51
|
Matlou GG, Abrahamse H. Hybrid Inorganic-Organic Core-Shell Nanodrug Systems in Targeted Photodynamic Therapy of Cancer. Pharmaceutics 2021; 13:1773. [PMID: 34834188 PMCID: PMC8625656 DOI: 10.3390/pharmaceutics13111773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Hybrid inorganic-organic core-shell nanoparticles (CSNPs) are an emerging paradigm of nanodrug carriers in the targeted photodynamic therapy (TPDT) of cancer. Typically, metallic cores and organic polymer shells are used due to their submicron sizes and high surface to volume ratio of the metallic nanoparticles (NPs), combined with enhances solubility, stability, and absorption sites of the organic polymer shell. As such, the high loading capacity of therapeutic agents such as cancer specific ligands and photosensitizer (PS) agents is achieved with desired colloidal stability, drug circulation, and subcellular localization of the PS agents at the cancer site. This review highlights the synthesis methods, characterization techniques, and applications of hybrid inorganic-organic CSNPs as loading platforms of therapeutic agents for use in TPDT. In addition, cell death pathways and the mechanisms of action that hybrid inorganic-organic core-shell nanodrug systems follow in TPDT are also reviewed. Nanodrug systems with cancer specific properties are able to localize within the solid tumor through the enhanced permeability effect (EPR) and bind with affinity to receptors on the cancer cell surfaces, thus improving the efficacy of short-lived cytotoxic singlet oxygen. This ability by nanodrug systems together with their mechanism of action during cell death forms the core basis of this review and will be discussed with an overview of successful strategies that have been reported in the literature.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa;
| |
Collapse
|
52
|
Takano Y, Hirata E, Ushijima N, Harashima H, Yamada Y. An effective in vivo mitochondria-targeting nanocarrier combined with a π-extended porphyrin-type photosensitizer. NANOSCALE ADVANCES 2021; 3:5919-5927. [PMID: 36132667 PMCID: PMC9419188 DOI: 10.1039/d1na00427a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 05/15/2023]
Abstract
A photochemical reaction mediated by light-activated molecules (photosensitizers) in photodynamic therapy (PDT) causes molecular oxygen to be converted into highly reactive oxygen species (ROS) that are beneficial for cancer therapy. As the active oxygen consumer and the primary regulator of apoptosis, mitochondria are known as an important target for optimizing PDT outcomes. However, most of the clinically used photosensitizers exhibited a poor tumor accumulation profile as well as lack of mitochondria targeting ability. Therefore, by applying a nanocarrier platform, mitochondria-specific delivery of photosensitizers can be materialized. The present research develops an effective mitochondria-targeting liposome-based nanocarrier system (MITO-Porter) encapsulating a π-extended porphyrin-type photosensitizer (rTPA), which results in a significant in vivo antitumor activity. A single PDT treatment of the rTPA-MITO-Porter resulted in a dramatic tumor inhibition against both human and murine tumors that had been xenografted in a mouse model. Furthermore, depolarization of the mitochondrial membrane was observed, implying the damage of the mitochondrial membrane due to the photochemical reaction that occurred specifically in the mitochondria of tumor cells. The findings presented herein serve to verify the significance of the mitochondria-targeted nanocarrier system for advancing the in vivo PDT effectivity in cancer therapy regardless of tumor type.
Collapse
Affiliation(s)
- Yuta Takano
- Research Institute for Electronic Science, Hokkaido University Kita-20 Nishi-10, Kita-ku Sapporo 001-0020 Japan
- Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
| | - Eri Hirata
- Faculty of Dental Medicine, Hokkaido University Sapporo 060-8586 Japan
| | - Natsumi Ushijima
- Faculty of Dental Medicine, Hokkaido University Sapporo 060-8586 Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University Kita-12 Nishi-6, Kita-ku Sapporo 060-0812 Japan
| | - Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University Kita-12 Nishi-6, Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
53
|
Ren H, Wu L, Tan L, Bao Y, Ma Y, Jin Y, Zou Q. Self-assembly of amino acids toward functional biomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1140-1150. [PMID: 34760429 PMCID: PMC8551877 DOI: 10.3762/bjnano.12.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Biomolecules, such as proteins and peptides, can be self-assembled. They are widely distributed, easy to obtain, and biocompatible. However, the self-assembly of proteins and peptides has disadvantages, such as difficulty in obtaining high quantities of materials, high cost, polydispersity, and purification limitations. The difficulties in using proteins and peptides as functional materials make it more complicate to arrange assembled nanostructures at both microscopic and macroscopic scales. Amino acids, as the smallest constituent of proteins and the smallest constituent in the bottom-up approach, are the smallest building blocks that can be self-assembled. The self-assembly of single amino acids has the advantages of low synthesis cost, simple modeling, excellent biocompatibility and biodegradability in vivo. In addition, amino acids can be assembled with other components to meet multiple scientific needs. However, using these simple building blocks to design attractive materials remains a challenge due to the simplicity of the amino acids. Most of the review articles about self-assembly focus on large molecules, such as peptides and proteins. The preparation of complicated materials by self-assembly of amino acids has not yet been evaluated. Therefore, it is of great significance to systematically summarize the literature of amino acid self-assembly. This article reviews the recent advances in amino acid self-assembly regarding amino acid self-assembly, functional amino acid self-assembly, amino acid coordination self-assembly, and amino acid regulatory functional molecule self-assembly.
Collapse
Affiliation(s)
- Huan Ren
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lifang Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lina Tan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yanni Bao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuchen Ma
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
54
|
Wang Y, Li Y, Zhang Z, Wang L, Wang D, Tang BZ. Triple-Jump Photodynamic Theranostics: MnO 2 Combined Upconversion Nanoplatforms Involving a Type-I Photosensitizer with Aggregation-Induced Emission Characteristics for Potent Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103748. [PMID: 34423484 DOI: 10.1002/adma.202103748] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Indexed: 05/24/2023]
Abstract
The development of multifunctional nanoplatforms has been recognized as a promising strategy for potent photodynamic theranostics. Aggregation-induced emission (AIE) photosensitizers undergoing Type-I reactive oxygen species (ROS) generation pathway appear as potential candidates due to their capability of hypoxia-tolerance, efficient ROS production, and fluorescence imaging navigation. To further improve their performance, a facile and universal method of constructing a type of glutathione (GSH)-depleting and near-infrared (NIR)-regulated nanoplatform for dual-modal imaging-guided photodynamic therapy (PDT) is presented. The nanoplatforms are obtained through the coprecipitation process involving upconversion nanoparticles (UCNPs) and AIE-active photosensitizers, followed by in situ generation of MnO2 as the outer shell. The introduction of UCNPs actualizes the NIR-activation of AIE-active photosensitizers to produce ·OH as a Type-I ROS. Intracellular upregulated GSH-responsive decomposition of the MnO2 shell to Mn2+ realizes GSH-depletion, which is a distinctive approach for elevating intracellular ·OH. Meanwhile, the generated Mn2+ can implement T1 -weighted magnetic resonance imaging (MRI) in specific tumor sites, and mediate the conversion of intracellular H2 O2 to ·OH. These outputs reveal a triple-jump ·OH production, and this approach brings about distinguished performance in FLI-MRI-guided PDT with high-efficacy, which presents great potential for future clinical translations.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Youmei Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
55
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021; 13:4447. [PMID: 34503255 PMCID: PMC8430498 DOI: 10.3390/cancers13174447] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy against cancer. Even though it has been investigated for more than 100 years, scientific publications have grown exponentially in the last two decades. For this reason, we present a brief compendium of reviews of the last two decades classified under different topics, namely, overviews, reviews about specific cancers, and meta-analyses of photosensitisers, PDT mechanisms, dosimetry, and light sources. The key issues and main conclusions are summarized, including ways and means to improve therapy and outcomes. Due to the broad scope of this work and it being the first time that a compendium of the latest reviews has been performed for PDT, it may be of interest to a wide audience.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
56
|
Luo T, Nash GT, Xu Z, Jiang X, Liu J, Lin W. Nanoscale Metal-Organic Framework Confines Zinc-Phthalocyanine Photosensitizers for Enhanced Photodynamic Therapy. J Am Chem Soc 2021; 143:13519-13524. [PMID: 34424712 PMCID: PMC8414475 DOI: 10.1021/jacs.1c07379] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The performance of
photodynamic therapy (PDT) depends on the solubility,
pharmacokinetic behaviors, and photophysical properties of photosensitizers
(PSs). However, highly conjugated PSs with strong reactive oxygen
species (ROS) generation efficiency tend to have poor solubility
and aggregate in aqueous environments, leading to suboptimal PDT performance.
