51
|
Pan X, Yang X, Zang J, Zhang S, Huang N, Guan X, Zhang J, Wang Z, Li X, Lei X. Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins. Oncol Lett 2017; 13:4785-4793. [PMID: 28599480 PMCID: PMC5453003 DOI: 10.3892/ol.2017.6049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022] Open
Abstract
Overexpression of adenosine triphosphate-binding cassette (ABC) transport protein is emerging as a critical contributor to anticancer drug resistance. The eukaryotic translation initiation factor (eIF) 4F complex, the key modulator of mRNA translation, is regulated by the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway in anticancer drug-resistant tumors. The present study demonstrated the roles of ABC translation protein alterations in the acquisition of the Adriamycin (ADM)-resistant phenotype of MCF-7 human breast cells. Quantitative polymerase chain reaction and western blot analysis were applied to examine the differences in mRNA and protein levels, respectively. It was found that the expression of the ABC sub-family B member 1, ABC sub-family C member 1 and ABC sub-family G member 2 transport proteins were upregulated in MCF-7/ADR cells. An MTT assay was used to detect the cell viability, from the results MCF-7/ADR cells were less sensitive to ADM, tamoxifen (TAM) and taxol (TAX) treatment compared with MCF-7 cells. We predicted that the 3′-untranslated region of eukaryotic translation initiation factor 4-γ 1 (eIF4G) contains a potential miRNA binding site for microRNA (miR)-503 through using computational programs. These binding sites were confirmed by luciferase reporter assays. eIF4G mRNA degradation was accelerated in cells transfected with miR-503 mimics. Furthermore, it was demonstrated that eIF4G and ABC translation proteins were significantly downregulated in MCF-7/ADR cells after transfection with miR-503. It was found that miR-503 mimics could sensitize the cells to treatment with ADM, TAM and TAX. These findings demonstrated for the first time that eIF4G acted as a key factor in MCF-7/ADR cells, and may be an efficient agent for preventing and reversing multi-drug resistance in breast cancer.
Collapse
Affiliation(s)
- Xia Pan
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jinglei Zang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Si Zhang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Nan Huang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xinxin Guan
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jianhua Zhang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhihui Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
52
|
Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Buurman R, Skawran B, Lehmann U. hsa-mir-183 is frequently methylated and related to poor survival in human hepatocellular carcinoma. World J Gastroenterol 2017; 23:1568-1575. [PMID: 28321157 PMCID: PMC5340808 DOI: 10.3748/wjg.v23.i9.1568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/13/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To screen clinically relevant microRNAs (miRNAs) silenced by DNA methylation in human hepatocellular carcinoma (HCC).
METHODS Knockdown of DNA methyltransferases (DNMTs) using siRNAs and miRNA profiling in HCC cell lines were performed to identify DNA hypermethylation-mediated miRNA downregulation. Confirmation using individual quantitative real-time PCR (qRT-PCR) assays was then performed followed by DNA methylation quantification at the promoter of the miRNA genes. Quantification of DNA methylation and miRNA expression was then performed in primary HCC tumor samples and related with clinicopathological variables.
RESULTS miRNA profiling after DNMT knockdown in HCC cell lines revealed upregulation of miR-23, miR-25 and miR-183. After qRT-PCR confirmation and CpG island methylation quantification of these miRNAs in cell lines, further analysis in primary HCC specimens showed that hsa-miR-183 is hypermethylated in 30% of HCC (n = 40). Expression of mature miR-183 showed an inverse correlation with DNA methylation levels. In HCC cells, DNMT knockdown and 5-aza-2'-deoxycytidine treatment reduced methylation and stimulated expression of miR-183. In HCC patients, hypermethylation at hsa-miR-183 promoter significantly correlates with poor survival (log-rank test P = 0.03). DNA methylation analysis in healthy liver, benign liver tumors (hepatocellular adenoma and focal nodular hyperplasia) and their corresponding adjacent tissues showed absence of hypermethylation supporting the notion that aberrant methylation at hsa-miR-183 is specific for the malignant transformation of hepatocytes.
CONCLUSION Our data indicate that hypermethylation of hsa-miR-183 is a frequent event in HCC and potentially useful as a novel surrogate diagnostic and prognostic marker.
Collapse
|
53
|
Wang SJ, Cao YF, Yang ZQ, Jiang ZY, Cai B, Guo J, Zhang S, Zhang XL, Gao F. MicroRNA-93-5p increases multidrug resistance in human colorectal carcinoma cells by downregulating cyclin dependent kinase inhibitor 1A gene expression. Oncol Lett 2016; 13:722-730. [PMID: 28356951 PMCID: PMC5351191 DOI: 10.3892/ol.2016.5463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/30/2016] [Indexed: 01/05/2023] Open
Abstract
Multidrug resistance (MDR) impedes successful chemotherapy in colorectal carcinoma (CRC) and emerging evidence suggests that microRNAs (miRs) are involved in the development of MDR. In the present study, the role of miR-93-5p in the modulation of drug resistance in CRC was investigated using HCT-8 and MDR HCT-8/vincristine (VCR) cell lines. The results demonstrated upregulated expression of miR-93-5p and MDR protein 1 (MDR1) in HCT-8/VCR cells, compared with the parental HCT-8 cells. Furthermore, cyclin-dependent kinase inhibitor 1A (CDKN1A) was identified as a potential target of miR-93-5p using miR target analysis tools, including PicTar, TargetScan and miRanda. In addition, inhibition of miR-93-5p expression in HCT-8/VCR cells markedly downregulated MDR1 gene expression, upregulated CDKN1A gene expression and induced cell cycle arrest in G1. Conversely, the overexpression of miR-93-5p in HCT-8/VCR cells upregulated MDR1 gene expression, downregulated CDKN1A gene expression and promoted G1/S transition. Furthermore, the in vitro drug sensitivity assay performed suggested that downregulation of miR-93-5p enhanced the sensitivity of HCT-8/VCR cells to VCR, while the upregulation of miR-93-5p decreased the sensitivity of HCT-8 cells to VCR. In conclusion, the results of the present study suggest that miR-93-5p serves a role in the development of MDR through downregulating CDKN1A gene expression in CRC.
Collapse
Affiliation(s)
- Shi-Jun Wang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yun-Fei Cao
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zu-Qing Yang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhi-Yuan Jiang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bin Cai
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiao Guo
- Experimental Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sen Zhang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Long Zhang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
54
|
Sun HL, Cui R, Zhou J, Teng KY, Hsiao YH, Nakanishi K, Fassan M, Luo Z, Shi G, Tili E, Kutay H, Lovat F, Vicentini C, Huang HL, Wang SW, Kim T, Zanesi N, Jeon YJ, Lee TJ, Guh JH, Hung MC, Ghoshal K, Teng CM, Peng Y, Croce CM. ERK Activation Globally Downregulates miRNAs through Phosphorylating Exportin-5. Cancer Cell 2016; 30:723-736. [PMID: 27846390 PMCID: PMC5127275 DOI: 10.1016/j.ccell.2016.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 04/01/2016] [Accepted: 10/03/2016] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNA) are mostly downregulated in cancer. However, the mechanism underlying this phenomenon and the precise consequence in tumorigenesis remain obscure. Here we show that ERK suppresses pre-miRNA export from the nucleus through phosphorylation of exportin-5 (XPO5) at T345/S416/S497. After phosphorylation by ERK, conformation of XPO5 is altered by prolyl isomerase Pin1, resulting in reduction of pre-miRNA loading. In liver cancer, the ERK-mediated XPO5 suppression reduces miR-122, increases microtubule dynamics, and results in tumor development and drug resistance. Analysis of clinical specimens further showed that XPO5 phosphorylation is associated with poor prognosis for liver cancer patients. Our study reveals a function of ERK in miRNA biogenesis and suggests that modulation of miRNA export has potential clinical implications.
Collapse
Affiliation(s)
- Hui-Lung Sun
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA; Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ri Cui
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - JianKang Zhou
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Kun-Yu Teng
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Yung-Hsuan Hsiao
- Department of Human Sciences, Human Nutrition Program, College of Education and Human Ecology, Ohio State University, Columbus, OH 43210, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Matteo Fassan
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA; ARC-NET Research Centre, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Zhenghua Luo
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Guqin Shi
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA; Department of Anesthesiology, Ohio State University, Columbus, OH 43210, USA
| | - Huban Kutay
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Francesca Lovat
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Caterina Vicentini
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Han-Li Huang
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Taewan Kim
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicola Zanesi
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Young-Jun Jeon
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Tae Jin Lee
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei 10051, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Kalpana Ghoshal
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Che-Ming Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yong Peng
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
55
|
Li MP, Hu YD, Hu XL, Zhang YJ, Yang YL, Jiang C, Tang J, Chen XP. MiRNAs and miRNA Polymorphisms Modify Drug Response. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111096. [PMID: 27834829 PMCID: PMC5129306 DOI: 10.3390/ijerph13111096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
Differences in expression of drug response-related genes contribute to inter-individual variation in drugs’ biological effects. MicroRNAs (miRNAs) are small noncoding RNAs emerging as new players in epigenetic regulation of gene expression at post-transcriptional level. MiRNAs regulate the expression of genes involved in drug metabolism, drug transportation, drug targets and downstream signal molecules directly or indirectly. MiRNA polymorphisms, the genetic variations affecting miRNA expression and/or miRNA-mRNA interaction, provide a new insight into the understanding of inter-individual difference in drug response. Here, we provide an overview of the recent progress in miRNAs mediated regulation of biotransformation enzymes, drug transporters, and nuclear receptors. We also describe the implications of miRNA polymorphisms in cancer chemotherapy response.
