51
|
Muñoz-Labrador A, Lebrón-Aguilar R, Quintanilla-López JE, Galindo-Iranzo P, Azcarate SM, Kolida S, Kachrimanidou V, Garcia-Cañas V, Methven L, Rastall RA, Moreno FJ, Hernandez-Hernandez O. Prebiotic Potential of a New Sweetener Based on Galactooligosaccharides and Modified Mogrosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9048-9056. [PMID: 35830712 PMCID: PMC9335866 DOI: 10.1021/acs.jafc.2c01363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to investigate the sweetness intensity and the potential fecal microbiome modulation of galactooligosaccharides in combination with enzymatically modified mogrosides (mMV-GOS), both generated through a patented single-pot synthesis. Sweetness intensity was performed in vivo by trained sensory panelists. The impact on the human fecal microbiome was evaluated by in vitro pH-controlled batch fermentation, and bacterial populations and organic acid concentrations were measured by qPCR and GC-FID, respectively. Significant growth (p ≤ 0.05) during the fermentation at 10 h of bacterial populations includes Bifidobacterium (8.49 ± 0.44 CFU/mL), Bacteroides (9.73 ± 0.32 CFU/mL), Enterococcus (8.17 ± 0.42 CFU/mL), and Clostridium coccoides (6.15 ± 0.11 CFU/mL) as compared to the negative control counts for each bacterial group (7.94 ± 0.27, 7.84 ± 1.11, 7.52 ± 0.37, and 5.81 ± 0.08 CFU/mL, respectively) at the same time of fermentation. Likewise, the corresponding significant increase in production of SCFA in mMV-GOS at 10 h of fermentation, mainly seen in acetate (20.32 ± 2.56 mM) and propionate (9.49 ± 1.44 mM) production compared to a negative control at the same time (8.15 ± 1.97 and 1.86 ± 0.24 mM), is in line with a positive control (short-chain fructooligosaccharides; 46.74 ± 12.13 and 6.51 ± 1.91 mM, respectively) revealing a selective fermentation. In conclusion, these substrates could be considered as novel candidate prebiotic sweeteners, foreseeing a feasible and innovative approach targeting the sucrose content reduction in food. This new ingredient could provide health benefits when evaluated in human studies by combining sweetness and prebiotic fiber functionality.
Collapse
Affiliation(s)
- Ana Muñoz-Labrador
- Institute
of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera, 9, 28049 Madrid, Spain
| | - Rosa Lebrón-Aguilar
- Institute
of Physical Chemistry “Rocasolano” (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | | | - Plácido Galindo-Iranzo
- Institute
of Physical Chemistry “Rocasolano” (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | - Silvana M. Azcarate
- Institute
of Earth and Environmental Sciences of La Pampa (INCITAP), Mendoza 109, L6302EPA Santa Rosa, La Pampa, Argentina
| | - Sofia Kolida
- OptiBiotix
Health Plc, Innovation Centre, Innovation Way,
Heslington, York YO10 5DG, U.K.
| | - Vasiliki Kachrimanidou
- Department
of Food and Nutritional Sciences, The University
of Reading, PO Box 226,
Whiteknights, Reading RG6 6 AP, U.K.
| | - Virginia Garcia-Cañas
- Institute
of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera, 9, 28049 Madrid, Spain
| | - Lisa Methven
- Department
of Food and Nutritional Sciences, The University
of Reading, PO Box 226,
Whiteknights, Reading RG6 6 AP, U.K.
| | - Robert A. Rastall
- Department
of Food and Nutritional Sciences, The University
of Reading, PO Box 226,
Whiteknights, Reading RG6 6 AP, U.K.
| | - F. Javier Moreno
- Institute
of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera, 9, 28049 Madrid, Spain
| | | |
Collapse
|
52
|
Gościniak A, Eder P, Walkowiak J, Cielecka-Piontek J. Artificial Gastrointestinal Models for Nutraceuticals Research—Achievements and Challenges: A Practical Review. Nutrients 2022; 14:nu14132560. [PMID: 35807741 PMCID: PMC9268564 DOI: 10.3390/nu14132560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Imitating the human digestive system as closely as possible is the goal of modern science. The main reason is to find an alternative to expensive, risky and time-consuming clinical trials. Of particular interest are models that simulate the gut microbiome. This paper aims to characterize the human gut microbiome, highlight the importance of its contribution to disease, and present in vitro models that allow studying the microbiome outside the human body but under near-natural conditions. A review of studies using models SHIME, SIMGI, TIM-2, ECSIM, EnteroMix, and PolyfermS will provide an overview of the options available and the choice of a model that suits the researcher’s expectations with advantages and disadvantages.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
53
|
Tao W, Liu W, Wang M, Zhou W, Xing J, Xu J, Pi X, Wang X, Lu S, Yang Y. Dendrobium officinale Polysaccharides Better Regulate the Microbiota of Women Than Men. Foods 2022; 11:foods11111641. [PMID: 35681391 PMCID: PMC9180429 DOI: 10.3390/foods11111641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dendrobium officinale is widely used as a health supplement, but its specific impact on healthy gut microbiota has not yet been clarified, nor has its impact on different human genders. To overcome the problems mentioned above. DOP was extracted and purified with an 8000–12,000 Da dialysis bag. The molecular weight and monosaccharide composition were determined using HPGPC and GC. Gas chromatography was used to detect the content of SCFA. 16S rDNA sequencing was used to analyze the diversity of human microbiota. The results showed that DOP contained two fractions, with an average molecular weight of 277 kDa and 1318 Da, and mainly composed of mannose and glucose. DOP can increase the relative abundance of benign microbiota and decrease the harmful types. Propionic acid content in women was significantly increased after DOP treatment. Finally, the correlation analysis revealed that DOP was beneficial to the microbiota of both men and women. It can be concluded from the results that DOP is a health supplement suitable for humans, and especially women.