Here, we report a new strategy to load highly conjugated but poorly
soluble zinc-phthalocyanine (ZnP) PSs in the pores of a Hf12-QC (QC = 2″,3′-dinitro-[1,1’:4′,1”;4″,1’”-quaterphenyl]-4,4’”-dicarboxylate)
nanoscale metal–organic framework to afford ZnP@Hf-QC with
spatially confined ZnP PSs. ZnP@Hf-QC avoids aggregation-induced quenching
of ZnP excited states to significantly enhance ROS generation upon
light irradiation. With higher cellular uptake, enhanced ROS generation,
and better biocompatibility, ZnP@Hf-QC mediated PDT exhibited an IC50 of 0.14 μM and achieved exceptional antitumor efficacy
with >99% tumor growth inhibition and 80% cure rates on two murine
colon cancer models.
Collapse
Affiliation(s)
- Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jianqiao Liu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
57
|
Karimnia V, Slack FJ, Celli JP. Photodynamic Therapy for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13174354. [PMID: 34503165 PMCID: PMC8431269 DOI: 10.3390/cancers13174354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human cancers. Numerous clinical trials evaluating various combinations of chemotherapy and targeted agents and radiotherapy have failed to provide meaningful improvements in survival. A growing number of studies however have indicated that photodynamic therapy (PDT) may be a viable approach for treatment of some pancreatic tumors. PDT, which uses light to activate a photosensitizing agent in target tissue, has seen widespread adoption primarily for dermatological and other applications where superficial light delivery is relatively straightforward. Advances in fiber optic light delivery and dosimetry however have been leveraged to enable PDT even for challenging internal sites, including the pancreas. The aim of this article is to help inform future directions by reviewing relevant literature on the basic science, current clinical status, and potential challenges in the development of PDT as a treatment for PDAC. Abstract Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human cancers. Clinical trials of various chemotherapy, radiotherapy, targeted agents and combination strategies have generally failed to provide meaningful improvement in survival for patients with unresectable disease. Photodynamic therapy (PDT) is a photochemistry-based approach that enables selective cell killing using tumor-localizing agents activated by visible or near-infrared light. In recent years, clinical studies have demonstrated the technical feasibility of PDT for patients with locally advanced PDAC while a growing body of preclinical literature has shown that PDT can overcome drug resistance and target problematic and aggressive disease. Emerging evidence also suggests the ability of PDT to target PDAC stroma, which is known to act as both a barrier to drug delivery and a tumor-promoting signaling partner. Here, we review the literature which indicates an emergent role of PDT in clinical management of PDAC, including the potential for combination with other targeted agents and RNA medicine.
Collapse
Affiliation(s)
- Vida Karimnia
- Department of Physics, University of Massachusetts at Boston, Boston, MA 02125, USA;
| | - Frank J. Slack
- Department of Pathology, BIDMC Cancer Center/Harvard Medical School, Boston, MA 02215, USA;
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts at Boston, Boston, MA 02125, USA;
- Correspondence:
| |
Collapse
|
58
|
Jiang M, Deng Z, Zeng S, Hao J. Recent progress on lanthanide scintillators for soft X‐ray‐triggered bioimaging and deep‐tissue theranostics. VIEW 2021. [DOI: 10.1002/viw.20200122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mingyang Jiang
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Zhiming Deng
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Jianhua Hao
- Department of Applied Physics The Hong Kong Polytechnic University Kowloon Hong Kong P. R. China
| |
Collapse
|
59
|
Kirsanova DY, Gadzhimagomedova ZM, Maksimov AY, Soldatov AV. Nanomaterials for Deep Tumor Treatment. Mini Rev Med Chem 2021; 21:677-688. [PMID: 33176645 DOI: 10.2174/1389557520666201111161705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/25/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
According to statistics, cancer is the second leading cause of death in the world. Thus, it is important to solve this medical and social problem by developing new effective methods for cancer treatment. An alternative to more well-known approaches, such as radiotherapy and chemotherapy, is photodynamic therapy (PDT), which is limited to the shallow tissue penetration (< 1 cm) of visible light. Since the PDT process can be initiated in deep tissues by X-ray irradiation (X-ray induced PDT, or XPDT), it has a great potential to treat tumors in internal organs. The article discusses the principles of therapies. The main focus is on various nanoparticles used with or without photosensitizers, which allow the conversion of X-ray irradiation into UV-visible light. Much attention is given to the synthesis of nanoparticles and analysis of their characteristics, such as size and spectral features. The results of in vitro and in vivo experiments are also discussed.
Collapse
Affiliation(s)
- Daria Yu Kirsanova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| | - Zaira M Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| | - Aleksey Yu Maksimov
- National Medical Research Centre for Oncology, 14 liniya str. 63, 344037, Rostov-on-Don, Russian Federation
| | - Alexander V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| |
Collapse
|
60
|
Luan X, Pan Y, Gao Y, Song Y. Recent near-infrared light-activated nanomedicine toward precision cancer therapy. J Mater Chem B 2021; 9:7076-7099. [PMID: 34124735 DOI: 10.1039/d1tb00671a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Light has been present throughout the history of mankind and even the universe. It is of great significance to human life, contributing to energy, agriculture, communication, and much more. In the biomedical field, light has been developed as a switch to control medical processes with minimal invasion and high spatiotemporal selectivity. During the past three years, near-infrared (NIR) light as long-wavelength light has been applied to more than 3000 achievements in biological applications due to its deep penetration depth and low phototoxicity. Remotely controlled cancer therapy usually involves the conversion of biologically inert NIR light. Thus, various materials, especially nanomaterials that can generate reactive oxygen species (ROS), ultraviolet (UV)/visual light, or thermal energy and so on under NIR illumination achieve great potential for the research of nanomedicine. Here, we offered an overview of recent advances in NIR light-activated nanomedicine for cancer therapeutic applications. NIR-light-conversion nanotechnologies for both directly triggering nanodrugs and smart drug delivery toward tumor therapy were discussed emphatically. The challenges and future trends of the use of NIR light in biomedical applications were also provided as a conclusion. We expect that this review will spark inspiration for biologists, materials scientists, pharmacologists, and chemists to fight against diseases and boost the future clinical-translational applications of NIR technology-based precision nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
61
|
Chen J, Li S, Liu X, Liu S, Xiao C, Zhang Z, Li S, Li Z, Yang X. Transforming growth factor-β blockade modulates tumor mechanical microenvironments for enhanced antitumor efficacy of photodynamic therapy. NANOSCALE 2021; 13:9989-10001. [PMID: 34076013 DOI: 10.1039/d1nr01552d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) is frequently used in cancer treatment in clinical settings. However, its applications in stroma-rich solid tumors, e.g., triple negative breast cancer, are limited by abnormal mechanical microenvironments. Solid stress accumulated in stroma-rich solid tumors compresses tumor blood vessels, hampers the delivery of photosensitizers (PSs) in tumor tissues, and poses a major challenge for potent PDT. Here, we report a novel combination strategy to augment PDT based cancer therapy by combining hydroxyethyl starch-chlorin e6 conjugate self-assembled nanoparticles (HES-Ce6 NPs) with the transforming growth factor-β (TGFβ) inhibitor LY2157299 (LY). HES-Ce6 conjugates, as synthesized by one step esterification reaction, could self-assemble into uniform HES-Ce6 NPs, which exhibited enhanced photostability and generated more reactive oxygen species (ROS) under 660 nm laser irradiation than free Ce6. Prior to PDT, intragastric administration of LY decreased collagen deposition, alleviated solid stress, and decompressed tumor blood vessels. As a result, the reconstructed tumor mechanical microenvironment promoted accumulation and penetration of HES-Ce6 NPs into tumor tissues, contributing to augmented antitumor efficacy of HES-Ce6 NP mediated PDT. Modulating tumor mechanical microenvironments using TGFβ blockade to enhance the delivery of PSs in tumors with excessive extracellular matrix represents an efficient strategy for treating stroma-rich solid tumors.