Collapse
Affiliation(s)
- Mu-Peng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yao-Dong Hu
- Department of Cardiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China.
| | - Xiao-Lei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yan-Jiao Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yong-Long Yang
- Haikou People's Hospital and Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou 570311, China.
| | - Chun Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
56
|
Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, Sun Y, Luo G, Liang J, Wu K, Nie Y, Fan D. The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget 2016; 7:538-49. [PMID: 26623719 PMCID: PMC4808016 DOI: 10.18632/oncotarget.6374] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022] Open
Abstract
Multidrug resistance (MDR) correlates with treatment failure and poor prognosis among gastric cancer (GC) patients. In a previous study using high-throughput functional screening, we identified 11 microRNAs (miRNAs) that regulate MDR in GC and found that miR-508-5p reversed MDR by targeting ABCB1 and ZNRD1. However, the mechanism by which miR-508-5p was decreased in chemo-resistant GC cells was unclear. In this study, we found that ectopic miR-27b is sufficient to sensitize tumors to chemotherapy in vitro and in vivo. Moreover, miR-27b directly targets the 3′ untranslated regions (3′-UTRs) of CCNG1, a well-known negative regulator of P53 stability. Interestingly, miR-27b up-regulation leads to increased miR-508-5p expression, and this phenomenon is mediated by CCNG1 and P53. Further investigation indicated that miR-508-5p is directly regulated by P53. Thus, the miR-27b/CCNG1/P53/miR-508-5p axis plays important roles in GC-associated MDR. In addition, miR-27b and miR-508-5p expression was detected in GC tissues with different chemo-sensitivities, and we found that tissues in which miR-27b and miR-508-5p are up-regulated are more sensitive to chemotherapy. Together, these data suggest that the combination of miR-27b and miR-508-5p represents a potential marker of MDR. Restoring the miR-27b and miR-508-5p levels might contribute to MDR reversion in future clinical practice.
Collapse
Affiliation(s)
- Yulong Shang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Feng
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Zhou
- The 88th Hospital of PLA, Tai'an 271001, China
| | - Gui Ren
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhiyong Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Fan
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guanhong Luo
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
57
|
Jones Buie JN, Goodwin AJ, Cook JA, Halushka PV, Fan H. The role of miRNAs in cardiovascular disease risk factors. Atherosclerosis 2016; 254:271-281. [PMID: 27693002 PMCID: PMC5125538 DOI: 10.1016/j.atherosclerosis.2016.09.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022]
Abstract
Coronary artery disease and atherosclerosis are complex pathologies that develop over time due to genetic and environmental factors. Differential expression of miRNAs has been identified in patients with coronary artery disease and atherosclerosis, however, their association with cardiovascular disease risk factors, including hyperlipidemia, hypertension, obesity, diabetes, lack of physical activity and smoking, remains unclear. This review examines the role of miRNAs as either biomarkers or potential contributors to the pathophysiology of these aforementioned risk factors. It is intended to provide an overview of the published literature which describes alterations in miRNA levels in both human and animal studies of cardiovascular risk factors and when known, the possible mechanism by which these miRNAs may exert either beneficial or deleterious effects. The intent of this review is engage clinical, translational, and basic scientists to design future collaborative studies to further elucidate the potential role of miRNAs in cardiovascular diseases.
Collapse
Affiliation(s)
- Joy N Jones Buie
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, 173 Ashley Avenue, Suite CRI 605B, Charleston, United States.
| | - Andrew J Goodwin
- Medical University of South Carolina, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Charleston, United States
| | - James A Cook
- Medical University of South Carolina, Department of Neurosciences, Charleston, United States
| | - Perry V Halushka
- Medical University of South Carolina, Department of Pharmacology, Charleston, United States
| | - Hongkuan Fan
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, 173 Ashley Avenue, Suite CRI 605B, Charleston, United States
| |
Collapse
|
58
|
Zhao CP, Xu ZJ, Guo Q, Li YX, Gao XZ, Peng YY. Overexpression of suppressor of IKBKE 1 is associated with vincristine resistance in colon cancer cells. Biomed Rep 2016; 5:585-588. [PMID: 27882221 DOI: 10.3892/br.2016.759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022] Open
Abstract
In a previous study, the suppressor of IKBKE 1 expression level was confirmed to be higher in vincristine (VCR)-resistant HCT-8 (HCT-8/V) colon cancer cells than in non-VCR-resistant HCT-8 cells. In the current study, IKBKE 1 expression in VCR-resistant colon cancer cells was investigated further. HCT-8 and HCT-8/V human colon cancer cells were used, and polymerase chain reaction (PCR) primers were designed to amplify the IKBKE 1 gene. Fluorescence reverse transcription-quantitative PCR (RT-qPCR) was performed to detect differences in IKBKE 1 expression between sensitive and drug-resistant colon cancer cell lines. Western blotting was performed to further observe IKBKE 1 expression. Based on the RT-qPCR and western blot results, IKBKE 1 expression was observed to be markedly higher in the HCT-8/V cells, and this difference was significant (P<0.05). Thus, IKBKE 1 expression was identified to be associated with the resistance of colon cancer cells to VCR.
Collapse
Affiliation(s)
- Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhong-Jie Xu
- Department of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Qing Guo
- Department of College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yun-Xiao Li
- Department of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiang-Zheng Gao
- Department of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yi-You Peng
- Department of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
59
|
Nowakowski A, Drela K, Rozycka J, Janowski M, Lukomska B. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse. Stem Cells Dev 2016; 25:1513-1531. [PMID: 27460260 DOI: 10.1089/scd.2016.0120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Rozycka
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland .,2 Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
60
|
Mullick Chowdhury S, Wang TY, Bachawal S, Devulapally R, Choe JW, Abou Elkacem L, Yakub BK, Wang DS, Tian L, Paulmurugan R, Willmann JK. Ultrasound-guided therapeutic modulation of hepatocellular carcinoma using complementary microRNAs. J Control Release 2016; 238:272-280. [PMID: 27503707 DOI: 10.1016/j.jconrel.2016.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/05/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Treatment options for patients with hepatocellular carcinoma (HCC) are limited, in particular in advanced and drug resistant HCC. MicroRNAs (miRNA) are non-coding small RNAs that are emerging as novel drugs for the treatment of cancer. The aim of this study was to assess treatment effects of two complementary miRNAs (sense miRNA-122, and antisense antimiR-21) encapsulated in biodegradable poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP), administered by an ultrasound-guided and microbubble-enhanced delivery approach in doxorubicin-resistant and non-resistant human HCC xenografts. Proliferation and invasiveness of human HCC cells after miRNA-122/antimiR-21 and doxorubicin treatment were assessed in vitro. Confocal microscopy and qRT-PCR were used to visualize and quantitate successful intracellular miRNA-loaded PLGA-NP delivery. Up and down-regulation of miRNA downstream targets and multidrug resistance proteins and extent of apoptosis were assessed in vivo in treated human HCC xenografts in mice. Compared to single miRNA therapy, combination therapy with the two complementary miRNAs resulted in significantly (P<0.05) stronger decrease in cell proliferation, invasion, and migration of HCC cells as well as higher resensitization to doxorubicin. Ultrasound-guided delivery significantly increased in vivo miRNA-loaded PLGA-NP delivery in human HCC xenografts compared to control conditions by 5-9 fold (P<0.001). miRNA-loaded PLGA-NP were internalized in HCC cells and anti-apoptotic proteins were down regulated with apoptosis in ~27% of the tumor volume of doxorubicin-resistant human HCC after a single treatment with complementary miRNAs and doxorubicin. Thus, ultrasound-guided delivery of complementary miRNAs is highly efficient in the treatment of doxorubicin- resistant and non-resistant HCC. Further development of this new treatment approach could aid in better treatment of patients with HCC.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Tzu-Yin Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Sunitha Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Rammohan Devulapally
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Jung Woo Choe
- Department of Electrical Engineering, Stanford University Stanford, CA, USA
| | - Lotfi Abou Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Butrus Khuri Yakub
- Department of Electrical Engineering, Stanford University Stanford, CA, USA
| | - David S Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Lu Tian
- Department of Health, Research & Policy, Stanford University, Stanford, CA, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
61
|
Schreiber R, Mezencev R, Matyunina LV, McDonald JF. Evidence for the role of microRNA 374b in acquired cisplatin resistance in pancreatic cancer cells. Cancer Gene Ther 2016; 23:241-5. [PMID: 27229158 PMCID: PMC5007605 DOI: 10.1038/cgt.2016.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
Abstract
Recent evidence has implicated microRNAs (miRNAs) as potentially significant players in the acquisition of cancer-drug resistance in pancreatic and other cancers. To evaluate the potential contribution of miRNAs in acquired resistance to cisplatin in pancreatic cancer, we compared levels of more than 2000 human miRNAs in a cisplatin-resistant cell line (BxPC3-R) derived from parental (BxPC3) cells by step-wise exposure to increasing concentrations of the drug over more than 20 passages. The acquired drug resistance was accompanied by significant changes in the expression of 57 miRNAs, of which 23 were downregulated and 34 were upregulated. Employing a hidden Markov model (HMM) algorithm, we identified downregulation of miR-374b as likely being directly involved in acquisition of the drug-resistant phenotype. Consistent with this prediction, ectopic overexpression of miR-374b in the resistant BxPC3-R cells restored cisplatin sensitivity to levels approaching those displayed by the BxPC3 parental cells. The results are consistent with a growing body of evidence implicating miRNAs in acquired cancer-drug resistance and with the potential therapeutic value of these small regulatory RNAs in blocking and/or reversing the process.
