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
87
|
Sulforaphane in broccoli-based matrices: Effects of heat treatment and addition of oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
88
|
Rai R, Gong Essel K, Mangiaracina Benbrook D, Garland J, Daniel Zhao Y, Chandra V. Preclinical Efficacy and Involvement of AKT, mTOR, and ERK Kinases in the Mechanism of Sulforaphane against Endometrial Cancer. Cancers (Basel) 2020; 12:E1273. [PMID: 32443471 PMCID: PMC7281543 DOI: 10.3390/cancers12051273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Sulforaphane exerts anti-cancer activity against multiple cancer types. Our objective was to evaluate utility of sulforaphane for endometrial cancer therapy. Sulforaphane reduced viability of endometrial cancer cell lines in association with the G2/M cell cycle arrest and cell division cycle protein 2 (Cdc2) phosphorylation, and intrinsic apoptosis. Inhibition of anchorage-independent growth, invasion, and migration of the cell lines was associated with sulforaphane-induced alterations in epithelial-to-mesenchymal transition (EMT) markers of increased E-cadherin and decreased N-cadherin and vimentin expression. Proteomic analysis identified alterations in AKT, mTOR, and ERK kinases in the networks of sulforaphane effects in the Ishikawa endometrial cancer cell line. Western blots confirmed sulforaphane inhibition of AKT, mTOR, and induction of ERK with alterations in downstream signaling. AKT and mTOR inhibitors reduced endometrial cancer cell line viability and prevented further reduction by sulforaphane. Accumulation of nuclear phosphorylated ERK was associated with reduced sensitivity to the ERK inhibitor and its interference with sulforaphane activity. Sulforaphane induced apoptosis-associated growth inhibition of Ishikawa xenograft tumors to a greater extent than paclitaxel, with no evidence of toxicity. These results verify sulforaphane's potential as a non-toxic treatment candidate for endometrial cancer and identify AKT, mTOR, and ERK kinases in the mechanism of action with interference in the mechanism by nuclear phosphorylated ERK.
Collapse
Affiliation(s)
- Rajani Rai
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
| | - Kathleen Gong Essel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Doris Mangiaracina Benbrook
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Justin Garland
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
| | - Yan Daniel Zhao
- Biostatistics & Epidemiology, College of Public Health University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Vishal Chandra
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
89
|
Ahmed AG, Hussein UK, Ahmed AE, Kim KM, Mahmoud HM, Hammouda O, Jang KY, Bishayee A. Mustard Seed ( Brassica nigra) Extract Exhibits Antiproliferative Effect against Human Lung Cancer Cells through Differential Regulation of Apoptosis, Cell Cycle, Migration, and Invasion. Molecules 2020; 25:molecules25092069. [PMID: 32365503 PMCID: PMC7248788 DOI: 10.3390/molecules25092069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the primary cause of cancer-related death worldwide, and development of novel lung cancer preventive and therapeutic agents are urgently needed. Brassica nigra (black mustard) seeds are commonly consumed in several Asian and African countries. Mustard seeds previously exhibited significant anticancer activities against several cancer types. In the present study, we have investigated various cellular and molecular mechanisms of anticancer effects of an ethanolic extract of B. nigra seeds against A549 and H1299 human non-small cell lung cancer cell lines. B. nigra extract showed a substantial growth-inhibitory effect as it reduced the viability and clonogenic survival of A549 and H1299 cells in a concentration-dependent manner. B. nigra extract induced cellular apoptosis in a time- and concentration-dependent fashion as evidenced from increased caspase-3 activity. Furthermore, treatment of both A549 and H1299 cells with B. nigra extract alone or in combination with camptothecin induced DNA double-strand breaks as evidenced by upregulation of γH2A histone family member X, Fanconi anemia group D2 protein, Fanconi anemia group J protein, ataxia-telangiectesia mutated and Rad3-related protein. Based on cell cycle analysis, B. nigra extract significantly arrested A549 and H1299 cells at S and G2/M phases. Additionally, B. nigra extract suppressed the migratory and invasive properties of both cell lines, downregulated the expression of matrix metalloproteinase-2 (MMP2), MMP9, and Snail and upregulated the expression of E-cadherin at mRNA and protein levels. Taken together, these findings indicate that B. nigra seed extract may have an important anticancer potential against human lung cancer which could be mediated through simultaneous and differential regulation of proliferation, apoptosis, DNA damage, cell cycle, migration, and invasion.