Collapse
Affiliation(s)
- Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sajjada F, Liua XY, Yanb YJ, Zhoua XP, Chena ZL. The Photodynamic Anti-Tumor Effects of New PPa-CDs Conjugate with pH Sensitivity and Improved Biocompatibility. Anticancer Agents Med Chem 2021; 22:1286-1295. [PMID: 33992066 DOI: 10.2174/1871520621666210513162457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photodynamic therapy has been increasingly used to cope with the alarming problem of cancer. Porphyrins and its derivatives are widely used as potent photosensitizers (PS) for PDT. However, hydrophobicity of porphyrins poses a challenge for their use in clinics, while most of the carbon dots (CDs) are known for good biocompatibility, solubility, and pH sensitivity. OBJECTIVE To improve the properties/biocompatibility of the pyropheophorbide-α for PDT. METHODS PPa-CD conjugate was synthesized through covalent interaction using amide condensation. The structure of synthesized conjugate was confirmed by TEM, 1HNMR, and FTIR. The absorption and emission spectra were studied. In vitro, cytotoxicity of the conjugate was examined in the Human esophageal cancer cell line (Eca-109). RESULTS The results showed that the fluorescence of the drug was increased from its precursor. CD based conjugate could generate ROS as well as enhanced the biocompatibility by decreasing the cytotoxicity. The conjugated drug also showed pH sensitivity in different solutions. CONCLUSION The dark toxicity, as well as hemocompatibility, were improved.
Collapse
Affiliation(s)
- Faiza Sajjada
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xu-Ying Liua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yanb
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, 200433, China
| | - Xing-Ping Zhoua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Zhi-Long Chena
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| |
Collapse
|
63
|
Kwon N, Kim H, Li X, Yoon J. Supramolecular agents for combination of photodynamic therapy and other treatments. Chem Sci 2021; 12:7248-7268. [PMID: 34163818 PMCID: PMC8171357 DOI: 10.1039/d1sc01125a] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising treatment for cancers such as superficial skin cancers, esophageal cancer, and cervical cancer. Unfortunately, PDT often does not have sufficient therapeutic benefits due to its intrinsic oxygen dependence and the limited permeability of irradiating light. Side effects from "always on" photosensitizers (PSs) can be problematic, and PDT cannot treat tumor metastases or recurrences. In recent years, supramolecular approaches using non-covalent interactions have attracted attention due to their potential in PS development. A supramolecular PS assembly could be built to maximize photodynamic effects and minimize side effects. A combination of two or more therapies can effectively address shortcomings while maximizing the benefits of each treatment regimen. Using the supramolecular assembly, it is possible to design a multifunctional supramolecular PS to exert synergistic effects by combining PDT with other treatment methods. This review provides a summary of important research progress on supramolecular systems that can be used to combine PDT with photothermal therapy, chemotherapy, and immunotherapy to compensate for the shortcomings of PDT, and it provides an overview of the prospects for future cancer treatment advances and clinical applications.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University Fuzhou 350116 China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
64
|
Dai G, Choi CKK, Zhou Y, Bai Q, Xiao Y, Yang C, Choi CHJ, Ng DKP. Immobilising hairpin DNA-conjugated distyryl boron dipyrromethene on gold@polydopamine core-shell nanorods for microRNA detection and microRNA-mediated photodynamic therapy. NANOSCALE 2021; 13:6499-6512. [PMID: 33885529 DOI: 10.1039/d0nr09135a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel nanosystem of polydopamine-coated gold nanorods (AuNR@PDA) immobilised with molecules of hairpin DNA-conjugated distyryl boron dipyrromethene (DSBDP) was designed and fabricated for detection of microRNA-21 (miR-21). By using this oncogenic stimulus, the photodynamic effect of the DSBDP-based photosensitiser was also activated. In the presence of miR-21, the fluorescence intensity of the nanosystem was increased due to the dissociation of the conjugate from AuNR@PDA upon hybridisation. The intracellular fluorescence intensity triggered by intracellular miR-21 was in the order: MCF-7 > HeLa > HEK-293, which was in accordance with their miR-21 expression levels. The specificity was demonstrated by comparing the results with those of an analogue with a scrambled DNA sequence. The nanosystem could also result in miR-21-mediated photodynamic eradication of miR-21-overexpressed MCF-7 cells. After intravenous injection of the nanosystem into HeLa tumour-bearing nude mice, the fluorescence intensity of the tumour was increased over 24 h and was about 3-fold stronger than that of the scrambled analogue. Upon irradiation, the nanosystem could also greatly reduce the size of the tumour without causing significant tissue damage in the major organs. The overall results showed that this nanoplatform can serve as a specific and potent theranostic agent for simultaneous miR-21 detection and miR-21-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Gaole Dai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Park JM, Jung CY, Jang WD, Jaung JY. Silicon Tetrapyrazinoporphyrazine Derivatives-Incorporated Carbohydrate-Based Block Copolymer Micelles for Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:1988-2000. [PMID: 35014324 DOI: 10.1021/acsabm.0c00256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing nonaggregated photosensitizers (PSs) for efficient photodynamic therapy (PDT) using polymeric micelles (PMs) has been challenging. In this study, axially substituted nonaggregated silicon tetrapyrazinoporphyrazine (SiTPyzPz) derivatives in carbohydrate-based block glycopolymer-based PMs were designed and used as PSs for PDT. To achieve the nonaggregated PSs, SiTPyzPz was axially substituted with trihexylsiloxy (THS) groups to form SiTPyzPz-THS, which exhibited highly monomeric behaviors in organic solvents. Moreover, three block copolymers were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Each copolymer comprised hydrophobic polystyrene blocks and loadable SiTPyzPz-THS, and one or two consisted of two possible hydrophilic blocks, polyethylene glycol or poly(glucosylethyl methacrylate). The self-assembly of SiTPyzPz-THS and the block copolymers in aqueous solvents induced the formation of spherical PMs with core-shell or core-shell-corona structures. The SiTPyzPz-THS in the PMs exhibited monomeric state, intense fluorescence emission, and outstanding singlet oxygen generation; moreover, it did not form aggregates. During the in vitro test, which was performed to investigate the PDT efficiency, the PMs, which consisted of poly(glucosylethyl methacrylate) shells, exhibited high photocytotoxicity and cellular internalization ability. Consequently, the PM systems of nonaggregated PSs and carbohydrate-based block copolymers could become very promising materials for PDT owing to their photophysicochemical properties and considerable selectivity against cancer cells.