Collapse
Affiliation(s)
- R Schreiber
- School of Biology, Petit Institute of Bioengineering and BioSciences and Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
- Laboratório de Biologia Cardiovascular, Faculdade de Ciências Médicas- UNICAMP, Prédio Vital, Brazil
| | - R Mezencev
- School of Biology, Petit Institute of Bioengineering and BioSciences and Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| | - L V Matyunina
- School of Biology, Petit Institute of Bioengineering and BioSciences and Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| | - J F McDonald
- School of Biology, Petit Institute of Bioengineering and BioSciences and Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
62
|
Chauhan R, Lahiri N. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2016; 8:37-55. [PMID: 27398029 PMCID: PMC4933537 DOI: 10.4137/bic.s34413] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/15/2016] [Accepted: 03/27/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future.
Collapse
Affiliation(s)
- Ranjit Chauhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.; Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
63
|
Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. J Cancer Res Clin Oncol 2016; 142:2073-106. [PMID: 27116692 DOI: 10.1007/s00432-016-2167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Most of the nanomedicines for treatment of multidrug-resistant cancer do not reach Phase III trials and many are terminated or withdrawn or are in an indeterminate state since long without any study results being presented. Extensive perusal of nanomedicine development research revealed that one of the critical aspects influencing clinical outcomes and which requires diligent scrutiny is selection process of nanodelivery system. METHODS Research papers and articles published on development of nanodelivery systems for treatment of multidrug-resistant cancer were analyzed. Observations and conclusions noted by these researchers which might shed some light on poor clinical performance of nanocarriers were collated and summarized under observation section. Further research articles were studied to find possible solutions which may be applied to these particular problems for resolving them. The inferences of these findings were composed in Result section. RESULT Plausible solutions for the observed obstacles were noted as examples of novel formulations that can yield the following: better in vivo imaging, precise targeting and dosing of a specific site and specific cell type in a particular cancer, modulation of tumor surroundings, intonation of systemic effects and high reproducibility. CONCLUSION The angle of approach to the development of best nanosystem for a specific type of tumor needs to be spun around. Some of these changes can be brought about by individual scientists, some need to be established by collated efforts of scientists globally and some await advent of better technologies. Regardless of the stratagem, it can be said decisively that the schematics of development phase need rethinking.
Collapse
|
64
|
MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016; 37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.
Collapse
|
65
|
Liu Y, Li Y, Wang R, Qin S, Liu J, Su F, Yang Y, Zhao F, Wang Z, Wu Q. MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:19. [PMID: 26817584 PMCID: PMC4729098 DOI: 10.1186/s13046-016-0296-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Background Emerging evidence demonstrates that microRNAs (miRNAs) play an important role in regulation of cell growth, invasion and metastasis through inhibiting the expression of their targets. It has been reported that miR-130a-3p controls cell growth, migration and invasion in a variety of cancer cells. However, it is unclear whether miR-130a-3p regulates epithelial-mesenchymal transition (EMT) in drug resistant cancer cells. Therefore, in the current study, we explore the role and molecular mechanisms of miR-130a-3p in gemcitabine resistant (GR) hepatocellular carcinoma (HCC) cells. Methods The real-time RT-PCR was used to measure the miR-130a-3p expression in GR HCC cells compared with their parental cells. The wound healing assay was conducted to determine the cell migratory activity in GR HCC cells treated with miR-130a-3p mimics. The migration and invasion assays were also performed to explore the role of miR-130a-3p in GR HCC cells. Western blotting analysis was used to measure the expression of Smad4, E-cadherin, Vimentin, and MMP-2 in GR HCC cells after depletion of Smad4. The luciferase assay was conducted to validate whether Smad4 is a target of miR-130a-3p. The student t-test was used to analyze our data. Results We found the down-regulation of miR-130a-3p in GR HCC cells. Moreover, we validate the Smad4 as a potential target of miR-130a-3p. Furthermore, overexpression of miR-130a-3p suppressed Smad4 expression, whereas inhibition of miR-130a-3p increased Smad4 expression. Consistently, overexpression of miR-130a-3p or down-regulation of Smad4 suppressed the cell detachment, attachment, migration, and invasion in GR HCC cells. Conclusions Our findings provide a molecular insight on understanding drug resistance in HCC cells. Therefore, activation of miR-130a-3p or inactivation of Smad4 could be a novel approach for the treatment of HCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yumei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Rui Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Shukui Qin
- Department of Medical Oncology, PLA Cancer Center, Nanjing Bayi Hospital, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Yang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fuyou Zhao
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
66
|
Motawi TMK, Sadik NAH, Shaker OG, Ghaleb MH. Elevated serum microRNA-122/222 levels are potential diagnostic biomarkers in Egyptian patients with chronic hepatitis C but not hepatic cancer. Tumour Biol 2016; 37:9865-74. [DOI: 10.1007/s13277-016-4884-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
|
67
|
Abstract
Hepatocellular carcinoma, one of the most common solid tumors worldwide, is poorly responsive to available chemotherapeutic approaches. While systemic chemotherapy is of limited benefit, intra-arterial delivery of doxorubicin to the tumor frequently produces tumor shrinkage. Its utility is limited, in part, by the frequent emergence of doxorubicin resistance. The mechanisms of this resistance include increased expression of multidrug resistance efflux pumps, alterations of the drug target, topoisomerase, and modulation of programmed cell death pathways. Many of these effects result from changes in miRNA expression and are particularly prominent in tumor cells with a stem cell phenotype. This review will summarize the current knowledge on the mechanisms of doxorubicin resistance of hepatocellular carcinoma and the potential for approaches toward therapeutic chemosensitization.
Collapse
Affiliation(s)
- Josiah Cox
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Steven Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
68
|
Zhu L, Gao J, Huang K, Luo Y, Zhang B, Xu W. miR-34a screened by miRNA profiling negatively regulates Wnt/β-catenin signaling pathway in Aflatoxin B1 induced hepatotoxicity. Sci Rep 2015; 5:16732. [PMID: 26567713 PMCID: PMC4645126 DOI: 10.1038/srep16732] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
Aflatoxin-B1 (AFB1), a hepatocarcinogenic mycotoxin, was demonstrated to induce the high rate of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the regulation of several biological processes in HCC. However, the function of miRNAs in AFB1-induced HCC has received a little attention. Here, we applied Illumina deep sequencing technology for high-throughout profiling of microRNAs in HepG2 cells lines after treatment with AFB1. Analysis of the differential expression profile of miRNAs in two libraries, we identified 9 known miRNAs and 1 novel miRNA which exhibited abnormal expression. KEGG analysis indicated that predicted target genes of differentially expressed miRNAs are involved in cancer-related pathways. Down-regulated of Drosha, DGCR8 and Dicer 1 indicated an impairment of miRNA biogenesis in response to AFB1. miR-34a was up-regulated significantly, down-regulating the expression of Wnt/β-catenin signaling pathway by target gene β-catenin. Anti-miR-34a can significantly relieved the down-regulated β-catenin and its downstream genes, c-myc and Cyclin D1, and the S-phase arrest in cell cycle induced by AFB1 can also be relieved. These results suggested that AFB1 might down-regulate Wnt/β-catenin signaling pathway in HepG2 cells by up-regulating miR-34a, which may involve in the mechanism of liver tumorigenesis.