Collapse
Affiliation(s)
- Wenyang Tao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.T.); (M.W.); (W.Z.); (J.X.); (S.L.)
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.L.); (X.P.)
| | - Mingzhe Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.T.); (M.W.); (W.Z.); (J.X.); (S.L.)
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.T.); (M.W.); (W.Z.); (J.X.); (S.L.)
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.T.); (M.W.); (W.Z.); (J.X.); (S.L.)
| | - Jing Xu
- Zhejiang Shouxiangu Pharmaceutical Co., Ltd., Jinhua 321000, China; (J.X.); (X.W.)
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.L.); (X.P.)
| | - Xiaotong Wang
- Zhejiang Shouxiangu Pharmaceutical Co., Ltd., Jinhua 321000, China; (J.X.); (X.W.)
| | - Shengmin Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.T.); (M.W.); (W.Z.); (J.X.); (S.L.)
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.T.); (M.W.); (W.Z.); (J.X.); (S.L.)
- Correspondence: ; Tel.: +86-136-6665-0151
| |
Collapse
|
54
|
Zhu M, Song Y, Martínez-Cuesta MC, Peláez C, Li E, Requena T, Wang H, Sun Y. Immunological Activity and Gut Microbiota Modulation of Pectin from Kiwano ( Cucumis metuliferus) Peels. Foods 2022; 11:foods11111632. [PMID: 35681381 PMCID: PMC9180886 DOI: 10.3390/foods11111632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022] Open
Abstract
For developing the recycling of fruit by-products from kiwano, a polysaccharide was extracted from kiwano (Cucumis metuliferus) peels, namely Cucumis metuliferus peels polysaccharide (CMPP), with the aim of investigating the potential beneficial effects. The composition of polysaccharides was analyzed by chemical methods. RAW264.7 macrophages cells and the microbiota dynamics simulator (BFBL gut model) were used for in vitro study. The result showed that CMPP mainly consists of glucuronic acid, arabinose, galactose and rhamnose. By intervening with RAW264.7 cells, CMPP promoted cell proliferation and showed immune-enhancing activity, which significantly (p < 0.05) induced the release of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) at a concentration of 50 μg/mL. In addition, CMPP had an impact on the composition of the gut bacteria, increasing the growth of Akkermansia, Bacteroides, Bifidobacterium, Feacalibacterium, and Roseburia. During the intake period, acetic, butyric and propionic acids were all increased, especially (p < 0.05) in the descending colon. Moreover, a decrease in ammonia concentration (10.17 ± 0.50 mM in the ascending colon, 13.21 ± 1.54 mM in the transverse colon and 13.62 ± 0.45 mM in the descending colon, respectively) was observed. In summary, CMPP can be considered as a pectin, showed immunological activity and function of gut microbiota modulation. This study could be the scientific basis of developing kiwano peels as beneficial to human health.
Collapse
Affiliation(s)
- Minqian Zhu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Y.S.); (E.L.); (Y.S.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ya Song
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Y.S.); (E.L.); (Y.S.)
| | - M. Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, CIAL-CSIC, 28049 Madrid, Spain; (M.C.M.-C.); (C.P.)
| | - Carmen Peláez
- Department of Food Biotechnology and Microbiology, CIAL-CSIC, 28049 Madrid, Spain; (M.C.M.-C.); (C.P.)
| | - Enru Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Y.S.); (E.L.); (Y.S.)
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, CIAL-CSIC, 28049 Madrid, Spain; (M.C.M.-C.); (C.P.)
- Correspondence: (T.R.); (H.W.)
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Y.S.); (E.L.); (Y.S.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (T.R.); (H.W.)
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Y.S.); (E.L.); (Y.S.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
55
|
Hayes M, Mohamedshah Z, Chadwick-Corbin S, Hoskin R, Iorizzo M, Lila MA, Neilson AP, Ferruzzi MG. Bioaccessibility and intestinal cell uptake of carotenoids and chlorophylls differ in powdered spinach by the ingredient form as measured using in vitro gastrointestinal digestion and anaerobic fecal fermentation models. Food Funct 2022; 13:3825-3839. [PMID: 35319058 DOI: 10.1039/d2fo00051b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insights into food matrix factors impacting bioavailability of bioactive carotenoids and chlorophylls from fruits and vegetable ingredients are essential to understanding their ability to promote health. The stability and bioaccessibility of carotenoids and chlorophylls were assessed from dehydrated, spray-dried, freeze-dried and fresh spinach ingredient forms using in vitro models simulating upper gastrointestinal (GI) digestion and lower GI anaerobic fecal fermentation. Intestinal transport of bioaccessible bioactives from both upper and lower GI compartments was assessed using the Caco-2 human intestinal cell model. Differences in carotenoid and chlorophyll contents were observed between ingredient forms and these influenced bioaccessibility. Lower carotenoid and chlorophyll contents in spray dried spinach resulted in the lowest total bioaccessible content among all spinach treatments (5.8 ± 0.2 μmoles per g DW carotenoid and chlorophyll). The total bioaccessible content was statistically similar between freeze-dried (12.5 ± 0.6 μmoles per g DW), dehydrated (12.5 ± 3.2 μmoles per g DW), and fresh spinach (14.2 ± 1.2 μmoles per g DW). Post anaerobic fermentation, cellular accumulation of carotenoids was higher (17.57-19.52 vs. 5.11-8.56%), while that of chlorophylls was lower (3.05-5.27 vs. 5.25-6.44%), compared to those observed following upper GI digestion. Collectively, these data suggest that spinach forms created by various drying technologies deliver similar levels of bioaccessible spinach bioactives and that the lower GI tract may serve as a site for significant absorption fostered by interactions with gut microbial communities that liberate additional bioactives from the spinach matrix.