Collapse
Affiliation(s)
- Jong Min Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chang Young Jung
- Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae Yun Jaung
- Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
66
|
Yuan H, Han Z, Chen Y, Qi F, Fang H, Guo Z, Zhang S, He W. Ferroptosis Photoinduced by New Cyclometalated Iridium(III) Complexes and Its Synergism with Apoptosis in Tumor Cell Inhibition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014959] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hao Yuan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Fen Qi
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| |
Collapse
|
67
|
Yuan H, Han Z, Chen Y, Qi F, Fang H, Guo Z, Zhang S, He W. Ferroptosis Photoinduced by New Cyclometalated Iridium(III) Complexes and Its Synergism with Apoptosis in Tumor Cell Inhibition. Angew Chem Int Ed Engl 2021; 60:8174-8181. [PMID: 33656228 DOI: 10.1002/anie.202014959] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Limited therapeutic efficacy to hypoxic and refractory solid tumors has hindered the practical application of photodynamic therapy (PDT). Two new benzothiophenylisoquinoline (btiq)-derived cyclometalated IrIII complexes, IrL1 and MitoIrL2, were constructed as potent photosensitizers, with the latter being designed for mitochondria accumulation. Both complexes demonstrated a type I PDT process and caused photoinduced ferroptosis in tumor cells under hypoxia. This ferroptosis featured lipid peroxide accumulation, mitochondria shrinkage, down-regulation of glutathione peroxidase 4 (GPX4), and ferrostatin-1 (Fer-1)-inhibited cell death. Upon photoirradiation under hypoxia, mitochondria targeting MitoIrL2 caused mitochondria membrane potential (MMP) collapse, ATP production suppression, and induced cell apoptosis. The synergetic effect of ferroptosis and apoptosis causes MitoIrL2 to outperform IrL1 in inhibiting the growth of MCF-7, PANC-1, MDA-MB-231 cells and multicellular spheroids. This study demonstrates the first example of ferroptosis induced by photosensitizing IrIII complexes. Moreover, the synergism of ferroptosis and apoptosis provides a promising approach for combating hypoxic solid tumors through type I PDT processes.
Collapse
Affiliation(s)
- Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Fen Qi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| |
Collapse
|
68
|
Deng X, Shao Z, Zhao Y. Solutions to the Drawbacks of Photothermal and Photodynamic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002504. [PMID: 33552860 PMCID: PMC7856884 DOI: 10.1002/advs.202002504] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/24/2020] [Indexed: 05/11/2023]
Abstract
Phototherapy such as photothermal therapy and photodynamic therapy in cancer treatment has been developed quickly over the past few years for its noninvasive nature and high efficiency. However, there are still many drawbacks in phototherapy that prevent it from clinical applications. Thus, scientists have designed different systems to overcome the issues associated with phototherapy, including enhancing the targeting ability of phototherapy, low-temperature photothermal therapy, replacing near-infrared light with other excitation sources, and so on. This article discusses the problems and shortcomings encountered in the development of phototherapy and highlights possible solutions to address them so that phototherapy may become a useful cancer treatment approach in clinical practice. This article aims to give a brief summary about current research advancements in phototherapy research and provides a quick guideline toward future developments in the field.
Collapse
Affiliation(s)
- Xiangyu Deng
- Department of Orthopaedic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Zengwu Shao
- Department of Orthopaedic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
69
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|
70
|
A phthalocyanine-based self-assembled nanophotosensitizer for efficient in vivo photodynamic anticancer therapy. J Inorg Biochem 2021; 217:111371. [PMID: 33588279 DOI: 10.1016/j.jinorgbio.2021.111371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022]
Abstract
To develop highly efficient photosensitizers for photodynamic therapy, herein a zinc(II) phthalocyanine-folate conjugate (PcN-FA) used to construct an activatable nanophotosensitizer (NanoPcN-FA) through a facile self-assembly. The self-assembled nanophotosensitizer (NanoPcN) without folate-modification was used as a negative control. After self-assembly, the photoactivities of NanoPcN-FA was quenched. The in vitro studies showed that NanoPcN-FA could be taken in by folate-receptor (FR)-positive SKOV3 cells and activated in the cells. It also exhibited slightly higher photocytotoxicity against SKOV3 cells than NanoPcN. Moreover, the competitive assay confirmed that the cellular uptake of NanoPcN-FA was through a FR-mediated process. Finally, the in vivo results indicated that NanoPcN-FA could target tumor tissue of S180 rat ascitic tumor-bearing mice due to the folic acid (FA) ligand, leading to a highly efficient antitumor photodynamic efficacy with the tumor inhibition rate of 95%.
Collapse
|
71
|
Abstract
Malignant biliary obstruction (MBO), result of pancreatobiliary diseases is a challenging condition. Most patients with MBO are inoperable at the time of diagnosis, and the disease is poorly controlled using external-beam radiotherapy and chemotherapy. Biliary stent therapy emerged as a promising strategy for alleviating MBO and prolonging life. However, physicians find it difficult to determine the optimal type of biliary stent for the palliation of MBO. Here, we review the safety and efficacy of available biliary stents, used alone or in combination with brachytherapy, photodynamic therapy and advanced chemotherapeutics, in patients with pancreatobiliary malignancies and put forward countermeasures involving stent obstruction. Furthermore, 3D-printing stents and nanoparticle-loaded stents have broad application prospects for fabricating tailor-made biliary stents.
Collapse
|
72
|
Wang B, Dai Y, Kong Y, Du W, Ni H, Zhao H, Sun Z, Shen Q, Li M, Fan Q. Tumor Microenvironment-Responsive Fe(III)-Porphyrin Nanotheranostics for Tumor Imaging and Targeted Chemodynamic-Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53634-53645. [PMID: 33205657 DOI: 10.1021/acsami.0c14046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The development of effective and safe tumor nanotheranostics remains a research imperative. Herein, tumor microenvironment (TME)-responsive Fe(III)-porphyrin (TCPP) coordination nanoparticles (FT@HA NPs) were prepared using a simple one-pot method followed by modification with hyaluronic acid (HA). FT@HA NPs specifically accumulated in CD44 receptor-overexpressed tumor tissues through the targeting property of HA and upon endocytosis by tumor cells. After cell internalization, intracellular acidic microenvironments and high levels of glutathione (GSH) triggered the rapid decomposition of FT@HA NPs to release free TCPP molecules and Fe(III) ions. The released Fe(III) ions could trigger GSH depletion and Fenton reaction, activating chemodynamic therapy (CDT). Meanwhile, the fluorescence and photodynamic effects of the TCPP could be also activated, achieving controlled reactive oxygen species (ROS) generation and avoiding side effects on normal tissues. Moreover, the rapid consumption of GSH further enhanced the efficacy of CDT and photodynamic therapy (PDT). The in vivo experiments further demonstrated that the antitumor effect of these nanotheranostics was significantly enhanced and that their toxicity and side effects against normal tissues were effectively suppressed. The FT@HA NPs can be applied for activated tumor combination therapy under the guidance of dual-mode imaging including fluorescence imaging and magnetic resonance imaging, providing an effective strategy for the design and preparation of TME-responsive multifunctional nanotheranostics for precise tumor imaging and combination therapy.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yeneng Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yingjie Kong
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wenyu Du
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Haiyang Ni
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Honghai Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zhiquan Sun
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Qingming Shen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Meixing Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
73
|
Verebová V, Beneš J, Staničová J. Biophysical Characterization and Anticancer Activities of Photosensitive Phytoanthraquinones Represented by Hypericin and Its Model Compounds. Molecules 2020; 25:E5666. [PMID: 33271809 PMCID: PMC7731333 DOI: 10.3390/molecules25235666] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Photosensitive compounds found in herbs have been reported in recent years as having a variety of interesting medicinal and biological activities. In this review, we focus on photosensitizers such as hypericin and its model compounds emodin, quinizarin, and danthron, which have antiviral, antifungal, antineoplastic, and antitumor effects. They can be utilized as potential agents in photodynamic therapy, especially in photodynamic therapy (PDT) for cancer. We aimed to give a comprehensive summary of the physical and chemical properties of these interesting molecules, emphasizing their mechanism of action in relation to their different interactions with biomacromolecules, specifically with DNA.