Collapse
Affiliation(s)
- Asmaa Gamal Ahmed
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea; (A.G.A.); (U.K.H.); (K.M.K.)
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Usama Khamis Hussein
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea; (A.G.A.); (U.K.H.); (K.M.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
- Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (H.M.M.); (O.H.)
| | - Amr E. Ahmed
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea; (A.G.A.); (U.K.H.); (K.M.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Hamada M. Mahmoud
- Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (H.M.M.); (O.H.)
| | - Ola Hammouda
- Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (H.M.M.); (O.H.)
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea; (A.G.A.); (U.K.H.); (K.M.K.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: (K.Y.J.); or (A.B.); Tel.: +82-10-4228-9970 (K.Y.J.); +1-941-782-5950 (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: (K.Y.J.); or (A.B.); Tel.: +82-10-4228-9970 (K.Y.J.); +1-941-782-5950 (A.B.)
| |
Collapse
|
90
|
Biomarker Exploration in Human Peripheral Blood Mononuclear Cells for Monitoring Sulforaphane Treatment Responses in Autism Spectrum Disorder. Sci Rep 2020; 10:5822. [PMID: 32242086 PMCID: PMC7118069 DOI: 10.1038/s41598-020-62714-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is one of the most common neurodevelopmental disorders with no drugs treating the core symptoms and no validated biomarkers for clinical use. The multi-functional phytochemical sulforaphane affects many of the biochemical abnormalities associated with ASD. We investigated potential molecular markers from three ASD-associated physiological pathways that can be affected by sulforaphane: redox metabolism/oxidative stress; heat shock response; and immune dysregulation/inflammation, in peripheral blood mononuclear cells (PBMCs) from healthy donors and patients with ASD. We first analyzed the mRNA levels of selected molecular markers in response to sulforaphane ex vivo treatment in PBMCs from healthy donors by real-time quantitative PCR. All of the tested markers showed quantifiability, accuracy and reproducibility. We then compared the expression levels of those markers in PBMCs taken from ASD patients in response to orally-delivered sulforaphane. The mRNA levels of cytoprotective enzymes (NQO1, HO-1, AKR1C1), and heat shock proteins (HSP27 and HSP70), increased. Conversely, mRNA levels of pro-inflammatory markers (IL-6, IL-1β, COX-2 and TNF-α) decreased. Individually none is sufficiently specific or sensitive, but when grouped by function as two panels, these biomarkers show promise for monitoring pharmacodynamic responses to sulforaphane in both healthy and autistic humans, and providing guidance for biomedical interventions.
Collapse
|
91
|
Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch Pharm Res 2020; 43:371-384. [PMID: 32152852 DOI: 10.1007/s12272-020-01225-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Sulforaphane is an isothiocyanate compound that has been derived from cruciferous vegetables. It was shown in numerous studies to be active against multiple cancer types including pancreatic, prostate, breast, lung, cervical, and colorectal cancers. Sulforaphane exerts its therapeutics action by a variety of mechanisms, such as by detoxifying carcinogens and oxidants through blockage of phase I metabolic enzymes, and by arresting cell cycle in the G2/M and G1 phase to inhibit cell proliferation. The most striking observation was the ability of sulforaphane to potentiate the activity of several classes of anticancer agents including paclitaxel, docetaxel, and gemcitabine through additive and synergistic effects. Although a good number of reviews have reported on the mechanisms by which sulforaphane exerts its anticancer activity, a comprehensive review on the synergistic effect of sulforaphane and its delivery strategies is lacking. Therefore, the aim of the current review was to provide a summary of the studies that have been reported on the activity enhancement effect of sulforaphane in combination with other anticancer therapies. Also provided is a summary of the strategies that have been developed for the delivery of sulforaphane.