Collapse
Affiliation(s)
- Micaela Hayes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Zulfiqar Mohamedshah
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Sydney Chadwick-Corbin
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Roberta Hoskin
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Massimo Iorizzo
- Department of Horticultural Science, North Carolina State University, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Andrew P Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Mario G Ferruzzi
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC 28081, USA.
| |
Collapse
|
56
|
Guo D, Lei J, He C, Peng Z, Liu R, Pan X, Meng J, Feng C, Xu L, Cheng Y, Chang M, Geng X. In vitro digestion and fermentation by human fecal microbiota of polysaccharides from Clitocybe squamulose. Int J Biol Macromol 2022; 208:343-355. [PMID: 35337916 DOI: 10.1016/j.ijbiomac.2022.03.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the effects of in vitro simulated saliva-gastrointestinal digestion and fecal fermentation behavior on the chemical composition, structure and bioactivity of polysaccharides from Clitocybe squamulosa (CSFP). Results showed that gastric digestion significantly changed the chemical composition and structural properties of CSFP, such as total uronic acid, reducing sugar, molecular weight, rheological properties, particle size, and microscopic morphology. In particular, the molecular weight decreased from 19,480 Da to 10,945 Da, while the reducing-sugar content increased from 0.149 mg/mL to 0.293 mg/mL. Gastric digestion also affected the biological activity of CSFP. Although after gastric digestion, CSFP retained its vigorous antioxidant activity, ability to inhibit α-amylase activity, and the binding ability to bile acid, fat, and free cholesterol in vitro. However, there was an apparent weakening trend. After in vitro fermentation of gut microbiota, the content of total sugar was significantly decreased from 11.6 mg/mL to 2.4 mg/mL, and the pH value in the fecal culture significantly decreased to 5.20, indicating that CSFP could be broken down and utilized by gut microbiota. Compared to the blank, the concentrations of total short-chain fatty acids (SCFAs) including acetic, propionic and n-butyric significantly increased. Simultaneously, CSFP could remarkably reduce the proportions of Firmicutes and Bacteroides (F/B) and promote the growth of some beneficial intestinal microbiota. Therefore, CSFP can potentially be a new functional food as prebiotics to promote human gut health.
Collapse
Affiliation(s)
- Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Chang He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Zhijie Peng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Xu Pan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030800, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030800, China.
| |
Collapse
|
57
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|
58
|
Bian X, Shi T, Wang Y, Ma Y, Yu Y, Gao W, Guo C. Gut dysbiosis induced by antibiotics is improved by tangerine pith extract in mice. Nutr Res 2022; 101:1-13. [DOI: 10.1016/j.nutres.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
|
59
|
Simulated gastrointestinal digestion of cranberry polyphenols under dynamic conditions. Impact on antiadhesive activity against uropathogenic bacteria. Food Chem 2022; 368:130871. [PMID: 34438174 DOI: 10.1016/j.foodchem.2021.130871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
This study is the first dynamic simulation of gastrointestinal digestion of cranberry polyphenols [1 g cranberry extract per day (206.2 mg polyphenols) for 18 days]. Samples from the simulated ascending, transverse, and descending colon of the dynamic gastrointestinal simulator simgi® were analyzed. Results showed that 67% of the total cranberry polyphenols were recovered after simulated gastrointestinal digestion. Specifically, benzoic acids, hydroxycinnamic acids, phenylpropionic acids, phenylacetic acids, and simple phenols were identified. Cranberry feeding modified colonic microbiota composition of Enterococcaceae population significantly. However, increments in microbial-derived short-chain fatty acids, particularly in butyric acid, were observed. Finally, the simgi® effluent during cranberry feeding showed significant antiadhesive activity against uropathogenic Escherichia coli (13.7 ± 1.59 % of inhibition). Understanding the role that gut microbiota plays in cranberry metabolism could help to elucidate its interaction with the human body and explain cranberry protective effects against urinary tract infections.
Collapse
|
60
|
Hernalsteens S, Huang S, Cong HH, Chen XD. The final fate of food: On the establishment of in vitro colon models. Food Res Int 2021; 150:110743. [PMID: 34865762 DOI: 10.1016/j.foodres.2021.110743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
The search for life/health quality has driven the search for a better understanding of food components on the overall individual health, which turns to be intrinsically related to the digestive system. In vitro digestion models are considered an alternative for the in vivo studies for a variety of practical reasons, but further research is still needed concerning the colon model establishment. An effective in vitro colon model should consider all unit operations and transport phenomena, together with chemical and biochemical reactions, material handling and reactor design. Due to the different techniques and dependence on the donor microbiota, it is difficult to obtain a standard protocol with results reproductible in time and space. Furthermore, the colon model should be fed with a representative substrate, thus what happens in upper digestion tract and absorption prior to colon is also of crucial importance. Essentially, there are two ways to think about how to achieve a good and useful in vitro colon model: a complex biomimetic system that provides results comparable with the in vivo studies or a simple system, that despite the fact it could not give physiologically relevant data, it is sufficient to understand the fate of some specific components.