Collapse
Affiliation(s)
- Valéria Verebová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine & Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Jiří Beneš
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1, 121 08 Prague, Czech Republic;
| | - Jana Staničová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine & Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1, 121 08 Prague, Czech Republic;
| |
Collapse
|
74
|
Cho HJ, Park SJ, Jung WH, Cho Y, Ahn DJ, Lee YS, Kim S. Injectable Single-Component Peptide Depot: Autonomously Rechargeable Tumor Photosensitization for Repeated Photodynamic Therapy. ACS NANO 2020; 14:15793-15805. [PMID: 33175520 DOI: 10.1021/acsnano.0c06881] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The general practice of photodynamic therapy (PDT) comprises repeated multiple sessions, where photosensitizers are repeatedly administered prior to each operation of light irradiation. To address potential problems arising from the total overdose of photosensitizer by such repeated injections, we here introduce an internalizing RGD peptide (iRGD) derivative (Ppa-iRGDC-BK01) that self-aggregates into an injectable single-component supramolecular depot. Ppa-iRGDC-BK01 is designed as an in situ self-implantable photosensitizer so that it forms a depot by itself upon injection, and its molecular functions (cancer cell internalization and photosensitization) are activated by sustained release, tumor targeting, and tumor-selective proteolytic/reductive cleavage of the iRGD segment. The experimental and theoretical studies revealed that when exposed to body temperature, Ppa-iRGDC-BK01 undergoes thermally accelerated self-assembly to form a supramolecular depot through the hydrophobic interaction of the Ppa pendants and the reorganization of the interpeptide hydrogen bonding. It turned out that the self-aggregation of Ppa-iRGDC-BK01 into a depot exerts a multiple-quenching effect on the photosensitivity to effectively prevent nonspecific phototoxicity and protect it from photobleaching outside the tumor, while enabling autonomous tumor rephotosensitization by long sustained release, tumor accumulation, and intratumoral activation over time. We demonstrate that depot formation through a single peritumoral injection and subsequent quintuple laser irradiations at intervals resulted in complete eradication of the tumor. During the repeated PDT, depot-implanted normal tissues around the tumor exhibited no phototoxic damage under laser exposure. Our approach of single-component photosensitizing supramolecular depot, combined with a strategy of tumor-targeted therapeutic activation, would be a safer and more precise operation of PDT through a nonconventional protocol composed of one-time photosensitizer injection and multiple laser irradiations.
Collapse
Affiliation(s)
- Hong-Jun Cho
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sung-Jun Park
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo Hyuk Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yuri Cho
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
75
|
Dong C, Feng W, Xu W, Yu L, Xiang H, Chen Y, Zhou J. The Coppery Age: Copper (Cu)-Involved Nanotheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001549. [PMID: 33173728 PMCID: PMC7610332 DOI: 10.1002/advs.202001549] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/07/2020] [Indexed: 05/10/2023]
Abstract
As an essential trace element in the human body, transitional metal copper (Cu) ions are the bioactive components within the body featuring dedicated biological effects such as promoting angiogenesis and influencing lipid/glucose metabolism. The recent substantial advances of nanotechnology and nanomedicine promote the emerging of distinctive Cu-involved biomaterial nanoplatforms with intriguing theranostic performances in biomedicine, which are originated from the biological effects of Cu species and the physiochemical attributes of Cu-composed nanoparticles. Based on the very-recent significant progresses of Cu-involved nanotheranostics, this work highlights and discusses the principles, progresses, and prospects on the elaborate design and rational construction of Cu-composed functional nanoplatforms for a diverse array of biomedical applications, including photonic nanomedicine, catalytic nanotherapeutics, antibacteria, accelerated tissue regeneration, and bioimaging. The engineering of Cu-based nanocomposites for synergistic nanotherapeutics is also exemplified, followed by revealing their intrinsic biological effects and biosafety for revolutionizing their clinical translation. Finally, the underlying critical concerns, unresolved hurdles, and future prospects on their clinical uses are analyzed and an outlook is provided. By entering the "Copper Age," these Cu-involved nanotherapeutic modalities are expected to find more broad biomedical applications in preclinical and clinical phases, despite the current research and developments still being in infancy.
Collapse
Affiliation(s)
- Caihong Dong
- Department of UltrasoundZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Wei Feng
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Wenwen Xu
- Department of UltrasoundRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Luodan Yu
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Huiijng Xiang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yu Chen
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Jianqiao Zhou
- Department of UltrasoundRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
76
|
Sundaram P, Abrahamse H. Phototherapy Combined with Carbon Nanomaterials (1D and 2D) and their Applications in Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4830. [PMID: 33126750 PMCID: PMC7663006 DOI: 10.3390/ma13214830] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Carbon-based materials have attracted research interest worldwide due to their physical and chemical properties and wide surface area, rendering them excellent carrier molecules. They are widely used in biological applications like antimicrobial activity, cancer diagnosis, bio-imaging, targeting, drug delivery, biosensors, tissue engineering, dental care, and skin care. Carbon-based nanomaterials like carbon nanotubes and graphene have drawn more attention in the field of phototherapy due to their unique properties such as thermal conductivity, large surface area, and electrical properties. Phototherapy is a promising next-generation therapeutic modality for many modern medical conditions that include cancer diagnosis, targeting, and treatment. Phototherapy involves the major administration of photosensitizers (PSs), which absorb light sources and emit reactive oxygen species under cellular environments. Several types of nontoxic PSs are functionalized on carbon-based nanomaterials and have numerous advantages in cancer therapy. In this review, we discuss the potential role and combined effect of phototherapy and carbon nanomaterials, the mechanism and functionalization of PSs on nanomaterials, and their promising advantages in cancer therapy.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
77
|
Alsaab HO, Alghamdi MS, Alotaibi AS, Alzhrani R, Alwuthaynani F, Althobaiti YS, Almalki AH, Sau S, Iyer AK. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers (Basel) 2020; 12:E2793. [PMID: 33003374 PMCID: PMC7601252 DOI: 10.3390/cancers12102793] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 01/03/2023] Open
Abstract
Current research to find effective anticancer treatments is being performed on photodynamic therapy (PDT) with increasing attention. PDT is a very promising therapeutic way to combine a photosensitive drug with visible light to manage different intense malignancies. PDT has several benefits, including better safety and lower toxicity in the treatment of malignant tumors over traditional cancer therapy. This reasonably simple approach utilizes three integral elements: a photosensitizer (PS), a source of light, and oxygen. Upon light irradiation of a particular wavelength, the PS generates reactive oxygen species (ROS), beginning a cascade of cellular death transformations. The positive therapeutic impact of PDT may be limited because several factors of this therapy include low solubilities of PSs, restricting their effective administration, blood circulation, and poor tumor specificity. Therefore, utilizing nanocarrier systems that modulate PS pharmacokinetics (PK) and pharmacodynamics (PD) is a promising approach to bypassing these challenges. In the present paper, we review the latest clinical studies and preclinical in vivo studies on the use of PDT and progress made in the use of nanotherapeutics as delivery tools for PSs to improve their cancer cellular uptake and their toxic properties and, therefore, the therapeutic impact of PDT. We also discuss the effects that photoimmunotherapy (PIT) might have on solid tumor therapeutic strategies.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Maha S. Alghamdi
- Department of Pharmaceutical Care, King Abdul-Aziz Specialist Hospital (KAASH), Taif 26521, Saudi Arabia;
| | - Albatool S. Alotaibi
- College of Pharmacy, Taif University, Al Haweiah, Taif 21944, Saudi Arabia; (A.S.A.); (F.A.)
| | - Rami Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Fatimah Alwuthaynani
- College of Pharmacy, Taif University, Al Haweiah, Taif 21944, Saudi Arabia; (A.S.A.); (F.A.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Atiah H. Almalki
- Department of Pharmaceutical chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48021, USA; (S.S.); (A.K.I.)