Collapse
Affiliation(s)
- Liye Zhu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Kunlun Huang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Yunbo Luo
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Boyang Zhang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Wentao Xu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| |
Collapse
|
69
|
New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases 2015; 3:325-340. [PMID: 28943628 PMCID: PMC5548255 DOI: 10.3390/diseases3040325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, arising from neoplastic transformation of hepatocytes or liver precursor/stem cells. HCC is often associated with pre-existing chronic liver pathologies of different origin (mainly subsequent to HBV and HCV infections), such as fibrosis or cirrhosis. Current therapies are essentially still ineffective, due both to the tumor heterogeneity and the frequent late diagnosis, making necessary the creation of new therapeutic strategies to inhibit tumor onset and progression and improve the survival of patients. A promising strategy for treatment of HCC is the targeted molecular therapy based on the restoration of tumor suppressor proteins lost during neoplastic transformation. In particular, the delivery of master genes of epithelial/hepatocyte differentiation, able to trigger an extensive reprogramming of gene expression, could allow the induction of an efficient antitumor response through the simultaneous adjustment of multiple genetic/epigenetic alterations contributing to tumor development. Here, we report recent literature data supporting the use of members of the liver enriched transcription factor (LETF) family, in particular HNF4α, as tools for gene therapy of HCC.
Collapse
|
70
|
Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015; 8:122. [PMID: 26514126 PMCID: PMC4627430 DOI: 10.1186/s13045-015-0220-7] [Citation(s) in RCA: 511] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) displays high resistance to conventional chemotherapy. Considering that microRNA-122 (miR-122) performs an essential function to promote chemosensitivity of HCC cells, an effective vehicle-mediated miR-122 delivery may represent a promising strategy for HCC chemotherapy. An increasing interest is focused on the use of exosomes as biological vehicles for microRNAs (miRNA) transfer. Mesenchymal stem cells (MSCs) are known for their capacity to produce large amounts of exosomes. This study aimed to determine whether adipose tissue-derived MSC (AMSC) exosomes can be used for miR-122 delivery. Methods AMSCs were transfected with a miR-122 expression plasmid. At 48 h after transfection, AMSC-derived exosomes (122-Exo) were harvested and added to recipient HCC cells. Expression levels of miR-122 in AMSCs, exosomes, and HCC cells were quantified by real-time PCR. The mRNA and protein levels of miR-122-target genes in recipient HCC cells were quantified by real-time PCR and Western blot, respectively. The effects of 122-Exo on cell viability, apoptosis, and cell cycle of HCC cells were evaluated by MTT and flow cytometry analysis. Xenograft models were used to determine whether 122-Exo can sensitize HCC cells to sorafenib in vivo. Results Data showed that miR-122-transfected AMSC can effectively package miR-122 into secreted exosomes, which can mediate miR-122 communication between AMSCs and HCC cells, thereby rendering cancer cells sensitive to chemotherapeutic agents through alteration of miR-122-target gene expression in HCC cells. Moreover, intra-tumor injection of 122-Exo significantly increased the antitumor efficacy of sorafenib on HCC in vivo. Conclusions The findings suggest that the export of miR-122 via AMSC exosomes represents a novel strategy to enhance HCC chemosensitivity.
Collapse
Affiliation(s)
- Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Xiuli Song
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310003, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| |
Collapse
|
71
|
Wang L, Yue Y, Wang X, Jin H. Function and clinical potential of microRNAs in hepatocellular carcinoma. Oncol Lett 2015; 10:3345-3353. [PMID: 26788134 DOI: 10.3892/ol.2015.3759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in the initiation and progression of several types of human cancer, including hepatocellular carcinoma (HCC), which is one of the most common types of cancer and the third leading cause of cancer-related mortality worldwide. Mounting evidence has demonstrated that miRNAs play a vital role in HCC, hepatitis, alcoholic liver disease, liver cell development and the metabolic functions of the liver. The aim of the present review was to summarize the most recent findings on the functions of miRNAs in the liver and discuss their potential roles in the diagnosis, prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Hematology, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276003, P.R. China
| | - Yongfang Yue
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xian Wang
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Hongchuan Jin
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
72
|
Han B, Wang Y, Wang L, Shang Z, Wang S, Pei J. Preparation of GST Inhibitor Nanoparticle Drug Delivery System and Its Reversal Effect on the Multidrug Resistance in Oral Carcinoma. NANOMATERIALS 2015; 5:1571-1587. [PMID: 28347082 PMCID: PMC5304786 DOI: 10.3390/nano5041571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
During the chemotherapy of cancer, drug resistance is the first issue that chemotherapeutic drugs cannot be effectively used for the treatment of cancers repeatedly for a long term, and the main reason for this is that tumor cell detoxification is mediated by GSH (glutathione) catalyzed by GST (glutathione-S-transferase). In this study, a GST inhibitor, ethacrynic acid (ECA), was designed to be coupled with methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) by disulfide bonds to prepare methoxy poly(ethylene glycol)-poly(lactide)-disulphide bond-mthacrynic acid (MPEG-PLA-SS-ECA) as a carrier material of the nanoparticles. Nanoparticles of pingyangmycin (PYM) and carboplatin (CBP) were prepared, respectively, and their physicochemical properties were investigated. The ECA at the disulfide could be released in the presence of GSH, the pingyangmycin, carboplatin and ECA were all uniformly released, and the nanoparticles could release all the drugs completely within 10 days. The half maximal inhibitory concentration (IC50) of the prepared MPEG-PLA-SS-ECA/CBP and MPEG-PLA-SS-ECA/PYM nanoparticles in drug-resistant oral squamous cell carcinoma cell lines SCC15/CBP and SCC15/PYM cells was 12.68 μg·mL-¹ and 12.76 μg·mL-¹, respectively; the resistant factor RF of them in the drug-resistant cells were 1.51 and 1.24, respectively, indicating that MPEG-PLA-SS-ECA nanoparticles can reverse the drug resistance of these two drug-resistant cells.
Collapse
Affiliation(s)
- Bing Han
- School of Pharmaceutical Sciences, Jilin University, No.1266 Fujin Road, Changchun 130012, China.
| | - Yanli Wang
- Changchun Women and Children Health Hospital, No. 962 Xinfa Road, Changchun 130061, China.
| | - Lan Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China.
| | - Zuhui Shang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China.
| | - Shuang Wang
- China Japan Union Hospital, Jilin University, No. 126 Xiantai Street, Changchun 130033, China.
| | - Jin Pei
- School of Pharmaceutical Sciences, Jilin University, No.1266 Fujin Road, Changchun 130012, China.
| |
Collapse
|
73
|
Anwar SL, Lehmann U. MicroRNAs: Emerging Novel Clinical Biomarkers for Hepatocellular Carcinomas. J Clin Med 2015; 4:1631-50. [PMID: 26295264 PMCID: PMC4555081 DOI: 10.3390/jcm4081631] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
The discovery of small non-coding RNAs known as microRNAs has refined our view of the complexity of gene expression regulation. In hepatocellular carcinoma (HCC), the fifth most frequent cancer and the third leading cause of cancer death worldwide, dysregulation of microRNAs has been implicated in all aspects of hepatocarcinogenesis. In addition, alterations of microRNA expression have also been reported in non-cancerous liver diseases including chronic hepatitis and liver cirrhosis. MicroRNAs have been proposed as clinically useful diagnostic biomarkers to differentiate HCC from different liver pathologies and healthy controls. Unique patterns of microRNA expression have also been implicated as biomarkers for prognosis as well as to predict and monitor therapeutic responses in HCC. Since dysregulation has been detected in various specimens including primary liver cancer tissues, serum, plasma, and urine, microRNAs represent novel non-invasive markers for HCC screening and predicting therapeutic responses. However, despite a significant number of studies, a consensus on which microRNA panels, sample types, and methodologies for microRNA expression analysis have to be used has not yet been established. This review focuses on potential values, benefits, and limitations of microRNAs as new clinical markers for diagnosis, prognosis, prediction, and therapeutic monitoring in HCC.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover D30625, Germany.
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover D30625, Germany.
| |
Collapse
|
74
|
Tomiyasu H, Tsujimoto H. Comparative Aspects of Molecular Mechanisms of Drug Resistance through ABC Transporters and Other Related Molecules in Canine Lymphoma. Vet Sci 2015; 2:185-205. [PMID: 29061940 PMCID: PMC5644633 DOI: 10.3390/vetsci2030185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
The most important causes of treatment failure in canine lymphoma include intrinsic or acquired drug resistance. Thus, elucidation of molecular mechanisms of drug resistance is essential for the establishment of better treatment alternatives for lymphoma patients. The overexpression of drug transporters is one of the most intensively studied mechanisms of drug resistance in many tumors. In canine lymphoma, it has also been shown that the overexpression of drug efflux pumps such as P-glycoprotein is associated with drug-resistant phenotypes. Canine lymphoma has many pathological similarities to human non-Hodgkin’s lymphoma, and they also share similar molecular mechanisms of drug resistance. We have previously demonstrated the association of the overexpression of drug transporters with drug resistance and indicated some molecular mechanisms of the regulation of these transporters’ expressions in canine and human lymphoid tumor cells. However, it has also been indicated that other known or novel drug resistance factors should be explored to overcome drug resistance in lymphoma. In this review, we summarize the recent findings on the molecular mechanisms of drug resistance and possible strategies to develop better treatment modalities for canine lymphoma from the comparative aspects with human lymphoid tumors.