Collapse
Affiliation(s)
- Saartje Hernalsteens
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| | | | - Hai Hua Cong
- College of Food Science and Engineering - Dalian Ocean University, China
| | - Xiao Dong Chen
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| |
Collapse
|
61
|
Sabater C, Calvete-Torre I, Villamiel M, Moreno FJ, Margolles A, Ruiz L. Vegetable waste and by-products to feed a healthy gut microbiota: Current evidence, machine learning and computational tools to design novel microbiome-targeted foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
62
|
Muñoz-Almagro N, Vendrell-Calatayud M, Méndez-Albiñana P, Moreno R, Cano MP, Villamiel M. Extraction optimization and structural characterization of pectin from persimmon fruit (Diospyros kaki Thunb. var. Rojo brillante). Carbohydr Polym 2021; 272:118411. [PMID: 34420705 DOI: 10.1016/j.carbpol.2021.118411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022]
Abstract
In this work we have efficiently extracted and characterized pectin from different tissues of astringent (AS) and non-astringent (NAS) persimmon fruits (peel, pulp, whole fruit) for the first time. The highest pectin extraction (≥7.2%) was carried out at 80 °C, 120 min with 1.5% sodium citrate in peel of both AS and NAS persimmon samples. All persimmon pectins showed a molecular weight and galacturonic acid content upper than 328 kDa and 78%, respectively, indicating their suitability as food ingredient. Pectin extracted from AS pulp and peel tissues exhibited an enriched structure in rhamnose and arabinose, whereas the opposite behavior was observed in NAS persimmon whole fruit samples. Remarkably, both pulp tissues (AS and NAS) presented the highest levels of glucose and mannose, non-pectic carbohydrates. In addition, techno-functional assessment (zeta potential, particle size, apparent viscosity, gelation) showed the suitability of the persimmon pectins for a broad range of industrial applications.
Collapse
Affiliation(s)
- Nerea Muñoz-Almagro
- Departamento de Química y Funcionalidad de Alimentos, Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mario Vendrell-Calatayud
- Departamento de Química y Funcionalidad de Alimentos, Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; Departamento de Biotecnología y Microbiología de Alimentos, Grupo de Fitoquímica y Funcionalidad de Productos Vegetales, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Méndez-Albiñana
- Departamento de Química y Funcionalidad de Alimentos, Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rodrigo Moreno
- Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - M Pilar Cano
- Departamento de Biotecnología y Microbiología de Alimentos, Grupo de Fitoquímica y Funcionalidad de Productos Vegetales, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mar Villamiel
- Departamento de Química y Funcionalidad de Alimentos, Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
63
|
Chengxiao Y, Dongmei W, Kai Z, Hou L, Xiao H, Ding T, Liu D, Ye X, Linhardt RJ, Chen S. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydr Polym 2021; 270:118377. [PMID: 34364621 DOI: 10.1016/j.carbpol.2021.118377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Several studies are described that contribute to the systematic exploration of new aspects of digestion, fermentation, and biological activities of pectic polysaccharides (PPS) leading to a better understanding of prebiotics. Inflammatory bowel disease (IBD) is thought to be associated with the dysbacteriosis induced by different environmental agents in genetically susceptible persons. PPS are considered as an indispensable gut-microbiota-accessible carbohydrate that play a dominant role in maintaining gut microbiota balance and show a better effect in ameliorating IBD than some traditional prebiotics. The aim of this review is to summarize the fermentation characteristics of PPS, highlight its role in improving IBD, and propose a view that PPS may be a new and effective prebiotic.
Collapse
Affiliation(s)
- Yu Chengxiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Wu Dongmei
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhu Kai
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Lijuan Hou
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shiguo Chen
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
64
|
Li DQ, Li J, Dong HL, Li X, Zhang JQ, Ramaswamy S, Xu F. Pectin in biomedical and drug delivery applications: A review. Int J Biol Macromol 2021; 185:49-65. [PMID: 34146559 DOI: 10.1016/j.ijbiomac.2021.06.088] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Natural macromolecules have attracted increasing attention due to their biocompatibility, low toxicity, and biodegradability. Pectin is one of the few polysaccharides with biomedical activity, consequently a candidate in biomedical and drug delivery Applications. Rhamnogalacturonan-II, a smaller component in pectin, plays a major role in biomedical activities. The ubiquitous presence of hydroxyl and carboxyl groups in pectin contribute to their hydrophilicity and, hence, to the favorable biocompatibility, low toxicity, and biodegradability. However, pure pectin-based materials present undesirable swelling and corrosion properties. The hydrophilic groups, via coordination, electrophilic addition, esterification, transesterification reactions, can contribute to pectin's physicochemical properties. Here the properties, extraction, and modification of pectin, which are fundamental to biomedical and drug delivery applications, are reviewed. Moreover, the synthesis, properties, and performance of pectin-based hybrid materials, composite materials, and emulsions are elaborated. The comprehensive review presented here can provide valuable information on pectin and its biomedical and drug delivery applications.
Collapse
Affiliation(s)
- De-Qiang Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Jun Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Hui-Lin Dong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jia-Qi Zhang
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Shri Ramaswamy
- Department of Bioproducts and Biosystems Engineering, Kaufert Laboratory, University of Minnesota, Saint Paul, MN 55108, USA
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
65
|
Roupar D, Berni P, Martins JT, Caetano AC, Teixeira JA, Nobre C. Bioengineering approaches to simulate human colon microbiome ecosystem. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Wu DT, Nie XR, Gan RY, Guo H, Fu Y, Yuan Q, Zhang Q, Qin W. In vitro digestion and fecal fermentation behaviors of a pectic polysaccharide from okra (Abelmoschus esculentus) and its impacts on human gut microbiota. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
67
|
Gallego-Lobillo P, Ferreira-Lazarte A, Hernández-Hernández O, Villamiel M. In vitro digestion of polysaccharides: InfoGest protocol and use of small intestinal extract from rat. Food Res Int 2021; 140:110054. [PMID: 33648279 DOI: 10.1016/j.foodres.2020.110054] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
Starch, dextran, pectin and modified citrus pectin were subjected to intestinal digestion following InfoGest protocol and a rat small intestine extract (RSIE) treatment. Gastric stage did not show any modification in the structure of the carbohydrates, except for modified pectin. Regarding intestinal phases, starch was hydrolyzed by different ways, resulting in a complementary behavior between InfoGest and RSIE. Contrarily, digestion of dextran was only observed using RSIE. Similar situation occurred in the case of pectins with RSIE, obtaining a partial hydrolysis, especially in the modified citrus pectin. However, citrus pectin was the less prone to hydrolysis by enzymes. The results demonstrated that InfoGest method underestimates the significance of the carbohydrates hydrolysis at the small intestine, thus indicating that RSIE is a very reliable and useful method for a more realistic study of polysaccharides digestion.