Collapse
|
92
|
Natural products as promising targets in glioblastoma multiforme: a focus on NF-κB signaling pathway. Pharmacol Rep 2020; 72:285-295. [DOI: 10.1007/s43440-020-00081-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
93
|
Kołodziejski D, Koss-Mikołajczyk I, Abdin AY, Jacob C, Bartoszek A. Chemical Aspects of Biological Activity of Isothiocyanates and Indoles, the Products of Glucosinolate Decomposition. Curr Pharm Des 2020; 25:1717-1728. [PMID: 31267852 DOI: 10.2174/1381612825666190701151644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
There is growing evidence that cancer chemoprevention employing natural, bioactive compounds may halt or at least slow down the different stages of carcinogenesis. A particularly advantageous effect is attributed to derivatives of sulfur-organic phytochemicals, such as glucosinolates (GLs) synthesized mainly in Brassicaceae plant family. GLs are hydrolysed enzymatically to bioactive isothiocyanates (ITC) and indoles, which exhibit strong anti-inflammatory and anti-carcinogenic activity. Highly bioavailable electrophilic ITC are of particular interest, as they can react with nucleophilic groups of important biomolecules to form dithiocarbamates, thiocarbamates and thioureas. These modifications seem responsible for the chemopreventive activity, but also for genotoxicity and mutagenicity. It was documented that ITC can permanently bind to important biomolecules such as glutathione, cytoskeleton proteins, transcription factors NF-κB and Nrf2, thiol-disulfide oxidoreductases, proteasome proteins or heat shock proteins. Furthermore, ITC may also affect epigenetic regulation of gene expression, e.g. by inhibition of histone deacetylases. Some other derivatives of glucosinolates, especially indoles, are able to form covalent bonds with nucleobases in DNA, which may result in genotoxicity and mutagenicity. This article summarizes the current state of knowledge about glucosinolates and their degradation products in terms of possible interactions with reactive groups of cellular molecules.
Collapse
Affiliation(s)
- Dominik Kołodziejski
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdarisk, Poland
| | - Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdarisk, Poland
| | - Ahmad Y Abdin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdarisk, Poland
| |
Collapse
|
94
|
Saez D, Dushime R, Wu H, Ramos Cordova LB, Shukla K, Brown-Harding H, Furdui CM, Tsang AW. Sulforaphane promotes chlamydial infection by suppressing mitochondrial protein oxidation and activation of complement C3. Protein Sci 2020; 28:216-227. [PMID: 30367535 DOI: 10.1002/pro.3536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Abstract
Sulforaphane (SFN), a phytochemical found in broccoli and other cruciferous vegetables, is a potent antioxidant and anti-inflammatory agent with reported effects in cancer chemoprevention and suppression of infection with intracellular pathogens. Here we report on the impact of SFN on infection with Chlamydia trachomatis (Ct), a common sexually transmitted pathogen responsible for 131 million new cases annually worldwide. Astoundingly, we find that SFN as well as broccoli sprouts extract (BSE) promote Ct infection of human host cells. Both the number and size of Ct inclusions were increased when host cells were pretreated with SFN or BSE. The initial investigations presented here point to both the antioxidant and thiol alkylating properties of SFN as regulators of Ct infection. SFN decreased mitochondrial protein sulfenylation and promoted Ct development, which were both reversed by treatment with mitochondria-targeted paraquat (MitoPQ). Inhibition of the complement component 3 (complement C3) by SFN was also identified as a mechanism by which SFN promotes Ct infections. Mass spectrometry analysis found alkylation of cysteine 1010 (Cys1010) in complement C3 by SFN. The studies reported here raise awareness of the Ct infection promoting activity of SFN, and also identify potential mechanisms underlying this activity.
Collapse
Affiliation(s)
- Daniel Saez
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Rosine Dushime
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Lourdes B Ramos Cordova
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | | | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| |
Collapse
|
95
|
Singh D, Arora R, Bhatia A, Singh H, Singh B, Arora S. Molecular targets in cancer prevention by 4-(methylthio)butyl isothiocyanate - A comprehensive review. Life Sci 2020; 241:117061. [PMID: 31794774 DOI: 10.1016/j.lfs.2019.117061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
Abstract
The consumption of cruciferous vegetables rich in isothiocyanates has long been associated with a reduced risk of various types of cancer. 4-(methylthio)butyl isothiocyanate also called erucin is an isothiocyanate present in appreciable quantity in the seeds of Eruca sativa Mill. plant. Although the literature has revealed its protective effects via inducing phase II enzymes and inhibiting carcinogen activating phase I enzymes, recent studies also suggest that, it inhibits the proliferation of cancer cells by altering the telomerase activity, dynamics of microtubules, expression of histone deacetylases, and other molecular pathways. With this in mind, the emphasis has been made to review the molecular targets involved in cancer prevention by 4-(methylthio)butyl isothiocyanate.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Rohit Arora
- Department of Biochemistry, Sri Guru Ram Das University of Health Science, Amritsar 143005, India.