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48021, USA; (S.S.); (A.K.I.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
78
|
Wong CTT, Chu JCH, Ha SYY, Wong RCH, Dai G, Kwong TT, Wong CH, Ng DKP. Phthalaldehyde-Amine Capture Reactions for Bioconjugation and Immobilization of Phthalocyanines. Org Lett 2020; 22:7098-7102. [PMID: 32806143 DOI: 10.1021/acs.orglett.0c02398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A phthalaldehyde-substituted phthalocyanine has been synthesized that can conjugate with a range of biomolecules, including peptides, monosaccharides, lipids, and DNAs, and be immobilized on the surface of bovine serum album nanoparticles and glass slides using the versatile and efficient phthalaldehyde-amine capture reactions. The light-induced cytotoxic effects of the latter two materials have also been examined against cancer cells and bacteria, respectively, showing that they are highly efficient photosensitizing systems for photodynamic therapy.
Collapse
Affiliation(s)
- Clarence T T Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Summer Y Y Ha
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Roy C H Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Gaole Dai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tsz-Tung Kwong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi-Hang Wong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
79
|
Li J, Chen T. Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213355] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
80
|
In situ vaccination with laser interstitial thermal therapy augments immunotherapy in malignant gliomas. J Neurooncol 2020; 151:85-92. [PMID: 32757094 DOI: 10.1007/s11060-020-03557-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Laser interstitial thermal therapy (LITT) remains a promising advance in the treatment of primary central nervous system malignancies. As indications for its use continue to expand, there has been growing interest in its ability to induce prolonged blood brain barrier (BBB) permeability through hyperthermia, potentially increasing the effectiveness of current therapeutics including BBB-impermeant agents and immunotherapy platforms. METHODS In this review, we highlight the mechanism of hyperthermic BBB disruption and LITT-induced immunogenic cell death in preclinical models and humans. Additionally, we summarize ongoing clinical trials evaluating a combination approach of LITT and immunotherapy, which will likely serve as the basis for future neuro-oncologic treatment paradigms. RESULTS There is evidence to suggest a highly immunogenic response to laser interstitial thermal therapy through activation of both the innate and adaptive immune response. These mechanisms have been shown to potentiate standard methods of oncologic care. There are only a limited number of clinical trials are ongoing to evaluate the utility of LITT in combination with immunotherapy. CONCLUSION LITT continues to be studied as a possible technique to bridge the gap between exciting preclinical results and the limited successes seen in the field of neuro-oncology. Preliminary data suggests a substantial benefit for use of LITT as a combination therapy in several clinical trials. Further investigation is required to determine whether or not this treatment paradigm can translate into long-term durable results for primary intracranial malignancies.
Collapse
|
81
|
Feng Z, Lin S, McDonagh A, Yu C. Natural Hydrogels Applied in Photodynamic Therapy. Curr Med Chem 2020; 27:2681-2703. [PMID: 31622196 DOI: 10.2174/0929867326666191016112828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 01/11/2023]
Abstract
Natural hydrogels are three-dimensional (3D) water-retaining materials with a skeleton consisting of natural polymers, their derivatives or mixtures. Natural hydrogels can provide sustained or controlled drug release and possess some unique properties of natural polymers, such as biodegradability, biocompatibility and some additional functions, such as CD44 targeting of hyaluronic acid. Natural hydrogels can be used with photosensitizers (PSs) in photodynamic therapy (PDT) to increase the range of applications. In the current review, the pertinent design variables are discussed along with a description of the categories of natural hydrogels available for PDT.
Collapse
Affiliation(s)
- Zhipan Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shiying Lin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | | | - Chen Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
82
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|
83
|
Pizzuti VJ, Viswanath D, Torregrosa-Allen SE, Currie MP, Elzey BD, Won YY. Bilirubin-Coated Radioluminescent Particles for Radiation-Induced Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:4858-4872. [PMID: 35021730 DOI: 10.1021/acsabm.0c00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vincenzo J. Pizzuti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dhushyanth Viswanath
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sandra E. Torregrosa-Allen
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Melanie P. Currie
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bennett D. Elzey
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
| |
Collapse
|
84
|
Gadzhimagomedova Z, Zolotukhin P, Kit O, Kirsanova D, Soldatov A. Nanocomposites for X-Ray Photodynamic Therapy. Int J Mol Sci 2020; 21:ijms21114004. [PMID: 32503329 PMCID: PMC7312431 DOI: 10.3390/ijms21114004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) has long been known as an effective method for treating surface cancer tissues. Although this technique is widely used in modern medicine, some novel approaches for deep lying tumors have to be developed. Recently, deeper penetration of X-rays into tissues has been implemented, which is now known as X-ray photodynamic therapy (XPDT). The two methods differ in the photon energy used, thus requiring the use of different types of scintillating nanoparticles. These nanoparticles are known to convert the incident energy into the activation energy of a photosensitizer, which leads to the generation of reactive oxygen species. Since not all photosensitizers are found to be suitable for the currently used scintillating nanoparticles, it is necessary to find the most effective biocompatible combination of these two agents. The most successful combinations of nanoparticles for XPDT are presented. Nanomaterials such as metal-organic frameworks having properties of photosensitizers and scintillation nanoparticles are reported to have been used as XPDT agents. The role of metal-organic frameworks for applying XPDT as well as the mechanism underlying the generation of reactive oxygen species are discussed.
Collapse
Affiliation(s)
- Zaira Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (D.K.); (A.S.)
- Correspondence:
| | - Peter Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Oleg Kit
- Department of Oncology, National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia;
| | - Daria Kirsanova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (D.K.); (A.S.)
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (D.K.); (A.S.)
| |
Collapse
|
85
|
Jiang X, Zhou Z, Yang H, Shan C, Yu H, Wojtas L, Zhang M, Mao Z, Wang M, Stang PJ. Self-Assembly of Porphyrin-Containing Metalla-Assemblies and Cancer Photodynamic Therapy. Inorg Chem 2020; 59:7380-7388. [PMID: 31961145 PMCID: PMC7821909 DOI: 10.1021/acs.inorgchem.9b02775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this report, we describe the synthesis of two porphyrin-containing Pt(II) supramolecular assemblies via coordination-driven self-assembly. X-ray crystallographic analysis on one assembly reveals that the metalla-assembly formation imposes large interchromophore distances, leading to a higher 1O2 generation efficiency, relative to the corresponding small molecular precursors. The metalla-assemblies were examined as photosensitizers for photodynamic therapy as the potential reduction of the unfavorable self-aggregation phenomenon. In vivo and in vitro investigations demonstrate that the metalla-assemblies exhibit enhanced anticancer activity with minimal dose requirement and side effects comparable to the small molecule precursors. Thus, our work demonstrates that self-assembly provides a promising methodology for enhancing the therapeutic effectiveness of anticancer agents.