Collapse
Affiliation(s)
- Pablo Gallego-Lobillo
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Alvaro Ferreira-Lazarte
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Oswaldo Hernández-Hernández
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mar Villamiel
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
68
|
Wu DT, Yuan Q, Guo H, Fu Y, Li F, Wang SP, Gan RY. Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota. Food Res Int 2021; 141:109888. [PMID: 33641944 DOI: 10.1016/j.foodres.2020.109888] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
The in vitro simulated saliva-gastrointestinal digestion and human fecal fermentation of snow chrysanthemum polysaccharides (JHP) were investigated. Results showed that reducing sugar contents of JHP increased during the gastrointestinal digestion, and glucose released with the decrease of its molecular weight, suggesting that JHP could be partially degraded under the gastrointestinal digestion. Furthermore, after in vitro fecal fermentation, the molecular weight and molar ratio of constituent monosaccharides (galactose and galacturonic acid) of the indigestible JHP (JHP-I) significantly decreased, and both monosaccharides and oligosaccharides released, suggesting that JHP-I could be further degraded and consumed by gut microbiota. Some beneficial bacteria, such as genera Bifidobacterium, Lactobacillus, Megamonas, and Megasphaera, significantly increased, suggesting that JHP-I could change the composition and abundance of gut microbiota. These results suggest that JHP is a potential source of prebiotics, and can be helpful for better understanding of the potential digestion and fermentation mechanism of JHP.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qin Yuan
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Huan Guo
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, Sichuan, China
| | - Yuan Fu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, Sichuan, China
| | - Fen Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, Sichuan, China.
| |
Collapse
|
69
|
Ji H, Hu J, Zuo S, Zhang S, Li M, Nie S. In vitro gastrointestinal digestion and fermentation models and their applications in food carbohydrates. Crit Rev Food Sci Nutr 2021; 62:5349-5371. [PMID: 33591236 DOI: 10.1080/10408398.2021.1884841] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Food nutrients plays a crucial role in human health, especially in gastrointestinal (GI) health. The effect of food nutrients on human health mainly depends on the digestion and fermentation process in the GI tract. In vitro GI digestion and fermentation models had the advantages of reproducibility, simplicity, universality, and could integrally simulate the in vivo conditions to mimic oral, gastric, small intestinal and large intestinal digestive processes. They could not only predict the relationship among material composition, structure and digestive characteristics, but also evaluate the bioavailability of material components and the impact of digestive metabolites on GI health. This review systematicly summarized the current state of the in vitro simulation models, and made detailed descriptions for their applications, advantages and disadvantages, and specially their applications in food carbohydrates. In addition, it also provided the suggestions for the improvement of in vitro models and firstly proposed to establish a set of standardized methods of in vitro dynamic digestion and fermentation conditions for food carbohydrates, which were in order to further evaluate more effects of the nutrients on human health in future.
Collapse
Affiliation(s)
- Haihua Ji
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
70
|
Role of pectin in the current trends towards low-glycaemic food consumption. Food Res Int 2021; 140:109851. [DOI: 10.1016/j.foodres.2020.109851] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
|
71
|
Moslemi M. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr Polym 2021; 254:117324. [DOI: 10.1016/j.carbpol.2020.117324] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
|
72
|
Azad MA, Gao J, Ma J, Li T, Tan B, Huang X, Yin J. Opportunities of prebiotics for the intestinal health of monogastric animals. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:379-388. [PMID: 33364453 PMCID: PMC7750794 DOI: 10.1016/j.aninu.2020.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The goal of prebiotic applications from different sources is to improve the gut ecosystem where the host and microbiota can benefit from prebiotics. It has already been recognized that prebiotics have potential roles in the gut ecosystem because gut microbiota ferment complex dietary macronutrients and carry out a broad range of functions in the host body, such as the production of nutrients and vitamins, protection against pathogens, and maintenance of immune system balance. The gut ecosystem is very crucial and can be affected by numerous factors consisting of dietary constituents and commensal bacteria. This review focuses on recent scientific evidence, confirming a beneficial effect of prebiotics on animal health, particularly in terms of protection against pathogenic bacteria and increasing the number of beneficial bacteria that may improve epithelial cell barrier functions. It has also been reviewed that modification of the gut ecosystem through the utilization of prebiotics significantly affects the intestinal health of animals. However, the identification and characterization of novel potential prebiotics remain a topical issue and elucidation of the metagenomics relationship between gut microbiota alteration and prebiotic substances is necessary for future prebiotic studies.