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
96
|
Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020; 10:biom10010105. [PMID: 31936288 PMCID: PMC7022462 DOI: 10.3390/biom10010105] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevailing global health disease with a high incidence rate which varies by region. It is a huge economic burden on health care providers. GI cancer affects different organs in the body such as the gastric organs, colon, esophagus, intestine, and pancreas. Internal and external factors like smoking, obesity, urbanization, genetic mutations, and prevalence of Helicobacter pylori and Hepatitis B and Hepatitis C viral infections could increase the risk of GI cancer. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in fruits, grains, and vegetables. Consumption of phytochemicals may protect against chronic diseases like cardiovascular disease, neurodegenerative disease, and cancer. Multiple studies have assessed the chemoprotective effect of selected phytochemicals in GI cancer, offering support to their potential towards reducing the pathogenesis of the disease. The aim of this review was to summarize the current knowledge addressing the anti-cancerous effects of selected dietary phytochemicals on GI cancer and their molecular activities on selected mechanisms, i.e., nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), detoxification enzymes, adenosine monophosphate activated protein kinase (AMPK), wingless-related integration site/β-catenin (wingless-related integration site (Wnt) β-catenin, cell apoptosis, phosphoinositide 3-kinases (PI3K)/ protein kinase B AKT/ mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK). In this review phytochemicals were classified into four main categories: (i) carotenoids, including lutein, lycopene, and β-carotene; (ii) proanthocyanidins, including quercetin and ellagic acid; (iii) organosulfur compounds, including allicin, allyl propyl disulphide, asparagusic acid, and sulforaphane; and (iv) other phytochemicals including pectin, curcumins, p-coumaric acid and ferulic acid. Overall, phytochemicals improve cancer prognosis through the downregulation of β-catenin phosphorylation, therefore enhancing apoptosis, and upregulation of the AMPK pathway, which supports cellular homeostasis. Nevertheless, more studies are needed to provide a better understanding of the mechanism of cancer treatment using phytochemicals and possible side effects associated with this approach.
Collapse
|
97
|
Xu Y, Han X, Li Y, Min H, Zhao X, Zhang Y, Qi Y, Shi J, Qi S, Bao Y, Nie G. Sulforaphane Mediates Glutathione Depletion via Polymeric Nanoparticles to Restore Cisplatin Chemosensitivity. ACS NANO 2019; 13:13445-13455. [PMID: 31670945 DOI: 10.1021/acsnano.9b07032] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Platinum (Pt)-based chemotherapy is a broadly used therapeutic regimen against various cancers. However, the insufficient cellular uptake, deactivation by thiol-containing species and nonspecific distribution of cisplatin (CDDP) result in its low chemosensitivity as well as systemic side effects, which can largely constrain the employment of CDDP in clinical treatment. To circumvent these problems, in this study, polymeric nanoparticles were utilized to codeliver a water-soluble CDDP derivative, poly(γ,l-glutamic acid)-CDDP conjugate, and a naturally occurring compound derived from broccoli, sulforaphane, which can achieve efficient glutathione (GSH) depletion, to improve the accumulation of CDDP in cancer cells. Results show that compared with combinational treatment of CDDP and SFN, the nanoparticles were more effectively internalized and could significantly reduce GSH content in breast cancer cells, leading to a notable increase in DNA-bound Pt and DNA damage-induced apoptosis. Moreover, in an orthotopic breast cancer model, the nanoparticles achieved a significantly higher tumor accumulation and exhibited a more powerful antitumor activity. Finally, this nanoenhanced chemotherapy was further confirmed in a liver cancer model with high-expression of GSH. Taken together, this sulforaphane-based nanostrategy holds great promise to enhance the sensitivity and therapeutic efficacy of Pt-based chemotherapy.