Collapse
Affiliation(s)
- Hirotaka Tomiyasu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1352 Boyd Ave, St. Paul, MN 55108, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
75
|
Cuestas ML, Oubiña JR, Mathet VL. Hepatocellular carcinoma and multidrug resistance: Past, present and new challenges for therapy improvement. World J Pharmacol 2015; 4:96-116. [DOI: 10.5497/wjp.v4.i1.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/02/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent form of liver cancer and the third most common cause of cancer-related death in the world. The main risk factor worldwide for this type of malignancy is chronic hepatitis caused by hepatitis B virus and hepatitis C virus infections. Advances in early detection and treatment have improved life expectancy of patients with HCC. However, this disorder remains as a disease with poor prognosis. In fact, epidemiological studies have revealed that there is an 8-mo median survival rate in patients, approximately 20% of whom survive one year while only 5% remain alive after three years. Additionally, HCC is particularly difficult to treat because of its high recurrence rate, and its resistance to conventional chemotherapy is due, among other mechanisms, to several members of the ATP-Binding Cassette protein family involved in drug transport being overexpressed. Fortunately, there is evidence that these patients may benefit from alternative molecular-targeted therapies. This manuscript intends to provide further insight into the etiology and molecular mechanisms related to HCC development and the latest therapeutic approaches to treat this malignancy. The development of effective delivery systems of antitumor drugs able to target the liver parenchyma is also assessed. Finally, the prospects in the development of more efficient drug therapies to overcome multidrug resistance are also examined.
Collapse
|
76
|
Mognato M, Celotti L. MicroRNAs Used in Combination with Anti-Cancer Treatments Can Enhance Therapy Efficacy. Mini Rev Med Chem 2015; 15:1052-62. [PMID: 26156420 PMCID: PMC4997954 DOI: 10.2174/1389557515666150709115355] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/23/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), a recently discovered class of small non-coding RNAs, constitute a promising approach to anti-cancer treatments when they are used in combination with other agents. MiRNAs are evolutionarily conserved non-coding RNAs that negatively regulate gene expression by binding to the complementary sequence in the 3'-untranslated region (UTR) of target genes. MiRNAs typically suppress gene expression by direct association with target transcripts, thus decreasing the expression levels of target proteins. The delivery to cells of synthetic miRNAs that mimic endogenous miRNA targeting genes involved in the DNA-Damage Response (DDR) can perturb the process, making cells more sensitive to chemotherapy or radiotherapy. This review examines how cells respond to combined therapy and it provides insights into the role of miRNAs in targeting the DDR repair pathway when they are used in combination with chemical compounds or ionizing radiation to enhance cellular sensitivity to treatments.
Collapse
Affiliation(s)
- Maddalena Mognato
- Department of Biology, School of Science, University of Padova, Padova, Italy.
| | | |
Collapse
|
77
|
Zhao X, Liu M, Li D. Oleanolic acid suppresses the proliferation of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis. Mol Cell Biochem 2014; 400:1-7. [PMID: 25472877 DOI: 10.1007/s11010-014-2228-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/27/2014] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA) is a natural compound from plants with anti-tumor activities. However, the mechanism of the inhibitory effect of OA on cell cycle progression has not been completely explored. We employed several lung carcinoma cell lines to investigate the cell cycle-related molecular pathway affected by OA. The data revealed that OA suppressed the proliferation of lung cancer cells in both dose- and time-dependent manners, along with an increase in miR-122 abundance. The suppression of miR-122 abolished the effect of OA on lung cancer cells. CCNG1 and MEF2D, two putative miR-122 targets, were found to be downregulated by OA treatment. Restoring their expression counteracted the effect of OA on lung carcinoma cells. OA was further shown to induce the expression of miR-122-regulating transcriptional factors in lung cancer cells. Collectively, OA induced cell cycle arrest in lung cancer cells through miR-122/Cyclin G1/MEF2D pathway. This finding may contribute to the understanding of the molecular mechanism of OA's anti-tumor activity.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | | | | |
Collapse
|
78
|
Fan HX, Tang H. Complex interactions between microRNAs and hepatitis B/C viruses. World J Gastroenterol 2014; 20:13477-13492. [PMID: 25309078 PMCID: PMC4188899 DOI: 10.3748/wjg.v20.i37.13477] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/28/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate the expression of many target genes via mRNA degradation or translation inhibition. Many studies have shown that miRNAs are involved in the modulation of gene expression and replication of hepatitis B virus (HBV) and hepatitis C virus (HCV) and play a pivotal role in host-virus interactions. Increasing evidence also demonstrates that viral infection leads to alteration of the miRNA expression profile in hepatic tissues or circulation. The deregulated miRNAs participate in hepatocellular carcinoma (HCC) initiation and progression by functioning as oncogenes or tumor suppressor genes by targeting various genes involved in cancer-related signaling pathways. The distinct expression pattern of miRNAs may be a useful marker for the diagnosis and prognosis of virus-related diseases considering the limitation of currently used biomarkers. Moreover, the role of deregulated miRNA in host-virus interactions and HCC development suggested that miRNAs may serve as therapeutic targets or as tools. In this review, we summarize the recent findings about the deregulation and the role of miRNAs during HBV/HCV infection and HCC development, and we discuss the possible mechanism of action of miRNAs in the pathogenesis of virus-related diseases. Furthermore, we discuss the potential of using miRNAs as markers for diagnosis and prognosis as well as therapeutic targets and drugs.
Collapse
|
79
|
Xie KL, Zhang YG, Liu J, Zeng Y, Wu H. MicroRNAs associated with HBV infection and HBV-related HCC. Theranostics 2014; 4:1176-92. [PMID: 25285167 PMCID: PMC4183996 DOI: 10.7150/thno.8715] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global problem and a major risk factor for hepatocellular carcinoma (HCC). microRNAs (miRNAs) comprise a group of small noncoding RNAs regulating gene expression at the posttranslational level, thereby participating in fundamental biological processes, including cell proliferation, differentiation, and apoptosis. In this review, we summarize the roles of miRNAs in HBV infection, the recently identified mechanism underlying dysregulation of miRNAs in HBV-associated HCC, and their association with hepatocarcinogenesis. Moreover, we discuss the recent advances in the use of circulating miRNAs in the early diagnosis of HCC as well as therapies based on these aberrantly expressed miRNAs.
Collapse
|
80
|
Chu R, Mo G, Duan Z, Huang M, Chang J, Li X, Liu P. miRNAs affect the development of hepatocellular carcinoma via dysregulation of their biogenesis and expression. Cell Commun Signal 2014; 12:45. [PMID: 25012758 PMCID: PMC4117189 DOI: 10.1186/s12964-014-0045-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/24/2014] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is not fully understood, which has affected the early diagnosis and treatment of HCC and the survival time of patients. MicroRNAs (miRNAs) are a class of evolutionarily conserved small, non-coding RNAs, which regulate the expression of various genes post-transcriptionally. Emerging evidence indicates that the key enzymes involved in the miRNA biosynthesis pathway and some tumor-specific miRNAs are widely deregulated or upregulated in HCC and closely associated with the occurrence and development of various cancers, including HCC. Early studies have shown that miRNAs have critical roles in HCC progression by targeting many critical protein-coding genes, thereby contributing to the promotion of cell proliferation; the avoidance of apoptosis, inducing via angiogenesis; and the activation of invasion and metastasis pathways. Experimental data indicate that discovery of increasing numbers of aberrantly expressed miRNAs has opened up a new field for investigating the molecular mechanism of HCC progression. In this review, we describe the current knowledge about the roles and validated targets of miRNAs in the above pathways that are known to be hallmarks of HCC, and we also describe the influence of genetic variations in miRNA biosynthesis and genes.
Collapse
|
81
|
MicroRNA-122 triggers mesenchymal-epithelial transition and suppresses hepatocellular carcinoma cell motility and invasion by targeting RhoA. PLoS One 2014; 9:e101330. [PMID: 24992599 PMCID: PMC4081555 DOI: 10.1371/journal.pone.0101330] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/04/2014] [Indexed: 12/15/2022] Open
Abstract
The loss of microRNA-122 (miR-122) expression is strongly associated with increased invasion and metastasis, and poor prognosis of hepatocellular carcinoma (HCC), however, the underlying mechanisms remain poorly understood. In the present study, we observed that miR-122 over-expression in HCC cell lines Sk-hep-1 and Bel-7402 triggered the mesenchymal-epithelial transition (MET), as demonstrated by epithelial-like morphological changes, up-regulated epithelial proteins (E-cadherin, ZO-1, α-catenin, occludin, BVES, and MST4), and down-regulated mesenchymal proteins (vimentin and fibronectin). The over-expression of miRNA-122 also caused cytoskeleton disruption, RhoA/Rock pathway inactivation, enhanced cell adhesion, and suppression of migration and invasion of Sk-hep-1 and Bel-7402 cells, whereas, these effects could be reversed through miR-122 inhibition. Additional studies demonstrated that the inhibition of wild-type RhoA function induced MET and inhibited cell migration and invasion, while RhoA over-expression reversed miR-122-induced MET and inhibition of migration and invasion of HCC cells, suggesting that miR-122 induced MET and suppressed the migration and invasion of HCC cells by targeting RhoA. Moreover, our results demonstrated that HNF4α up-regulated its target gene miR-122 that subsequently induced MET and inhibited cell migration and invasion, whereas miR-122 inhibition reversed these HNF4α-induced phenotypes. These results revealed functional and mechanistic links among the tumor suppressors HNF4α, miR-122, and RhoA in EMT and invasive and metastatic phenotypes of HCC. Taken together, our study provides the first evidence that the HNF4α/miR-122/RhoA axis negatively regulates EMT and the migration and invasion of HCC cells.