Collapse
Affiliation(s)
- Md A.K. Azad
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
73
|
Wu DT, Fu Y, Guo H, Yuan Q, Nie XR, Wang SP, Gan RY. In vitro simulated digestion and fecal fermentation of polysaccharides from loquat leaves: Dynamic changes in physicochemical properties and impacts on human gut microbiota. Int J Biol Macromol 2020; 168:733-742. [PMID: 33232697 DOI: 10.1016/j.ijbiomac.2020.11.130] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
The aim of this study was to well understand the dynamic changes of physicochemical properties of polysaccharides from loquat leaves (LLP) during in vitro simulated saliva-gastrointestinal digestion and fecal fermentation and its related impacts on human gut microbiota. Results showed that the contents of reducing sugar of LLP slightly increased during the gastrointestinal digestion, and its molecular weight also slightly decreased, suggesting that LLP could be slightly degraded under the gastrointestinal digestion conditions. Moreover, during the fecal fermentation, the molecular weight of the indigestible LLP (LLP-I) significantly decreased, and the molar ratio of constituent monosaccharides of LLP-I, such as glucuronic acid, galacturonic acid, galactose, and arabinose, significantly changed, indicating that LLP-I could be degraded and consumed by human gut microbiota. Indeed, some beneficial bacteria such as Megasphaera, Megamonas, Bifidobacterium, Phascolarctobacterium, and Desulfovibrio significantly increased, suggesting that LLP-I could change the composition and abundance of gut microbiota. LLP-I could also promote the production of health-promoting short chain fatty acids. Results from this study are benefical to well understand the in vitro digestion and fecal fermentation behaviors of LLP, and LLP can be developed as a potential prebiotic in the functional food industry.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yuan Fu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Huan Guo
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Qin Yuan
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xi-Rui Nie
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| |
Collapse
|
74
|
Ferreira-Lazarte A, Fernández J, Gallego-Lobillo P, Villar CJ, Lombó F, Moreno FJ, Villamiel M. Behaviour of citrus pectin and modified citrus pectin in an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal carcinogenesis model. Int J Biol Macromol 2020; 167:1349-1360. [PMID: 33202274 DOI: 10.1016/j.ijbiomac.2020.11.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023]
Abstract
Large intestine cancer is one of the most relevant chronic diseases taking place at present. Despite therapies have evolved very positively, this pathology is still under deep investigation. One of the recent approaches is the prevention by natural compounds such as pectin. In this paper, we have assessed the impact of citrus pectin and modified citrus pectin on colorectal cancer in rats (Rattus norvegicus F344) to which azoxymethane and DSS were supplied. The lowest intake of food and body weight were detected in animals fed with citrus pectin, together with an increase in the caecum weight, probably due to the viscosity, water retention capacity and bulking properties of pectin. The most striking feature was that, neither citrus pectin nor modified citrus pectin gave rise to a tumorigenesis prevention. Moreover, in both, more than 50% of rats with cancer died, probably ascribed to a severe dysbiosis state in the gut, as shown by the metabolism and metagenomics studies carried out. This was related to a decrease of pH in caecum lumen and increase in acetate and lactic acid levels together with the absence of propionic and butyric acids. A relevant increase in Proteobacteria (Enterobacteriaceae) were thought to be one of the reasons for enteric infection that could have provoked the death of rats and the lack of cancer prevention. However, a reduction of blood glucose and triacylglycerides level and an increase of Bifidobacterium and Lactobacillaceae were found in animals that intake pectin, as compared to universal and modified citrus pectin feeding.
Collapse
Affiliation(s)
- Alvaro Ferreira-Lazarte
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Fernández
- Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Gallego-Lobillo
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Claudio J Villar
- Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Felipe Lombó
- Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
75
|
Liu J, Bi J, McClements DJ, Liu X, Yi J, Lyu J, Zhou M, Verkerk R, Dekker M, Wu X, Liu D. Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable- based products: A review. Carbohydr Polym 2020; 250:116890. [PMID: 33049879 DOI: 10.1016/j.carbpol.2020.116890] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/19/2022]
Abstract
Pectin, a major polysaccharide found in the cell walls of higher plants, plays major roles in determining the physical and nutritional properties of fruit- and vegetable-based products. An in-depth understanding of the effects of processing operations on pectin structure and functionality is critical for designing better products. This review, therefore, focuses on the progress made in understanding the effects of processing on pectin structure, further on pectin functionality, consequently on product properties. The effects of processing on pectin structure are highly dependent on the processing conditions. Targeted control of pectin structure by applying various processing operations could enhance textural, rheological, nutritional properties and cloud stability of products. While it seems that optimizing product quality in terms of physical properties is counteracted by optimizing the nutritional properties. Therefore, understanding plant component biosynthesis mechanisms and processing mechanisms could be a major challenge to balance among the quality indicators of processed products.
Collapse
Affiliation(s)
- Jianing Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Food Quality and Design Group, Wageningen University & Research, Wageningen, PO Box 17, 6700 AA, the Netherlands
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xuan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jian Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Mo Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ruud Verkerk
- Food Quality and Design Group, Wageningen University & Research, Wageningen, PO Box 17, 6700 AA, the Netherlands
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University & Research, Wageningen, PO Box 17, 6700 AA, the Netherlands
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dazhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
76
|
Ferreira-Lazarte A, Moreno FJ, Villamiel M. Bringing the digestibility of prebiotics into focus: update of carbohydrate digestion models. Crit Rev Food Sci Nutr 2020; 61:3267-3278. [PMID: 32744076 DOI: 10.1080/10408398.2020.1798344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oro-gastrointestinal digestion of dietary carbohydrates involves up to six different carbohydrases in a multistage process. Enzymes from the small intestinal brush border membrane play a major role in the digestibility of these substrates. However, to date, the inclusion of these small intestinal enzymes has been dismissed in most in vitro studies carried out, despite their importance in the degradation of carbohydrates. Several in vitro and in vivo studies have demonstrated the capability of brush border enzymes to degrade certain "non-digestible" carbohydrates to a different extent depending on their structural composition (monomeric composition, glycosidic linkage, etc.). In this sense, considering the available evidence, mucosal disaccharidases embedded in the small intestinal brush border membrane vesicles must be considered in addition to α-amylases; therefore, new approaches for the evaluation of the digestibility of carbohydrates have been recently reported. These new methods based on the utilization of the small intestinal enzymes present in the brush border membrane aim to fulfill the final and key step of the digestion of carbohydrates in the small intestine. Here, rat small intestinal extract enzymes as well as brush border membrane vesicles from pig have emerged as very reliable and useful tools to evaluate carbohydrate digestion. Thus, this review aims to go briefly through the most relevant digestion methods for carbohydrates that are currently available and to highlight the new improved methods, which include mammalian intestinal enzymes, and their current use in the evaluation of the digestibility of prebiotics.