Collapse
Affiliation(s)
- Ying Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Sino-Danish Center for Education and Research , Sino-Danish College of University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Huan Min
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yingqiu Qi
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan , P.R. China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Sheng Qi
- School of Pharmacy , University of East Anglia , Norwich , Norfolk NR4 7TJ , U.K
| | - Yongping Bao
- Norwich Medical School , University of East Anglia , Norwich , Norfolk NR4 7UQ , U.K
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|
98
|
Glucosinolate-Degradation Products as Co-Adjuvant Therapy on Prostate Cancer in Vitro. Int J Mol Sci 2019; 20:ijms20204977. [PMID: 31600887 PMCID: PMC6834131 DOI: 10.3390/ijms20204977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Glucosinolate-degradation products (GS-degradation products) are believed to be responsible for the anticancer effects of cruciferous vegetables. Furthermore, they could improve the efficacy and reduce side-effects of chemotherapy. The aim of the present study was to determine the cytotoxic effects of GS-degradation products on androgen-insensitive human prostate cancer (AIPC) PC-3 and DU 145 cells and investigate their ability to sensitize such cells to chemotherapeutic drug Docetaxel (DOCE). Cells were cultured under growing concentrations of allyl-isothiocyanate (AITC), sulforaphane (SFN), 4-pentenyl-isothiocyanate (4PI), iberin (IB), indole-3-carbinol (I3C), or phenethyl-isothiocyanate (PEITC) in absence or presence of DOCE. The anti-tumor effects of these compounds were analyzed using the trypan blue exclusion, apoptosis, invasion and RT-qPCR assays and confocal microscopy. We observed that AITC, SFN, IB, and/or PEITC induced a dose- and time-dependent cytotoxic effect on PC-3 and DU 145 cells, which was mediated, at least, by apoptosis and cell cycle arrest. Likewise, we showed that these GS-degradation products sensitized both cell lines to DOCE by synergic mechanisms. Taken together, our results indicate that GS-degradation products can be promising compounds as co-adjuvant therapy in prostate cancer.
Collapse
|
99
|
Keshandehghan A, Nikkhah S, Tahermansouri H, Heidari-Keshel S, Gardaneh M. Co-Treatment with Sulforaphane and Nano-Metformin Molecules Accelerates Apoptosis in HER2+ Breast Cancer Cells by Inhibiting Key Molecules. Nutr Cancer 2019; 72:835-848. [DOI: 10.1080/01635581.2019.1655073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. Keshandehghan
- Department of Stem Cells and Regenerative Medicine, Division of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - S. Nikkhah
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - H. Tahermansouri
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - S. Heidari-Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. Gardaneh
- Department of Stem Cells and Regenerative Medicine, Division of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
100
|
Yasuda S, Horinaka M, Sakai T. Sulforaphane enhances apoptosis induced by Lactobacillus pentosus strain S-PT84 via the TNFα pathway in human colon cancer cells. Oncol Lett 2019; 18:4253-4261. [PMID: 31579089 DOI: 10.3892/ol.2019.10739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/29/2019] [Indexed: 01/07/2023] Open
Abstract
Sulforaphane and Lactobacilli induce apoptosis in several cancer cells. Sulforaphane, a dietary isothiocyanate, is an attractive agent due to its potent anticancer effects. Sulforaphane suppresses the proliferation of various cancer cells in vitro and in vivo. The present study investigated the effect of sulforaphane and a co-culture with Lactobacillus-treated peripheral blood mononuclear cells (PBMCs) in human colon cancer cells. The combination markedly induced apoptosis in human colon cancer HCT116 and SW480 cells. A pan-caspase inhibitor markedly inhibited apoptosis, and a tumor necrosis factor (TNF) receptor/Fc chimera partially inhibited apoptosis in both cells. The amount of TNFα secretion in the culture supernatant was significantly increased by co-culture with Lactobacillus-treated normal human PBMCs. On the other hand, the expression of cellular inhibitor of apoptosis-2 (cIAP-2), an anti-apoptotic protein, was increased by co-culture with Lactobacillus-treated PBMCs in colon cancer cells, but sulforaphane treatment significantly suppressed the induction of cIAP-2. The present results revealed that sulforaphane enhances apoptosis in human colon cancer cells under co-culture with Lactobacillus-treated PBMCs via the TNFα signaling pathway.
Collapse
Affiliation(s)
- Shusuke Yasuda
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mano Horinaka
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| |
Collapse
|