Collapse
|
82
|
Anwar SL, Lehmann U. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol 2014; 20:7894-7913. [PMID: 24976726 PMCID: PMC4069317 DOI: 10.3748/wjg.v20.i24.7894] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC.
Collapse
|
83
|
Abstract
Multidrug resistance (MDR) in cancer cells is a phenotype whereby cells display reduced sensitivity to anticancer drugs, based on a variety of mechanisms, including an increase in drug efflux, the reduction of drug uptake, the activation of cell growth and survival signaling, the promotion of DNA repair, and the inhibition of apoptosis signaling. Increased expression of the plasma membrane drug efflux pumps, the ATP-binding cassette (ABC) transporters, is involved in MDR. P-Glycoprotein/ABCB1 is a member of the ABC transporter family, and facilitates the efflux of various anticancer drugs, including anthracyclines, vinca alkaloids, epipodophyllotoxins, taxanes, and kinase inhibitors, from cells. P-Glycoprotein is also expressed in normal tissues and cells, including the kidney, liver, colon, and adrenal gland, to transport and/or secrete substrates and at the blood-brain, blood-placenta, and blood-testis barriers to protect these tissues from toxic substances. To understand the mechanistic functions of P-glycoprotein and to overcome MDR, investigators have identified the substrates and competitive inhibitors of P-glycoprotein. Recently, we and other groups reported associations between cellular signaling pathways and the expression, stability, degradation, localization, and activity of P-glycoprotein. The present review summarizes the currently available information about the transcriptional and posttranslational regulation of P-glycoprotein expression and function.
Collapse
|
84
|
The role of micro-RNAs in hepatocellular carcinoma: from molecular biology to treatment. Molecules 2014; 19:6393-406. [PMID: 24853455 PMCID: PMC6271763 DOI: 10.3390/molecules19056393] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer deaths. microRNAs (miRNAs) are evolutionary conserved small non-coding RNA that negatively regulate gene expression and protein translation. Recent evidences have shown that they are involved in many biological processes, from development and cell-cycle regulation to apoptosis. miRNAs can behave as tumor suppressor or promoter of oncogenesis depending on the cellular function of their targets. Moreover, they are frequently dysregulated in HCC. In this review we summarize the latest findings of miRNAs regulation in HCC and their role as potentially diagnostic and prognostic biomarkers for HCC. We highlight development of miRNAs as potential therapeutic targets for HCC.
Collapse
|
85
|
Abstract
Prostate cancer is the second leading cause of cancer related death in American men. Androgen deprivation therapy (ADT) is used to treat patients with aggressive prostate cancers. After androgen deprivation therapy, prostate cancers slowly progress to an androgen-independent status. Taxanes (e.g., docetaxel) are used as standard treatments for androgen-independent prostate cancers. However, these chemotherapeutic agents will eventually become ineffective due to the development of drug resistance. A microRNA (miRNA) is a small noncoding RNA molecule, which can regulate gene expression at the post-transcription level. miRNAs elicit their effects by binding to the 3'-untranslated region (3'-UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNAs. miRNAs have received increasing attention as targets for cancer therapy, as they can target multiple signaling pathways related to tumor progression, metastasis, invasion, and chemoresistance. Emerging evidence suggests that aberrant expression of miRNAs can lead to the development of resistant prostate cancers. Here, we discuss the roles of miRNAs in the development of resistant prostate cancers and their involvement in various drug resistant mechanisms including androgen signaling, apoptosis avoidance, multiple drug resistance (MDR) transporters, epithelialmesenchymal transition (EMT), and cancer stem cells (CSCs). In addition, we also discuss strategies for treating resistant prostate cancers by targeting specific miRNAs. Different delivery strategies are also discussed with focus on those that have been successfully used in human clinical trials.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| | | |
Collapse
|
86
|
Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol 2014; 49:589-93. [PMID: 24531873 DOI: 10.1007/s00535-014-0932-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 01/06/2014] [Indexed: 02/04/2023]
Abstract
MicroRNA-122 (miR-122), a highly abundant and liver-specific miRNA, acts as a tumor suppressor against hepatocellular carcinoma (HCC). Decreased expression of miR-122 in HCC is frequently observed and is associated with poor differentiation, larger tumor size, metastasis and invasion, and poor prognosis. Mutant mice with knockout (KO) of the miR-122 locus developed steatohepatitis due to increased triglyceride (TG) synthesis and decreased TG secretion from hepatocytes, and eventually developed HCC. Exogenic miR-122 introduction into miR-122 KO mice inhibited the development of HCC. Target genes of miR-122, including cyclin G1, a disintegrin and metalloprotease (ADAM)10, serum response factor, insulin-like growth factor-1 receptor, ADAM17, transcription factor CUTL1, the embryonic isoform of pyruvate kinase (Pkm2), Wnt1, pituitary tumor-transforming gene 1 binding factor, Cut-like homeobox 1, and c-myc, are involved in hepatocarcinogenesis, epithelial mesenchymal transition, and angiogenesis. MiR-122 expression is regulated by liver-enriched transcription factors such as hepatocyte nuclear factor (HNF)1α, HNF3β, HNF4α, HNF6, and CCAAT/enhancer-binding protein (C/EBP)α. A positive feedback loop exists between C/EBPα and miR-122 and between HNF6 and miR-122, whereas a negative feedback loop exists between c-myc and miR-122. Since cotreatment of 5-Aza-Cd and histone deacetylase inhibitor restored miR-122 expression in HCC cells, epigenetic modulation of miR-122 expression is involved in the suppression of miR-122 in HCC. Several experiments suggest that increasing miR-122 levels in HCC with or without antitumor agents may be a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8501, Japan,
| | | | | |
Collapse
|
87
|
Frau M, Feo CF, Feo F, Pascale RM. New insights on the role of epigenetic alterations in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:65-83. [PMID: 27508177 PMCID: PMC4918272 DOI: 10.2147/jhc.s44506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence assigns to epigenetic mechanisms heritable differences in gene function that come into being during cell development or via the effect of environmental factors. Epigenetic deregulation is strongly involved in the development of hepatocellular carcinoma (HCC). It includes changes in methionine metabolism, promoter hypermethylation, or increased proteasomal degradation of oncosuppressors, as well as posttranscriptional deregulation by microRNA or messenger RNA (mRNA) binding proteins. Alterations in the methylation of the promoter of methyl adenosyltransferase MAT1A and MAT2A genes in HCC result in decreased S-adenosylmethionine levels, global DNA hypomethylation, and deregulation of signal transduction pathways linked to methionine metabolism and methyl adenosyltransferases activity. Changes in S-adenosylmethionine levels may also depend on MAT1A mRNA destabilization associated with MAT2A mRNA stabilization by specific proteins. Decrease in MAT1A expression has also been attributed to miRNA upregulation in HCC. A complex deregulation of miRNAs is also strongly involved in hepatocarcinogenesis, with up-regulation of different miRNAs targeting oncosuppressor genes and down-regulation of miRNAs targeting genes involved in cell-cycle and signal transduction control. Oncosuppressor gene down-regulation in HCC is also induced by promoter hypermethylation or posttranslational deregulation, leading to proteasomal degradation. The role of epigenetic changes in hepatocarcinogenesis has recently suggested new promising therapeutic approaches for HCC on the basis of the administration of methylating agents, inhibition of methyl adenosyltransferases, and restoration of the expression of tumor-suppressor miRNAs.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F Feo
- Department of Clinical and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
88
|
To KKW. MicroRNA: a prognostic biomarker and a possible druggable target for circumventing multidrug resistance in cancer chemotherapy. J Biomed Sci 2013; 20:99. [PMID: 24358977 PMCID: PMC3878201 DOI: 10.1186/1423-0127-20-99] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/16/2013] [Indexed: 12/27/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to successful cancer treatment. It is often associated with an increased efflux of a variety of structurally unrelated anticancer drugs by ATP-binding cassette (ABC) transporters including P-gp, ABCG2 and MRP1. MicroRNAs (miRNAs) are small non-coding RNAs that govern posttranscriptional regulation of target genes by interacting with specific sequences in their 3′ untranslated region (3′UTR), thereby promoting mRNA degradation or suppressing translation. Accumulating evidence suggests that alterations in miRNAs contribute to resistance to anticancer drugs. While miRNAs are well-known to be dysregulated in cancer, recent literature revealed that miRNA levels in biological samples may be correlated with chemotherapy response. This review summarized the coordinated network by which miRNA regulated MDR transporters. The usefulness of miRNAs as prognostic biomarkers for predicting chemotherapeutic outcome is discussed. MiRNAs may also represent druggable targets for circumvention of MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Room 801 N, Lo Kwee-Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
89
|
Özdemir F, Akalın G, Şen M, Önder NI, Işcan A, Kutlu HM, Incesu Z. Towards novel anti-tumor strategies for hepatic cancer: ɛ-viniferin in combination with vincristine displays pharmacodynamic synergy at lower doses in HepG2 cells. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 18:324-34. [PMID: 24341688 DOI: 10.1089/omi.2013.0045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The efficacy of novel combination treatments are increasingly evaluated with use of integrative biology research and development (R&D) strategies and methodological triangulation. We investigated the anti-tumor effect of ɛ-viniferin alone, and the putative synergy of ɛ-viniferin with vincristine on the growth of HepG2 cells in vitro. Growth inhibition and apoptosis induction were determined by MTT assay and annexin V/propidium iodide (PI), respectively. Morphological changes and DNA fragmentation were investigated under electron microscopy and by agarose gel electrophoresis, respectively. The results collectively showed that treating cells with ɛ-viniferin and vincristine significantly inhibited cell viability at lower doses as compared to each agent applied alone. IC(50) values for ɛ-viniferin and vincristine were determined as 98.3 and 52.5 μM at 24 h, respectively. IC(50) value of ɛ-viniferin in combination with vincristine was 15.8+11.25 μM (mean/SD) at 24 h. The viability of cells treated with 17.9 μM vincristine alone for 24 h was 79.62%; it reduced to 26.53% when 25 μM ɛ-viniferin was added in combination with vincristine (p<0.05). We found that combination of drugs promoted the sensitivity of cells against to vincristine treatment. The effect of combined use was in support of a synergistic pharmacodynamic effect. Moreover, low doses of the combination regimen induced phosphatidyl re-localization, morphological changes, and DNA fragmentation, and therefore caused apoptotic death. This study thus suggests that low concentrations of ɛ-viniferin and vincristine can enhance the anti-tumor effects efficiently by inducing HepG2 cell apoptosis. Further studies in other model systems are warranted with a view to potential future applications in the clinic of such combination regimens and their putative mechanism of action in the observed synergy reported here.