Collapse
Affiliation(s)
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| |
Collapse
|
77
|
Mao G, Li S, Orfila C, Shen X, Zhou S, Linhardt RJ, Ye X, Chen S. Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium spp., Lactobacillus spp. and Faecalibaculum spp. Food Funct 2020; 10:7828-7843. [PMID: 31778135 DOI: 10.1039/c9fo01534e] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhamnogalacturonan-I (RG-I)-enriched pectin (WRP) was recovered from citrus processing water by sequential acid and alkaline treatments in a previous study. RG-I-enriched pectin was proposed as a potential supplement for functional food and pharmaceutical development. However, previous studies illustrated that favorable modulations of gut microbiota by RG-I-enriched pectin were based on in vitro changes in the overall microbial structure and the question of whether there is a structure-dependent modulation of gut microbiota remains largely enigmatic. In the present study, modulations of gut microbiota by commercial pectin (CP), WRP and its depolymerized fraction (DWRP) with different RG-I contents and Mw were compared in vivo. It was revealed by 16s rRNA high-throughput sequencing that WRP and DWRP mainly composed of RG-I modulated the gut microbiota in a positive way. DWRP significantly increased the abundance of prebiotic such as Bifidobacterium spp., Lactobacillus spp., while WRP increased SCFAs producers including species in Ruminococcaceae family. By maintaining a more balanced gut microbiota composition and enriching some SCFA producers, dietary WRP and DWRP also elevated the SCFA content in the colon. Collectively, our findings offer new insights into the structure-activity correlation of citrus pectin and provide impetus towards the development of RG-I-enriched pectin with small molecular weight for specific use in health-promoting prebiotic ingredients and therapeutic products.
Collapse
Affiliation(s)
- Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Chen J, Vitetta L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Netw 2020; 20:e15. [PMID: 32395367 PMCID: PMC7192831 DOI: 10.4110/in.2020.20.e15] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/09/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022] Open
Abstract
An excessive hyperinflammatory response-caused septic shock is a major medical problem that is associated with pathogenic bacterial infections leading to high mortality rates. The intestinal microbiota and the associated elaborated metabolites such as short chain fatty acid butyrate have been shown to relieve pathogenic bacterial-caused acute inflammation. Butyrate can down-regulate inflammation by inhibiting the growth of pathobionts, increasing mucosal barrier integrity, encouraging obligate anaerobic bacterial dominance and decreasing oxygen availability in the gut. Butyrate can also decrease excessive inflammation through modulation of immune cells such as increasing functionalities of M2 macrophages and regulatory T cells and inhibiting infiltration by neutrophils. Therefore, various approaches can be used to increase butyrate to relieve pathogenic bacterial-caused hyperinflammation. In this review we summarize the roles of butyrate in attenuating pathogenic bacterial-caused hyperinflammatory responses and discuss the associated plausible mechanisms.
Collapse
Affiliation(s)
| | - Luis Vitetta
- Medlab Clinical Ltd, Sydney 2015, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney 2006, Australia
| |
Collapse
|
79
|
Xiao S, Jiang S, Qian D, Duan J. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder. Appl Microbiol Biotechnol 2019; 104:589-601. [PMID: 31865438 DOI: 10.1007/s00253-019-10312-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
A diverse range of symbiotic gut bacteria codevelops with the host and is considered a metabolic "organ" that not only facilitates harvesting of nutrients from the dietary components but also produces a class of metabolites. Many metabolites of gut microbes have an important impact on host health. For example, an inventory of metabolic intermediates derived from bacterial protein fermentation may affect host physiology and pathophysiology. Additionally, gut microbiota can convert cholesterol to bile acids and further into secondary bile acids which can conversely modulate microbial community. Moreover, new research identifies that microbes synthesize vitamins for us in the colon. Here, we will review data implicating a major class of bacterial metabolites through breaking down dietary fiber we cannot process, short-chain fatty acids (SCFAs), as crucial executors of alteration of immune mechanisms, regulation of metabolic homeostasis, and neuroprotective effects to combat disease and improve health.