Collapse
Affiliation(s)
- Xin Jiang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chuan Shan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Hao Yu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ming Wang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
86
|
Wang Y, Qin W, Shi H, Chen H, Chai X, Liu J, Zhang P, Li Z, Zhang Q. A HCBP1 peptide conjugated ruthenium complex for targeted therapy of hepatoma. Dalton Trans 2020; 49:972-976. [PMID: 31894797 DOI: 10.1039/c9dt03856f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An HCBP1 peptide-ruthenium conjugate (Ru-β-Ala-FQHPSFI) as a potential candidate for targeted therapy of hepatoma was synthesized. Ru-β-Ala-FQHPSFI shows drastically enhanced cytotoxicity and high selectivity for hepatoma cells versus noncancer liver cells. Raman imaging shows that this peptide-based drug can be taken up well by the hepatoma cells compared with the bare ruthenium complex (Ru) and the opposite sequence peptide-ruthenium conjugate (Ru-β-Ala-IFSPHQF). This study presents a new strategy for the construction of tumor-targeting metal-based anticancer therapeutics.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Deda DK, Iglesias BA, Alves E, Araki K, Garcia CRS. Porphyrin Derivative Nanoformulations for Therapy and Antiparasitic Agents. Molecules 2020; 25:molecules25092080. [PMID: 32365664 PMCID: PMC7249045 DOI: 10.3390/molecules25092080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Porphyrins and analogous macrocycles exhibit interesting photochemical, catalytic, and luminescence properties demonstrating high potential in the treatment of several diseases. Among them can be highlighted the possibility of application in photodynamic therapy and antimicrobial/antiparasitic PDT, for example, of malaria parasite. However, the low efficiency generally associated with their low solubility in water and bioavailability have precluded biomedical applications. Nanotechnology can provide efficient strategies to enhance bioavailability and incorporate targeted delivery properties to conventional pharmaceuticals, enhancing the effectiveness and reducing the toxicity, thus improving the adhesion to the treatment. In this way, those limitations can be overcome by using two main strategies: (1) Incorporation of hydrophilic substituents into the macrocycle ring while controlling the interaction with biological systems and (2) by including them in nanocarriers and delivery nanosystems. This review will focus on antiparasitic drugs based on porphyrin derivatives developed according to these two strategies, considering their vast and increasing applications befitting the multiple roles of these compounds in nature.
Collapse
Affiliation(s)
- Daiana K. Deda
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Bernardo A. Iglesias
- Bioinorganic and Porphyrinoid Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900, Brazil;
| | - Eduardo Alves
- Department of Life Science, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK;
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Celia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Sao Paulo, SP 05508-900, Brazil
- Correspondence: ; Tel.: +55-11-2648-0954
| |
Collapse
|
88
|
Sorrin AJ, Ruhi MK, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020; 96:232-259. [PMID: 31895481 PMCID: PMC7138751 DOI: 10.1111/php.13209] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
| | - Nathaniel A. Ferlic
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Vida Karimnia
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan P. Celli
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
89
|
Ahirwar S, Mallick S, Bahadur D. Photodynamic therapy using graphene quantum dot derivatives. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
90
|
Fu X, Yang Z, Deng T, Chen J, Wen Y, Fu X, Zhou L, Zhu Z, Yu C. A natural polysaccharide mediated MOF-based Ce6 delivery system with improved biological properties for photodynamic therapy. J Mater Chem B 2020; 8:1481-1488. [PMID: 31996879 DOI: 10.1039/c9tb02482d] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chlorin e6 (Ce6) is a second generation photosensitizer for photodynamic therapy (PDT). However, free Ce6 still has some defects leading to reduced clinical efficacy, such as easy agglomeration in a physiological environment and poor accumulation in tumor tissue. In order to solve these problems, a hyaluronic acid (HA) modified zeolitic imidazolate framework-8 (ZIF-8) based Ce6 (ZIF-8@Ce6-HA) therapeutic agent is constructed for PDT by one-pot encapsulation and self-assembly. ZIF-8@Ce6-HA exhibits acceptable encapsulation efficiency, effective cell uptake and good biocompatibility. Moreover, the results of in vitro anticancer experiments demonstrated that the ZIF-8@Ce6-HA group exhibited greater cytotoxicity after irradiation than the free Ce6 group, which caused about 88.4% of HepG2 cells to die since ROS is produced by PDT. Additionally, the data of inductively coupled plasma mass spectrometry indicated that modification of HA increased the blood circulation time and reduced the systemic toxicity of ZIF-8@Ce6. In summary, this work created an interesting Ce6 therapeutic agent for PDT and provided the data for HA regarding the improvement in biocompatibility and biological half-life of metal organic frameworks.
Collapse
Affiliation(s)
- Xinwei Fu
- College of Pharmacy, Pharmaceutical Engineering Research Center, Chongqing Medical University, Chongqing 400016, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
de Bruijn HS, Mashayekhi V, Schreurs TJL, van Driel PBAA, Strijkers GJ, van Diest PJ, Lowik CWGM, Seynhaeve ALB, Hagen TLMT, Prompers JJ, Henegouwen PMPVBE, Robinson DJ, Oliveira S. Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging. Theranostics 2020; 10:2436-2452. [PMID: 32089747 PMCID: PMC7019176 DOI: 10.7150/thno.37949] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/30/2019] [Indexed: 01/10/2023] Open
Abstract
Targeted photodynamic therapy (PDT) has the potential to selectively damage tumor tissue and to increase tumor vessel permeability. Here we characterize the tissue biodistribution of two EGFR-targeted nanobody-photosensitizer conjugates (NB-PS), the monovalent 7D12-PS and the biparatopic 7D12-9G8-PS. In addition, we report on the local and acute phototoxic effects triggered by illumination of these NB-PS which have previously shown to lead to extensive tumor damage. Methods: Intravital microscopy and the skin-fold chamber model, containing OSC-19-luc2-cGFP tumors, were used to investigate: a) the fluorescence kinetics and distribution, b) the vascular response and c) the induction of necrosis after illumination at 1 or 24 h post administration of 7D12-PS and 7D12-9G8-PS. In addition, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of a solid tumor model was used to investigate the microvascular status 2 h after 7D12-PS mediated PDT. Results: Image analysis showed significant tumor colocalization for both NB-PS which was higher for 7D12-9G8-PS. Intravital imaging showed clear tumor cell membrane localization 1 and 2 h after administration of 7D12-9G8-PS, and fluorescence in or close to endothelial cells in normal tissue for both NB-PS. PDT lead to vasoconstriction and leakage of tumor and normal tissue vessels in the skin-fold chamber model. DCE-MRI confirmed the reduction of tumor perfusion after 7D12-PS mediated PDT. PDT induced extensive tumor necrosis and moderate normal tissue damage, which was similar for both NB-PS conjugates. This was significantly reduced when illumination was performed at 24 h compared to 1 h after administration. Discussion: Although differences were observed in distribution of the two NB-PS conjugates, both led to similar necrosis. Clearly, the response to PDT using NB-PS conjugates is the result of a complex mixture of tumor cell responses and vascular effects, which is likely to be necessary for a maximally effective treatment.
Collapse
Affiliation(s)
- Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Dept. of Otolaryngology and Head & Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Vida Mashayekhi
- Cell Biology Division, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tom J L Schreurs
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pieter B A A van Driel
- Division of Optical Molecular Imaging, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gustav J Strijkers
- Amsterdam University Medical Centers, University of Amsterdam, Dept. of Biomedical Engineering and Physics, The Netherlands
| | - Paul J van Diest
- Dept. of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Clemens W G M Lowik
- Division of Optical Molecular Imaging, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ann L B Seynhaeve
- Laboratory of Experimental Oncology, Dept. of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Laboratory of Experimental Oncology, Dept. of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Dept. of Otolaryngology and Head & Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Sabrina Oliveira
- Cell Biology Division, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Pharmaceutics Division, Dept. of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
92
|
Satrialdi, Munechika R, Biju V, Takano Y, Harashima H, Yamada Y. The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter. Chem Commun (Camb) 2020; 56:1145-1148. [DOI: 10.1039/c9cc08563g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter.