Collapse
Affiliation(s)
- Filiz Özdemir
- 1 Faculty of Pharmacy, Department of Biochemistry, Anadolu University , Tepebası, Eskisehir, Turkey
| | | | | | | | | | | | | |
Collapse
|
90
|
Sekar TV, Mohanram RK, Foygel K, Paulmurugan R. Therapeutic evaluation of microRNAs by molecular imaging. Am J Cancer Res 2013; 3:964-85. [PMID: 24396507 PMCID: PMC3881098 DOI: 10.7150/thno.4928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/22/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) function as regulatory molecules of gene expression with multifaceted activities that exhibit direct or indirect oncogenic properties, which promote cell proliferation, differentiation, and the development of different types of cancers. Because of their extensive functional involvement in many cellular processes, under both normal and pathological conditions such as various cancers, this class of molecules holds particular interest for cancer research. MiRNAs possess the ability to act as tumor suppressors or oncogenes by regulating the expression of different apoptotic proteins, kinases, oncogenes, and other molecular mechanisms that can cause the onset of tumor development. In contrast to current cancer medicines, miRNA-based therapies function by subtle repression of gene expression on a large number of oncogenic factors, and therefore are anticipated to be highly efficacious. Given their unique mechanism of action, miRNAs are likely to yield a new class of targeted therapeutics for a variety of cancers. More than thousand miRNAs have been identified to date, and their molecular mechanisms and functions are well studied. Furthermore, they are established as compelling therapeutic targets in a variety of cellular complications. However, the notion of using them as therapeutic tool was proposed only recently, given that modern imaging methods are just beginning to be deployed for miRNA research. In this review, we present a summary of various molecular imaging methods, which are instrumental in revealing the therapeutic potential of miRNAs, especially in various cancers. Imaging methods have recently been developed for monitoring the expression levels of miRNAs and their target genes by fluorescence-, bioluminescence- and chemiluminescence-based imaging techniques. Mature miRNAs bind to the untranslated regions (UTRs) of the target mRNAs and regulate target genes expressions. This concept has been used for the development of fluorescent reporter-based imaging strategies to monitor the functional status of endogenous miRNAs, or the respective miRNAs transiently co-expressed in cells. Bioluminescence-based imaging strategies have been used to investigate various stages of miRNA processing and its involvement in different cellular processes. Similarly, chemiluminsecence methods were developed for in vitro miRNA imaging such as monitoring their therapeutic roles in various cancer cell lines.
Collapse
|
91
|
Lee YK, Lin TH, Chang CF, Lo YL. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma. PLoS One 2013; 8:e82478. [PMID: 24303084 PMCID: PMC3841143 DOI: 10.1371/journal.pone.0082478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/01/2013] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance (MDR), an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC) transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi) on the β-catenin/GSK-3β pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, β-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp), MDR-associated protein (MRP) 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, β-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3β, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3β and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the β-catenin/GSK-3β pathway in human colon cancer cells.
Collapse
Affiliation(s)
- Yung-Kuo Lee
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hsien Lin
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Chuan-Fa Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (CFC); (YLL)
| | - Yu-Li Lo
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
- * E-mail: (CFC); (YLL)
| |
Collapse
|
92
|
Nassirpour R, Mehta PP, Yin MJ. miR-122 regulates tumorigenesis in hepatocellular carcinoma by targeting AKT3. PLoS One 2013; 8:e79655. [PMID: 24244539 PMCID: PMC3820664 DOI: 10.1371/journal.pone.0079655] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/03/2013] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been implicated in the orchestration of diverse cellular processes including differentiation, proliferation, and apoptosis and are believed to play pivotal roles as oncogenes and tumor suppressors. miR-122, a liver specific miRNA, is significantly down-regulated in most hepatocellular carcinomas (HCCs) but its role in tumorigenesis remains poorly understood. Here we identify AKT3 as a novel and direct target of miR-122. Restoration of miR-122 expression in HCC cell lines decreases AKT3 levels, inhibits cell migration and proliferation, and induces apoptosis. These anti-tumor phenotypes can be rescued by reconstitution of AKT3 expression indicating the essential role of AKT3 in miR-122 mediated HCC transformation. In vivo, restoration of miR-122 completely inhibited xenograft growth of HCC tumor in mice. Our data strongly suggest that miR-122 is a tumor suppressor that targets AKT3 to regulate tumorigenesis in HCCs and a potential therapeutic candidate for liver cancer.
Collapse
Affiliation(s)
- Rounak Nassirpour
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, California, United States of America
| | - Pramod P. Mehta
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, California, United States of America
| | - Min-Jean Yin
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
93
|
Pan SF, Sui H, Li Q, Shi XL. Progress in understanding role of microRNAs in multidrug resistance in digestive system cancers. Shijie Huaren Xiaohua Zazhi 2013; 21:1834-1840. [DOI: 10.11569/wcjd.v21.i19.1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance (MDR) is a dominant obstacle to successful cancer chemotherapy, especially in digestive cancers. Therefore, reversing multidrug resistance has become a hot research topic. Recently, studies have shown that MDR is associated with aberrant expression of microRNAs (miRNA) in several types of cancer. MicroRNAs are a class of endogenous non-coding RNA molecules, which act as master regulators of gene expression through mRNA cleavage or translational repression. This review discusses the biological characteristics of miRNAs, their relationship with MDR in digestive system cancers, and potential signal transduction pathways involved, with an aim to provide new insights into the prevention and targeted therapy of MDR in digestive system cancers.
Collapse
|
94
|
Friend or foe: the role of microRNA in chemotherapy resistance. Acta Pharmacol Sin 2013; 34:870-9. [PMID: 23624759 PMCID: PMC3703710 DOI: 10.1038/aps.2013.35] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/12/2013] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy has been widely used in treating cancer patients. Despite the tremendous progress in cancer treatment achieved during the last decades, drug resistance still accounts for most of the tumor relapses in chemotherapy-treated patients. Emerging evidence shows that microRNAs play an important role in regulating the drug sensitivity of tumor cells. However, the mechanism of microRNA-mediated drug resistance is not fully understood. Current data suggest that microRNAs can be categorized as oncogenic or tumor-suppressive based on their functions and targets. In tumor cells undergoing drug treatment, microRNAs can function either by decreasing expression of genes associated with multiple drug resistance or by promoting escape from apoptosis and inducing tumor stem cell development. This review aims to provide an updated understanding of the role of microRNAs in regulating chemotherapy resistance and a discussion of potential therapeutic applications.