Collapse
Affiliation(s)
- Suwei Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
80
|
Tamargo A, Cueva C, Alvarez MD, Herranz B, Moreno-Arribas MV, Laguna L. Physical effects of dietary fibre on simulated luminal flow, studied by in vitro dynamic gastrointestinal digestion and fermentation. Food Funct 2019; 10:3452-3465. [PMID: 31139792 DOI: 10.1039/c9fo00485h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During the transit through the gastrointestinal tract, fibre undergoes physical changes not usually included in in vitro digestion studies even though they influence nutrient diffusion and might play a role in gut microbiota growth. The aim of this study was to evaluate how physical fibre properties influence the physical properties of gastrointestinal fluids using a gastrointestinal model (stomach, small intestine, ascending colon, transverse colon, and descending colon) (simgi®). Analysis by rheological and particle size characterisation, microbiota composition and short-chain fatty acid (SCFA) determination allows the achievement of this goal. First, the water-holding capacity (WHC), microstructure, and viscosity of eight different fibres plus agar were tested. Based on the results, potato fibre, hydroxypropyl methylcellulose (HPMC), psyllium fibres, and agar (as a control) were selected for addition to a medium growth (GNMF) that was used to feed the stomach/small intestine and colon compartments in the simgi®. During gastrointestinal digestion, GNMF was collected at 5, 30 and 55 minutes of processing at the gastric stage and after the intestinal stage. Then, samples of GNMF with faecal slurry were collected at 0, 24 and 48 h of colonic fermentation. Results showed fibre-dependence on apparent viscosity. Although psyllium was partially broken down in the stomach (decrease in particle size), it was the most viscous at the colonic stage, opposite to the potato fibre, but both led to the highest total SFCA and acetic acid production profile. On a microbiological level, the most relevant increase of bacterial growth was observed in the faecal Lactobacillus species, especially for HPMC and potato fibre, that were not digested until reaching the colon. Besides fibre fermentability, viscosity also influenced microbial growth, and it is necessary to characterise these changes to understand fibre functionality.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
81
|
Gil-Sánchez I, Cueva C, Tamargo A, Quintela JC, de la Fuente E, Walker AW, Moreno-Arribas MV, Bartolomé B. Application of the dynamic gastrointestinal simulator (simgi®) to assess the impact of probiotic supplementation in the metabolism of grape polyphenols. Food Res Int 2019; 129:108790. [PMID: 32036893 DOI: 10.1016/j.foodres.2019.108790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/20/2023]
Abstract
In this paper, the Dynamic Gastrointestinal Simulator (simgi®) is used as a model to the study the metabolic activity of probiotics at the intestinal level, and in particular, to assess the impact of probiotic supplementation in the microbial metabolism of grape polyphenols. Two independent simulations using fecal samples from two healthy volunteers were carried out. Changes in microbiota composition and in metabolic activity were assessed by qPCR and 16S rRNA gene sequencing and by analyses of phenolic metabolites and ammonium ions (NH4+). The strain Lactobacillus plantarum CLC 17 was successfully implanted in the colon compartments of the simgi® after daily feeding of 2 × 1010 CFU/day for 7 days. Overall, no changes in bacterial diversity were observed after probiotic implantation. In comparison to the digestion of the grape polyphenols on their own, the inclusion of L. plantarum CLC 17 in the simgi® colon compartments led to a greater formation of phenolic metabolites such as benzoic acids, probably by the breakdown of high-molecular-weight procyanidin polymers. These results provide evidence that the probiotic strain Lactobacillus plantarum CLC 17 may improve the metabolism of dietary polyphenols when used as a food ingredient.
Collapse
Affiliation(s)
- Irene Gil-Sánchez
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Carolina Cueva
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Jose C Quintela
- Natac S A, Parque Científico de Madrid, C/ Faraday 7, 28049 Madrid, Spain
| | | | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, Scotland, UK
| | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
82
|
Hernandez-Hernandez O. In vitro Gastrointestinal Models for Prebiotic Carbohydrates: A Critical Review. Curr Pharm Des 2019; 25:3478-3483. [DOI: 10.2174/1381612825666191011094724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
Background:
In the last decade, various consortia and companies have created standardized digestion
protocols and gastrointestinal simulators, such as the protocol proposed by the INFOGEST Consortium, the simulator
SHIME, the simulator simgi®, the TIM, etc. Most of them claim to simulate the entire human gastrointestinal
tract. However, few results have been reported on the use of these systems with potential prebiotic carbohydrates.
Methods:
This critical review addresses the existing data on the analysis of prebiotic carbohydrates by different in
vitro gastrointestinal simulators, the lack of parameters that could affect the results, and recommendations for
their enhancement.
Results:
According to the reviewed data, there is a lack of a realistic approximation of the small intestinal conditions,
mainly because of the absence of hydrolytic conditions, such as the presence of small intestinal brush border
carbohydrases that can affect the digestibility of different carbohydrates, including prebiotics.
Conclusion:
There is a necessity to standardize and enhance the small intestine simulators to study the in vitro
digestibility of carbohydrates.
Collapse
|
83
|
Hu H, Zhang S, Liu F, Zhang P, Muhammad Z, Pan S. Role of the Gut Microbiota and Their Metabolites in Modulating the Cholesterol-Lowering Effects of Citrus Pectin Oligosaccharides in C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11922-11930. [PMID: 31576748 DOI: 10.1021/acs.jafc.9b03731] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated the regulatory effects of citrus pectin oligosaccharides (POS) from an innovative, chemically controllable degradation process on cholesterol metabolism and the gut microbial composition. The modulatory role of the intestinal flora was explored. Four-week-old male C57BL/6 mice were fed either a standard diet; a high-fat (HF) diet; or a HF diet with 0.15, 0.45, and 0.9 g/kg body weight POS for 30 days. POS reduced serum total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) in a dose-dependent manner. The relative abundances of specific bacterial groups in the feces and the concentrations of their metabolites were higher in the POS groups. There were significant correlations among Bifidobacterium, Lactobacillus, and Bacteroides and short-chain fatty acids, as well as among serum TC, LDL-C, fecal bile acids, and liver cholesterol 7-α-hydroxylase and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. These findings indicate that the prepared POS exhibited hypocholesterolemic effects and that the potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated by specific bacterial groups together with their metabolites.
Collapse
|
84
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
85
|
Zhang CQ, Chen X, Ding K. Structural characterization of a galactan from Dioscorea opposita Thunb. and its bioactivity on selected Bacteroides strains from human gut microbiota. Carbohydr Polym 2019; 218:299-306. [DOI: 10.1016/j.carbpol.2019.04.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
|