Collapse
Affiliation(s)
- Satrialdi
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| | - Reina Munechika
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo 001-0020
- Japan
- Graduate School of Environmental Science
| | - Yuta Takano
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo 001-0020
- Japan
- Graduate School of Environmental Science
| | | | - Yuma Yamada
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| |
Collapse
|
93
|
Ghiasi B, Mehdipour G, Safari N, Behboudi H, Hashemi M, Omidi M, Sefidbakht Y, Yadegari A, Hamblin MR. Theranostic applications of stimulus-responsive systems based on carbon dots. INT J POLYM MATER PO 2019; 70:117-130. [PMID: 33967355 PMCID: PMC8101985 DOI: 10.1080/00914037.2019.1695207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/09/2019] [Indexed: 12/29/2022]
Abstract
Over recent years, many different nanoparticle-based drug delivery systems (NDDSs) have been developed. Recently the development of stimulus-responsive NDDSs has come into sharper focus. Carbon dots (CDs) possess outstanding features such as useful optical properties, good biocompatibility, and the ability for easy surface modification. Appropriate surface modification can allow these NDDSs to respond to various chemical or physical stimuli that are characteristic of their target cells or tissue (frequently malignant cells or tumors). The present review covers recent developments of CDs in NDDSs with a particular focus on internal stimulus response capability that allows simultaneous imaging and therapeutic delivery (theranostics). Relevant stimuli associated with tumor cells and tumors include pH levels, redox potential, and different enzymatic activities can be used to activate the CDs at the desired sites.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Golnaz Mehdipour
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Nooshin Safari
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Mohadeseh Hashemi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
- Biomedical Engineering Department, The University of Texas at Austin, Austin, TX, USA
| | - Meisam Omidi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Amir Yadegari
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
94
|
Zhao L, Xing Y, Wang R, Yu F, Yu F. Self-Assembled Nanomaterials for Enhanced Phototherapy of Cancer. ACS APPLIED BIO MATERIALS 2019; 3:86-106. [DOI: 10.1021/acsabm.9b00843] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Linlu Zhao
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - FeiFei Yu
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
95
|
Kuncewicz J, Dąbrowski JM, Kyzioł A, Brindell M, Łabuz P, Mazuryk O, Macyk W, Stochel G. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
96
|
Zhao Y, Zhang Z, Lu Z, Wang H, Tang Y. Enhanced Energy Transfer in a Donor-Acceptor Photosensitizer Triggers Efficient Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38467-38474. [PMID: 31553165 DOI: 10.1021/acsami.9b12375] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photosensitizers (PSs) play a vital role in photodynamic therapy (PDT) for combating bacterial resistance and treating tumor. In this study, we report new donor-acceptor porphyrin PSs with a cationic conjugated oligomer (OPV) as a donor unit and porphyrin (TPP) as an acceptor unit by covalent linkage and achieved a fluorescence resonance energy transfer efficiency of 99% owing to their strong spectral overlap and short distance. The 1O2 yield of porphyrin derivatives is 121% (rose bengal as the standard reference) by virtue of OPVs' excellent light-harvesting ability and high fluorescence resonance energy transfer efficiency, greatly exceeding those of oligomer and porphyrin derivatives reported in the literature. Additionally, the cationic donors significantly improved the water solubility, decreased the aggregation of porphyrin, and promoted the adherence of the PSs to cell membranes through electrostatic interactions. As a result, the D-A porphyrin PSs exhibit dramatic PDT treatment efficiency. The half-inhibitory concentration is as low as 33 and 88 nM for methicillin-resistant Staphylococcus aureus and Escherichia coli, respectively. Therefore, this study provides a new strategy to construct PSs with high 1O2 yield and an excellent treatment effect at a low dose of PSs, which is promising for application in PDT used to treat cancer and microbial infections.
Collapse
Affiliation(s)
- Yantao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Ziqi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Zhuanning Lu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Huan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Yanli Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| |
Collapse
|
97
|
Lin HC, Li WT, Madanayake TW, Tao C, Niu Q, Yan SQ, Gao BA, Ping Z. Aptamer-guided upconversion nanoplatform for targeted drug delivery and near-infrared light-triggered photodynamic therapy. J Biomater Appl 2019; 34:875-888. [PMID: 31623518 DOI: 10.1177/0885328219882152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hui-Chao Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wen-Tian Li
- First Clinical Medical College of Three Gorges University, Yichang Central People's Hospital, Yichang City, Hubei Province, PR China
| | | | - Can Tao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Qiang Niu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Si-Qi Yan
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Bao-An Gao
- First Clinical Medical College of Three Gorges University, Yichang Central People's Hospital, Yichang City, Hubei Province, PR China
| | - Zhao Ping
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
98
|
Lin W, Gong J, Fang L, Jiang K. A Photodynamic System based on Endogenous Bioluminescence for in vitro Anticancer Studies. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenxin Lin
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technolgy; School of Materials Science and Engineering; Zhejiang Sci-Tech University; 310018 Hangzhou P. R. China
| | - Jianqiu Gong
- School of Materials Science and Engineering; Chongqing No.1 Middle School; 400030 Chongqing P. R. China
| | - Liquan Fang
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; Zhejiang University; 310027 Hangzhou P. R. China
| | - Ke Jiang
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; Zhejiang University; 310027 Hangzhou P. R. China
| |
Collapse
|
99
|
Yang M, Yang T, Mao C. Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors. Angew Chem Int Ed Engl 2019; 58:14066-14080. [PMID: 30663185 PMCID: PMC6800243 DOI: 10.1002/anie.201814098] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/25/2022]
Abstract
The viable use of photodynamic therapy (PDT) in cancer therapy has never been fully realized because of its undesirable effects on healthy tissues. Herein we summarize some physicochemical factors that can make PDT a more viable and effective option to provide future oncological patients with better-quality treatment options. These physicochemical factors include light sources, photosensitizer (PS) carriers, microwaves, electric fields, magnetic fields, and ultrasound. This Review is meant to provide current information pertaining to PDT use, including a discussion of in vitro and in vivo studies. Emphasis is placed on the physicochemical factors and their potential benefits in overcoming the difficulty in transitioning PDT into the medical field. Many advanced techniques, such as employing X-rays as a light source, using nanoparticle-loaded stem cells and bacteriophage bio-nanowires as a photosensitizer carrier, as well as integration with immunotherapy, are among the future directions.
Collapse
Affiliation(s)
- Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| |
Collapse
|
100
|
Vasconcelos MEOC, Cardoso AA, da Silva JN, Alexandrino FJR, Stipp RN, Nobre-dos-Santos M, Rodrigues LKA, Steiner-Oliveira C. Combined Effectiveness of β-Cyclodextrin Nanoparticles in Photodynamic Antimicrobial Chemotherapy on In Vitro Oral Biofilms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:567-573. [DOI: 10.1089/photob.2019.4669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Andréia Alves Cardoso
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
| | - Josianne Neres da Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
| | - Francisca Jamila Ricarte Alexandrino
- Postgraduate Program of Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Paulo Picanço School of Dentistry, Fortaleza, Ceará, Brazil
| | - Rafael Nobrega Stipp
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
| | - Marinês Nobre-dos-Santos
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
| | - Lidiany Karla Azevedo Rodrigues
- Postgraduate Program of Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Carolina Steiner-Oliveira
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba, São Paulo, Brazil
| |
Collapse
|