Collapse
|
95
|
Paulmurugan R, Oronsky B, Brouse CF, Reid T, Knox S, Scicinski J. Real time dynamic imaging and current targeted therapies in the war on cancer: a new paradigm. Theranostics 2013; 3:437-47. [PMID: 23781290 PMCID: PMC3677414 DOI: 10.7150/thno.5658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/28/2013] [Indexed: 12/13/2022] Open
Abstract
In biology, as every science student is made to learn, ontology recapitulates phylogeny. In medicine, however, oncology recapitulates polemology, the science of warfare: The medical establishment is transitioning from highly toxic poisons that kill rapidly dividing normal and malignant cells with little specificity to tailored therapies that target the tumors with the lethality of the therapeutic warhead. From the advent of the information age with the incorporation of high-tech intelligence, reconnaissance, and surveillance has resulted in "data fusion" where a wide range of information collected in near real-time can be used to redesign most of the treatment strategies currently used in the clinic. The medical community has begun to transition from the 'black box' of tumor therapy based solely on the clinical response to the 'glass box' of dynamic imaging designed to bring transparency to the clinical battlefield during treatment, thereby informing the therapeutic decision to 'retreat or repeat'. The tumor microenvironment is dynamic, constantly changing in response to therapeutic intervention, and therefore the therapeutic assessment must map to this variable and ever-changing landscape with dynamic and non-static imaging capabilities. The path to personalized medicine will require incorporation and integration of dynamic imaging at the bedside into clinical practice for real-time, interactive assessment of response to targeted therapies. The application of advanced real time imaging techniques along with current molecularly targeted anticancer therapies which alter cellular homeostasis and microenvironment can enhance therapeutic interventions in cancer patients and further improve the current status in clinical management of patients with advanced cancers.
Collapse
|
96
|
Zhao YJ, Ju Q, Li GC. Tumor markers for hepatocellular carcinoma. Mol Clin Oncol 2013; 1:593-598. [PMID: 24649215 PMCID: PMC3915636 DOI: 10.3892/mco.2013.119] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 04/15/2013] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a high rate of morbidity and mortality. HCC affects approximately one million individuals annually worldwide, with the incidence equal to the mortality rate. In 2008, HCC was listed as the third most lethal cancer. Thus, early diagnosis is crucial for improving the survival rate for patients. α-fetoprotein (AFP) together with iconography and pathology detection are commonly used in the clinical early diagnosis of liver cancer. However, the specificity and sensitivity of AFP used in screening for liver cancer are not satisfactory. Athough the development of molecular biology has led to the identification of new tumor markers, including proteantigens, cytokines, enzymes and isoenzymes, as well as related genes that can be used in the treatment and prognosis of liver cancer, more tumor markers are required for effective early diagnosis of diseases and monitoring of the curative effect.
Collapse
Affiliation(s)
- Yan-Jie Zhao
- Tumor Immunobiology Laboratory of Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Key Laboratory of Carcinogenesis Ministry of Health, Central South University, Changsha, Hunan 410078, P.R. China
| | - Qiang Ju
- Tumor Immunobiology Laboratory of Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Key Laboratory of Carcinogenesis Ministry of Health, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guan-Cheng Li
- Tumor Immunobiology Laboratory of Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Key Laboratory of Carcinogenesis Ministry of Health, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
97
|
Aravalli RN. Development of MicroRNA Therapeutics for Hepatocellular Carcinoma. Diagnostics (Basel) 2013; 3:170-91. [PMID: 26835673 PMCID: PMC4665582 DOI: 10.3390/diagnostics3010170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer and is the third leading cause of cancer-related deaths worldwide. Treatment options for HCC are very limited, as it is often diagnosed at a late stage. Recent studies have demonstrated that microRNAs (miRNAs), a class of non-coding RNAs, are aberrantly expressed in HCC. Some of these were shown to be functionally involved in carcinogenesis and tumor progression, suggesting that miRNAs can serve as novel molecular targets for HCC therapy. Several promising studies have recently demonstrated the therapeutic potential of miRNAs in animal models and in reducing the viral load in hepatitis C patients. In this review, these advances and strategies for modulating miRNAs for in vivo therapeutic delivery and replacement therapy are discussed.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Radiology, University of Minnesota Medical School, MMC 292 Mayo Memorial Building, 420 Delaware Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
98
|
Xu J, Mo Y, Wang X, Liu J, Zhang X, Wang J, Hu L, Yang C, Chen L, Wang Y. Conditionally replicative adenovirus-based mda-7/IL-24 expression enhances sensitivity of colon cancer cells to 5-fluorouracil and doxorubicin. J Gastroenterol 2013; 48:203-13. [PMID: 22820863 DOI: 10.1007/s00535-012-0623-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 05/28/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Multiple drug resistance (MDR) greatly limits the efficacy of chemotherapy for colon cancer. An adenovirus armed with Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24; abbreviated to 'IL-24' here) was shown to reverse the MDR of colon cancer cells to oxaliplatin and doxorubicin. However, the relatively low expression level of IL-24 mediated by a replication-deficient adenoviral vector hindered its clinical application. METHODS To enhance IL-24-dependentreversion of the MDR phenotype, we utilized a conditionally replicative adenoviral vector, AdBB-IL24, to express IL-24 at a high level for more efficient MDR reversion. RESULTS An enzyme-linked immunosorbent assay (ELISA) suggested conditionally replicative adenoviral vector-mediated IL-24 expression was elevated in comparison with that of a replication-deficient adenoviral vector, Ad-IL24. AdBB-IL24 was shown to reverse MDR in colon cancer cells more potently than Ad-IL24. The AdBB-IL24-induced MDR reversion was linked to reduced P-glycoprotein (Pgp) and breast cancer resistance protein 1 (BCRP1) expression. Consistently, 5-fluorouracil and doxorubicin induced more apoptosis in AdBB-IL24-infected colon cancer cells compared with that in the Ad-IL24-infected cells. A cell viability assay showed that AdBB-IL24 could enhance the growth-inhibitory effect of 5-fluorouracil and doxorubicin on colon cancer cells more effectively than Ad-IL24 in vitro. In a mouse model, we also found that the combination of 5-fluorouracil and doxorubicin with AdBB-IL24 completely inhibited the growth of colon cancer cells. CONCLUSION We here provide evidence supporting conditionally replicative adenoviral vector-based gene therapy as a powerful strategy to enhance mda7/IL-24-dependent MDR reversion of colon cancer cells.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming Medical College, Kunming, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Genome-wide analysis of miRNA signature differentially expressed in doxorubicin-resistant and parental human hepatocellular carcinoma cell lines. PLoS One 2013; 8:e54111. [PMID: 23359607 PMCID: PMC3554743 DOI: 10.1371/journal.pone.0054111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy regiments have been widely used in the treatment of a variety of human malignancies including hepatocellular carcinoma (HCC). A major cause of failure in chemotherapy is drug resistance of cancer cells. Resistance to doxorubicin (DOX) is a common and representative obstacle to treat cancer effectively. Individual microRNA (miRNA) has been introduced in the evolution of DOX resistance in HCC in recent studies. However, a global and systematic assessment of the miRNA expression profiles contributing to DOX resistance is still lacking. In the present study, we applied high-throughput Illumina sequencing to comprehensively characterize miRNA expression profiles in both human HCC cell line (HepG2) and its DOX-resistant counterpart (HepG2/DOX). A total of 269 known miRNAs were significantly differentially expressed, of which 23 were up-regulated and 246 were down-regulated in HepG2/DOX cells, indicating that part of them might be involved in the development of DOX resistance. In addition, we have identified 9 and 13 novel miRNAs up- and down-expressed significantly in HepG2/DOX cells, respectively. miRNA profiling was then validated by quantitative real-time PCR for selected miRNAs, including 22 known miRNAs and 6 novel miRNAs. Furthermore, we predicted the putative target genes for the deregulated miRNAs in the samples. Function annotation implied that these selected miRNAs affected many target genes mainly involved in MAPK signaling pathway. This study provides us a general description of miRNA expression profiling, which is helpful to find potential miRNAs for adjunct treatment to overcome DOX resistance in future HCC chemotherapy.
Collapse
|
100
|
Zhang H, Shykind B, Sun T. Approaches to manipulating microRNAs in neurogenesis. Front Neurosci 2013; 6:196. [PMID: 23335878 PMCID: PMC3547386 DOI: 10.3389/fnins.2012.00196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis in the nervous system is regulated by both protein coding genes and non-coding RNA molecules. microRNAs (miRNAs) are endogenous small non-coding RNAs and usually negatively regulate gene expression by binding to the 3′ untranslated region (3′UTR) of target messenger RNAs (mRNAs). miRNAs have been shown to play an essential role in neurogenesis, regulating neuronal proliferation, differentiation, maturation, and migration. An important strategy used to reveal miRNA function is the manipulation of their expression levels and patterns in specific regions and cell types in the nervous system. In this review we will systemically highlight established and new approaches used to achieve gain-of-function and loss-of-function of miRNAs in vitro and in vivo, and will also summarize miRNA delivery techniques. As the development of these leading edge techniques come online, more exciting discoveries of the roles miRNAs play in neural development and function will be uncovered.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University New York, NY, USA
| | | | | |
Collapse
|